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Direct numerical simulation is performed to study the effect of progressive gravity
waves on turbulence underneath. The Navier–Stokes equations subject to fully
nonlinear kinematic and dynamic free-surface boundary conditions are simulated on
a surface-following mapped grid using a fractional-step scheme with a pseudo-spectral
method in the horizontal directions and a finite-difference method in the vertical
direction. To facilitate a mechanistic study that focuses on the fundamental physics of
wave–turbulence interaction, the wave and turbulence fields are set up precisely in the
simulation: a pressure-forcing method is used to generate and maintain the progressive
wave being investigated and to suppress other wave components, and a random forcing
method is used to produce statistically steady, homogeneous turbulence in the bulk
flow beneath the surface wave. Cases with various moderate-to-large turbulence-
to-wave time ratios and wave steepnesses are considered. Study of the turbulence
velocity spectrum shows that the turbulence is dynamically forced by the surface wave.
Mean flow and turbulence vorticity are studied in both the Eulerian and Lagrangian
frames of the wave. In the Eulerian frame, statistics of the underlying turbulence
field indicates that the magnitude of turbulence vorticity and the inclination angle of
vortices are dependent on the wave phase. In the Lagrangian frame, wave properties
and the accumulative effect on turbulence vorticity are studied. It is shown that vertical
vortices are tilted in the wave propagation direction due to the cumulative effects of
both the Stokes drift velocity and the correlation between turbulence fluctuations and
wave strain rate, whereas for streamwise vortices, these two factors offset each other
and result in a negligible tilting effect.
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1. Introduction
The interaction of hydrodynamic turbulence with surface waves is important to many

applications. For example, the turbulence mixing and transport in the upper ocean,
directly influenced by surface waves, is essential to the study of atmosphere–ocean
interaction, which affects weather and climate change, marine ecosystems, and the
transport of pollutants such as oil slicks. For the modelling of wavefield evolution,
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the energy flux from non-breaking waves to turbulence is another possibly important
mechanism for wave dissipation besides wave breaking (see e.g. Cavaleri et al. 2007).

This study seeks to use direct numerical simulation (DNS) to obtain an improved
understanding of the fundamental mechanism of the effect of waves on turbulence
underneath. A wave affects the subsurface turbulence via the free-surface kinematic
and dynamic boundary conditions, which require the wave surface to be material and
the stress to be balanced across the surface. The orbital velocity of the wave generates
a periodically alternating strain field that distorts the turbulence. Moreover, the wave’s
nonlinearity produces mass transport (Stokes drift) in the wave propagation direction,
which leads to a mean shear from the viewpoint of the Lagrangian average. The
strain rate associated with the Stokes drift velocity is typically one order of magnitude
smaller than the instantaneous strain rate associated with the wave’s orbital velocity,
but the cumulative effect of the former can be significant. Previous studies of the
above aspects of wave–turbulence interaction are briefly reviewed as follows.

The effects of the free-surface kinematic boundary condition (KBC) and the
dynamic boundary condition (DBC) have long been at the heart of free-surface
turbulence research. Following the rapid distortion theory (RDT) analysis by Hunt
& Graham (1978), Hunt (1984) showed that the KBC and DBC respectively produce
an outer (source) layer and an inner (viscous) layer at the free surface. Over the
outer layer towards the free surface, vertical fluid motions are constrained (Brumley
& Jirka 1987; Komori et al. 1993; Borue, Orszag & Staroselsky 1995; Nagaosa 1999;
Shen et al. 1999; Variano & Cowen 2008; Campagne et al. 2009). Splat and antisplat
events are found to be the characteristic structures of free-surface turbulence (Perot &
Moin 1995; Kumar, Gupta & Banerjee 1998), and they play an important role in the
turbulence kinetic energy budget near the free surface (see e.g. Guo & Shen 2010).
Over the inner layer, vorticity is anisotropic and shear stress decreases drastically
towards the free surface, leading to a reduction of energy dissipation near the free
surface (Handler et al. 1993; Walker, Leighton & Garza-Rios 1996; Teixeira & Belcher
2000).

The presence of waves introduces substantial complexities to the subsurface
turbulence field. In the past few decades, there have been considerable theoretical,
experimental, and numerical studies of the modulation of turbulence by waves. Phillips
(1961) conducted a theoretical analysis of the interaction between gravity waves and
turbulence. He showed that both wave and turbulence are important to the stretching
of turbulence vorticity, and there exists energy transfer from wave to turbulence via
wave-strained turbulence vorticity. Craik & Leibovich (1976) and Leibovich (1980)
modelled the wave effect on wind-driven surface currents using a vortex force
associated with Stokes drift and local vorticity in a Craik–Leibovich (CL) equation,
which is derived from the Navier–Stokes equations after Lagrangian averaging over
many wave periods. They performed stability analysis and showed that the vortex
force tilts vertical vortices in the wave propagation direction (Craik 1977; Leibovich
1977). For the case when the wave time scale is much smaller than the turbulence time
scale, Lumley & Terray (1983) proposed a kinematic model in which frozen, isotropic
turbulence is bodily convected by the orbital motion of a surface wave, and found that
the turbulence energy is enhanced at harmonics of the dominant wave frequency. Thais
& Magnaudet (1996) showed that when the dynamics of turbulence is dominated by
wave forcing, the surface wave imposes a fixed time scale on the turbulence over a
certain range of spatial scales, leading to a σ−3 decay rate of the temporal turbulence
spectrum (see their (4.3) and figure 6). Teixeira & Belcher (2002, 2010) established a
theoretical foundation by using RDT. They showed that under the periodic distortion
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of a surface wave, the turbulence is dependent on the wave phase. They also found
that after sufficient wave periods, the Stokes drift is more effective at tilting the
vertical vortices than the wind-driven shear flow. The tilting of the vertical vortices
results in energy transfer from wave to turbulence.

Turbulence under waves has been measured in field and laboratory experiments
(see e.g. Jiang & Street 1991; Veron, Melville & Lenain 2009). It has been found
that turbulence is enhanced by surface waves (Rashidi, Hetsroni & Banerjee 1992;
Thais & Magnaudet 1996). Spectral analysis showed that among turbulence eddies
with different sizes, those having a characteristic time scale close to that of the
wave strain rate are affected more (Kitaigorodskii et al. 1983; Jiang, Street & Klotz
1990; Magnaudet & Thais 1995). Direct interaction between wave and turbulence
is evidenced by the strong downward bursting shown in the time series record of
turbulence velocity and scalar fluctuations (Yoshikawa et al. 1988; Thais & Magnaudet
1996). Meanwhile, turbulence intensity has been shown to be dependent on the wave
phase, and the turbulence velocity correlation that leads to Reynolds shear stress is
found to be enhanced by waves (Jiang & Street 1991; Rashidi et al. 1992).

In numerical studies of the effect of waves on turbulence, due to the challenges
in free-surface flow simulation, most of the previous work is limited to statistical
descriptions that use averaging over all wave phases (see e.g. McWilliams, Sullivan &
Moeng 1997; Li, Garrett & Skyllingstad 2005; Grant & Belcher 2009; Tejada-Martı́nez
et al. 2009). With the increase in computing power, the much desired wave-phase-
resolved simulation has become possible. Pioneering simulations of turbulence under
waves have been performed by Hodges & Street (1999), Zhou (1999), Kawamura
(2000), Fulgosi et al. (2003), and Komori et al. (2010). These simulations have
provided substantial details on the instantaneous, three-dimensional turbulence velocity
and vorticity fields, which are valuable for an improved understanding of the effect of
waves on turbulence and may serve as a physical basis for future model development
for this type of flow.

The present study aims at obtaining an improved understanding of the fundamental
dynamics of the wave effect on subsurface turbulence via DNS of precisely set-
up, well-controlled wave and turbulence fields. The canonical problem simulated
is sketched in figure 1. Isotropic turbulence is generated at the centre of the
computational domain. The turbulence is transported to the near-surface region and
interacts with a surface wave. Both the turbulence and the wave are accurately set up.
An efficacious linear random forcing method (Lundgren 2003; Rosales & Meneveau
2005; Guo & Shen 2009) is used to generate isotropic turbulence in the bulk flow
under the inhomogeneous wave field. The surface wave is set up and maintained
precisely with a surface pressure method, which also effectively suppresses spurious
standing waves, which has been a challenging issue in free-surface flow simulation
(for details see Guo & Shen 2009). Our DNS uses an accurate numerical method for
undulatory surfaces developed by Yang & Shen (2011). A relatively simpler variation
of the present problem, in which the dominant progressive wave is absent, was studied
by Guo & Shen (2010) with a focus on small-scale, slight surface deformations and
their effect on near-surface turbulence. In the present study, we investigate the effect of
a long, rapid progressive wave on the underlying turbulence.

We note that our numerical set-up was inspired by the theoretical study of Teixeira
& Belcher (2002), and our work is a computational counterpart of their RDT
analysis for many aspects of the problem. As shown in the present paper and a
companion paper, Guo & Shen (2013) (hereafter referred to as Part 2), our simulation
provides rich information on the flow field to support previous theoretical predictions,
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FIGURE 1. Schematics of isotropic turbulence generated in the bulk flow interacting with a
progressive wave.

parametrizations, and experimental measurements. Moreover, through comprehensive
analyses of the flow field in Eulerian and Lagrangian frames, our study reveals a
number of examples of interesting flow physics. For example, for vortex dynamics,
besides confirming the stretching effect of wave strain rate on vorticity, our result
also indicates that turbulence stretching is important to the vortex evolution near the
wave surface. Interestingly, vertical vortices are tilted in the streamwise direction as
a cumulative effect not just by the wave’s Stokes drift, as pointed out before, but
also by the correlation between the wave strain rate and the turbulence vorticity; but
for streamwise vortices, these two factors offset each other to produce a negligible
tilting effect. For turbulence velocity fluctuations, we confirm the wave straining effect
predicted by Teixeira & Belcher (2002). In addition, we discover the important role
played by turbulence pressure–strain correlation and turbulence pressure transport,
which counter and exceed the wave straining effect for the streamwise velocity
component. For the net kinetic energy flux from wave to turbulence, we quantify the
contribution of the Lagrangian effect of the wave, which compares well with previous
parametrizations when the viscous effect at the surface is small. Moreover, we find that
the correlation between wave and turbulence makes an appreciable contribution to the
energy transfer near the wave surface, and we develop a model for this effect.

This paper is organized as follows. In § 2, we introduce our DNS approach including
the problem definition, numerical scheme, and simulation parameters. In § 3, we
study the mean flow and the temporal spectrum of turbulence. In § 4, we discuss
the dynamics of turbulence vorticity in the Eulerian frame of the wave. In § 5, we
study the Lagrangian effect of the wave on turbulence vorticity. Finally, in § 6, we
present the conclusions. In Part 2 (i.e. the companion paper), we discuss the effect of
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the wave on Reynolds shear stress, turbulence velocity variances, and wave–turbulence
energy transfer and modelling.

2. Numerical simulation
2.1. Problem definition and numerical scheme

As shown in figure 1, we consider DNS of a statistically steady, homogeneous
turbulent flow under a progressive wave that has dynamically maintained amplitude,
which is essentially unchanged as time evolves. In the simulation, the turbulence is
generated by a linear random forcing method (Lundgren 2003; Rosales & Meneveau
2005), wherein a body force f = Au′ is added to the momentum equations in the
physical space. Here, A is a body force parameter and u′ is instantaneous turbulence
velocity fluctuation. To avoid the generation of spurious interfacial phenomena, A is
damped as the free surface is approached (see figure 1) according to (Guo & Shen
2009, 2010)

A=


A0 zc 6 lb bulk region,

A0

2

[
1− cos

(
π

ld
(zc − lb − ld)

)]
lb < zc 6 lb + ld damping region,

0 lb + ld < zc 6 lb + ld + lf free region.

(2.1)

Here, A0 is the body force parameter in the bulk region; zc is the vertical distance
to the centre of the computational domain; lb is half of the vertical length of the
bulk region; ld is the vertical length of the damping region; and lf is the vertical
length of the free region (figure 1). The progressive wave is generated and dynamically
maintained in the simulation, with less than 0.1 % of variation in its amplitude, by a
gentle pressure applied at the free surface. The variation of the pressure is specified
using the solution of the Cauchy–Poisson problem. The details of the precise set-up of
the wave and turbulence fields are documented in Guo & Shen (2009) and will not be
repeated here.

The flow is in the frame (x, y, z), where x, y, and z (also denoted as x1, x2,
and x3) point to the streamwise (i.e. wave propagation), spanwise, and vertical
directions, respectively (figure 1). The origin of the coordinate system is located at
the undisturbed free surface.

The flow motions are described by the incompressible conservative-form
Navier–Stokes equations

∂ui

∂t
+ ∂(uiuj)

∂xj
=− 1

ρ

∂p

∂xi
+ ν ∂

2ui

∂xj∂xj
+ Au′i, i= 1, 2, 3, (2.2)

and the continuity equation

∂ui

∂xi
= 0. (2.3)

Here, ρ is the fluid density, p is the dynamic pressure, and ν is the fluid kinematic
viscosity. Note that (2.2) is written in a conservative form, which in general has better
numerical performance in terms of conservation properties and accuracy in turbulence
simulations compared with the non-conservative form (see e.g. Morinishi et al. 1998).
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At the free surface, the KBC is

∂η

∂t
+ u

∂η

∂x
+ v ∂η

∂y
− w= 0 at z= η, (2.4)

where η is the free-surface elevation. Neglecting the surface tension and air motion,
we obtain the DBCs from the balance of stresses at z= η as

t1 · τ ·nT = 0, (2.5a)

t2 · τ ·nT = 0, (2.5b)

n · τ ·nT =−pa. (2.5c)

In the above equations, τij = −(p − zg)δij + ν(ui,j + uj,i), where g is the gravitational
acceleration and δij is the Kronecker delta, pa is the pressure on the air side, and the
unit directional vectors n, t1, and t2 are expressed as

n=
(−ηx,−ηy, 1

)√
η2

x + η2
y + 1

, t1 = (1, 0, ηx)√
η2

x + 1
, t2 =

(
0, 1, ηy

)√
η2

y + 1
. (2.6)

In (2.5), nT denotes the transpose of n. In (2.6), ηx and ηy denote the derivatives of η
with respect to x and y, respectively.

At the bottom, z = −H, we apply the shear-free boundary condition. In the
horizontal directions, we use periodic boundary conditions.

To ensure that the flow details near the free surface are captured adequately, we use
a boundary-fitted grid system. An algebraic mapping is used to transform the irregular
Cartesian space (x, y, z, t) confined by the wave surface to a rectangular computational
space (ξ, ψ, ς, ι) (figure 2). In the mapping, the vertical dimension is normalized by
the distance from the free surface to the bottom (ς = (z + H)/(η + H)), while the
horizontal dimensions and the time remain the same (ξ = x, ψ = y, and ι = t). Note
that the grid is moving in the physical domain. The coordinate transformation for the
moving grid is obtained using the chain rule for partial derivatives (Hodges & Street
1999; Yang & Shen 2011): 

∂

∂t
= ∂

∂ι
− ςηt

η + H

∂

∂ς
,

∂

∂x
= ∂

∂ξ
− ςηx

η + H

∂

∂ς
,

∂

∂y
= ∂

∂ψ
− ςηy

η + H

∂

∂ς
,

∂

∂z
= 1

η + H

∂

∂ς
.

(2.7)

The governing equations (2.2) and (2.3) subject to the boundary conditions in terms
of (ξ, ψ, ς, ι) are integrated in time using a fractional-step method (Kim & Moin
1985). We remark that the numerical method used in the present paper has origins in
the algebraic mapping and fractional-step method used by De Angelis, Lombardi &
Banerjee (1997) and Fulgosi et al. (2003), who simulated a turbulent flow over a wavy
boundary with sufficiently large deformation and a turbulent gas–liquid coupled flow
with a freely deformed interface, respectively, and the scheme is found to be effective
and accurate. The KBC is advanced in time using a second-order Runge–Kutta scheme
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FIGURE 2. Sketch of the algebraic mapping that transforms the irregular Cartesian space
(x, y, z, t) confined by the free surface into a rectangular computational domain (ξ, ψ, ς, ι).

to obtain the evolution of surface elevation. For space discretization, we use a pseudo-
spectral method with Fourier series in both the ξ and ψ directions; in the ς direction,
we use a second-order finite-difference scheme on a staggered grid. Numerical details
of our DNS and its validation are provided in Guo & Shen (2009, 2010) and Yang &
Shen (2011).

2.2. Computational parameters
In this study, we focus on the effect of ‘rapid’ and ‘long’ waves, i.e. the time
scale of the turbulence is much larger than that of the wave (Sq/ε � 1) while the
turbulence eddy size is much smaller than the wavelength (L∞/Λ� 1) (Kitaigorodskii
& Lumley 1983), which is a common condition in upper-ocean processes (see e.g.
Teixeira & Belcher 2002). Here, S = akσ characterizes the strength of the wave strain
rate, with a being the wave amplitude, k the wavenumber, and σ the wave frequency;
q = 3(urms)2/2 is the subsurface turbulence kinetic energy, where the superscript ‘rms’
stands for root-mean-square value; ε is the turbulence dissipation rate; L∞ is the
turbulence integral length scale; and Λ= 2π/k is the wavelength.

In our simulation, we set the dimensionless domain size as Lx×Ly×Lz = 2π×2π×5π.
Here and hereafter, normalization is performed on the basis of a characteristic length
scale L, which is 1/(2π) of the horizontal domain dimension, and a characteristic
velocity scale U = 10LA0 (note that 1/A0 is a time scale as shown in (2.1) and
(2.2)). The Reynolds number is set to be Re = UL/ν = 1000. In the vertical direction,
lb = 3π/2, ld = π/2, and lf = π/2. As shown in Guo & Shen (2009) (see their
figure 7), the chosen lb value provides a (2π)3 cubic of isotropic turbulence in the
bulk flow. Away from the bulk and towards the free surface, the forcing vanishes
and the turbulence intensity reduces. The vertical variation of turbulence velocity
fluctuations and length scales was studied by Guo & Shen (2009) for different ld and lf

values. It is found that the essential physics of the turbulence generated by this linear
random forcing method is insensitive to the choice of ld and lf . Note that 1/A0 ∼ q/ε.
The value of A0 determines the time scale and intensity of turbulence (Rosales &
Meneveau 2005; Guo & Shen 2009). In this study, we fix the normalized value of A0

to 0.1 and consider a variety of wave conditions with a focus on ‘rapid’ (Sq/ε � 1)
and ‘long’ (L∞/Λ� 1) waves relative to the turbulence.

The turbulence field considered here, but without the wave distortion, was studied
in Guo & Shen (2010). Readers are referred there for a detailed description of the
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Case a k Fr σ S Lcf
∞/Λ Sqcf /εcf

I15 0.15 1 0.1 10 1.5 0.109 17.3
II10 0.10 1 0.1 10 1 0.109 11.5
II15 0.15 1 0.15 6.67 1 0.109 11.5
III10 0.10 1 0.447 2.24 0.224 0.109 2.58

TABLE 1. Parameters of surface waves considered in the present study.

turbulence field. Here, we summarize the key properties. At zcf = −lf /2, the centre
of the free region (figure 1), where the turbulence is representative of the subsurface
isotropic turbulence before it interacts with the free surface, urms,cf = 0.0897, λcf =
0.339, and Reλ = urms,cfλcf /ν = 30.4. Here, the superscript ‘cf ’ denotes the value at the
centre of the free region, λ is the Taylor scale, and Reλ is the Taylor-scale Reynolds
number. The integral length scale is Lcf

∞ = (λcf )
2urms,cf /(15ν) = 0.686, and the

turbulence Reynolds number based on the integral scale is ReL = urms,cf (2Lcf
∞)/ν = 123.

We note that the Reynolds number is relatively low due to the limitation of DNS;
however, Guo & Shen (2010) showed, with extensive results, that the essential
physics of free-surface turbulence is well represented by this flow. The turbulence
kinetic energy is qcf = 3(urms,cf )

2
/2 = 0.0122, and the turbulence dissipation rate is

εcf = (urms,cf )
3
/Lcf
∞ = 0.00106.

The parameters of the surface wave are listed in table 1. We set the dimensionless
wavenumber for the prescribed wave to be k = 1. In other words, the dimensionless
wavelength is Λ = 2π and the turbulence-to-wavelength ratio is Lcf

∞/Λ = 0.109� 1.
Because H/Λ = 5/2 > 1/2, the surface wave considered here belongs to deep-water
waves. Four cases are considered in the present study. Case II10 has wave amplitude
a = 0.1, Froude number Fr = U/

√
Lg = 0.1, wave frequency σ = (k/Fr2)

1/2 = 10,
wave strain rate S= 1, and turbulence-to-wave time ratio Sqcf /εcf = 11.5� 1. To show
the effect of wave nonlinearity, case II15 with a larger wave amplitude a = 0.15 and a
larger Froude number Fr = 0.15, but the same S = 1 and Sqcf /εcf = 11.5, is simulated.
To show the rapid distortion effect, case I15 with a larger Sqcf /εcf = 17.3 and case III10

with a smaller Sqcf /εcf = 2.58 are simulated. Compared with case II15, case I15 has
the same a = 0.15, a smaller Fr = 0.1, and a larger S = 1.5. Compared with case II10,
case III10 has the same a = 0.1, a larger Fr = 0.447, and a smaller S = 0.224. All
of the cases I15, II10, and II15 belong to the rapid distortion case (see e.g. Teixeira &
Belcher 2002; Chen, Meneveau & Katz 2006), and case III10 has a moderate distortion
effect by the wave.

As shown in Guo & Shen (2010), the underlying turbulence can deform the free
surface. In the absence of the prescribed dominant wave considered here, the surface
deformation due to the turbulence and its effect on the underlying turbulence were
studied by Guo & Shen (2010). However, for all the cases considered in our study, the
Froude numbers are small. As a result, the surface deformation due to the turbulence
is small compared with the amplitude of the dominant wave. For example, when
Fr = 0.447 as in case III10, which has the largest Froude number among all the cases,
Guo & Shen (2010) showed that ηrms due to turbulence is 0.00722, which is much
smaller than a = 0.1 or 0.15 for the prescribed dominant wave in the present paper.
Therefore, here we focus on the effect of the dominant wave on the turbulence and
omit the turbulence-induced surface deformation, which is of secondary importance.
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FIGURE 3. (a) Time history of volume-averaged turbulence kinetic energy (——) and
enstrophy (– – –) in the free region and (b) time history of turbulence streamwise velocity
variance under the wave crest for cases I15 (– ·· – ·· –), II10 (——), II15 (– · – · –), and III10
(– – –). In (b), the time needed for the turbulence to fully develop under the distortion of
the wave as predicted by Teixeira & Belcher (2002) is marked by thin vertical dotted lines
(Td ≈ 7T for cases I15 and II15 and Td ≈ 16T for cases II10 and III10). In (a) and (b), the results
are normalized by their time-averaged values at the steady state.

In the simulations, we use an evenly distributed grid with 128 points in the
streamwise and spanwise directions. The grid size is ∆x =∆y = 0.0491. In the vertical
direction, we use a 348-point grid that is clustered towards the free surface. The
maximum grid size is ∆z,max = ∆x = 0.0491 below the free region, and the minimum
grid size is ∆z,min = 0.00246 at the free surface. Based on the theory of homogeneous
turbulence (e.g. Tennekes & Lumley 1972), the Kolmogorov scale at the centre of
the free region is estimated as ηK ∼ λcf /(151/4Re1/2

λ ) ≈ 0.0313. Therefore, we have
the ratio of grid size to ηK being 1.57 < 2.1 (note that near the surface, ∆z is
much smaller), satisfying the criterion of resolving the smallest, dissipative turbulence
motion (see Pope 2000, (9.6); and Moin & Mahesh 1998). Guo & Shen (2010)
showed that grid independence has been achieved for this DNS resolution for the same
turbulence field without a prescribed surface wave (see their figure 3).

For the accurate simulation of the viscous effect near the free surface, boundary
layers associated with the turbulence and the wave need to be resolved. For
free-surface turbulence, the thickness of the viscous (inner) layer is estimated as
δν = Lcf

∞/Re1/2
L = 0.0619 (Brumley & Jirka 1987). For surface waves, the thickness

of the Stokes layer is estimated as δStokes = (2ν/σ)1/2 (Longuet-Higgins 1953). In our
simulations, the dimensionless value of δStokes is kδStokes = 0.0141 for cases I15 and II10,
0.0173 for case II15, and 0.0299 for case III10. As pointed out by Hodges & Street
(1999), 5 grid points are usually necessary to capture sufficiently the viscous effect of
the free surface. In the current study, we have 7, 8, and 11 points inside the Stokes
layer for cases I15 and II10, case II15, and case III10, respectively, and 15 points inside
the viscous layer of the turbulence. As shown in the following sections, the viscous
effect of the free surface is adequately resolved in our simulation.

In the present study, we conduct turbulence simulation in three steps. First, we
run the simulation without the wave for a sufficiently long time to ensure that the
isotropic turbulence in the bulk region is fully developed and independent of the
initial condition (Rosales & Meneveau 2005). The time history of the volume-averaged
turbulence kinetic energy and enstrophy in the free region is plotted in figure 3(a). As
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shown, the turbulence reached a statistically steady state at t ≈ 17τb, where τb is the
large-eddy turnover time based on the turbulence quantities at the centre of the bulk
flow. Rosales & Meneveau (2005) found that the turbulence development time depends
on the spectrum of the initial turbulence field. The higher the wavenumber at which
the maximum energy occurs, the longer the developing time of the turbulence. For
the present problem in which the maximum energy occurs at k = 1, t ≈ 17τb appears
to be the time needed. Next, we apply surface pressure to generate and maintain
the progressive wave until the turbulence is fully developed under the distortion of
the surface wave. Teixeira & Belcher (2002) showed that the development time for
turbulence under the distortion of surface wave scales as Td ∼ 1/(a2k2σ)= T/(2πa2k2)

(see their (3.19)). Here, T = 2π/σ is the wave period. In this study, Td ≈ 7T for
cases I15 and II15, and Td ≈ 16T for cases II10 and III10. The time history of the
turbulence streamwise velocity variance under the wave crest is shown in figure 3(b).
The definition of turbulence velocity fluctuation is given in appendix A. Note that only
the results in the first 50 wave periods are shown in the figure for the purpose of
illustration. As shown, the turbulence reaches a steady state around the time predicted
by Teixeira & Belcher (2002), which is marked by the vertical lines in figure 3(b).
Finally, after reaching the statistically steady state, the simulation is further run for
60τb to generate sufficient data for time averaging for statistical analysis.

3. Wave field and turbulence spectrum
In this section, to understand the periodic distortion effect of the wave on the

underlying turbulence, we first briefly discuss the velocity and strain rate of the wave
field in § 3.1. Then, in § 3.2, we investigate the turbulence frequency spectrum to
obtain a global view of the response of the turbulence to the surface wave distortion.
This study focuses on case II10. The other three cases are used to show comparison.
Specifically, case II15 has the same wave distortion as case II10 but a stronger nonlinear
effect; case I15 has the same nonlinear effect as case II15 but a stronger wave
distortion; and case III10 has only moderate wave distortion. Hereafter, some of the
figures show all of the cases if their difference or similarity is noteworthy; for the sake
of brevity, some figures show only case II10 if the results of the other cases can be
easily deduced or if words are sufficient for describing new features.

3.1. Wave velocity and strain rate
We show the contours of 〈u〉 and 〈w〉 in figures 4(a) and 4(b), respectively. Here and
hereafter, 〈·〉 denotes the wave phase average defined in appendix A. In figure 4(a),
the wave velocity vector field (〈u〉, 〈w〉) is also plotted. For the wave orbital velocity,
fluid particles move in the wave propagation direction under the wave crest and in
the opposite direction under the wave trough. Under the forward and backward slopes,
fluid particles rise and fall with the wave surface, respectively. As the depth increases,
the magnitude of 〈u〉 and 〈w〉 decreases.

In the present study, because the wave propagates with its form essentially
unchanged, it is convenient to study some of the quantities in the wave-following
frame which translates horizontally with the wave phase speed c. In this frame, the
mean velocity becomes (〈u〉 − c, 〈w〉) as shown in figure 4(b). We can see that wave
particles are convected to the upstream (i.e. negative direction of the ‘kx–σ t’-axis)
along a wavy trajectory. In this study, a wave particle is defined as a fluid particle
convected by the wave velocity. This moving frame is useful for some of the analyses
in the following sections of this paper and in Part 2.
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FIGURE 4. Contours of (a) 〈u〉, (b) 〈w〉, (c) ∂〈u〉/∂x (=−∂〈w〉/∂z), (d) ∂〈w〉/∂x, and (e)
∂〈u〉/∂z. (f ) Close-up view of the near-surface region in (e) with respect to the physical
coordinate z (upper plot) and the distance from the free surface z − η (lower plot). In (a)
and (b), respectively, the velocity field of phase-averaged mean flow in the Earth-fixed frame
(〈u〉, 〈w〉) and in the wave-following frame (〈u〉−c, 〈w〉) are also plotted. The velocity vectors
are shown at every six grid points in the horizontal direction and every eight points in the
vertical direction. In (f ), the boundary of the Stokes layer is marked by – · – · – (white). In
(a) and (b), the results are normalized by aσ . In (c) to (f ), the results are normalized by S.
Case II10 is shown here. The wave propagates from left to right.

Next, we examine velocity gradients. There are three independent wave velocity
gradients, namely ∂〈u〉/∂x (=−∂〈w〉/∂z), ∂〈w〉/∂x, and ∂〈u〉/∂z. Their distributions are
shown in figure 4(c–f ). Due to the orbital velocity of the wave (figure 4a,b), ∂〈u〉/∂x
is negative under the forward slope and positive under the backward slope; ∂〈w〉/∂x
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FIGURE 5. Spectrum of streamwise turbulent velocity, Ψ N
u′ : (a) at kz = −0.2 (——),

kz = −0.4 (– – –), and kz = −0.6 (– · – · –) for case II10; (b) at kz = −0.2 for cases I15
(– – –), II10 (——), II15 (– · – · –), and III10 (– ·· – ·· –).

is maximum under the wave crest and minimum under the wave trough. As the depth
increases, the magnitude of ∂〈u〉/∂x and ∂〈w〉/∂x decreases.

The distribution of ∂〈u〉/∂z shown in figure 4(e) is noteworthy. Under the wave crest,
∂〈u〉/∂z is positive in the deep region. Towards the wave surface, ∂〈u〉/∂z increases
first and then decreases drastically to a negative value at the wave surface (see the
close-up view near the wave surface shown in figure 4f ). Under the wave trough, there
is an opposite distribution of ∂〈u〉/∂z. That is, ∂〈u〉/∂z is negative in the deep region,
decreases towards the wave surface, and then increases sharply to a positive value at
the wave surface. Without losing generality, we discuss ∂〈u〉/∂z under the wave crest
only. The positive value in the deep region and the increase of ∂〈u〉/∂z towards the
surface are associated with the distribution of 〈u〉 discussed earlier (figure 4a). At the
wave surface, according to the shear-free DBC (2.5a), ∂〈u〉/∂z and ∂〈w〉/∂x at the
wave surface are nearly negatively correlated (Longuet-Higgins 1992). Derivation and
discussion are provided in appendix B. Near the free surface, a Stokes layer develops
(see e.g. Longuet-Higgins 1953; Iskandarani & Liu 1991), within which ∂〈u〉/∂z varies
drastically. The boundary of the Stokes layer is marked in figure 4(f ).

We summarize the effect of the wave strain on the deformation of fluid elements in
the upper part of figure 8. Under the forward slope, fluid elements are compressed in
the streamwise direction and stretched in the vertical direction. Under the backward
slope, the opposite process occurs. Under the wave crest and trough, fluid elements are
distorted by the ‘shear’ strain rate. (Note that the apparent shearing by ∂〈u〉/∂z and
∂〈w〉/∂x is essentially irrotational straining for the most part of the wave field.)

3.2. Spectral characteristics of turbulence fluctuation
Figure 5 shows the frequency spectrum of streamwise turbulent velocity defined by

Ψu′ (σt)= 1
2π

∫
T

u′ (x, t) u′ (x, t + τ)e−iσtτ dτ, (3.1)

where ‘(·)’ denotes the plane average defined in appendix A (A 5). The spectrum is
normalized as

Ψ N
u′ (σt)= Ψu′ (σt)

(u′rms)2
. (3.2)
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We first focus on Ψ N
u′ (σt) of case II10 shown in figure 5(a). It exhibits two prominent

features. First, bumps are visible at harmonics of the wave frequency σ . We have
also observed similar bumps in the spectra of v′ and w′ (results not shown here).
The origin of the bumps was discussed in detail by Lumley & Terray (1983) through
the generalization of Taylor’s hypothesis, where frozen, isotropic turbulence is bodily
convected by the orbital motion of the surface wave. The bump at the dominant wave
frequency has also been observed in previous measurements (see e.g. Kitaigorodskii
et al. 1983; Jiang et al. 1990; Magnaudet & Thais 1995; Thais & Magnaudet 1996).
The second feature is that there is a σ−3

t decay of the spectra. Thais & Magnaudet
(1996) explained this decay rate by saying that the dynamics of the turbulence is
dominated by the forcing of the surface wave, and the forcing is at the fixed wave
frequency for turbulence eddies of different sizes. As will be shown in the following
sections and Part 2, under the wave distortion, the turbulence is dynamically forced by
the surface wave, e.g. turbulence vortices are periodically stretched, compressed, and
turned by the surface wave, and the wave distortion induces periodic energy exchange
between the wave and turbulence.

The Ψ N
u′ (σt) at different depths is also shown in figure 5(a). As the depth increases,

the magnitude of the bumps decreases, due to the decrease of the wave strain rate.
In particular at the high frequency (σt/σ > 3), the bumps almost cannot be seen at
kz<−0.4.

In figure 5(b), we compare Ψ N
u′ (σt) among the different cases. The bumps at

harmonics of the wave frequency and the σ−3
t decay of the spectra, which are observed

in case II10, show in all the other cases. As the wave amplitude increases (i.e. compare
case II10 with case II15), we can see that the magnitude of the bumps at high frequency
is more remarkable in the latter case, due to the increase of wave nonlinearity.
A comparison between cases I15 and II15 shows that for the rapid distortion case,
Ψ N

u′ (σt/σ) is insensitive to change in the wave strain rate. The Ψ N
u′ (σt) of case III10 is

noteworthy. Only one hump at the dominant wave frequency is shown, and the hump
is much broader than those in the other cases, due to the much smaller turbulence-to-
wave time ratio in case III10 (table 1), where Taylor’s hypothesis may not hold.

In summary, we study in this section the velocity and strain rate of the surface wave
and turbulence frequency spectrum. Under the forward and backward slopes of the
surface wave, fluid particles experience the distortion of the normal strain rate; and
under the wave crest and trough, fluid particles experience the distortion of the ‘shear’
strain rate. Our result for the turbulence frequency spectrum shows that due to the
periodic forcing of the wave on turbulence, turbulence is enhanced at harmonics of the
dominant wave frequency and the spectrum exhibits a σ−3 decay.

4. Eulerian dynamics of turbulence vorticity
In this section, we study the turbulence vorticity dynamics in the Eulerian frame

of the wave to understand the effect of periodic wave distortion on the turbulence
vorticity at different wave phases. In § 4.1, we examine the instantaneous turbulence
field. In §§ 4.2 and 4.3, we study the statistics of vorticity intensity and vortex
inclination angle to understand respectively the compressing/stretching and shear
effects of the wave on the turbulence vortices below. In this study, vorticity is defined
as the curl of fluid velocity, ω = ∇ × u. Vortices refer to vortical structures with
concentration of aligned vorticity, which are educed by the iso-surface of negative λ2

(Jeong & Hussain 1995). Here, λ2 is the second largest eigenvalue of S2 + Ω 2, with
Sij = (ui,j + uj,i)/2 and Ωij = (ui,j − uj,i)/2. As shown in Jeong & Hussain (1995) and
other studies, in turbulent flows, the effect of convective terms on the local pressure is
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FIGURE 6. (a) Instantaneous turbulence vortical structures. In the flow, the iso-surface of
λ2 =−0.2 is shown with contours of ωx. The wave surface is lifted up for better visualization.
Contours of ωz are shown on the wave surface. The arrow denotes the wave propagation
direction. (b) Close-up view of the surface-connected vortex marked in (a) with a white
box on the free surface. The turbulence velocity vector (u′, v′) is shown at kz = −0.05. A
representative helical streamline is plotted. Case II10 is shown here.

larger than the unsteady effect and viscous effect. Consequently, the low pressure in a
vortex core corresponds to negative values of λ2 (see the analysis in Jeong & Hussain
1995), and the iso-surfaces of negative λ2 can be used to educe vortical structures.

4.1. Instantaneous turbulence vorticity field
A representative snapshot of instantaneous turbulence vortical structures is shown in
figure 6(a). As shown, the turbulence vortical structures are mostly in the streamwise
and vertical directions. Under the wave trough, vortical structures have strong ωx;
under the wave crest, vertical vortices are more obvious. We also plot the contours of
ωz on the wave surface. It shows that there is a dependence of ωz on the wave phase,
with ωz being stronger at the wave crest than at the wave trough. We find that the
vertical vortical structures tilt in the wave propagation direction at all the wave phases.
It is noted that ωz on the wave surface corresponds to surface-connected vortices.
Observation of the instantaneous flow field indicates that the surface-connected
vortices exist in regions with turbulent downwelling motion, where whirlpool-like
structures are formed. Lombardi, De Angelis & Banerjee (1996) simulated gas–liquid
flow with a flat interface and detected whirlpool-like structures in the form of the
attachment of quasi-streamwise vortices to the free surface. Pan & Banerjee (1995)
observed surface-connected vortices for free-surface flow without surface shear and
found that surface-connected vortices exist for a long period until they are destroyed
by upwellings. They also found that the surface-connected vortices can pair and merge,
and they decay slowly. A close-up view of a typical surface-connected vortex from
figure 6(a) is shown in figure 6(b), where a representative streamline is also plotted.
The vortex is stretched vertically, which is important to the evolution of turbulence
vorticity. Similar vortex stretching by turbulence velocity fluctuations is also observed
for the streamwise vortices. Our results for the conditional average on streamwise and
vertical vortices (not shown here) indicate that this turbulence vortex stretching effect
exists at all the wave phases and is as important as the wave straining effect.

Next, statistical evidence of the phase dependence of vorticity distribution is
provided in §§ 4.2 and 4.3. The cumulative effect of waves on vortical structures
is studied with the Lagrangian average in § 5.
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4.2. Statistics of vorticity intensity

Figure 7 shows the distribution of phase-averaged enstrophy components 〈ω′2i 〉. As
shown in figure 7(a), high intensity of 〈ω′2x 〉 is located under the wave trough, whereas
low intensity is under the wave crest. Towards the wave surface, 〈ω′2x 〉 decreases
sharply over the region k(z − η) > −0.1. This decrease is due to the shear-free
boundary condition at the wave surface (see e.g. Walker et al. 1996; Shen et al.
1999).

The distribution of 〈ω′2y 〉 is shown in figure 7(b). The shape of the contour lines is
similar to the wave surface, indicating that the dependence of 〈ω′2y 〉 on the wave phase
is weak. In the vertical direction, as the wave surface is approached, 〈ω′2y 〉 decreases
drastically within the region k(z − η) > −0.1, also due to the shear-free boundary
condition.

Figure 7(c) plots the distribution of 〈ω′2z 〉. It shows that high intensity of 〈ω′2z 〉 is
located under the wave crest, while low intensity is under the wave trough. Because
the effect of the free surface on ωz is relatively small (see e.g. Pan & Banerjee 1995;
Walker et al. 1996; Shen et al. 1999), the variation of 〈ω′2z 〉 near the surface is mainly
due to the effect of the surface wave.

4.3. Statistics of vortex inclination angle
To further understand the distribution of turbulence vorticity under a surface wave,
following Shen et al. (1999), we study the inclination angle of the projection of
vorticity vectors onto the x–z plane:

ϕxz = arctan
(
ωz

ωx

)
. (4.1)

The histogram of ϕxz at a representative depth at different wave phases is plotted in
figure 8. To highlight strong vortical events, the statistics is weighted by ω2

x + ω2
z

(Shen et al. 1999). The result is plotted in a polar coordinate system. The azimuth
corresponds to ϕxz, and the radius represents the histogram at the angle. In figure 8, we
also sketch the straining effect on fluid elements. Note that the wave propagates from
left to right; relative to the wave form, vortical structures travel from right to left (see
figure 4b) while experiencing the strain field shown in figure 8.

For case II10 shown in figure 8, we first discuss the values of peak ϕxz, i.e. the
angle at which the histogram is maximum. As shown, ϕxz is in the neighbourhood of
0◦/180◦ and 90◦/270◦, corresponding to streamwise and vertical vortices, respectively.
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FIGURE 8. Histogram of ϕxz under: (i) wave trough (kx − σ t = −π/2); (ii) backward
slope (kx − σ t = 0); (iii) wave crest (kx − σ t = π/2); (iv) forward slope (kx − σ t = π).
k(z − η) = −0.05. The ϕxz values for the highest histograms for streamwise and vertical
vortices are marked in the plots. Case II10 is shown here. The sign convention of ϕxz is
sketched in the top left corner. The distortion effect of the wave strain field on fluid elements
is sketched in the upper part with solid and dashed lines representing early and later times,
respectively.

For streamwise vortices, under the forward slope (plot iv), the peak of distribution
is located within the second and fourth quadrants (around 174◦/354◦); under the
backward slope (plot ii), the peak is located in the first and third quadrants (around
6◦/186◦). In general, the inclination of streamwise vortices follows the slope of the
surface elevation. The variation of peak ϕxz is due to the wave turning effect, which
vortices experience under the wave trough and crest. That is, streamwise vortices
are turned to the clockwise (resp. anticlockwise) direction under the wave trough
(resp. crest), as shown in the sketch of the wave straining effect in figure 8.

For vertical vortices, the peak ϕxz is around 82◦/262◦ under the forward slope
(plot iv), around 78◦/258◦ under the wave crest (plot iii), around 71◦/251◦ under the
backward slope (plot ii), and around 74◦/254◦ under the wave trough (plot i). The
variation is because vertical vortices are turned to the anticlockwise (resp. clockwise)
direction under the wave trough (resp. crest) (figure 8). Despite the oscillation, the
peak ϕxz of vertical vortices is located in the first and third quadrants at all the
wave phases, indicating that the clockwise tilting of vertical vortices dominates the
anticlockwise tilting (Teixeira & Belcher 2002). We also note that the backward slope
(plot ii) is special: the tilting effect is maximum there, and both the streamwise and
vertical vortices are located in the first and third quadrants. As will be shown in Part 2,
the tilted vortices affect the Reynolds shear stress 〈u′w′〉, especially beneath the wave’s
backward slope.

Next, we examine the magnitude of the histogram in figure 8. Comparing the
streamwise and vertical vortices, we find that under the wave crest (plot iii), the
vertical vortices are comparable to the streamwise ones; under the wave trough (plot i),
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Case Under wave
trough

Under backward
slope

Under wave
crest

Under forward
slope

ϕxz,ωx ϕxz,ωz ϕxz,ωx ϕxz,ωz ϕxz,ωx ϕxz,ωz ϕxz,ωx ϕxz,ωz

I15 2.7◦ 70.5◦ 10.5◦ 59.5◦ 1.8◦ 75.0◦ 352.3◦ 84.2◦
II10 0.1◦ 74.1◦ 6.3◦ 70.8◦ 0.0◦ 77.9◦ 353.9◦ 81.5◦
II15 359.9◦ 73.3◦ 10.5◦ 59.8◦ 0.0◦ 75.9◦ 353.6◦ 85.7◦
III10 0.0◦ 84.7◦ 5.6◦ 82.6◦ 0.0◦ 84.0◦ 354.6◦ 88.3◦

TABLE 2. The ϕxz values for the highest histograms for streamwise and vertical vortices.

the streamwise vortices dominate. This variation is related to the vortex stretching and
compression effects of the wave strain field. Under the forward slope, the streamwise
vortices are compressed and the vertical vortices are stretched, and under the backward
slope, the process reverses (figure 8). Note that relative to the wave, vortices move
in the opposite direction to wave propagation. The (locally) cumulative effect of wave
straining makes the streamwise vorticity minimum (resp. maximum) and the vertical
vorticity maximum (resp. minimum) under the wave crest (resp. trough). This vortex
stretching and compression by local wave strain is consistent with the theoretical
description of turbulence vorticity evolution under a surface wave (Teixeira & Belcher
2002, see their figure 6).

For cases I15, II15, and III10, the wave strain affects the turbulence vorticity in
a similar way to that in case II10. The ϕxz values for the highest histograms for
streamwise and vertical vortices are listed in table 2. A comparison of case II10 with
the other cases shows that the tilting of vortices is more obvious in cases I15 and II15

and less obvious in case III10 than that in case II10. For example, under the backward
slope, the peak ϕxz for vertical vortices is 59.5◦/239.5◦ in case I15, 70.8◦/250.8◦ in
case II10, 59.8◦/239.8◦ in case II15, and 82.6◦/262.6◦ in case III10. As will be shown
in the following sections and Part 2, compared to case II10, the cumulative effect of
vortex tilting by the wave is enhanced (relative to other effects such as the stretching
by turbulence) in cases I15 and II15 and reduced in case III10 due to the difference in
the wave strain rate and wave nonlinearity and, as a result, the Reynolds shear stress is
different between the different cases.

We summarize the Eulerian effect of a surface wave on turbulence vorticity in
figure 9(a). Under the backward slope, the wave strain enhances the streamwise
vorticity and weakens the vertical vorticity. Under the forward slope, the opposite
process occurs. Under the wave trough, the wave turns streamwise and vertical vortices
in the clockwise and anticlockwise directions, respectively; and the turning process
reverses under the wave crest. Overall, there exists a cumulative effect of tilting
vertical vortices in the clockwise direction. This cumulative effect is further discussed
in the Lagrangian frame in § 5 below. The vortices are also strengthened due to the
stretching by turbulence velocity fluctuations.

5. Lagrangian dynamics of turbulence vorticity
In this section, we discuss the cumulative effect of a surface wave on turbulence

vorticity induced by the Lagrangian properties of surface waves. The Lagrangian effect
of a surface wave is due to the wave’s nonlinearity, and can be quantified in the
Lagrangian frame by the Lagrangian average operator, ‘(·)L’, defined in appendix A,
via the tracking of wave particles convected by the wave velocity. Compared with the
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FIGURE 9. Sketch of the evolution of turbulence vortices under a progressive wave: (a)
Eulerian description, (b) Lagrangian description. The effect of wave strain is denoted by
solid arrows, and the effect of turbulence fluctuations is denoted by hollow arrows. Cylinders
denote turbulence vortical structures. Solid and dashed lines represent early and later times,
respectively. The Lagrangian effect is discussed in § 5.2.
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(– · – · –), ∂〈u〉/∂z
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from the present DNS, and ∂〈u〉/∂x

L
( ) and ∂〈w〉/∂x

L = ∂〈u〉/∂z
L

( ) based on
fifth-order Stokes theory (Fenton 1985). Results are normalized by 2akS. Case II10 is shown
here.

periodic effect of the wave distortion on turbulence vorticity in the Eulerian frame
discussed in § 4, the analysis in the Lagrangian frame quantifies the net effect of
surface wave on turbulence vorticity after the distortion over many wave periods.
In § 5.1, we first study the Lagrangian properties of surface waves. In § 5.2, we apply
the Lagrangian average operator to the vortex evolution equation to investigate the
wave’s cumulative effect on turbulence vorticity.

5.1. Lagrangian wave field
We first discuss the Lagrangian properties of the surface wave. Because § 5.1 focuses
on the wave field, for which the essential physics is similar among cases I15, II10, II15,
and III10, we show results for case II10 only. The differences between these cases are
manifested in the turbulence field, which is discussed in § 5.2 and Part 2.

The Lagrangian average of the wave strain rate, ∂〈u〉/∂x
L = −∂〈w〉/∂z

L
, ∂〈w〉/∂x

L
,

and ∂〈u〉/∂z
L
, is plotted in figure 10. To help understand these Lagrangian quantities,
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FIGURE 11. Variations of ∂〈u〉/∂x (=−∂〈w〉/∂z) (——), ∂〈w〉/∂x (– · – · –), ∂〈u〉/∂z (– – –)
from the present DNS, and ∂〈u〉/∂x

L
( ) and ∂〈w〉/∂x

L = ∂〈u〉/∂z
L

( ) based on
fifth-order Stokes theory (Fenton 1985) along the trajectory of a wave particle initially located
at (a) (kx− σ t = π, k(z− η)=−kδStokes/2) and (b) (kx− σ t = π, k(z− η)=−5kδStokes) during
a TL period. The result is normalized by S. The corresponding surface elevation above the
particle as it travels is sketched at the top. Case II10 is shown here.

we plot the variations of ∂〈u〉/∂x, ∂〈w〉/∂x, and ∂〈u〉/∂z along the wave particle
trajectory in figure 11. Two representative depths for the particle are chosen. In
figure 11(a), the results for a near-surface particle initially located at (kx − σ t = π,
k(z − η) = −kδStokes/2) are plotted; figure 11(b) is for a particle initially located at
(kx − σ t = π, k(z − η) = −5kδStokes). As a comparison, the results based on the fifth-
order potential Stokes theory (Fenton 1985) are also plotted in figures 10 and 11. Note
that because the theory is based on the potential flow solution, ∂〈u〉/∂z = ∂〈w〉/∂x.
The comparison between the present DNS and Stokes theory indicates that the viscous
effect is mainly on ∂〈u〉/∂z rather than on ∂〈u〉/∂x and ∂〈w〉/∂x, consistent with
the results shown in figure 4. To further understand the effect of viscosity on the
wave velocity field, we have also applied the Helmholtz decomposition to the wave
velocity, decomposed it into an irrotational component and a rotational component,
and performed the same analysis (results not shown here). We have drawn the same
conclusion, i.e. the irrotational component is consistent with the potential Stokes
theory, and the rotational component is noteworthy in ∂〈u〉/∂z and is about zero in
∂〈u〉/∂x and ∂〈w〉/∂x.

As shown in figure 10, ∂〈u〉/∂x
L

is small, because the positive ∂〈u〉/∂x under
the backward slope and the negative ∂〈u〉/∂x under the forward slope is nearly
antisymmetric (figure 4c), and the time spent by a particle under the forward and
backward slopes is about the same (figure 11).

For ∂〈w〉/∂x
L
, it is positive and increases towards the free surface. This is because

the magnitude of the positive ∂〈w〉/∂x under the wave crest is larger than the negative
one under the wave trough due to wave nonlinearity, and fluid particles spend more
time under the wave crest than under the wave trough (figure 11), consistent with
previous theoretical analysis (Fenton 1985) and measurement (Elliott 1953; Morison &
Crooke 1953).

The distribution of ∂〈u〉/∂z
L

is noteworthy. Towards the free surface, it increases
first, reaches its maximum, and then decreases drastically to a small value at the free
surface. The increase is due to the larger magnitude of positive ∂〈u〉/∂z under the
wave crest compared with the negative one under the wave trough (figure 11b) and the
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greater time spent by fluid particles under the wave crest. The decrease is due to the
viscous effect of the free surface discussed in § 3. From (B 2), we have

∂〈u〉
∂z

L

=−∂〈w〉
∂x

L

− 4ηx

1− η2
x

∂〈w〉
∂z

L

(5.1)

at the wave surface. Due to the negative correlation between ηx (of O(ak)) and
∂〈w〉/∂z (of O(S)) at the wave surface (§ 3.1), we estimate the second term on the
right-hand side of (5.1) as

− 4ηx

1− η2
x

∂〈w〉
∂z

L

∼ O(2akS). (5.2)

The ∂〈w〉/∂x
L

(the first term in (5.1)) is also comparable to akS (see figure 10). As
a result, the summation of the two terms on the right-hand side of (5.1) leads to
∂〈u〉/∂z

L
of O(akS) at the wave surface. The viscous effect is mainly in the Stokes

layer (§ 3.1).
To further understand the viscous effect on ∂〈u〉/∂z

L
, we study the variation of

∂〈u〉/∂z near the wave surface in figure 11(a). Compared with that in the relatively
deep region (figure 11b), the positive (resp. negative) ∂〈u〉/∂z shifts from the wave
crest (resp. trough) towards the forward (resp. backward) slope, where c−〈u〉 increases
(resp. decreases) (figure 4a,b). This near-surface shifting of ∂〈u〉/∂z causes fluid
particles to experience positive (resp. negative) ∂〈u〉/∂z for a shorter (resp. longer)
time than in the deep region. As a result, ∂〈u〉/∂z

L
decreases in the near-surface

region.

5.2. Wave Lagrangian effect on turbulence vorticity
In this section, we analyse the cumulative effect of a surface wave on turbulence
vorticity evolution using the Lagrangian average. The vorticity evolution equations in
the Earth-fixed frame are given in appendix C. To avoid the artificial cancellation in
the statistics due to the opposite signs of positive and negative turbulence vorticity,
we modify the vorticity evolution equations by multiplying sgn(ωx) (resp. sgn(ωz)) on
the two sides of (C 1) (resp. (C 2)). Here, sgn(·) = (·)/| · | is a signum function. In
other words, we investigate the evolution of positive and negative vortices separately
to remove the potential false indication of vortices cancellation in the overall statistics.
We further apply the Lagrangian average operator (A 2) to the equations. Our results
show that there are four dominant terms, namely

sgn (ωx) ωz
∂〈u〉
∂z

L

︸ ︷︷ ︸
Tx,w

, sgn (ωx) ωx
∂u′

∂x

L

︸ ︷︷ ︸
Sx,t

, sgn (ωz) ωx
∂〈w〉
∂x

L

︸ ︷︷ ︸
Tz,w

, sgn (ωz) ωz
∂w′

∂z

L

︸ ︷︷ ︸
Sz,t

. (5.3)

Here, Tx,w and Tz,w represent the cumulative contributions to the streamwise and
vertical vortices due to the tilting of vertical and streamwise vortices, respectively, by
the wave motion; Sx,t and Sz,t represent the vortex stretching effect by turbulence
velocity fluctuations. Note that the net stretching of streamwise and vertical vortices
by the wave motion, sgn(ωx)ωx∂〈u〉/∂x

L
and sgn(ωz)ωz∂〈w〉/∂z

L
, are omitted here

because they are found to be small. Their small magnitude is caused by the symmetric
distribution of ωx and ωz (figure 7a,c) together with the antisymmetric distribution
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FIGURE 12. Vertical profiles of Lagrangian-averaged turbulence vorticity evolution terms:
Tx,w (——), Sx,t (– – –), Tz,w (– · – · –), Sz,t (– ·· – ·· –) for (a) case I15, (b) case II10, (c)
case II15, and (d) case III10. The results are normalized by ωrms,cf

i u′rms,cf
i /Lcf

∞.

of ∂〈u〉/∂x and ∂〈w〉/∂z (figure 4c) with respect to the wave crest (as well as the
trough). As a result, the stretching of streamwise vortices (resp. the compression of
vertical vortices) under the backward slope is nearly cancelled by the compression of
streamwise vortices (resp. the stretching of vertical vortices) under the forward slope
as far as the Lagrangian average is concerned.

Figure 12 shows the profiles of Tx,w, Sx,t, Tz,w, and Sz,t. We first focus on case II10

shown in figure 12(b). We can see that as the free surface is approached, Tx,w is
positive, increases to a maximum value, and then decreases sharply. The positive value
indicates that vertical vortices are tilted in the wave propagation direction to contribute
to the growth of streamwise vortices. The variation of Tx,w can be related to ∂〈u〉/∂z

L

and is discussed later in this section.
Next, we discuss the vortex tilting term for vertical vortices, Tz,w. As shown in

figure 12(b), interestingly, Tz,w is about zero at all the depths. Therefore, under
wave distortion, the net effect of vortex tilting is only from the vertical direction
towards the streamwise direction, and the strengthened streamwise vortices are not
tilted back to replenish the weakened vertical vortices. This phenomenon is consistent
with the vorticity distribution result in § 4, which shows that vertical vortices tilt
towards the wave propagation direction, whereas streamwise vortices oscillate around
the horizontal without an overall net inclination angle. The small magnitude of Tz,w

is somewhat surprising, because the positive ∂〈w〉/∂x
L

(figure 10) may suggest a net
anticlockwise turning of streamwise vorticity by the wave motion. Note that although
Tz,w is usually ignored in previous studies of wave–turbulence interaction, the reason
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for doing this is not obvious. Later in this section, further analysis will be provided to
answer this question.

Figure 12(b) also shows that both Sx,t and Sz,t are positive, indicating that
the vortex stretching by turbulence velocity fluctuations is important for both the
streamwise and vertical vortices in their Lagrangian evolution.

Next, we compare cases I15 (figure 12a), II15 (figure 12c), and III10 (figure 12d) with
case II10 (figure 12b). The variations of Sx,t, Tz,w, and Sz,t are similar. Due to the
different wave strain rate, the magnitude of Tx,w in cases I15 and III10 is larger and
smaller than that in case II10, respectively. The magnitude of Tx,w in case II15 is larger
than that in case II10, due to the stronger wave nonlinearity in case II15. It is noted
that the turbulence stretching is important for all the cases. The turbulence stretching
even dominates the vortex tilting by the wave in case III10, whereas it is about the
same as or slightly smaller than the vortex tilting by the wave in the other cases. This
result is consistent with the relatively large and small tilting of vertical vortices in
cases I15, II10, and II15 and case III10, respectively, shown in § 4.3.

To understand the contribution from the Lagrangian wave properties and the
correlation between the wave and turbulence to the vortex tilting, we perform
Reynolds decomposition for Tx,w and Tz,w based on Lagrangian averaging (see (A 4)),
that is,

sgn (ωx) ωz
∂〈u〉
∂z

L

= sgn (ωx) ωz
L ∂〈u〉
∂z

L

︸ ︷︷ ︸
T LL

x,w

+ (sgn (ωx) ωz)
l ∂〈u〉
∂z

l
L

︸ ︷︷ ︸
T ll

x,w

, (5.4)

sgn (ωz) ωx
∂〈w〉
∂x

L

= sgn (ωz) ωx
L ∂〈w〉
∂x

L

︸ ︷︷ ︸
T LL

z,w

+ (sgn (ωz) ωx)
l ∂〈w〉
∂x

l
L

︸ ︷︷ ︸
T ll

z,w

. (5.5)

In (5.4) and (5.5), T LL
x,w and T LL

z,w denote the vortex tilting due to the Lagrangian-
averaged strain field, and T ll

x,w and T ll
z,w denote the vortex tilting due to the correlation

between the Lagrangian fluctuations of turbulence vorticity and wave strain rate.
Figure 13(a) shows the profiles of T LL

x,w and T ll
x,w. As the wave surface is approached,

T LL
x,w increases to a maximum value and then decreases sharply. The variation of

T LL
x,w is related to ∂〈u〉/∂z

L
(figure 10). The positive T LL

x,w means that due to the
Lagrangian accumulation of ∂〈u〉/∂z, vertical vortices are tilted clockwise. To the best
of our knowledge, the result here is the first DNS evidence to support the theoretical
description by Teixeira & Belcher (2002) (see their figure 8).

Besides T LL
x,w , the term T ll

x,w also makes a positive contribution to the vortex tilting
as shown in figure 13(a). Outside the Stokes layer, both ωz (figure 7c) and ∂〈u〉/∂z
(figure 4e,f ) reach maxima under the wave crest and minima under the wave trough.
That is, there exists a positive correlation between ωz and ∂〈u〉/∂z. Within the Stokes
layer, due to the viscous effect of the free surface, ∂〈u〉/∂z decorrelates with ωz,
leading to the reduction of T ll

x,w towards the free surface. A comparison between the
magnitude of T LL

x,w and T ll
x,w shows that near the wave surface, T LL

x,w dominates T ll
x,w; in

the deep region (kz0 <−0.3), T LL
x,w and T ll

x,w are comparable.
Next, we discuss T LL

z,w and T ll
z,w shown in figure 13(b). As the wave surface is

approached, T LL
z,w increases to a maximum and then decreases. The increase of T LL

z,w
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Case II10 is shown here.

is due to the increase of both ∂〈w〉/∂x
L

and ωx. As the wave surface is further
approached, ωx decreases due to the shear-free DBC (figure 7a). The T LL

z,w is positive,
indicating that the Lagrangian effect of the wave motion tilts streamwise vortices in
the anticlockwise direction to contribute to the growth of vertical vortices. However,
T ll

z,w is negative due to the negative correlation between ωx (figure 7a) and ∂〈w〉/∂x
(figure 4d). The T LL

z,w and T ll
z,w nearly cancel each other throughout all the depths

(figure 13b). This cancellation can also be understood through the following scaling
analysis. Using the definition of T LL

z,w (5.5) and the fact that ∂〈w〉/∂x
L ∼ O(akS)

(figure 10), we estimate

T LL
z,w ∼ O

(
sgn (ωx) ωx

L
akS
)
. (5.6)

We estimate T ll
z,w next. Due to the strong wave distortion effect, the evolution of

ωx is dominated by ωx∂〈u〉/∂x (see (C 1)), where ∂〈u〉/∂x ∼ O(akσ). The horizontal
variation of ωx is small (see figure 7a). Therefore,

(sgn (ωx) ωx)
l ∼
∫

sgn (ωx) ωx
∂〈u〉
∂x

dt ≈ sgn (ωx) ωx
L
∫
∂〈u〉
∂x

dt ∼ O
(

sgn (ωx) ωx
L
ak
)
.

(5.7)

A comparison between the distributions of ωx and ∂〈w〉/∂x, shown respectively in
figures 7(a) and 4(d), indicates that they are nearly negatively correlated. Using
(∂〈w〉/∂x)l ∼ O(S) (figure 11), we estimate

T ll
z,w ∼ O

(
−sgn (ωx) ωx

L
akS
)
, (5.8)

which is the opposite of (5.6). The cancellation of T LL
z,w and T ll

z,w concludes the
discussion earlier in this section that although the wave field exhibits non-zero
∂〈w〉/∂x

L
, there is still no net Lagrangian vortex tilting effect on streamwise vortices

because of the offsetting effect by Lagrangian fluctuations.
As a summary, figure 9(b) illustrates the Lagrangian effect of waves on turbulence

vorticity. Both the streamwise and vertical vortices are stretched by turbulence
fluctuations. Vertical vortices are tilted in the streamwise direction by the mean
Lagrangian wave effect as well as the correlation between the Lagrangian fluctuations
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of wave strain rate and turbulence vorticity. The net vortex tilting from the streamwise
towards the vertical direction is negligible. Note that Craik (1977) and Leibovich
(1977) explained the generation of Langmuir circulation using the Lagrangian effect
of waves on the tilting of vertical vortices (the CL2 mechanism). In their analysis,
vertical vortices are induced by a spanwise perturbation of a wind-driven streamwise
current. Vertical vortices on the two sides of the perturbation have opposite signs
of vertical vorticity and are tilted in the streamwise direction to develop Langmuir
circulation. In our simulation, the turbulence vortices are generated in the bulk flow.
In general, the turbulence vortices approach the surface individually, and vortex pairs
are rare. As expected, Langmuir cells do not show in our result. (Note that there is
no wind shear stress applied at the free surface in our simulation.) While Langmuir
circulation is not the subject of the present study, a similar numerical investigation of
the Lagrangian effect of waves on vorticity evolution can be performed in future study,
in which wind-driven current will be included in the simulation as an extension of the
present work. The detailed information on the wave and turbulence fields at different
wave phases will then be valuable for a quantitative, mechanistic study of the CL2
process and Langmuir turbulence.

6. Conclusions
In this study, we have used DNS to investigate the effect of progressive

surface waves on turbulence underneath. We focus on the fundamental physics, and
accordingly set up the simulation with well-controlled isotropic turbulence generated
in the bulk flow and an accurately produced wave with its amplitude precisely
maintained. This set-up facilitates a mechanistic study with accurate quantification
of wave properties and turbulence statistics. While this canonical problem does not
include other complications such as wind stress, surface current, and wave breaking,
it directly corresponds to the mechanistic studies in the literature with a similar
setting, such as the theoretical analysis by Teixeira & Belcher (2002, 2010) and
the laboratory experiments of mechanically generated waves passing through a grid-
generated turbulence field (see e.g. Ölmez & Milgram 1992). This problem set-up
has the advantage of being able to isolate fundamental processes of wave–turbulence
interaction and use DNS as a research tool for the essential dynamics.

Because it is through the kinematic and dynamic boundary conditions at the wave’s
surface, the periodic distortion by the wave’s orbital velocity, and the nonlinear wave
effect that a surface wave affects the subsurface turbulence, we have examined the
velocity and strain rate of the wave field to establish a physical basis for the study
of wave–turbulence interaction. Under the wave’s backward slope, fluid elements are
stretched in the streamwise direction and compressed in the vertical direction by the
wave’s motion, and the process reverses under the forward slope. Under the wave’s
crest and trough, fluid elements are distorted by the irrotational ‘shear’ strain of the
wave.

Our study of the frequency spectrum of turbulence velocity fluctuation shows that
there exists strong interaction between the wave and turbulence. The interaction
depends on wave nonlinearity and the time scale ratio between the wave and
turbulence. Due to the periodic convection by surface wave motion, the turbulence
is enhanced at harmonics of the dominant wave frequency. The spectrum exhibits a
σ−3

t decay rate beyond the dominant wave frequency, suggesting that the dynamics
of turbulence is dominated by the forcing of the surface wave (Thais & Magnaudet
1996).
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Our study of instantaneous turbulence vortices, statistics of enstrophy components,
and histogram of the vortex inclination angle shows that turbulence vortices are mainly
aligned in the streamwise and vertical directions, and their distributions are dependent
on the wave phase. Due to the periodic stretching and compression by the wave,
streamwise turbulence vorticity reaches its maximum magnitude under the wave trough
and its minimum under the wave crest, while the opposite occurs for vertical vorticity.
Under the wave crest, streamwise and vertical vortices are turned respectively in
the anticlockwise and clockwise directions, and a reverse process happens under the
wave trough. Overall, there exists net tilting of vertical vortices towards the wave
propagation direction.

Besides the examination of wave and turbulence fields at various wave phases in
the Eulerian frame, wave Lagrangian properties have also been quantified in this study
for the investigation of the cumulative effect of waves on turbulence. The Lagrangian
average of the wave strain rate is documented in detail, together with illustrations of
the variation of strain rate along particle trajectories. Lagrangian analysis of vorticity
evolution provides quantitative results of the net effect of the turning and stretching
by wave straining and turbulence fluctuations over many wave periods. Overall, there
exists a cumulative effect of the surface wave on tilting vertical vortices towards the
wave propagation direction, whereas the net tilting of streamwise vortices is small.
To understand this cumulative effect, we have performed Reynolds decomposition
based on the Lagrangian average for vorticity evolution equations. It is found that
both Stokes drift velocity and the correlation between wave strain rate and turbulence
vorticity contribute to the net tilting of vertical vortices, whereas for streamwise
vortices, these two factors offset each other and result in a negligible tilting effect.

This paper concentrates on the analysis of the mean flow and turbulence vorticity.
In Part 2, further analysis of turbulence Reynolds shear and normal stresses and
the energy transfer between the wave and turbulence is provided. It is noted that
the present study focuses on the basic physics of wave–turbulence interaction. We
consider, as an idealized canonical problem, isotropic turbulence generated in the bulk
flow and progressive wave with a shear-free surface. This problem set-up is relevant to
the ocean situation of a swell propagating through a previously wind-stirred turbulent
upper ocean boundary layer when the wind dies down. In Part 2, quantification of
swell decay rate due to wave–turbulence interaction is discussed. If we relax the
Reynolds number constraint of DNS and scale other physical quantities according
to a swell wavelength of Λ = 100 m, the wave amplitude is 2.39 m in cases I15

and II15 and is 1.59 m in cases II10 and III10. The turbulence velocity fluctuation is
0.11 m s−1 in cases I15 and II10, 0.17 m s−1 in case II15, and 0.51 m s−1 in case III10.
This covers a range of typical ocean conditions with the turbulence level in case III10

being relatively higher than usual. Our results indicate that for the wave amplitude
to decay by half (i.e. a 75 % reduction in wave energy), it takes about a day for
cases I15, II10, and II15 and a few hours for case III10. Our results are consistent with
previous field measurement and model predictions. Our simulations also indicate that
the decay rate increases with the increase of wave slope and turbulence intensity (for
details see Part 2). For the scenario of three-way interactions among wind, surface
waves, and turbulent ocean boundary layers, it is not directly addressed in the present
simulation. In future follow-up work with the increase in computing power, a spectrum
of surface waves and the effect of wind can be included in the computation. To
set up the simulation, measurement will be valuable in providing information on the
initial and boundary conditions. In future studies, many aspects of the wave–turbulence
interaction processes discussed here, such as the tilting of vertical vortices, are relevant
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(e.g. to the initial development of small Langmuir cells: see Teixeira & Belcher
2002), and the simulation framework and the Eulerian and Lagrangian analysis tools
developed in this study can be used when the research is extended to other flow
regimes.
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Appendix A. Average operator
For a quantity f (x, y, z, t), we define a wave phase average operator as

〈f 〉 (x, z)= 1
Ts

1
Ly

∫
Ly

∫
Ts

f (x− ct, y, z, t) dt dy. (A 1)

Here, Ts is the sampling duration; c= σ/k is the wave phase speed; the wave phase is
defined according to the first harmonic of the surface elevation given as a sin(kx − σ t).
For the partition of wave and turbulence components, the mean field 〈f 〉 corresponds to
the wave part and the fluctuation f ′ = f − 〈f 〉 corresponds to the turbulence part.

A Lagrangian average operator is defined by tracking a wave particle that is
convected by the wave velocity (Andrews & McIntyre 1978), that is,

f
L = 1

Ts,L

∫ t0+Ts,L

t0

f Π (x0, t) dt. (A 2)

Here, Ts,L is the sampling duration; f Π (x0, t) = f (x0 +Π (x0, t), t), where Π (x0, t) =
(Πx,Πz) is the displacement of the wave particle that is initially located at (x0, t0):

Πx (x0, t)=
∫ t

t0

〈u〉 (x0 +Π , t′
)

dt′, (A 3a)

Πz (x0, t)=
∫ t

t0

〈w〉 (x0 +Π , t′
)

dt′. (A 3b)

For the study of the Lagrangian properties of surface waves in § 5.1, we take Ts,L = TL,
where TL is the Lagrangian wave period defined as the time for a wave particle to
reach the same position relative to the wave form (Longuet-Higgins 1986, figure 1).
For the study of turbulence statistics in § 5.2, we take Ts,L = 70TL to ensure the
convergence of statistics. The TL is equal to approximately 1.04T in case I15, 1.01T in
case II10, 1.03T in case II15, and 1.01T in case III10. The Lagrangian wave period TL

is slightly longer than the Eulerian wave period T , as previously derived in theoretical
analysis (see e.g. Longuet-Higgins 1986) and observed in numerical simulation (see
e.g. Chang, Chen & Liou 2009). Note that T is the time it takes for a fixed spatial
position to experience the same wave phase again, whereas TL is for a particle that
is convected downstream with the Stokes drift and is thus longer than T . Lagrangian
fluctuation is defined by

f l = f − f
L
. (A 4)
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Because f
L

is a function of the initial depth z0, a natural choice for the starting
point of the wave particle is at the place kx0 − σ t0 = π or kx0 − σ t0 = 0, so that
η ≈ a sin(kx0 − σ t0) = 0 and z0 ∈ [−H, 0]. Starting from other locations does not
change the essential physics of the result, but the upper limit of z0 is non-zero and it is
thus less convenient.

The plane average is defined by

f (z)≡ 1
LxLy

∫
S

f (x, t) dx dy. (A 5)

Appendix B. ∂〈u〉/∂z at the wave surface
At the wave surface, ∂〈u〉/∂z is related to ∂〈w〉/∂x according to the shear-free DBC

(2.5a), which is rewritten as

(
1− η2

x

)
τ13 + 2ηxτ33

1+ η2
x

=
(
1− η2

x

) 1
Re

(
∂〈u〉
∂z
+ ∂〈w〉

∂x

)
+ 2ηx

2
Re

∂〈w〉
∂z

1+ η2
x

= 0. (B 1)

Multiplying Re(1+ η2
x) on both sides of (B 1) and regrouping the terms leads to

∂〈u〉
∂z
=−∂〈w〉

∂x
− 4ηx

1− η2
x

∂〈w〉
∂z

. (B 2)

The second term on the right-hand side of (B 2) is about one order of magnitude
smaller than the first term (because ηx ∼ O(ak), while ∂〈w〉/∂x and ∂〈w〉/∂z are of
the same order as S). Therefore, ∂〈u〉/∂z and ∂〈w〉/∂x at the wave surface are nearly
negatively correlated (Longuet-Higgins 1992).

Appendix C. Vorticity evolution equations in the Earth-fixed frame
In the Earth-fixed frame, the evolution equations for ωx and ωz are

Dωx

Dt
= ωx

∂〈u〉
∂x︸ ︷︷ ︸
I

+ ωz
∂〈u〉
∂z︸ ︷︷ ︸

II

+ ωx
∂u′

∂x︸ ︷︷ ︸
III

+ ωy
∂u′

∂y︸ ︷︷ ︸
IV

+ ωz
∂u′

∂z︸ ︷︷ ︸
V

−u′ ·∇ωx︸ ︷︷ ︸
VI

+ 1
Re
∇2ωx︸ ︷︷ ︸

VII

, (C 1)

Dωz

Dt
= ωz

∂〈w〉
∂z︸ ︷︷ ︸
I

+ ωx
∂〈w〉
∂x︸ ︷︷ ︸

II

+ ωz
∂w′

∂z︸ ︷︷ ︸
III

+ ωx
∂w′

∂x︸ ︷︷ ︸
IV

+ ωy
∂w′

∂y︸ ︷︷ ︸
V

−u′ ·∇ωz︸ ︷︷ ︸
VI

+ 1
Re
∇2ωz︸ ︷︷ ︸

VII

. (C 2)

Here, D(·)/Dt = ∂(·)/∂t + 〈u〉 · ∇(·). Term I describes the vortex stretching due to
the wave motion; term II describes the vortex turning by the wave; term III describes
the stretching due to turbulence fluctuations; terms IV and V describe the turning due
to turbulence fluctuations; term VI describes the transport of vorticity by turbulence
velocity; and term VII describes the viscous diffusion of vorticity.
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