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ABSTRACT

Combining the logarithmic law with the Charnock relation yields a drag coefficient that is a function of wind
speed with the Charnock coefficient as a parameter. It is found that the function is nearly linear within the
typically measured range of the drag coefficient. The slope of the linear function is dominated by the Charnock
coefficient. When the Charnock relation is extended to a wave age–dependent function, the drag coefficient
remains a near-linear function of wind speed after invoking the 3/2 power law. The slope of the linear function
is dominated by wave steepness.

1. Introduction

Wind stress over the sea surface is the primary driving
force for the upper-ocean circulation and sea surface
waves. The accurate estimate of wind stress is important
in modeling and forecasting atmospheric and oceanic
processes, as well as for satellite remote sensing of the
global wind field. Because of the central role of wind
stress in understanding and modeling air–sea interaction
processes, it has been studied extensively from obser-
vations and numerical models over the past several de-
cades (Charnock 1955; Kondo 1975; Geenaert 1987;
Donelan 1990; Toba et al. 1990; Rooth and Xie 1992;
Xie and Rooth 1995; Xie et al. 2001).

Wind stress is usually parameterized in terms of a
drag coefficient (Cd) or aerodynamic surface roughness
(z0). The drag coefficient can be expressed as a function
of the 10-m wind speed (U10), and the parameters in the
equation are determined empirically by fitting obser-
vational data to a curve. Many of the equations con-
cerning Cd are in the form of a linear function, especially
when U10 is within 7–20 m s21. However, there is con-
siderable discrepancy among the parameters in the linear
parameterization proposed by different investigators
(Wu 1980; Geernaert 1990). The purpose of this note
is to establish a theoretical basis for the linear param-
eterization of Cd and to provide a unified approach to
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reconcile the differences among the various forms of
linear parameterization.

2. Linear parameterization of Cd

Most of the field experiments over the past have es-
tablished a statistically significant dependence of Cd on
U10. The general form of this linear parameterization
can be expressed as

23C 5 (a 1 bU ) 3 10 ,d 10 (1)

where a and b are empirical parameters determined by
observations. The values of a and b presented by various
authors are listed in Table 1. It shows that there is con-
siderable breadth to or scatter among the values of both
a and b determined by different authors. Let

err(x) 5 | [max(x) 2 min(x)]/min(x) | . (2)

From Table 1, it yields

err(a) 5 2.33 and (3)

err(b) 5 6.5. (4)

Equations (3) and (4) indicate that the value of b varies
more widely than that of a. The average value of a is
0.79. It is clear that the variability of Cd not explained
by U10 is substantial.

Since sea surface roughness is due mainly to surface
waves, surface waves must play an important role in
air–sea momentum fluxes. Hence, there are two fun-
damental questions concerning the linear parameteri-
zation of Cd on U10. 1) Is there a theoretical basis to fit
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TABLE 1. The parameters in Eq. (1) as proposed by various
authors.

Authors a b (m21 s)

Sheppard (1958) 0.8 0.114
Deacon and Webb (1962) 1.0 0.07
Miller (1964) 0.75 0.067
Zubkovskii and Kravchenko (1967) 0.72 0.12
Brocks and Krugermeyer (1970) 1.18 0.016
Sheppard et al. (1972) 0.36 0.1
Wieringa (1974) 0.86 0.058
Kondo (1975) 1.2 0.025
Smith and Banke (1975) 0.61 0.075
Smith (1980) 0.61 0.063
Wu (1980) 0.8 0.065
Donelan (1982) 0.96 0.041
Geernaert (1987) 0.5777 0.0847
Yelland and Taylor (1996) 0.60 0.07

FIG. 1. Variation of drag coefficient Cd as a function of parameter Y.

the observational data to a linear function? 2) If such
a basis exists, how can the scatter in the parameter val-
ues of the linear functions presented by various authors
be explained? These two questions will be discussed in
the next section.

3. A unified linear relationship

For neutral atmospheric stability, the wind profile in
the atmospheric boundary layer can be described in
terms of the logarithm of surface roughness. The vertical
wind profile is generally taken as

u* z
U(z) 5 ln , (5)1 2k z0

where U(z) is the wind speed measured at anemometer
height z, u* is the surface wind friction velocity and is
given by (t/ra)1/2, t is wind stress, ra is air density, and
k 5 0.4 is the von Kármán constant; u* is related to
Cd and U10 by

2 2u 5 C U .d 10* (6)

Combining Eqs. (5) and (6) yields a unique relationship
between z0 and Cd,

1/2z 5 z /exp(k/C ),0 10 d (7)

where z10 5 10 m, the 10-m height above the sea surface.
Charnock (1955) proposed, from a dimensional ar-

gument, a well-known formula known as the Charnock
relationship,

gz0 5 a, (8)
2u*

where g is the gravitational acceleration and a is the
Charnock coefficient. The values of a derived from data
by various authors are different from one another. For
instance, a 5 0.012 by Charnock (1955), a 5 0.0144
by Garratt (1977), and a 5 0.0185 by Wu (1980).

Combining Eq. (7) and (8), Wu (1969) obtained

21
21C 5 k ln , (9)d 2˜1 2aC Ud

where Ũ 5 U10/ , is in the form of Froude number.Ïgz10

Equation (9) implies that for neutral stratification, the
drag coefficient is dependent on wind speed only if the
Charnock coefficient is a constant. It was reported by
Wu (1982) that Eq. (9) with a 5 0.0185 is indistin-
guishable from Eq. (1) with the parameters correspond-
ing to Wu (1980) listed in Table 1. Equation (9) can be
rewritten in the following form,

k
21/2 21/2Y 5 C exp 2 C , (10)d d1 22

where Y 5 a1/2Ũ.
Figure 1 shows the values of Y plotted as a function

of Cd within the range of (1.0–4.0) 3 1023 for Cd. By
fitting the plotted data using the least squares method,
we obtain

23C 5 (0.78 1 4.7Y) 3 10 .d (11)

Figure 1 shows that within typically measured range
of (1.0–2.3) 3 1023 for Cd , Eq. (11) is almost indis-
tinguishable from Eq. (10). In other words, Eqs. (10)
and (11) are practically identical when Cd is within
(1.0–2.3) 3 1023 . Expressing Eq. (11) in terms of U10

yields
1/2 23C 5 (0.78 1 0.475a U ) 3 10 ,d 10 (12)

where the unit of U10 is meters per second. Comparing
Eq. (12) with Eq. (1) yields

a 5 0.78 and (13)
1/2b 5 0.475a , (14)

where the unit of b is seconds per meter. Equation (12)
states that under neutral atmospheric stability the drag
coefficient over the sea surface is almost linearly de-
pendent on wind speed in the typically measured range
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TABLE 2. The parameters in Eq. (16) as proposed by various
authors.

Authors A B

Toba and Koga (1986) 0.025 1.0
Masuda and Kusaba (1987) 0.0129 21.1
Toba et al. (1990) 0.02 0.5
Donelan (1990) 0.42 21.03
Maat et al. (1991) 0.86 21.01
Smith et al. (1992) 0.48 21
Monbaliu (1994) 2.87 21.69
Vickers and Marht (1997) 2.9 22.0
Johnson et al. (1998) 1.89 21.59
Sugimori et al. (2000) 0.02 0.7

of Cd. The intercept of Eq. (12) is a constant, which is
nearly identical to the average value of its corresponding
observations shown in Table 1. The slope in Eq. (12)
is proportional to the square root of the Charnock co-
efficient. The drag coefficient increases with wind speed
more rapidly for larger Charnock coefficient. The var-
iations in the coefficients in Eq. (1) proposed by various
authors as shown in Table 1 could be interpreted as a
result of the difference in the corresponding Charnock
coefficients. For a 5 0.0185, b 5 0.0646 according to
Eq. (14). Thus, with the parameters of Wu (1980), Eq.
(12) is essentially identical to Eq. (1). This is consistent
with the conclusion of Wu (1982), which states that with
a 5 0.0185 Eq. (9) is indistinguishable from Eq. (1).

Since sea surface roughness is due mainly to surface
waves, much focus in the published literature has been
on the investigation of the dependence of the wind stress
on wave status. Stewart (1974) proposed an extension
of the Charnock relation, making the roughness an ar-
bitrary function of wave age,

gz0 5 f (b*), (15)
2u*

where b* 5 Cp/u* is wave age scaled by friction ve-
locity, and Cp is the phase velocity of the waves at the
spectral peak. Equation (15) states that the Charnock
coefficient is not a constant if the effect of wave status
is considered. The form of the function on the right-
hand side of Eq. (8) is variable. A function which has
been used widely in the literature (Table 2) is

gz0 B5 Ab*, (16)
2u*

where A and B are coefficients determined by obser-
vations. Based on field and laboratory observations,
these two coefficients have been proposed by various
authors as shown in Table 2. It is shown that the con-
troversy remains over the nature of the dependence of
roughness on wave age. The positive value of B means
that mature waves are rougher than younger waves,
while the negative value of B suggests the contrary.

It has been pointed out by Smith et al. (1992) that a
spurious self-correlation exists in Eq. (16) by scaling z0

with u*. Most recently Mahrt et al. (2003) reported that
spurious self-correlation in the Charnock formulation
explains more variance than actual physical relation-
ships, even after eliminating weak wind cases. The un-
certainty in u* is often larger than that of U10, Cp, and
H, where H is the significant wave height. Thus, it is
more appropriate to scale z0 with U10 instead of u* in
Eq. (16), and then combine it with Eq. (7) to yield

k
1/2 B /2 21/21B /4 21/2˜A b U 5 C exp 2 C , (17)d d1 22

where b 5 Cp/U10 is the wave age scaled with wind
speed. With the aid of the dispersion relation for deep
water, the wave age can be expressed as b 5 g/U10vp,
where vp is the frequency of the wave spectral peak.
Equation (17) indicates that the drag coefficient could
be parameterized using wind speed and wave age. How-
ever, wave age is dependent on wind speed by way of
its definition. A pure wave parameter measuring wave
status—for instance, wave steepness—is more proper
than wave age. In fact, Hsu (1974) suggested that the
Charnock coefficient is more properly a function of
wave steepness. Most recently, Taylor and Yelland
(2001) proposed that z0 should be parameterized by the
height and steepness of waves.

A 3/2 power law was proposed by Toba (1972) for
growing wind waves. It was expressed as

3/2H 5 B T ,* * * (18)

where B* 5 0.062, H* 5 gH/ , T* 5 gT/u*, and T is2u*
the significant wave period. The 3/2 power law is ver-
ified by Kawai et al. (1977) and Ebuchi et al. (1992)
with field data. Most recently it is shown that most of
the wind-wave growth relations support the 3/2 power
law (Guan and Sun 2001). With the dispersion relation
for deep water and T 5 0.91 3 2p/vp (Wen et al. 1989;
Goda and Nagai 1974), Eq. (18) can be rewritten as

1/2 1/4db 5 0.085C ,d (19)

where d 5 H /g is the wave steepness. Combining2vp

Eqs. (17) and (19) yields

k
21/2 21/2˜f (d)U 5 C exp 2 C , (20)d d1 22

where
B 1/2 2Bf (d) 5 0.85 A d . (21)

Note that the right-hand side of Eq. (20) is identical to
that of Eq. (10). Therefore, we have

23˜C 5 [0.78 1 4.7 f (d)U] 3 10 .d (22)

Then, in terms of U10, a unified linear parameterization
for Cd can be written as

23C 5 [0.78 1 0.475 f (d)U ] 3 10 .d 10 (23)

Equation (23) shows that even when the Charnock re-
lation is extended to the form of Eq. (16), which ex-
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plicitly includes the effect of wind waves, the drag co-
efficient over the sea surface is still nearly linearly de-
pendent on wind speed. The slope of the linear function
is governed by the wave steepness. A positive value of
B implies that the drag coefficient increases with wind
speed more rapidly for mature waves than for younger
waves, while a negative value of B implies the contrary.
So far most field measurements suggest that B is neg-
ative.

4. Conclusions

For neutral atmospheric stability, combining the log-
arithmic law of wind profile and the Charnock relation
yields a drag coefficient that is a function of the wind
speed only with the Charnock coefficient as a parameter.
It is found that the function is nearly linear within the
usually measured range of drag coefficient of (1.0–2.3)
3 1023. The slope of the linear function is proportional
to the square root of the Charnock coefficient. In fact
the Charnock coefficients given by various authors are
different, and, as a result, the linear functions corre-
sponding to the different Charnock coefficients from
different investigators vary across a wide range.

By fitting the observational data, the Charnock re-
lation is extended so that the Charnock coefficient is a
function of wave age rather than a constant. The ex-
tended Charnock relation is in the form of a power
function of wave age. Combining the logarithmic law
and the extended Charnock relation with the aid of the
3/2 power law proposed by Toba (1972), it is shown
that the drag coefficient is still nearly a linear function
of wind speed for the usually measured range of drag
coefficient of (1.0–2.3) 3 1023. The slope of the linear
function is dominated by the wave steepness.
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