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Deep ocean acoustics, in the absence of shipping and wildlife, is driven by surface processes. Best
understood is the signal generated by non-linear surface wave interactions, the Longuet-Higgins
mechanism, which dominates from 0.1 to 10 Hz, and may be significant for another octave. For this
source, the spectral matrix of pressure and vector velocity is derived for points near the bottom
of a deep ocean resting on an elastic half-space. In the absence of a bottom, the ratios of matrix
elements are universal constants. Bottom effects vitiate the usual “standing wave approximation,”
but a weaker form of the approximation is shown to hold, and this is used for numerical calculations.
In the weak standing wave approximation, the ratios of matrix elements are independent of the
surface wave spectrum, but depend on frequency and the propagation environment. Data from the
Hawaii-2 Observatory are in excellent accord with the theory for frequencies between 0.1 and 1 Hz,
less so at higher frequencies. Insensitivity of the spectral ratios to wind, and presumably waves, is
indeed observed in the data.

PACS numbers: (43.30.Nb (noise in water), 43.28.Py (Interaction of fluid motion and sound)

I. INTRODUCTION

Interest in deep water ambient noise has its origins
in the 1930s, beginning with attempts to explain micro-
seisms, persistent and ubiquitous low frequency ground
oscillations. Their spectrum peaks near 0.17 Hz, roughly
twice the characteristic frequency of ocean swell, and
the amplitude correlates with storminess. The most vi-
able explanation for this phenomena, based on the work
of Miche,1 was originally proposed by Longuet-Higgins2

and extended by Hasselmann3 and Brekhovskikh.4,5 The
cause is the non-linear interaction of two oppositely trav-
eling surface waves. Individually, the pressure attenu-
ates exponentially with depth. However, wave pairs with
nearly opposed wave vectors collide to excite an acoustic
wave at approximately twice the frequency which prop-
agates downward with negligible attenuation. A review
of the wave-wave mechanism and its seismic effects, to-
gether with citations to much of the relevant literature,
can be found in Kibblewhite and Wu.6

Here we give a unified exposition of the acoustic field
radiated by non-linear surface wave interactions. The
power spectral density matrix (PSDM), obtained from
autocorrelations and cross-correlations of pressure and
vector velocity, is found both for an ocean of infinite
depth, and an ocean layer over an elastic half-space. It
is shown that the ratios of elements of the PSDM for
deep observations of the acoustic signal are nearly in-
variant, depending on frequency and the propagation
environment but not on the details of the wave spec-
trum. While the wave spectrum displays dramatic daily
variability that correlates with wind speed, the propaga-
tion environment is essentially constant, aside from sound
speed variations due to seasonal fluctuations or internal
waves. The variability of the wave spectrum manifests it-
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self in fluctuations in the amplitude of individual PSDM
elements, but not in their ratios.

The standing wave approximation is based on the fact
that the sound speed is much greater than the phase
velocity of surface gravity or capillary waves. Conse-
quently, only pairs of surface waves with almost exactly
equal frequency and almost exactly opposing propaga-
tion directions (hence almost a standing wave) can gener-
ate a non-evanescent acoustic wave, propagating without
vertical attenuation (neglecting viscosity). For acoustic
waves which generate microseisms, the constraint is even
more stringent; not only must the acoustic wave prop-
agate without vertical attenuation, it must propagate
nearly vertically such that the horizontal component of
the acoustic wave-number is sufficiently small to excite
microseisms, which have characteristic wave-length ∼ 15
km.

It is shown that the standing wave approximation im-
plies that the ratios of elements of the PSDM are univer-
sal constants. In fact, this is far too strong a result, and
we do not expect its consequences to be observed, ex-
cept perhaps for sufficiently lossy or rough bottoms and
higher wave frequencies. Because bottom effects negate
the standing wave approximation, the radiated acoustic
signal becomes sensitive to very slight deviations from
the standing wave configuration.

We show that a weaker form of the standing wave ap-
proximation will hold since the acoustic source term, un-
like the acoustic propagation term, is not particularly

sensitive to variations of the horizontal wave vector ~kh,
the sum of surface wave vectors, in the region for which
the acoustic wave propagates without vertical attenua-

tion, |~kh| < 2πf/c (f is the acoustic frequency and c is
the sound speed). While ratios of PSDM elements are not
universal constants in the “weak standing wave approxi-
mation,” they will display little variability with changing
surface conditions, depending only on frequency and the
propagation environment but not on the details of the
surface wave spectrum.
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The theory is verified with data from the hydrophone
and a pair of three-component seismometers of the
Hawaii-2 Observatory (H2O), located at 5000 m depth
near 28N, 142W.8 Spectra and cross-spectra for all three-
hour windows in a 50-day interval of year 2000 have
been computed. Surface winds, according to the Eu-
ropean Centre for Medium-Range Weather Forecasts
(ECMWF), ranged between approximately 2 and 10
m s−1 during the period, and the significant wave height
between 1.3 and 2.7 m. There is, indeed, little variation
in the ratios of the PSDM elements compared with the
variations in the individual matrix elements; the separa-
tion between spectra, in dB, is essentially constant. The
best evidence is from coherency between pressure and
vertical velocity, which is especially high for frequencies
less than 1 Hz. The diminution above 1 Hz is attributed
to bottom effects not embraced by the simple model.

II. ACOUSTIC RADIATION FROM NON-LINEAR WAVE

INTERACTIONS

Starting with Longuet-Higgins,2 the most common
derivation of the acoustic signal radiated by wave-wave
interactions involves a perturbative solution of the hy-
drodynamic equations. The expansion parameter char-
acterizing the non-linearity is proportional to wave slope.
The leading term is a superposition of plane surface grav-
ity waves and the second-order term is an acoustic plane
wave. We give an immensely abbreviated review of this
approach, closely following Kibblewhite and Wu,6 but
extending the analysis with a unified treatment both of
pressure and vector velocity and simplifying it by con-
sidering the bottom as an elastic half-space. Farrell and
Munk (Ref. 7, Appendix A) give a brief review and ra-
tionalization of the numerous solutions obtained since
Longuet-Higgins.

A. Perturbation equations

The relevant perturbative solution of the irrotational
hydrodynamic equations is expressed in terms of a veloc-
ity potential φ(~x, t) and a surface displacement ζ(x, y, t).
The potential and displacement are expanded as

φ = ǫφ1 + ǫ2φ2 + · · · (1a)

ζ = ǫζ1 + · · · (1b)

The expansion parameter ǫ may be set to 1 at the end of
the calculation.

The first-order solution is taken to be an incompress-
ible flow corresponding to a superposition of surface plane
waves;

φ1(~x, t) =

1

(2π)2

∫

d~q
−iσ(~q )

q
ζ̃1(~q ) exp(i~q · ~xh + qz − iσ(q)t)(2a)

ζ1(x, y, t) =

1

(2π)2

∫

d~q ζ̃1(~q ) exp(i~q · ~xh − iσ(q)t), (2b)

where ~xh = (x, y), ~q = (qx, qy), q = |~q | and the dispersion
relation is

σ2 = gq

(

1 +
q2

q2
gc

)

, q2
gc =

ρg

T
(3)

with surface tension T = .074 N m−1. qgc is the wave
number of the gravity-capillary transition.

At next order in the ǫ expansion, the Navier-Stokes
equations yield an acoustic wave equation and a surface
boundary condition, with source terms dependent on the
first-order solution;

(

~∇2 −
1

c2

∂2

∂t2

)

φ2 =
1

c2

∂

∂t

(

(~∇φ1)
2
)

(4a)

(

∂2

∂t2
+ g

∂

∂z

)

φ2

∣

∣

∣

∣

z=0

= −
∂

∂t

(

(~∇φ1)
2
)

∣

∣

∣

∣

z=0

(4b)

where c is the (constant) sound speed.

B. Acoustic source

In terms of the Fourier transform of the second-order
acoustic potential,

φ̃2(ω,~kh, z) =

∫

dtd~xhφ2(t, ~xh, z)eiωt−i~kh·~xh , (5)

equations (4a) and (4b) become

(

d2

dz2
+

ω2

c2
− k2

h

)

φ̃2 = S̃(ω,~kh, z) (6a)

(

d

dz
−

ω2

g

)

φ̃2

∣

∣

∣

∣

z=0

= −
c2

g
S̃(ω,~kh, 0) , (6b)

where the source term is [cf. Ref. 6, (4.15)]

S̃(ω,~kh, z) ≡
∫

dtd~xh

(

1

c2

∂

∂t

(

(~∇φ1)
2
)

)

e(−iωt+i~kh·~xh) . (7)

Using (2a),

S̃(ω,~kh, z) =

iω

2πc2

∫

d~q d~q ′ σ(q)σ(q′)

(

1 −
~q · ~q ′

qq′

)

ζ̃1(~q )ζ̃1(~q
′)

δ(ω − σ(q) − σ(q′))δ2(~kh − ~q − ~q ′)e(q+q′)z . (8)

The ~q ′ integral is immediately evaluated because of the
two-dimensional delta function. This gives

S̃(ω,~kh, z) = (9)

iω

2πc2

∫

d~q σ(q)σ(|~kh − ~q |)

(

1 −
~q · (~kh − ~q )

q|~kh − ~q |

)

ζ̃1(~q )ζ̃1(~kh − ~q )δ(ω − σ(q) − σ(|~kh − ~q |))e(q+|~kh−~q |)z .
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C. Solving for the acoustic velocity potential

In terms of a Green’s function satisfying
(

d2

dz2
+

ω2

c2
− k2

h

)

Gω,~kh
(z, z′) = −4πδ(z − z′) (10a)

(

d

dz
−

ω2

g

)

Gω,~kh
(z, z′)

∣

∣

∣

∣

z′=0

= 0, (10b)

(cf. Ref. 6, Eqns. 4.30, 4.31) the solution of (6a) and
(6b) is, via Green’s theorem,

φ̃2(ω,~kh, z) =
1

4π

c2

g
S̃(ω,~kh, 0)Gω,~kh

(z, 0)

−
1

4π

∫ 0

−∞

dz′S̃(ω,~kh, z′)Gω,~kh
(z, z′) . (11)

The second(bulk) term on the right-hand side of (11) is
smaller than the first (surface) term by a factor of order
gL/c2, where L is a the characteristic depth scale of the
surface waves, and may therefore be neglected, giving

φ̃2(ω,~kh, z) ≈
1

4π

c2

g
S̃(ω,~kh, 0)Gω,~kh

(z, 0) . (12)

III. THE POWER SPECTRAL DENSITY MATRIX

We introduce the 4-vector

(v0, v1, v2, v3) ≡ (
P

ρc
, vx, vy, vz), (13)

with P pressure and velocity components vx, vy in the
horizontal, vz in the vertical. The PSDM is defined by

Mµ,ν(ω) ≡
1

2π

∫ ∞

−∞

dτ eiωτ 〈vµ(t)vν(t + τ)〉 , (14)

where 〈〉 denotes averaging over time. The 10 indepen-
dent elements of (14) are evaluated by means of the far-
field velocity potential φ2. With the notation

(X0, X1, X2, X3) = (ct, x, y, z) , (15)

one can write

vµ =
∂

∂Xµ
φ2 . (16)

Evaluation of (14) is thus a slight extension of the calcu-
lation which yields the spectrum of the velocity potential,

Fφ2
=

1

2π

∫ ∞

−∞

dτe−iωτ 〈φ2(0, ~xh, z)φ∗
2(τ, ~xh, z)〉 , (17)

normalized such that
∫∞

−∞ dωFφ2
(ω) = 〈φ2

2〉.

Using (12) one obtains

〈φ2(0, ~xh, z)φ∗
2(τ, ~xh, z)〉 =

1

(2π)6
1

16π2

∫

dωd~khdω′d~k′
h

c4

g2
〈S̃(ω,~kh, 0)S̃∗(ω′, ~k′

h, 0)〉

G(ω,~kh, z)G̃∗(ω′, ~k′
h, z)eiω′τ , (18)

where the source S̃(ω,~kh, 0) is given in (9).

The wave elevation spectrum is

Fζ(~q ) ≡
1

(2π)2

∫

d~xh〈ζ(0)ζ∗(~x)〉ei~q·~xh , (19)

again normalized such that
∫

d~q Fζ(~q ) = 〈ζ2〉. Equiva-
lently, 〈ζ(~q )ζ∗(~q ′)〉 = (2π)4Fζ(~q )δ2(~q − ~q ′).

Introducing the source spectrum (9) into (18), us-
ing the elevation spectrum (19), and assuming Gaussian
statistics, we get

〈φ2(0, ~xh, z)φ∗
2(τ, ~xh, z)〉

=
1

16π2

∫

dωd~kh
ω2

g2
|G̃(ω,~kh, z)|2

∫

d~q σ(~q )2σ(~kh − ~q )2

(

1 −
~q · (~kh − ~q )

q|~kh − ~q |

)2

2 Fζ(~q )Fζ(~kh − ~q )δ(ω − σ(q) − σ(|~kh − ~q |))eiωτ . (20)

Note that one must be careful not to omit a combinatoric
factor of 2, which arises because

〈ζ(~q )ζ(~kh − ~q )ζ∗(~q ′)ζ∗(~k′
h − ~q ′)〉

= 〈ζ(~q )ζ∗(~q ′)〉〈ζ(~kh − ~q )ζ∗(~k′
h − ~q ′)〉

+〈ζ(~q )ζ∗(~k′
h − ~q ′)〉〈ζ(~kh − ~q )ζ∗(~q ′)〉 + · · ·

The remaining terms, indicated by · · · , do not contribute.

We introduce the function

Σ(ω,~kh) ≡

1

8π2

ω2

g2

∫

d~q σ(~q )2σ(~kh − ~q )2

(

1 −
~q · (~kh − ~q )

q|~kh − ~q |

)2

Fζ(~q )Fζ(~kh − ~q )δ
(

ω − σ(q) − σ(|~kh − ~q |)
)

, (21)

which depends on the surface wave statistics and the dis-
persion relation. With this definition, the autocorrelation
of the second-order velocity potential can be written

〈φ2(0, ~xh, z)φ∗
2(τ, ~xh, z)〉

=

∫

dωd~kh|G̃(ω,~kh, z)|2Σ(ω,~kh)eiωτ (22a)

=

∫

dωeiωτFφ2
. (22b)

Because of the second equivalence, which is the inverse
of (17), it immediately follows that

Fφ2
(ω) =

∫

d~kh|G̃(ω,~kh, z)|2Σ(ω,~kh) . (23)

Taking the appropriate derivatives, via equation (16),
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we get

M0,0 =
ω2

c2

∫

d~kh |Gω,~kh
(z, 0)|2Σ(ω,~kh)

Mi,j =

∫

d~kh kh,ikh,j |Gω,~kh
(z, 0)|2Σ(ω,~kh)

M0,i = −
ω

c

∫

d~kh kh,i|Gω,~kh
(z, 0)|2Σ(ω,~kh)

Mi,3 = i

∫

d~kh kh,iGω,~kh
(z, 0)

∂

∂z
G∗

ω,~kh
(z, 0)Σ(ω,~kh)

M3,3 =

∫

d~kh
∂

∂z
Gω,~kh

(z, 0)
∂

∂z
G∗

ω,~kh
(z, 0)Σ(ω,~kh)

M0,3 = −i
ω

c

∫

d~kh Gω,~kh
(z, 0)

∂

∂z
G∗

ω,~kh
(z, 0)Σ(ω,~kh)

The following definitions lead to a more compact no-
tation

1ג = |Gω,~kh
(z, 0)|2Σ(ω,~kh) (24a)

2ג = Gω,~kh
(z, 0)

∂

∂z
G∗

ω,~kh
(z, 0)Σ(ω,~kh) (24b)

3ג =
∂

∂z
Gω,~kh

(z, 0)
∂

∂z
G∗

ω,~kh
(z, 0)Σ(ω,~kh) (24c)

4ג = kh~)1ג = 0) (24d)

With these, the PSDM may be written

M0,0 =
ω2

c2

∫

d~kh 1ג (25a)

Mi,j =

∫

d~kh kh,ikh,j 1ג (i, j = 1, 1; 1, 2; 2, 2) (25b)

M0,j = −
ω

c

∫

d~kh kh,j 1ג (j = 1, 2) (25c)

Mi,3 = i

∫

d~kh kh,i 2ג (i = 1, 2) (25d)

M3,3 =

∫

d~kh 3ג (25e)

M0,3 = −i
ω

c

∫

d~kh 2ג (25f)

IV. THE STANDING WAVE APPROXIMATION

The collision of two surface waves with horizon-
tal wave-numbers ~q1, ~q2, and corresponding frequen-
cies σ(q1), σ(q2), yields an acoustic wave with fre-
quency ω = σ(q1) + σ(q2) and horizontal wave-number
~kh = ~q1 + ~q2. Thus, the vertical wave-number of the
acoustic wave is

γ =

√

(ω/c)2 − ~k2
h . (26)

For un-attenuated propagation to the bottom, γ must be

real, or k ≡ |~kh| < ω/c. This constraint can be re-written
as

σ(~q1) + σ(~q2)

|~q1 + ~q2|
> c . (27)

Given the disparity between the surface wave phase
velocity and the much larger acoustic phase velocity,
σ(q)/q << c, the constraint (27) implies that ~q1 ≈ −~q2.
The allowed deviation from the standing wave-case,
~q1 = −~q2, expressed as a variation in the relative wave-
length ∆λ/λ or of the propagation angle ∆θ of one of the
opposing surface waves, is of order cζ/c, where cζ is the
surface wave phase velocity. Wave spectra are essentially
constant over such small variations of angle and wave-
length, which are too small to resolve experimentally.

Thus, at sufficient depth, the integral over the hori-

zontal wave number ~kh in (25a - 25f) can be restricted to

kh < ω/c, and the source term Σ(ω,~kh) can be replaced

with its value at ~kh = 0. In the absence of a bottom, the
squared amplitude of the Green’s function |Gω,~kh

(z, 0)|2

can also be replaced with its value at ~kh = 0 for the
following reason.

For a bottomless ocean, the Green’s function is the
solution of (10a) with the surface boundary condition
(10b). For z < 0 ,

Gω,~kh
(z, 0) =

−4πg

iγg + ω2
e−iγz (28)

(cf. Ref. 6, Section 4.2.3). In the region kh < ω/c for
which there is un-attenuated propagation to the bottom,

|Gω,~kh
(z, 0)|2 =

16π2

ω4

g2 + ω2

c2 − k2
h

=
16π2g2

ω4

[

1 + O(
g2

ω2c2
)

]

. (29)

All the dependence of |Gω,kh
|2 on kh is in the sub-

leading term, which is negligible since g/(ωc) is extremely
small (about 10−3 at 1 Hz). This is also of order cζ/c,
since for gravity waves the phase velocity is cζ = g/σ
and, for a standing wave, ω = 2σ. Note that the same
small parameter, g/ωc, determines the dominance of the
surface term over the bulk term in (11). The char-
acteristic penetration depth of surface gravity waves is
L = 1/q = g/σ2 = 4g/ω2, such that the small parameter
determining the dominance of the surface term over the
bulk term, gL/c2, is proportional to (g/ωc)

2
.

The far-field spectrum is generally computed by re-
stricting the integration region to kh < ω/c and replac-
ing both source and propagation terms, Σω,~kh

and Gω,~kh
,

respectively, by their values at ~kh = 0. This is known as
the standing wave approximation. In light of the above
discussion, the standing wave approximation is a very
good approximation in the absence of a bottom, or for a
perfectly absorbing bottom, with errors proportional to
the small parameter cζ/c.

To make contact with well-known results, we evalu-
ate M0,0 in the standing wave approximation. Using ,4ג

Acoustic radiation and wave-wave interactions 4



(24d),

M0,0 =
ω2

c2

∫ 2π

0

dθ

∫ ω/c

0

dk k 4ג

=
πω4

c4
|Gω,~kh

(z, 0)|2Σ(ω,~kh = 0)

=
π

2

ω6

c4

∫

d~q Fζ(~q )Fζ(−~q )δ(ω − 2σ(q)) . (30)

The wave spectrum is factored in the usual way, so
Fζ(~q ) = Fζ(q)H(θ, q), where

∫

dθ H(θ, q) = 1, and

I(q) ≡

∫ 2π

0

dθH(θ, q)H(θ + π, q) . (31)

With these definitions, equation (30) becomes

M0,0(ω) =
π

4

ω6

c4

q

v
F 2

ζ (q)I(q) , (32)

where ω = 2σ(q), and v is the group velocity, ∂σ/∂q.
The pressure spectrum is then

FP (ω) = ρ2c2M0,0

=
π

4

(ρ

c

)2

ω6 q

v
F 2

ζ (q)I(q). (33)

This result is twice the generally adopted formula (Ref.
7, Appendix A), indicating a discrepancy between our ap-
proach and some previous derivations of the source term.
The difference, within the spread of prior derivations, has
no influence on the subsequent analysis of the standing
wave approximation and the power spectral density ma-
trix.

The implications of the standing wave approximation
upon the elements of the PSDM, other than M0,0, have
not been considered previously.

V. RATIOS OF PSDM ELEMENTS IN THE STANDING

WAVE APPROXIMATION

A. Perturbation theory computation

For a perfectly absorbing bottom and surface wave
pairs satisfying kh < ω/c, the wave interaction source

term Σ(ω,~kh) and the squared amplitude of the Green’s
function |Gω,~kh

(z, 0)|2 are very well approximated by

their values at ~kh = 0. Thus, the PSDM elements (25a -
25f) become

M0,0 =
ω2

c2
4ג

∫

d~kh (34a)

Mi,j = 4ג

∫

d~kh kh,ikh,j (34b)

M0,j = −
ω

c
4ג

∫

d~khkh,j (34c)

Mi,3 = 4ג−

∫

d~kh kh,i

√

ω2

c2
− k2

h (34d)

M3,3 = 4ג

∫

d~kh

(

ω2

c2
− k2

h

)

(34e)

M0,3 =
ω

c
4ג

∫

d~kh

√

ω2

c2
− k2

h , (34f)

and all integrals have the limits kh < ω/c.

The integrals over ~kh are trivial, giving

M = π
ω4

c4
4ג









1 0 0 2
3

0 1
4 0 0

0 0 1
4 0

2
3 0 0 1

2









. (35)

The ratios of PSDM elements are universal constants,
so we define the ratio matrix,

R =
Mµ,ν

M0,0
=









1 0 0 2
3

0 1
4 0 0

0 0 1
4 0

2
3 0 0 1

2









. (36)

R is independent of both frequency and the ocean wave
spectrum. We see also that the spectrum of vertical ve-
locity is 3 dB greater than either of the horizontals. Fur-
thermore, the normalized pressure is exactly equal to the
sum of the three velocity spectra on the diagonal. This
is characteristic of any homogeneous acoustic field in the
ocean.9

Due to rotational invariance, all off-diagonal compo-
nents vanish except for r0,3 and its mirror image. Sen-
sor calibration determines the accuracy to which the el-
ements of R can be estimated. A better metric is the
squared coherency. This will be zero for all off-diagonal
elements except r0,3. For this term,

χ2
0,3 = r2

0,3/r3,3 =
8

9
.

The full cross-correlation matrix is

χ2 =













r0,0
r2

0,1

r1,1

r2

0,2

r2,2

r2

0,3

r3,3

. r1,1
r2

1,2

r1,1r2,2

r2

1,3

r1,1r3,3

. . r2,2
r2

2,3

r2,2r3,3

. . . r3,3













. (37)

B. PSDM elements from incoherent dipoles

The pressure field from a homogeneous surface layer of
incoherent and vertically oriented dipoles is

P (~xh, z, t) =

∫

dω

∫

d~x ′
he−iωtFω(~x ′

h)∂z

(

ei ω
c

R

R

)

(38)

where F is the source amplitude, the subscript h indicates
horizontal coordinates, and

R =
√

(~xh − ~x ′
h)2 + z2 . (39)

The more general case, allowing for multiple reflections
at the surface and bottom, is given by Hughes.10

The scaled pressure spectrum, M0,0, is

M0,0(ω) =
1

(ρc)2

∫

d~x ′
hDω(~x ′

h)

∣

∣

∣

∣

∂z

(

ei ω
c

R

R

)∣

∣

∣

∣

2

≈
1

(ρc)2

∫

d~x ′
hDω(~x ′

h)
(ω

c

z

R

)2 1

R2
(40)
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where Dω(~x ′
h) is obtained from the dipole spectrum,

〈Fω(~x)F ′
ω(~x ′)〉 = Dω(~x )δωω′δ(~x − ~x ′), and we have

assumed that we are at sufficient depth z so that
ω/c >> R−1.

Since the dipole distribution is assumed to be homoge-
nous, Dω is independent of ~x ′

h. To obtain expressions
similar to those in (25a), we make a change of variables

from space to wave-number coordinates, ~x ′
h → ~kh, where

~kh ≡
ω

c

~x ′
h − ~xh

√

z2 + (~x ′
h − ~xh)2

(41)

or

~x ′
h − ~xh = z

~kh
√

ω2

c2 − ~k2
h

. (42)

Then (40) becomes

M0,0(ω) =
1

(ρc)2
Dω

∫

|~kh|<
ω
c

d~kh . (43)

Using P = ρφ̇ and vi = ∂φ/∂xi, we obtain the rest of the
PSDM elements:

M0,0(ω) =
1

(ρc)2
Dω

∫

d~kh (44a)

Mi,j(ω) =
c2

ω2

1

(ρc)2
Dω

∫

d~kh kh,ikh,j (44b)

M0,i(ω) = −
c

ω

1

(ρc)2
Dω

∫

d~khkh,i (44c)

Mi,3(ω) = −
c2

ω2

1

(ρc)2
Dω

∫

d~kh kh,i

√

ω2

c2
− k2

h (44d)

M3,3(ω) =
c2

ω2

1

(ρc)2
Dω

∫

d~kh

(

ω2

c2
− k2

h

)

(44e)

M0,3(ω) =
c

ω

1

(ρc)2
Dω

∫

d~kh

√

ω2

c2
− k2

h , (44f)

and each integral has the limits kh < ω/c
This agrees precisely with the result (34a)–(34f) ob-

tained using perturbative non-linear wave interaction
theory in the standing wave approximation, provided
that the surface dipole spectrum is related to the wave
spectrum by

Dω = ρ2ω2
4ג . (45)

VI. BOTTOM EFFECTS

In general, the effect of the bottom is a modification of
the Green’s function appearing in (25a-25f). The stand-
ing wave approximation which leads to (35) is dependent
on the squared amplitude of the Green’s function of the
operator

L̂ =
d2

dz2
+

ω2

c2
− k2

h (46)

being a nearly constant function of kh in the region
kh < ω/c. The fact that this holds in the bottomless case

is a lucky accident. In general, the Green’s function is
non-analytic at kh = ω/c, which is the transition point
from vertical propagation to attenuation, so there is no
reason to expect its squared amplitude to be constant in a
neighborhood of this point. Upon inclusion of a bottom,
the squared amplitude of the Green’s function becomes
a rapidly varying function on the interval kh = [0, ω/c].
The location of the peaks of this function are determined
by solutions of the eigenvalue equation

(

d2

dz2
+

ω2

c2
− k2

h,l

)

φ = 0 , (47)

subject to the appropriate top and bottom boundary con-
ditions. On the real interval kh = [0, ω/c], the Green’s
function has narrow peaks centered about real kh,l cor-
responding to normal modes and wider peaks centered
about the real part of complex kh,l corresponding to leaky
modes (see, for example, Ref. 11, Section 2.1).

A. Green’s function for a layer over a half-space

We wish to obtain the Green’s function Gω,~kh
(z, zs)

satisfying

(

∂2
z +

ω2

c2
− k2

h

)

Gω,~kh
(z, zs) = δ(z − zs) , (48)

subject to the surface boundary condition (for the case
of gravity waves),

(

∂z −
ω2

g

)

G

∣

∣

∣

∣

z=0

= 0 (49)

and the mixed Dirichlet-Neuman (impedance) bottom
boundary condition,

(

G + h(~kh)∂zG
)∣

∣

∣

z=zbottom

= 0 . (50)

The function h(~kh) depends on the characteristics of the
region below zbottom ≡ d.

Assuming constant sound speed c in the water column
above zbottom, and taking zs = 0 (the surface), the solu-
tion is

Gω,~kh
(z, 0) =

g
(

e−iγ(d+z) + R(ω,~kh)eiγ(d+z)
)

(ω2 + iγg)e−iγd + R(ω,~kh)(ω2 − iγg)eiγd
, (51)

where

γ ≡

√

ω2

c2
− ~k2

h , (52)

and R is the reflection coefficient;

R =
M − 1

M + 1
(53)
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with M = Zb/Z, and the top and bottom layer
impedances are defined by

Z =
ρω

γ
(54a)

Zb = iρωh(~kh) . (54b)

The function h(~kh) entering the bottom boundary
condition (50) is obtained from the matching condition
across the top–bottom interface or across multiple inter-
faces if the bottom is layered. For a fluid half-space bot-
tom, one matches the vertical velocity vz on either side
of the interface, while for a solid half-space bottom, one
matches vz and the components of the stress tensor con-
taining a vertical index, τiz . This has been done before
in numerous places (see for example Ref. 12). With-
out derivation, the result for a fluid layer over an elastic
half-space is given below.

For the fluid half-space with density ρb and sound
speed cb,

h(~kh) = −i
ρb

ργb
, γb ≡

√

ω2

c2
b

− ~k2
h . (55)

For the elastic half-space with density ρb, shear wave
velocity cs, and compression wave velocity cp,

h(~kh) = i
c2
s

ω4ρ

[

~k2
h − γ2

s

γp

(

(2µ + λ)γ2
p + λ~k2

h

)

− 4µ~k2
hγs

]

γp ≡

√

ω2

c2
p

− ~k2
h, γs ≡

√

ω2

c2
s

− ~k2
h (56)

where µ and λ are the Lamé parameters, related to the
shear and compression wave velocities by

cp =

√

λ + 2µ

ρb

cs =

√

µ

ρb
. (57)

B. Numerical example

As a specific example, Green’s function for the model
given in Table I was calculated for an acoustic fre-
quency of 3 Hz (Fig. 1). A power loss of 6 dB per
bounce, independent of angle, is assumed for kh > kh,crit

(kh,crit = ω/cs = .0086).

TABLE I. Model used for calculating power spectrum matrix

Ocean layer Half-space

ρ (kg m−3) 1000 2000

cp (m s−1) 1500 4400

cs (m s−1) 2200

thickness (m) 5000 ∞

Wave number at 3 Hz, radians m-1

|
G

|-1

0.000 0.0150.0100.005
0

1

0.75

0.5

0.25

FIG. 1. The squared amplitude of the Green’s function
Gω,kh

(0, zbot) on the interval kh = [0, ω/c] for a fluid layer
over an elastic half-space at 3 Hz. Red shows the result for
a bottomless ocean, which is very nearly flat on this interval.
The cutoff wavenumber, ω/1500 = .0126, is denoted by +;
the critical wavenumber, kh,crit = ω/2200 = .0086, with ×.

The figure shows pronounced narrow peaks,
corresponding to normal modes on the interval
kh = [kh,crit, ω/c] where the reflection coefficient
has modulus nearly equal to 1 and acoustic energy is
not lost by propagation through the bottom layer. The
critical wave number is ω/cs where cs is the shear wave
velocity in the half-space. A small power loss per bottom
bounce is incorporated to give the normal modes kh,l a
small imaginary component such that these peaks have
finite height.

There are also a series of wider peaks on the inter-
val kh = [0, kh,crit], corresponding to leaky modes. A
general feature of bottom effects is that the acoustic sig-
nal increases over the bottomless case. Moreover, the
PSDM ratios can be expected to differ from (36) due
to oscillations of the squared amplitude of the Green’s
function which violate the standing wave approxima-
tion; it is no longer possible to make the replacement
Gω,~kh

→ Gω,~kh=0 inside the integrals in (25a).

VII. THE WEAK STANDING WAVE APPROXIMATION

Although the squared amplitude of the Green’s func-
tion is not flat on the interval kh = [0, ω/c] when bottom
effects are considered, the surface wave spectrum remains
unaltered by bottom effects, except for the organ-pipe
modes that can exist for f . 0.5 Hz.3 With this limita-
tion, one can make the replacement

Σ(ω,~kh) → Σ(ω,~kh = 0), (58)

in (25a-25f), which we call the “weak standing wave”
approximation. Since the wave spectrum, Σ, is evaluated
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at ~kh = 0, it can be taken outside those ~kh integrals,
giving

Mµ,ν = Σ(ω,~kh = 0)Ξµ,ν (59)

where

Ξ0,0 =
ω2

c2

∫

d~kh |Gω,~kh
(z, 0)|2 (60a)

Ξi,j =

∫

d~kh kh,ikh,j |Gω,~kh
(z, 0)|2 (60b)

Ξ0,j = −
ω

c

∫

d~khkh,j |Gω,~kh
(z, 0)|2 (60c)

Ξi,3 = i

∫

d~kh kh,iGω,~kh
(z, 0)

∂

∂z
G∗

ω,~kh
(z, 0) (60d)

Ξ3,3 =

∫

d~kh
∂

∂z
Gω,~kh

(z, 0)
∂

∂z
G∗

ω,~kh
(z, 0) (60e)

Ξ0,3 = −i
ω

c

∫

d~kh Gω,~kh
(z, 0)

∂

∂z
G∗

ω,~kh
(z, 0) , (60f)

and each integral has the limits kh < ω/c.
The term that depends on the wave spectrum, Σ, can-

cels in the ratios of PSDM elements, which therefore de-
pend solely on Ξµ,ν . In the absence of signal other than
that generated by surface wave interactions, similar argu-
ments imply that the dependence on the wave spectrum
also cancels in other ratios of deep ocean acoustic corre-
lation functions.

Thus we propose that the PSDM element ratios in deep
water for the signal generated by wave interactions, while
not universal constants, are independent of the details of
the wave spectrum. They will depend solely on frequency
and the propagation environment, which together deter-
mine the form of the Green’s function Gω,~kh

.

A. Pressure near the bottom

The effect of the bottom on acoustic pressure is ex-
pressed as the ratio of the M0,0(z) matrix elements. Us-
ing the weak standing wave approximation, (60a), the
relative effect of the bottom on pressure is given by

M b
0,0(z)

M0,0(z)
=

Ξ b
0,0(z)

Ξ0,0(z)
(61)

where ()b indicates there is a bottom under the model
ocean.

Evaluating (61) for two depths, we find the solid bot-
tom raises the pressure at the bottom by an average of
2.3 dB, and at 500 m off the bottom the increase is 1.6
dB (Fig. 2). These values are averages over frequencies
less than 15 Hz, but the figure shows the smoothed spec-
trum is flat. Kibblewhite and Wu, using a more detailed
elastic model, found the bottom lifted the pressure spec-
trum by 3 dB (Ref. 6, p. 116 and Fig. 7.8). The spectra
plotted in the figure are equivalent to the function B in-
troduced by Farrell and Munk to express the effect of the
bottom on the spectrum of acoustic pressure arising from
wave-wave interactions on the ocean surface [Ref. 7, (4)].
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0

Acoustic frequency, Hz

0 5 10 15

FIG. 2. The effect of the solid half-space under the ocean
is a uniform increase in bottom pressure by the factor 1.66
(black), or 2.3 dB. The pressure increase is slightly less, 1.46,
500 m above the bottom (red).

B. Model spectra on the ocean floor

We have calculated all elements of Ξµν for the sim-
ple half-space model (see Table 1). For an observation
point at the bottom but in the water, the matrix elements
shown in Fig. 3 are obtained. Smoothing the elements
over plotted band, 0-15 Hz, gives the ratio matrix,

R(zbot) =











1 0 0 −0.1 + 0.4i

. 0.23 0 0

. . 0.23 0

. . . 0.29











. (62)

When smoothed over twice the bandwidth the results are
essentially the same. If the bottom loss is halved, to 3
dB, the changes in the matrix are small. Element r3,3

is reduced by 10%, the other two diagonal elements are
raised by 10%, and the magnitude of r0,3 becomes 25%
less.

The principal effect of the bottom is to reduce the ver-
tical velocity, relative to pressure, by about 40% with re-
spect to the case of the bottomless ocean. There are two
consequences: both r3,3 and r0,3 are smaller by about
this amount. In addition, the coherency between pres-
sure and vertical velocity is less: χ2

0,3 = .58, vs. 0.89 for
the bottomless ocean. The diagonal sum of R is 1.75,
the difference from 2 reflecting the inhomogeneity of the
acoustic field near the bottom.9

C. Model spectra near the bottom

As the observation point rises to 500 m above the bot-
tom, 10% of the water depth, the spectra evolve as shown
in Fig. 4. Smoothing the spectra as before gives the fol-
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FIG. 3. PSDM element ratios rµ,ν = Ξµ,ν/Ξ0,0 (black) for a
point just above the bottom for a 5,000 m water layer over an
elastic half-space (Table I). The short red (blue) line segments
are the ratios for a bottomless ocean. The red segments termi-
nate at 3 Hz, the reference frequency of the Green’s function
shown in Fig. 1.

lowing ratio matrix:

R(0.9 zbot) =











1 0 0 0.0 + .48i

. 0.27 0 0

. . 0.27 0

. . . 0.49











. (63)

The vertical velocity element, r3,3, has nearly reverted
to the bottomless value (36), but, surprisingly, the r0,3

element is 25% less. The diagonal sum is 2.03, reflecting
the near homogeneity of the acoustic field.

VIII. EVIDENCE IN DATA FROM STATION H2O

The theory is applied to bottom data from sta-
tion H2O,8 located at 5,000 meters in a thin-sediment
area of the Pacific, mid-way between Hawaii and Cal-
ifornia. The instrumentation consists of a buried
(0.5 m) Guralp seismometer (Guralp System Limited’s
CMG-3) and Geospace geophone (GTC, Inc.’s Geospace

Technologies
TM

HS-1), and a hydrophone a little off the
bottom. The two velocity sensors differ in the way the
motion of the inertial mass is sensed: the Guralp is bet-
ter at very low frequencies, the Geospace at very high,
but they are comparable over our analysis band. In ad-
dition, assimilated surface winds for the H2O location
were provided by the European Centre for Medium-range
Weather Forecasts from the ERA-interim (ECMWF Re-
analysis) results.
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FIG. 4. PSDM element ratios (smoothed over 0.3 Hz) at
the ocean bottom (black, recapitulating Fig. 3) and 500 me-
ters above the bottom (red). For the diagonal elements and
frequencies towards the right, the red spectra approach the
bottomless ocean result, denoted by the red line segments on
the right margin (panels A, B). The off-diagonal element does
not (panels C, D).

H2O data (hydrophone, channel HDH; Geospace,
channels EHZ, EH1, EH2; Guralp, channels HHZ, HL1,
HL2), obtained from the Incorporated Research Institu-
tions for Seismology (IRIS) Data Management Center,
have been studied for years 2000-2002, inclusive. Spectra
were calculated for three-hour windows to a resolution of
0.1 Hz, giving about 2000 equivalent degrees of freedom.
The spectra have been examined for the whole interval,
but this discussion is restricted to days 200-250 in year
2000. Spectra were calibrated according to the nominal
transfer functions on file at the IRIS Data Management
Center. Various small inaccuracies were discovered and
corrected. For example, there were discrepancies at the
times the gain was changed. The spectra for the vertical
component of the Geospace geophone were raised by 3
dB. This makes them consistent with spectra from the
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vertical component of the Guralp seismometer, is com-
patible with the instrument noise model, and corrects a
demonstrable error in its nominal generator constant.

A. Bottom acoustics and surface winds

It is generally observed that bottom acoustics, from
frequencies less than 1 Hz to frequencies above 30, are
highly correlated with surface wind.13 Typical are the
profiles of the acoustic power at 0.5 Hz (Fig. 5) and 1.76
Hz (Fig. 6). The lower frequency was chosen because
the coherency between pressure and vertical velocity is
greatest. The higher was selected to be on a relative
extremum of the coherency and away from any sediment
resonance.

The vertical scales in Fig. 5, Panel A, have been ad-
justed so that the variation in wind (black) is about as
large as the variation in acoustics (colored). In Panel A
of Fig 6, the wind has about half the range of the acous-
tics. Comparing axes, the slope in log acoustic power is
roughly 2.5 dB/(m s−1) at these frequencies. It has pre-
viously been shown (Ref. 7, Fig 2) that between 6 and
30 Hz the slope of the spectrum is in the range 2.7 - 2.9
dB/(m s−1).

In both figures, the flatness of the components of the
velocity ratios (Panels B, C) shows that scaling vector
velocity by normalized pressure is effective at reducing or
even eliminating the correlation with surface wind. This
is as expected from the foregoing theory, to the extent
the wind is a proxy for the waves.

B. Off-diagonal matrix elements

The off-diagonal elements of the PSDM are the most
diagnostic of the wave-wave acoustic field because, ex-
pressed as squared coherency (see Eq. 37), they are in-
dependent of sensor calibration. The element χ2

0,3 is the
only off-diagonal element that does not vanish for the
elementary models we are testing.

The spectrum of χ2
0,3 (Fig. 7) shows a profound dis-

continuity at 1.03 Hz, which is just below the gravest
sediment resonance (see Fig. 10). The two effects are
presumably related. For lower frequencies the measured
coherency is even higher than the model (0.8 vs 0.58,
see Eqs. 37 and 62). The phase of the cross-spectrum
(Fig 7, Panel B) in the high-coherency band is about
−25◦, far from the model expectation of 104◦ (62). How-
ever, the phase of the cross-spectrum depends on the
phase response of both instruments, and, as explained in
the Discussion, there are questions about the hydrophone
transfer function.

At higher frequencies the coherency wobbles around
0.1-0.2, and there are large swings in phase. There is
pronounced rippling in the coherency, with a periodicity
of approximately 6 cycles/Hz. This feature is well known
but unexplained.14

In theory, the other five off-diagonal elements vanish;
in practice, they nearly do so for f < 1 Hz and are not
large at higher frequencies (Fig. 8). The spike in χ2
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A

FIG. 5. Profile of acoustic power at 0.5 Hz for Guralp data
with dash red pressure (scaled by (ρc)2), and red, blue, green
denoting the vertical and two horizontal components of veloc-
ity (A). ECMWF wind (black) is referenced to the right axis.
Panels B and C are the the three ratios of velocity to scaled
pressure for the two instruments. Blanks indicate sections
where there were no data or where the value was dropped on
a first difference screen. The plus symbols at the bottom of
each panel denote windows at days 218.125 (U = 3.3) and
232.125 (U = 10.1) for which detailed results are presented
below.

near 2.5 Hz corresponds to one of the P-SV modes in the
sediments (see Fig. 10).

Dividing the velocity spectra by the (scaled) pressure
(Figs 5 and 6, panels B and C) is effective at obliterating
the wind correlation. Thus, it is not surprising that the
cross-spectrum of pressure and vertical velocity is equally
quiescent (Fig. 9). Another perspective on the residual
wind signature is visible in comparing the pairs of spectra
plotted in Figs. 7 and 8. Red is the coherency under a
strong wind, and black dash under a weak wind. The
pairs of curves are virtually indistinguishable.

Acoustic radiation and wave-wave interactions 10



0

10

-5

5

-10

E
C

M
W

F
 U

, m
 s

-1

Year 2000 day

215 220 225 230 235 240

V
e

lo
c

it
y

 S
p

e
c

tr
u

m
, 
d

B
-145

-165

-155

-135
1.767 Hz

Guralp

Geospace

215 220 225 230 235 240

215 220 225 230 235 240

C

B

A

5

0

15

R
a

ti
o

 S
p

e
c

tr
u

m
, 
d

B

10

5

0

15

R
a

ti
o

 S
p

e
c

tr
u

m
, 
d

B

10

FIG. 6. Profiles of acoustic power at 1.76 Hz for Guralp data
(colored) and ECMWF wind (black) (A). Panels B and C
are the the three ratios of velocity to scaled pressure for the
two instruments as in Fig. 5. See its caption for additional
details. Note that the acoustics in Panel A more closely follow
the dips in the wind than is the case at the lower frequency
of Fig. 5.

C. Diagonal matrix elements

The power spectra of the velocity components down
the diagonal of the PSDM (Fig. 10) are relatively flat for
frequencies above 1 Hz but fall precipitously below that.
Excluding sediment resonances, the spectra are in ac-
cord with the spot measurements obtained from smooth-
ing the results at 0.5 Hz and 1.76 Hz displayed in Figs. 5
and 6, respectively, and listed in Table II. The steep drop
below 1 Hz we tentatively attribute to a hydrophone cali-
bration error (see Discussion). The bumps on the spectra
of both components at 1 Hz and 2.5 Hz are attributed
to P-SV sediment resonances, as is the broader peak at
4.25 Hz for r1,1 (blue).14
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FIG. 7. Pressure and vertical velocity are highly correlated for
frequencies less than 1 Hz (A), with phase angle of −25◦ at 0.5
Hz (B, Table II). The coherency at higher frequencies, though
less, is still significant, but because of the lower coherency,
the phase fluctuates more. These Guralp exemplars include
a high-wind window (red, day 232.125, U=10.1 m s−1) and a
low-wind window (black dash, day 218.125, U=3.3 ms−1).

D. Summary

The model yields a PSDM ratio matrix for which all
elements are independent of both frequency and wave
spectrum. This is true whether they are expressed in
natural units or as squared coherency.

The measured PSDM ratio matrix is, indeed, insensi-
tive to wind, which we take as a proxy for waves, but
strongly depends on frequency. There is a sharp tran-
sition at 1 Hz. For lower frequencies, the coherency of
the off-diagonal elements is closer to the model than for
higher. A sharp transition in the diagonal matrix ele-
ments occurs at this same critical frequency. Below it,
the ratio elements plunge by 30 dB, which is entirely
caused but the sharp rise in the pressure spectrum. Al-
though we have suggested this is a calibration matter, the
correspondence in frequency of the two effects suggests
they are linked in the physics. Above the transition fre-
quency, the diagonal elements are flatter, which is more
in accord with the model. The variations are within 5 dB.
Peaks of up to 10 dB, which are attributed to P-SV res-
onances in the sediments, are discounted. However, the
levels are much larger than the model results, an effect
also attributed to energy trapped in the sediments.

The important numeral results are highlighted in Ta-
ble II. For six representative matrix elements (column
1), this shows the model values (columns 2) and the ob-
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herency between pressure and horizontal velocity (A) and be-
tween vertical and horizontal velocity (B) is low everywhere,
but especially for frequencies less than 1 Hz, where χ2

0,3 is
highest (see Table II).
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FIG. 9. The coherency between pressure and vertical velocity
(Geospace sensor, three representative frequencies) is virtu-
ally constant, irrespective of wind speed. For 0.5 Hz, there is
a slight dimple near day 218 when the wind was low. Results
for 1.67 Hz around day 235 are unusual, as is the scatter be-
tween days 240 and 245 at 1.76 Hz. (Gaps are due to missing
data or spectra dropped on a first difference criterion.)

served values (columns 3-6) for both sensors and the two
representative frequencies.

For the diagonal elements (top rows), the values for
0.5 Hz are orders of magnitude smaller than the model,
and the values at 1.76 Hz (and above) are 10 to 40 times
larger. The off-diagonal elements (bottom three rows)
fit the model better at 0.5 Hz than at 1.76, although
in neither case has the result been smoothed over the
prominent ripples.

The frequency dependence observed in the coherency
of the off-diagonal matrix elements is inconsistent with
the universal constants predicted by the standing wave
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FIG. 10. Guralp matrix elements r1,1 (blue) and r3,3 (red)
for day 232.125 (U = 10.1 m s−1). The adjacent black dash
curves are the spectra for day 218.125 (U = 3.3 m s−1). The
black bars are averages of the power at 1.76 Hz, exemplified
in Panel B of Fig. 6. The short bars on the right are matrix
values from (62). Spectra for the Geospace instrument are
similar.

TABLE II. Selected elements of the spectral ratio matrix at
0.5 and 1.76 Hz for both H2O seismic sensors. The 12 values
for the diagonal elements ri, j were calculated by averaging
the spectrum over the 50 days, for which shorter segments
are plotted in Figs. 5 and 6. The values of the off-diagonal
elements were calculated by similar smoothing in time at the
appropriate frequencies (for the Guralp, see Figs. 7 and 8).

Theory 0.5 Hz 1.76 Hz

(62) Guralp Geospace Guralp Geospace

r1,1 0.23 1.86 × 10−3 1.39 × 10−3 8.29 6.28

r2,2 0.23 1.54 × 10−3 1.57 × 10−3 5.82 6.12

r3,3 0.29 1.86 × 10−3 1.70 × 10−3 2.21 2.07

r0,1 0 < .01 < .01 < .01 < .01

r0,3 −0.1 + 0.4i .81 − .43i .82 − .30i .32 − .48i .32 − .85i

r1,3 0 < .01 < .01 < .02 < .02

approximation in the case of an ocean layer resting on an
elastic half-space. Thus, other effects, possibly bottom
scattering, are influencing the wave-generated sound at
this site. On the other hand, the insensitivity to wind,
as predicted by the weak standing wave approximation,
is strongly upheld by these data.

IX. DISCUSSION

We have shown that the theoretical predictions of the
standing wave approximation are extremely strong, yield-
ing PSDM ratios which are universal constants. While
it is possible that these PSDM ratios are observed under
certain conditions, such as a high loss bottom, they are
certainly not observed in the H2O data.
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Bottom effects vitiate the standing wave approxima-
tion, leaving in place a weaker version of the approxi-
mation, the predictions of which are observed at H2O. In
particular, the PSDM ratios depend on frequency, but are
insensitive to changes in the surface conditions. Direct
comparison of the PSDM ratios to an elastic half-space
model show less agreement. This is due, presumably,
to the oversimplification of the bottom and propagation
conditions in the model, as well as to instrument calibra-
tion error.

A. Bottom interaction

The primitive model of the ocean’s bottom replicates
the essential features of more elaborate approaches. Pres-
sure is increased a few dB because of the bottom, and
this increase is uniform over the band 1-30 Hz, at least.
The augmentation diminishes slightly as the observation
depth lessens. Given a quantitative estimate for the
influence of the bottom, overhead wave properties can
be inferred from (corrected) deep pressure observations
through application of (33), although there is a factor 2
discrepancy between this result and some other theories.
The model of the ocean bottom will need to be extended
to account for the layer of ocean sediments before velocity
observations can be used for the same purpose.

Pressure and vertical velocity are most coherent for
frequencies below 1 Hz; indeed, the observed coherence
exceeds the model result. The coherence falls above 1 Hz.
The sediments overlying the basement were not modeled,
but the decrease in coherence is attributed to P-SV en-
ergy trapped in this layer. This same effect can explain
the weak but significant rise at 1 Hz in the coherence be-
tween horizontal velocity and both pressure and vertical
velocity.

We view the peaks in the velocity spectra as evidence of
vertically polarized shear waves, naturally excited when
a pressure wave in an acoustic medium is incident on an
elastic medium. The extremely low shear velocity of the
surficial sediments has two effects: the transmitted SV
rays are nearly perpendicular to the boundary and they
are strongly polarized in the horizontal direction. The
resonance occurs when the rays are efficiently reflected
by internally layering in the sediments. Zeldenrust and
Stephen15 applied the theory of Godin and Chapman16

to interpret the resonances at H2O as evidence of a chert
layer approximately 13 m below the bottom, about in
the middle of the 30 m of sediments. Scattering is a
further complication. Any zones in the elastic medium
with strong impedance contrasts and rough boundaries
will scatter both SV and SH energy.

B. Influence of the ocean’s sound speed profile

Taking the ocean to have constant sound speed ignores
the refraction due to the sound channel (e.g. Ref. 7, Fig.
3). However, for a surface layer of incoherent dipoles,
the bottom signal is dominated by the source region with
diameter six times the water depth (Ref 13, Eq. 7).

C. Inference of the wind-wave spectrum

Bottom acoustic observations are beginning to be used
to estimate the spectrum of ocean surface waves. To
do this, within the framework of acoustic radiation from
wave-wave interactions, two corrections are necessary.
Allowance must be made for the bottom interaction and
the overlap integral.

The correction of the pressure spectrum for bottom
interaction appears to be straightforward. The bottom
elevates the pressure a few dB at the bottom, with a
slight decrease moving up the water column away from
the bottom. The bottom effect, in fact, is smaller than
the factor-of-two discrepancy between our derivation and
some previous results.

It is just as significant that the bottom correction does
not depend on frequency. Thus, the theory for the bot-
tomless ocean can be used to infer the slope of the wave
spectrum from the slope of the pressure spectrum7 with
no further corrections.

Spectra of bottom velocity at this site are contami-
nated by sediment effects for f ' 1 Hz. Horizontal is
more affected than vertical, and models incorporating
the sediments will be required to back out this contam-
ination. Data at lower frequencies may still be applica-
ble. However, all bottom sensors are equally useful for
relating changes in the spectrum to changes in overhead
waves.

D. Sensor calibration

1. Hydrophone

When the nominal transfer function of the H2O HDH
hydrophone is adopted, spectral ratios of velocity to
(scaled) pressure, drop precipitously for frequencies less
than 1 Hz (Fig. 10). At 0.5 Hz, the observed spectral
ratios for both seismic sensors are more than 100 times
smaller than theory (Table II).

There is more evidence that the nominal gain of the hy-
drophone is too high at low frequencies. Velocity spectra
at low frequencies have been calculated from ECMWF di-
rectional wave models, and they are in reasonable agree-
ment with the H2O seismic observations (Ref. 7, Fig.
4). Pressure spectra calculated from the same models
are orders of magnitude less than observations.

In addition, the (scaled) pressure spectrum at 0.5 Hz
varies between -95 dB and -105 dB at H2O, depending
on overhead wind (e.g. Figs. 5, 6). Observations at
the Aloha Cabled Observatory, scaled similarly, range
between -113 and -128 dB, some 20 dB less.17

2. Seismometers

The similarity between the spectra of all six seismic
channels at low frequency is in accord with the model
(cf. panels AA in Figs. 5, 6, and Fig. 10) and indicates
relative calibrations accurate to a dB (once spectra of the
Geospace vertical have been lifted 3 dB). However, the
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phase of the cross-spectrum between pressure and verti-
cal velocity differs for the two instruments for frequencies
less than 1 Hz. Sediment effects preclude applying these
checks at higher frequencies (e.g. panels BB in Figs. 5,
6).
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