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1. De in een golf-stroomgoot waar te nemen golfgeinduceerde
veranderingen in het vertikale profiel van de gemiddelde
longitudinale snelheid worden veroorzaakt door de golfge-
dreven gemiddelde vertikale flux van longitudinale impuls.

2. Voor de vergelijking van resultaten van golf-stroom experi-
menten in een goot met 1DV modelresultaten dient reke-
ning gehouden te worden met niet-uniformiteiten in dwars-
richting van de snelheden in de goot.

3. Voor niet-brekende golven wordt in het TELEMAC-3D mo-
del (Péchon en Teisson, 1994) de bijdrage aan de impuls-
balansvergelijking van de correlatie tussen longitudinale en
vertikale orbitaalsnelheid ten onrechte verwaarloosd.

Péchon, P. en Teisson, C. (1994). Numerical modelling of three-dimensional
wave-driven currents in the surf-zone, ‘Proc. 24th Int. Conf. on Coastal
Engng, Kobe, Japan’, ASCE, New York, pp. 2503-2512.

4. In een oscillerend snelheidsveld kan geen ondubbelzinnige
definitie van gemiddelde snelheid worden gegeven in een
Eulerse setting.

5. In een numeriek simulatiemodel dient de numerieke nauw-
keurigheid van dezelfde orde te zijn als de mate van nauw-
keurigheid waarin de fysica wordt weergegeven.



10.

. De vooruitgang in computertechnologie in ogenschouw ne-

mend is het niet ondenkbaar dat in een zeer nabije toekomst
simulatiemodellen aanvullende en vooral nauwkeurige in-
formatie verschaffen van details die nog niet zijn gemeten
in het veld en zodoende kunnen bijdragen aan het genereren
van nieuwe veld-meetcampagnes.

. Het is golfonderzoekers gelukt zich de spectrale denkwijze

eigen te maken. Het zou eveneens mogelijk moeten zijn te
leren denken in termen van GLM.

. Domeindecompositie is een numerieke oplossingstechniek

die uitermate geschikt is voor het oplossen van gekoppelde
morfologische en hydrodynamische systemen in de kust-
zone.

. Wanneer een krantenkop schreeuwt: ” Vredestop in het Mid-

den-Oosten”, is het raadzaam het gehele artikel te lezen
teneinde er achter te komen uit welke lettergrepen ”vre-
destop” bestaat.

De waarde van een grap is omgekeerd evenredig met het
aantal decibellen dat de grappenmaker zelf met een lach-
salvo voortbrengt.
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. The wave-induced changes of the vertical profile of the longitudinal

velocity, which can be observed in a wave-current flume, are due to the
wave-driven mean vertical flux of longitudinal momentum.

. In comparing experimental results from a wave-current flume with 1DV

model results, one has to take lateral nonuniformities of the velocities
in the flume into account.

. In the case of nonbreaking waves the contribution of the correlation be-

tween the longitudinal and vertical velocity to the momentum balance
equation has been neglected unjustifiably in the TELEMAC-3D model
(Péchon en Teisson, 1994).

Péchon, P. en Teisson, C. (1994). Numerical modelling of three-dimen-
sional wave-driven currents in the surf-zone, ‘Proc. 24th Int. Conf. on
Coastal Engng, Kobe, Japan’, ASCE, New York, pp. 2503-2512.

. In an oscillating velocity field the mean velocity cannot be defined

unambiguously in a Eulerian setting.

. In a numerical simulation model the numerical accuracy has to be of the

same order as the order of accuracy in which the physics is represented.

. Considering the progress in computer technology, it is not inconceivable

that simulation models will provide complementary and in particular
accurate information of details that have not yet been measured in
the field. As such they may contribute to the generation of new field
measurement campaigus.

. Wave experts made themselves familiar with the spectral way of think-

ing. They should also be able to think in terms of GLM.

. Domain decomposition is a numerical solution technique that is ex-

tremely useful to solve coupled morphological and hydrodynamical sys-
tems in coastal areas.

. No translation possible.

The value of a joke is inversely proportional to the number of decibels
the comedian produces with his own gale of laughter.
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Abstract

The generalized Lagrangian mean (GLM) formulation has been used to describe
the interaction of waves and currents. In contrast to the more conventional
Bulerian formulation, the GLM description enables splitting of the mean and
oscillating motion over the entire depth in an unambiguous and unique way, also
in the region between wave crest and trough.

Laboratory experiments by e.g. Kemp & Simons (1982, 1983) and Klopman
(1994) showed that the effect of nonbreaking waves on a steady turbulent cur-
rent over a rigid rough bed is significant. Unexpected wave-induced changes in
the profile of the mean horizontal velocity have been observed. For following
currents the mean horizontal velocity reaches a maximum and subsequently de-
creases towards the free surface. Opposing currents show the opposite feature.
Compared to the logarithmic profile, the opposing current profile grows more
rapidly towards the free surface.

To the authors’ knowledge only two theoretical models have been presented
to explain the wave-induced changes in the Eulerian-mean horizontal velocity
profiles. The model of Nielsen & You (1996) is based on a local force balance in
streamwise direction. Lateral variations have been neglected. Dingemans et al.
(1996) presented a 2DV lateral model in which secondary circulations in the
cross-sectional plane were held responsible for the mean velocity profile changes.
The two explanations are in contrast with each other.

The aim of this study has actually been twofold. First, general three-dim-
ensional flow equations have been derived in a GLM setting, in order to obtain
a consistent description of the mean motion in an otherwise oscillating field.
Secondly, development of a 1DV and a 2DV lateral model and comparison of
model results with results obtained from measurements and other models must
lead to a better understanding of the mechanisms that cause the changes in the
mean horizontal velocity profiles.

Following the concept of the GLM theory, as described by Andrews & Mcln-
tyre (1978a), general three-dimensional flow equations have been derived in this
formulation from the Reynolds-averaged Navier-Stokes equations. This permits
the possibility to consider turbulent motion. Extension of Andrews & MclIntyre’s
(19784) original equations with viscous and turbulent stresses lead to equations
that are far from comprehensive. Therefore, an alternative derivation has been
proposed. The developed models are based on the latter GLM equations.

In this study only regular long-crested nonbreaking waves have been consid-
ered, interacting with a turbulent current. In order to develop the 1DV model
a WKBJ perturbation series analysis has been applied to the 3D GLM-based
flow equations. Assuming slow variation in time and horizontal direction of the
amplitude functions of each quantity, a series of ordinary differential equations
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has been obtained. This series has been solved successively, resulting in the ver-
tical distributions of the initial current velocity, the current-affected amplitude
function of the carrier wave and the wave-induced second-order correction of the
mean motion.

By allowing lateral variations, side-wall effects on the orbital and mean mo-
tion have been taken into account. The 1DV solution of the orbital motion
has been extended with a laterally varying term. The variations in longitudi-
nal direction have been neglected, resulting in a 2DV description of the wave-
induced mean motion in a cross section of the flume. A numerical solver for
non-hydrostatic flow has been applied to solve the 2DV GLM-based equations.

Measurements in laboratory flumes have been used to validate both models.
The wave-induced horizontal drift velocities, which have been obtained for the
situation without currents, agreed with Longuet-Higgins’ (1953) analytical con-
duction solution. Agreement with the measurements of Mei et al. (1972) has
been obtained for situations in intermediate water depth. For both situations of
waves following and opposing the turbulent current the computed profiles agree
quantitatively with the measured profiles of Klopman (1994).

The computed cross-sectional distributions of the secondary circulations show
qualitative agreement with Klopman’s (1997) measurements. However, for fol-
lowing waves the reduction of the horizontal velocity towards the free surface is
overpredicted, due to an overestimated downwelling in this region. Comparison
of these results with those obtained for a significant wider flume and analysis
of the 2DV model results of Dingemans et al. (1996) justify the conclusion that
secondary circulations cannot be ruled out in laboratory experiments. However,
the velocity profile changes purely due to these circulations are insufficient com-
pared to the total changes of profile. Moreover, following the ideas of Nielsen &
You (1996) a local force balance in longitudinal direction proved that the second-
order changes are mainly due to a combination of the wave-induced stress and
the Stokes correction of the shear stress.

Although only one- and two-dimensional models have been developed to
describe the combined motion of a turbulent current and regular nonbreaking
waves, the general scheme followed in the development enables extension to three-
dimensional modelling. The desired application of the model to coastal areas and
analysis of typical three-dimensional features of wave-current interaction in this
area seem very well possible.
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Samenvatting

De wisselwerking tussen golven en stroming is hier beschreven met behulp van
de zogenaamde generalized Lagrangian mean, kortweg GLM, formulering. In
tegenstelling tot de meer conventionele Eulerse beschrijving van de waterbeweg-
ing, verschaft de GLM beschrijving de mogelijkheid het gemiddelde deel van het
oscillerende deel van de beweging te scheiden, ook in het gebied tussen golfdal
en golftop.

Experimenteel onderzoek door onder andere Kemp & Simons (1982, 1983)
en Klopman (1994) in een laboratoriumgoot heeft aangetoond dat het effect
van niet-brekende golven op een turbulente stroming over een ruwe horizontale
bodem significant is. In deze experimenten werden onverwachte veranderingen
waargenomen in de verticale verdeling van de gemiddelde horizontale snelheid.
Wanneer golven zich voortplanten in de richting van de stroming, bereikt de
gemiddelde horizontale snelheid eerst een maximum om vervolgens af te nemen in
het bovenste gedeelte van de verticaal. Wanneer golven zich in tegenovergestelde
richting voortplanten, wordt het tegenovergestelde waargenomen. Het verticale
profiel van de stroomsnelheid groeit harder in de buurt van het vrije oppervlak,
vergeleken met de situatie zonder golven.

Voor zover de auteur bekend is, zijn er slechts twee theoretische modellen
die een verklaring geven voor de golfgeinduceerde veranderingen in de Eulers-
gemiddelde horizontale snelheidsprofielen. Een model van Nielsen & You (1996)
is gebaseerd op een lokale krachtenbalans in de richting van de stroming. Horizon-
tale variaties in de richting loodrecht hierop zijn verwaarloosd. Dingemans et al.
(1996) hebben een 2DV lateraal model ontwikkeld, waarin secundaire circulaties
in het verticale vlak loodrecht op de stromingsrichting gezien worden als de
oorzaak van de veranderingen in de gemiddelde longitudinale snelheid. Deze
twee verklaringen zijn in tegenspraak met elkaar.

Het doel van deze studie bestaat uit twee gedeelten. Ten eerste zijn driedi-
mensionale bewegingsvergelijkingen afgeleid in een GLM setting om een consis-
tente beschrijving van de gemiddelde beweging in een oscillerend veld te verkrij-
gen. Ten tweede dient inzicht te worden verkregen in het mechanisme dat de
snelheidsveranderingen veroorzaakt. Hiervoor zijn een 1DV model en een 2DV
lateraal model ontwikkeld en zijn de modelresultaten vergeleken met resultaten
van gootexperimenten en van andere modellen.

Het concept van de GLM theorie, zoals dat is beschreven door Andrews
& McIntyre (1978a), is gevolgd om algemene driedimensionale bewegingsver-
gelijkingen af te leiden uit de Reynolds-gemiddelde Navier-Stokes vergelijkin-
gen. Dit verschaft de mogelijkheid om turbulente beweging te beschouwen.
Uitbreiding van Andrews & Mclntyre's (1978a) oorspronkelijke vergelijkingen
met viskeuze en turbulente spanningen leidt tot vergelijkingen die verre van
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inzichtelijk zijn. Daarom is een alternatieve afleiding gegeven, die leidt tot meer
herkenbare vergelijkingen. De ontwikkelde modellen zijn gebaseerd op laatstge-
noemde vergelijkingen.

In dit onderzoek is alleen gekeken naar regelmatige langkammige niet-brekende
golven, die zijn gesuperponeerd op een turbulente stroming. Om tot een 1DV
model te komen is een WKBJ perturbatiereeks ontwikkeling toegepast op de 3D-
GLM bewegingsvergelijkingen. Wanneer wordt aangenomen dat de amplitude
functies van iedere grootheid langzaam in tijd en horizontale richting variéren,
wordt een reeks gewone differentiaalvergelijkingen verkregen. De vergelijkingen
in deze reeks worden achtereenvolgens opgelost, resulterend in de verticale verdelin-
gen van ten eerste de initiéle stroming, ten tweede de amplitude functie van de
dragende golf die op zijn beurt wordt beinvioed door de initiéle stroming en
tenslotte de golfgeinduceerde tweede orde correctie van de gemiddelde beweging.

Door variaties in laterale richting toe te laten, zijn zijwand effecten op de
gemiddelde en orbitaalbeweging in rekening gebracht. De 1DV oplossing voor
de orbitaalbeweging is uitgebreid met een term die afhankelijk is van de laterale
richting. In de GLM vergelijkingen zijn alleen de variaties in langsrichting ver-
waarloosd. Dit leidt tot een 2DV beschrijving van de golfgeinduceerde beweging
in een dwarsdoorsnede van de goot. Een bestaand numeriek model voor het
oplossen van niet-hydrostatische stroming is toegepast om de 2DV-GLM verge-
lijkingen op te lossen.

Metingen in laboratoriumgoten zijn gebruikt om beide modellen te valideren.
De golfgeinduceerde horizontale driftsnelheden, die ontstaan in de situatie zon-
der golven, komen overeen met Longuet-Higgins’ (1953) analytische conductie
oplossing. De modelresultaten komen eveneens overeen met metingen van Mei
et al. (1972). Zowel voor de situatie dat golven die zich voortplanten in de rich-
ting van de stroming, als voor de tegenovergestelde situatie, komen de berekende
profielen overeen met de gemeten profielen van Klopman (1994).

Vergeleken met de metingen van Klopman (1997) zijn kwalitatief correcte
verdelingen van de secundaire circulaties in het dwarsvlak berekend met het 2DV
model. Voor golven in de stromingsrichting wordt de reductie van de gemiddelde
horizontale snelheid in de buurt van het vrije oppervlak overschat. Dit is het
gevolg van een overschatting van de in het midden van de goot aanwezige ’down-
welling’. Uit vergelijking met de resultaten die worden verkregen met het 2DV
model voor een significant bredere goot en uit de analyse van de 2DV resultaten
van Dingemans et al. (1996) kan worden geconcludeerd dat golfgeinduceerde se-
cundaire circulaties niet kunnen worden genegeerd in laboratorium experimenten.
De louter door secundaire circulaties veroorzaakte veranderingen in de verticale
profielen van gemiddelde horizontale snelheid zijn te klein ten opzichte van de
totale veranderingen in de horizontale snelheidsprofielen. Tevens is aangetoond
dat de tweede-orde veranderingen hoofdzakelijk worden veroorzaakt door een
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combinatie van de golfgeinduceerde schuifspanning en de Stokes correctie van
de schuifspanning. Dit zijn de dominante golfgeinduceerde krachten in de lokale
krachtenbalans in longitudinale richting.

De algemene weg waarlangs de 1DV en 2DV modellen zijn ontwikkeld maakt
uitbreiding naar een 3D-GLM model mogelijk. De beoogde toepassing van het
model op kustzones ligt dan binnen de mogelijkheden. Tevens kunnen typi-
sche driedimensionale aspecten van golf-stroom interactie in dit gebied worden
geanalyseerd.
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Chapter 1

Introduction

1.1 General

For a good description of water motion in natural systems knowledge of two
important factors is unavoidable: surface waves and currents. The waves are
usually generated by wind. Density variations, tides, waves, wind or river out-
flow may cause a driving mechanism for the current. The importance of their
interaction has long been recognized. A good prediction of the vertical structure
of the flow field and the resulting morphodynamics in coastal areas can hardly be
obtained without taking into account the combined effect of waves and currents.

The subject of wave-current interaction has been studied for decades, both
experimentally and theoretically. A large amount of analytical and numerical
models have been put forward. Due to the enormous improvements in the field
of computer technology more and more physical aspects can be taken into account
in these numerical models. Whereas three-dimensional numerical models were
utopian ten years ago, the computer capacity no longer hampers the develop-
ment of these models nowadays. Although numerical results could be obtained
within reasonable time, only a few attempts have been made towards the de-
velopment of a complete three-dimensional numerical model. Nevertheless, the
three-dimensional character of the combined motion of waves and currents is of
essential importance for the description of transport of sediment, as well as for
the understanding and modelling of morphological changes in the coastal region.

The wave-induced driving or influencing of the current can be described by
wave-induced fluxes of mass and momentum. In the conventional approach these
fluxes are treated in an Eulerian framework, which results in discontinuities in the
region between wave trough and wave crest. These difficulties may be prevented
by using the hybrid Eulerian-Lagrangian formulation introduced by Andrews
& Mclntyre (1978a), the so-called generalized Lagrangian mean (GLM) method.
However, for wave-current interaction purposes little experience with this method

1




2 Chapter 1. Introduction

has been gained so far. Application of the GLM method to the combined motion
of waves and a current fulfills the need for further development of theories de-
scribing wave-current interaction and interpretation and implementation of the
physical mechanisms involved.

1.2 Literature review

Over the last decades various wave models and models which describe current
motion have been developed. However, development of models in which wave
characteristics are modified by the existence of a current or, vice versa, current
profiles which are modified by wave motion, has always been considered as a
tedious task. Soulsby et al. (1993) classified the mechanisms describing the
interaction of the wave and current field as follows:

1. Modification of the wave kinematics by the current.
2. Generation of mass transport or streaming by the waves.

3. Enhancement of the bottom friction felt by the currents, due to interaction
with the wave boundary layer.

4. Enhancement of the bed shear-stresses and energy dissipation of the waves,
due to interaction with the current boundary layer.

5. Refraction of the waves by horizontally sheared currents.

6. Generation of wave-induced radiation stresses acting as a driving force for
currents, particularly longshore currents in the surf-zone, i.e. the region in
between the breaker line and the coast line.

In fact, two major classes can be distinguished. The first class contains mecha-
nisms 1-4 and describes the combined motion in the vertical plane. The second
class is concerned with the mechanisms 5 and 6, acting in the horizontal plane.
Major reviews on all of these classes have been presented by Peregrine (1976),
Jonsson (1978, 1990), Sleath (1990), Soulsby et al. (1993) and Thomas & Klop-
man (1997).

The effect of an ambient current on the wave kinematics has received much
attention so far. In order to obtain reliable predictions of the wave motion, know-
ledge of the vertical variation of this current is essential. Moreover, models have
to take full account of vorticity in regions where the vorticity is important. This
might be either global or restricted to some shear layer. For inviscid fluids the
wave modelling is significantly easier. Then, for uniformly distributed currents
linear wave theory provides a first order approximation for the wave potential
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and free-surface elevation. Higher order solutions for a constant current have
been obtained by e.g. Jonsson & Arneborg (1995). These solutions are based
on Fenton’s (1985) fifth-order expressions derived from Stokes’ theory. For non-
uniform currents the wave field will be rotational. Only for the linear regime
very few solutions exist. The great majority of the literature on wave-current
interaction modelling is concerned with the interaction of regular waves with
a laminar current under the assumption that the flow is inviscid. Thomas &
Klopman (1997) give an extensive overview of models in this class. They differ-
entiated between linear and nonlinear waves interacting with a current having
either constant vorticity or an arbitrary velocity distribution.

Field observations clearly illustrate that wave motion, either with or without
current, cannot always be described by regular wave theory. Therefore, it is nec-
essary to employ methods which account for the presence of many simultaneous
frequencies and possibly directions as well. Huang et al. (1972) were the first to
model the effect of a current on irregular deep-water waves. A major review on
irregular wave theory was presented by Borgman (1990) and Jonsson (1990).

The impact of waves on the mean motion depends strongly on the wave
regime. Modelling of currents that are generated or modified by nonbreaking
waves require a different treatment than those induced by breaking waves. In
coastal areas strong currents are generated in the surf zone. In the surf zone
longshore currents and wave set-up were recognized in field experiments but
could not be explained properly until the theoretical formalism of the radiation
stress was discovered by Longuet-Higgins & Stewart (1960, 1961). Since then so
many contributions have been made towards the understanding of the surf zone
phenomena that mentioning them all would be an impossible task. Therefore
only the pioneering papers on longshore currents and wave set-up of Longuet-
Higgins (1970), Bowen (1969), Bowen et al. (1968) and Thornton (1970) are
touched upon, as well as the overviews on coastal zone phenomena in the books
of Phillips (1977) and Mei (1989) and the review papers of Peregrine (1983),
Battjes (1988), Battjes et al. (1990) and Svendsen & Putrevu (1996). This
theory was the basis of a range of numerical models such as

e cross-shore profile models, which give the longshore current distribution
ignoring longshore variation, by e.g. Southgate (1989).

e two-dimensional coastal area models, in which the depth-averaged current
is considered, proposed by Ebersole & Dalrymple (1980), Wu & Liu (1985),
Wind & Vreugdenhil (1986), among others. Recently, a description and
intercomparison of seven models in this class were presented by Péchon
et al. (1997).

e quasi-three-dimensional and three-dimensional coastal area models devel-
oped by e.g. De Vriend & Stive (1987), Sdnchez-Arcilla et al. (1992), Van




4 Chapter 1. Introduction

Dongeren & Svendsen (1997) and Péchon & Teisson (1994).

Outside the surf-zone the wave-induced driving mechanism for the mean mo-
tion is different. For regular waves on otherwise still water Stokes (1880) in-
troduced the mean Lagrangian, or mass-transport, velocity. Longuet-Higgins
(1953), indicated that fluid-friction effects dominate the wave-induced changes
in the mean flow. He was the first to recognize that the inclusion not only signif-
icantly modifies the mean motion in the bottom and free surface boundary layer,
but in the core region of the fluid as well. Later on, Craik (1982a) extended this
theory for both the Eulerian-mean and the Lagrangian-mean motion by taking
into account spatial and temporal wave attenuation. Russell & Osorio (1957)
and Mei et al. (1972) measured drift velocities in a wave flume. Mei et al. (1972,
pp-151-152) state that they obtain quantitative agreement (for a certain range
of wave slopes kh) with Longuet- Higgins’ conduction solution. More recently,
Iskandarani & Liu (1991a, 1991b, 1993) reported on experiments on two- and
three dimensional mass transport velocity profiles.

In many models on wave-current interaction there is a separation of the flow
domain into three layers: the surface shear layer, the main region and the bot-
tom boundary layer. Such a division is based on the influence of viscosity and
turbulence. The bottom boundary layer has been studied elaborately due to its
importance for sediment transport purposes. Soulsby et al. (1993) compared a
large amount of bottom shear stress predictions with experimental and field data
for the combined motion of waves and currents over a rough bed. Among oth-
ers, the theoretical models used in that paper have been described in the review
paper by Davies & Villaret (1997). The models of e.g. Grant & Madsen (1979),
Christoffersen & Jonsson (1985), and Sleath (1991) are based on the idea that
the current profile is logarithmic above the wave boundary layer. In these mod-
els the wave effects are only taken into account in the wave boundary layer and
little attention was paid to the current velocity distribution near the free surface.
As a result the models above are not suitable for determining the wave-induced
current profile over the entire depth.

In contrast to the large number of theoretical solutions, the amount of ex-
perimental data is very limited. The available data tend to concentrate on flow
features in the near-bed region. At greater heights above the beds some exper-
imental data on Eulerian-mean velocities under regular, nonbreaking waves in
a laboratory flume have been reported by Bakker & Van Doorn (1978) (more
extensively reported in Van Doorn 1981), Kemp & Simons (1982, 1983) and
Supharatid et al. (1992). In the papers by Kemp & Simons and Supharatid
et al. the two situations of waves following and opposing a turbulent current
were considered. Swan (1990) observed the modification of the wave motion in
the presence of a strongly-sheared current velocity throughout the depth of the
flow field and compared these data with existing theoretical solutions. Klopman
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(1994) measured orbital and mean velocities over the whole depth of a channel
in experiments concerning waves following and opposing a turbulent current.

In all experimental studies mentioned above the authors found that the
Eulerian-mean velocities have completely different distributions than those which
are the result of linear addition of the separately obtained current and wave ve-
locities. For currents following a regular wave field the Eulerian-mean horizontal
velocity reaches a maximum value at a level between bottom boundary layer and
wave trough and decreases towards the free surface. In contrast, for waves op-
posing the current the Eulerian-mean horizontal velocity increases more rapidly
towards the free surface than in absence of waves. The deviation from the loga-
rithmic profile is obvious. Only few attempts have been made towards numerical
modelling of the phenomena observed in the experimental data. You (1996) de-
veloped a model to give a quantitative description of the current profile near
the mean water surface employing the effect of the wave-induced stress. Based
on the same principle Nielsen & You (1996) presented a model describing the
wave-induced changes of the current profile over the entire depth qualitatively.
These two models neglect all variations in spanwise direction, in contrast to the
model developed by Dingemans et al. (1996). They considered wave-induced sec-
ondary circulations in the cross-sectional plane as the main mechanism causing
the changes in the current profile.

An intriguing point is that the model of Nielsen & You (1996) confirms the
theory that changes of the mean horizontal velocity profile are purely caused by
phenomena in longitudinal direction, whereas Dingemans et al. (1996) suppose
the secondary lateral circulations to be the reason for changes in the mean hori-
zontal velocity profile in streamwise direction. Their prediction of the existence of
lateral circulations is supported by laboratory measurements of Klopman (1997).

1.3 Aim and scope of this study

The problems of understanding the mechanism of wave current interactions have
mostly been tackled via the Eulerian equations of mean motion. A major dif-
ficulty with the Eulerian representation of the flow field is the unique and un-
ambiguous identification of the mean motion in an otherwise oscillating field,
since at a fixed position between wave trough and wave crest there is water only
part of the time. A consistent way to split the mean and oscillating motion is
through the generalized Lagrangian-mean (GLM) method as proposed by An-
drews & Mclntyre (1978a). This is a hybrid Eulerian-Lagrangian description of
motion, in which the Lagrangian-mean flow is described by means of equations
in Eulerian form.

The purpose of this work is to apply the GLM theory to the combined motion
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of regular nonbreaking waves on an arbitrarily distributed current. Irregular as
well as breaking waves are out of the scope of this study. The wave-induced
changes in the vertical profiles of the mean motion and the effect of the current
on the orbital motion, which have been observed in the experimental flume data
mentioned in section 1.2, are of main interest.

In order to achieve the goal just mentioned two types of models have been
developed. Firstly, a 1DV model is presented based on the WKBJ perturbation
series approach. The model not only predicts the nonlinear changes in the ver-
tical profile of the mean velocity due to the presence of waves, but determines
the modifications of the orbital velocity profiles caused by the current as well.
Secondly, a 2DV model has been developed, in which the changes in lateral di-
rection are taken into account as well, in order to provide more insight in the
effect of the secondary circulations on the mean horizontal velocity profile.

Comparison of the results of both models must lead to a better understand-
ing of the mechanisms that cause the changes in the mean horizontal velocity
profiles. The most significant contribution may be based on phenomena act-
ing in longitudinal direction (as in Nielsen & You 1996) or in spanwise direc-
tion (as in Dingemans et al. 1996) or even in both directions. In the latter,
three-dimensional case phenomena in longitudinal as well as lateral direction
are significant. In the present study we investigate which contribution or set of
contributions is dominant.

In the present study, we do not aim at developing a complete three-dimensional
model in the GLM formulation that is suitable to describe the three-dimensional
character of the combined motion of waves and currents in the coastal area.
Instead experience has been gained in dealing with the GLM theory, applying
the theory to water wave-current problems and interpreting results so that they
can be compared to existing experimental and theoretical results. As such this
study must be considered as a step towards a more consistent way of modelling
wave-current, interaction.

1.4 Outline

The arrangement of this thesis is as follows. The formalism of the GLM theory
as well as its applications are outlined in chapter 2. Furthermore, a description
and an interpretation of the GLM averaging procedure is given.

In chapter 3 the derivation of the three-dimensional flow equations in a GLM
formulation is given. Firstly, the main features in the original derivation of
Andrews & McIntyre (1978a) are pointed out. Special attention has been given
to the pseudomomentum, which is generally regarded as an important quantity in
the driving mechanism for the mean motion. Secondly, an alternative approach
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of the GLM formulation is outlined, along with proper boundary conditions at
the bottom and the free surface.

In chapter 4 the development of the 1DV model is described. The GLM
equations are solved using a WKBJ type perturbation series approach. The
resulting boundary-value problem, with only the vertical spatial coordinate as
independent variable, is solved numerically. The model is applied to wave-current
channel problems and the results of the 1DV model are compared with both
theoretical solutions and experimental data.

The 2DV model is described in chapter 5. For the evaluation of the wave-
induced driving force the oscillating quantities obtained with the 1DV model are
modified in lateral direction to account for the side-wall effects. The resulting
set of time-dependent 2DV flow equations is solved using an existing numerical
model for non-hydrostatic flow. The results of the 2DV model are compared
with experimental data both in the cross-sectional plane of the flume and in
longitudinal direction. Finally, the 1DV and 2DV results are compared with
each other leading to a conclusion about the dominant mechanism responsible
for the mean horizontal velocity profile changes.

In chapter 6 suggestions for generalization of the GLM-based model to three
dimensions are discussed. Comparison is made with some of the few existing
quasi-3D and fully-3D models describing wave-current interactions. Finally, con-
clusions and recommendations are listed in chapter 7.







Chapter 2

The generalized Lagrangian
mean framework

2.1 Introduction of GLM theory

As already mentioned in chapter 1, the interaction of waves and currents is of
great importance for a good prediction of the vertical structure of the mean
flow field. In particular, a clear description of the driving forces is essential for
the prediction of wave-induced currents. These driving forces are expressed in
terms of mean wave momentum fluxes. For depth-averaged currents the excess
momentum flux or radiation stress introduced by Longuet-Higgins & Stewart
(1960) reflects the influence of the waves in mean momentum equations in a
conventional Eulerian framework. Mean motion and wave motion are usually
separated by averaging over the wave phases (see e.g. Phillips 1977, Mei 1989).
For depth-varying currents considered in an Eulerian formulation, Dingemans
(1997, p.228) noticed the difficulty in identifying the mean motion in an otherwise
oscillating field.

2.1.1 A new averaging formalism

Finding a unique and unambiguous separation of the mean and oscillating motion
is difficult in the Eulerian representation of the flow field, because at a fixed
position at a level between the wave trough and the wave crest there is water only
part of the time. This difficulty can be avoided by considering the Lagrangian
representation of the flow field. The simplest idea is Stokes’ classical idea of
Lagrangian averaging by taking the time mean following a single particle. This
idea has its limitations. The formulation cannot apply in any exact sense if we
wish to speak of the Lagrangian-mean velocity at a given point in space. This is
due to the fact that the particle to be followed will generally wander away from

9
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this point. Therefore, the expression ”Lagrangian-mean velocity field’ does not
make sense in the classical concept of the mean following a single particle.

An important step towards a more general concept, in which the Lagrangian-
mean velocity is a true field variable, was provided by the transformation theory
of the Lagrangian equations of motion, given by Eckart (1963). Its applica-
tion to problems of mean-flow evolution has been developed by Dewar (1970),
Bretherton (1971) and Soward (1972). The derivations of the first two authors
depend on various asymptotic approximations. Soward’s derivations were exact
in principle but did not lead to exact theorems on mean-flow evolution due to
finite-amplitude waves. Eventually Andrews & McIntyre (1978a) presented the
Generalized Lagrangian mean theory, or simply GLM, in their pioneering paper.
They not only generalized the classical notion of Lagrangian-mean flow, but also
described an exact theory on mean-flow evolution due to finite-amplitude waves,
which does not depend on any asymptotic approximation. However, in the gen-
eral case of finite-amplitude disturbances the equations for the mean motion are
rather complicated and difficult to interpret physically.

As will be outlined in section 2.2 the GLM description is a hybrid Eulerian-
Lagrangian description of motion, since it describes the Lagrangian-mean flow by
means of equations in Eulerian form with position = and time ¢ as independent
variables. Apart from the basic idea of getting a precise distinction between mean
motion and wave motion, from which an exact definition of wave momentum (also
called pseudomomentum) can be obtained, Andrews & Mclntyre (1978¢, p.612)
listed some other advantages of the GLM approach. They pointed out that
an Eulerian description of Lagrangian-mean flow is desirable to express ideas
like steady mean flow, steadiness of the wave field and spatial homogeneity in
some specific direction. Mclntyre (19805, p.131) remarks that the GLM theory
provides a precise analytical structure which not only explains what is involved in
generalizing the classical notions of Lagrangian-mean and Stokes drift, but also
makes available certain analytical tools, the use of which might prove helpful in
the search for an improved understanding of the physics involved.

Closely related to the above is the fact that the GLM approach explicitly
represents the effect of wave forcing upon mean flow evolution. De Vriend &
Kitou (1990) mentioned the difficulties in formulating forces induced by surface
waves in an Eulerian framework in a three-dimensional hydrostatic mean current
model. Formulation of the vertical distribution of wave forces in this framework
will lead to singularities at the mean free surface, due to wave dissipation and
wind-input, and at the bottom, due to bottom friction. However, by using a
Lagrangian formulation the derived wave forces are not likely to contain singu-
larities and vary smoothly over depth. Finally, Grimshaw (1984, p.11) claimed
the GLM formulation to be very natural by writing that, despite the fact that the
equations of fluid mechanics have originally been developed in an Eulerian frame-
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work, wave characteristics like wave action are more obvious in its Lagrangian
counterpart.

Before the Lagrangian-mean flow equations can be solved, knowledge of wave
quantities is required. Andrews & McIntyre (1978b) derived an equation for
the wave action in a simple but very general form, which does not depend on
the approximations of slow amplitude modulation or linearization. The wave-
action equation found by Bretherton & Garrett (1968) for slowly varying, linear
waves was shown to be a corollary of this general equation, due to the fact
that the part of the total momentum that depends on wave motion itself, the
pseudomomentum, can be linked to the wave action for slowly varying waves. A
different approach is given by Uittenbogaard (1992). He rewrote the terms in
the mean flow equations, given in a Lagrangian formulation, in terms of easily
identifiable quantities which can be evaluated by an existing wave model. This
approach was also followed by Grimshaw (1981), who studied drift velocities
of water waves in a GLM setting. The situation of no ambient current is in
fact a limit of all situations concerning the combined wave-current motion. The
approach in the present study touches upon those of Uittenbogaard (1992) and
Grimshaw (1981).

2.1.2 Applications of GLM concept

In most papers mentioned above the authors tried to verify their statements by
applying the GLM theory to realistic flow problems. According to the following
outline the GLM theory is applicable to a great variety of flow problems. An-
drews & McIntyre (1978a) derived a complete set of equations for the mean flow
for the case of a stratified, rotating fluid under external and self-gravity forces.
For the important case of 'longitudinally symmetric’ mean flow, which is appro-
priate to astrogeophysical examples (see Andrews & McIntyre 1976), the role
of wave phenomena, in particular wave dissipation, in mean flow evolution was
discussed. Here mean denotes a Cartesian space average. Rather than giving a
catalogue of all the contexts in fluid mechanics where wave problems have been
invoked, Grimshaw (1984) gave a brief account of the influence of internal gravity
waves on an ensemble-averaged stratified shear flow. Under simplifying assump-
tions, like incompressibility, constant gravity acceleration, no frictional forces
and Boussinesq’s assumption with respect to density variations, the very general
case considered by Andrews & Mclntyre (1978a) was repeated by Uittenbogaard
(1992) and Dingemans (1997, note 2.6) for application to water wave problems.
Uittenbogaard (1992) considered wave-induced changes of the ensemble-averaged
velocity, whereas Dingemans (1997) confined himself to inviscid flow while em-
phasizing several types of averaging such as time and ensemble averaging. By
applying the GLM theory to an inertio-gravity problem McIntyre (19804, p.164)
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mentioned the Lagrangian zonal-mean flow problem to be simpler compared to
its corresponding Eulerian zonal-mean flow problem in several respects. In the
first place, there is no Lagrangian-mean flow across any of the (rippled) closed
boundaries. Secondly, a more direct description of momentum transport can
be given, compared to the Eulerian description using Reynolds stress. Without
going into detail reference is made to an application given by Lighthill (1992),
which is both surprising and interesting. He described acoustic streaming in
the ear. Both Lagrangian-mean and Eulerian-mean motion of inner-ear fluids
induced by sound waves were considered.

A fluid-flow phenomenon that has been investigated thoroughly is the oc-
currence of Langmuir circulations. These are organized convective motions that
form in the surface layer of open bodies of water. When the wind blows over
a water surface and generates waves, numerous streaks parallel to the wind di-
rection may be observed. Langmuir (1938) related these streaks to convergence
lines between counter rotating vortices below the surface. Different mechanisms
for generating Langmuir circulations have been proposed in literature. Craik &
Leibovich (1976), Craik (1977) and Leibovich (1977) presented models in which
the vortices are induced by the interactions between the waves, via the so-called
Stokes drift, and a weak wind-induced shear flow. These models have been di-
vided into two classes, CL1 and CL2. Leibovich (1983) reviewed the subject
and discussed the two mechanisms in terms of ’vortex forces’. Before that, Lei-
bovich (1980) rederived the CL theories by applying the GLM theory. However,
in contrast to the CL theories the GLM method did not require any assumption
regarding the wave motion and the current profile. From that moment the GLM
method has been considered as a powerful tool to understand e.g. the (instability)
mechanism behind the generation of secondary flows.

Many applications of the CL theory followed, only a few are mentioned here.
Craik (1982b, 1982c) applied the GLM theory in an investigation of hydrody-
namic stability of parallel shear flow. Magnaudet (1989) made a thorough anal-
ysis of wavy stratified duct flow and investigated also the interaction between
waves and turbulence. Furthermore, Nordsveen & Bertelsen (1997) applied the
GLM theory to study the wave-induced secondary motions that were observed in
the fully developed turbulent gas-liquid stratified flow in near horizontal ducts.
Finally, reference is made to a paper of Phillips (1998) in which he reviews several
years’ work on the nonlinear interaction of growing finite-amplitude rotational
waves with unidirectional viscous shear flows of various strengths. The wave-
mean interaction is described using the GLM formulation.
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2.2 Description of GLM formulation

The GLM theory establishes a definition of the GLM velocity w” at the outset
and then derives general equations for its evolution from the equations of motion.
As outlined in subsection 2.1.2 the formalism of the theory applies for different
forms of averaging, such as time, zonal and ensemble averaging. The physical
interpretation of " depends on the particular choice of averaging. Before spec-
ifying the type of flow problem with corresponding averaging procedure that is
considered in this study and giving an interpretation of @” in that situation, the
general description of the GLM theory is given.

2.2.1 The GLM operator

The description of the basic formalism of the GLM theory is outlined here in
a somewhat abstract way. In the GLM theory GLM operators are related to
Eulerian-mean operators. Let U be a general averaging operator (time, space,
ensemble, etc. ) taking a scalar, vector or tensor field ¢(z, t) into a corresponding
(Eulerian-mean) field &(z,t) = ¢(z,t) = {p(z,t)) at position = and time ¢.
The notation (()) is also used for the same averaging operator, for the sake of
convenience. Whether the operator denotes time, space or ensemble averaging is
not relevant for the general outline of the GLM theory at this stage. Only when
the type of flow problem and splitting in mean and oscillating parts has to be
defined, the averaging operation has to be specified. This is carried out in the
next subsection.

To overcome the problems mentioned in subsection 2.1.1, arising in the Eule-
rian and pure Lagrangian framework, Andrews & McIntyre (1978a) generalized
the classical Lagrangian-mean description such that the expression ”Lagrangian-
mean velocity field” makes sense. An essential part in the GLM theory is the
definition of the particle displacement £ associated with the disturbed motion.
Like all quantities in the GLM formulation, it is defined as a function of the posi-
tion  and time ¢ and no longer primarily as a function of the individual particle
label as in a purely Lagrangian description. In fact, the generalized Lagrangian
flow is described by means of equations in Eulerian form.

After having described the disturbance-associated particle displacement field

£ (x,t), the exact GLM operator ( )L, corresponding to any given Eulerian-mean
operator (( )), is defined as,

e@,0) = (p(@+E&(=z,1),1)) - (2.1)

Definition (2.1) implies that the average is taken with respect to the values of ¢
at the disturbed particle positions, which are denoted by ZE(x,t) = = + &(z, ).
For convenience, the notation ¢f(zx,t) is used instead of ¢(z + £(x, t),t) as well.
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By assuming that the mapping * — = + £(z,t) is invertible, Andrews &
Mclntyre (19784, p.615) stated that for any given u(z,t) there is a unique ’ref-
erence velocity field’ v(, t), such that, when the point @ moves with the velocity
v the point x + & moves with the actual velocity u?, i.e.

(0/0t +v;0/0z;) E = ut . (2.2)

They obtained the GLM description by requiring that
£(e,t) =0, (2.3)
i.e. § is a true disturbance quantity and that the reference v is a mean quantity,
oz, 1) = v(&, 1), (2.4)

which immediately yields » = w’. By introducing the Lagrangian disturbance
velocity ¢ in a natural way as,

ul(z,t) = ul(z, t) — u(z, 1), (2.5)

relation (2.2) yields
De=ut, (2.6)

with D” = d/0t + wkd/dz; the Generalized Lagrangian-mean material deriva-
tive, denoting the rate of change following the GLM flow. Relation (2.6) between
the disturbance-associated fields £ and u* not only defines & but also validates
the claim to regard £ as a disturbance-associated particle displacement. Sum-
marizing, the basic equations of the GLM theory are (2.1), (2.3), (2.5) and (2.6).

Eulerian-mean and generalized Lagrangian-mean quantities are related to
each other by the generalized "Stokes correction’ @°, which is defined as

o@D =0, — ol . (27)

When ¢ denotes velocity u, the Stokes correction % is often referred to as Stokes
drift. The Stokes correction is a disturbance-related quantity. In subsection
2.2.3 an expression for the Stokes correction in terms of Lagrangian disturbance
quantities is given.

2.2.2 Specification and interpretation of GLM flow

In general the combined motion of currents and free-surface waves can be divided
in a mean part, an oscillating part and a turbulent part. In the present study
the motion has been assumed to be averaged over the turbulent motion. The
resulting ensemble-averaged quantities are deterministic and assumed to consist
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of a mean part and a part representing the wave motion. In this study only
periodic, nonbreaking waves are considered. By denoting T as the short-wave
period, the mean value of an ensemble-averaged quantity ¢ is defined as the time
average,

— 1 (T2 N 34
B(@t) = 7 /_ RCERL (2.8)

This approach implies that interactions between turbulence and wave quantities
have been neglected.

Now that the averaging procedure has been specified, an interpretation of the
GLM flow can be given. In their description of wave-mean flow interactions in
the atmosphere or oceans, Biihler & McIntyre (1998) gave a physical interpre-
tation for the slow-modulation average over the rapidly varying wave phase. In
fact a similar situation is considered here. Furthermore, Uittenbogaard (1992)
presented a clear outline for the ensemble-average whereas Andrews & Mclntyre
(19784) considered the zonal average.

In the special case of a slow-modulation average, or more specifically a time
average (2.8), the physical interpretation of the GLM framework is straightfor-
ward. Consider the trajectory of a fluid particle starting at point xp in figure
2.1, i.e. the solution of dz/dt = u (x,t). Since u is assumed to be averaged over
the turbulent motion, the trajectory is actually an ensemble-averaged trajectory.
In a pure Lagrangian setting the Lagrangian velocity u” is defined implicitly as

t
ul(20,t) = w(o + [ ub(@o,t)dt, 1), (2.9)
to

(see e.g. Phillips, 1977, equation (3.3.2)), where the velocity of a particle is ac-
tually evaluated along its trajectory and assigned to its initial position. The
time-averaging process associates two different trajectories with each particle:
firstly its actual, rapidly varying trajectory (dashed line in figure 2.1) and sec-
ondly its mean, slowly varying trajectory (drawn line in figure 2.1). The GLM
theory claims the existence of a disturbance-associated particle displacement field
& (x,1), that links both trajectories (dashed arrow in figure 2.1). In the ensemble-
averaged setting £ is fully determined by the wave motion. In the GLM setting
a position @ at time ¢ is considered as a mean position corresponding one to one
to an actual particle position = + £(x,t). The actual or generalized Lagrangian
velocity is again evaluated at the actual position, but it is now assigned to the
mean position,

ut(z,t) = u(z + &(x,t),1) . (2.10)

The GLM velocity is defined by taking the time average of (2.10), according to
(2.1). The trajectories of points moving with velocity W’ are exactly the mean
particle trajectories sought. The analogy between (2.9) and (2.10) reveals the
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Figure 2.1: Mean and actual particle trajectories (this figure is identical to figure
3 in Biihler & Mclntyre 1998)

Lagrangian aspects in the GLM method. However, the field £ depends on the
position & and time ¢, and is thus no longer primarily a function of the individual
particle label, as in a purely Lagrangian description.

In a GLM setting the frame of reference is determined by the positions .
Since these positions can be considered as mean particle positions, a separation
between the mean and oscillating motion is obtained in an elegant way. Relation
(2.10) shows that if there are no waves, the Eulerian and generalized Lagrangian
velocities are equal, because then £ = 0.

On the other hand, in a pure Lagrangian setting the particles are fixed com-
pared to their reference frame by definition. Consequently, the free surface is a
coordinate line. Likewise, the free surface elevation in a GLM setting is not given
by the instantaneous elevation, but by the GLM elevation. The problems in an
Eulerian setting with the identification of the mean motion in the region between
wave crest and wave trough do not arise in a GLM setting. In wave-current flow
particles drift from minus infinity to plus infinity, so mean particle or initial
particle positions are not useful. This rules out the use of a pure Lagrangian
description of the wave-current flow.

The description of the GLM theory in terms of mean trajectories is only
useful for its interpretation. For conceptual purposes the motion is split up
into a mean (GLM) part and oscillatory deviations from this mean part. In the
GLM method the mean oscillatory excursion equals zero. So the GLM velocities
can be attached to the GLM coordinates in a meaningful way (see subsection
2.2.1). Obviously, the advantages of the Eulerian and Lagrangian description are
combined.

In essence, the GLM theory treats all the points x in the domain as a time-
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dependent reference space for both mean and actual trajectories. Biihler &
McIntyre (1998) explained this by introducing a dual reference frame. The first
reference is established by the trivial mapping  — x, which associates with
a fixed position & the mean trajectory of a particle passing through x at time
t. Hence, the time-dependent aspect has now been introduced. The second
reference is established by * — « + £ (x, ), which associates with z the actual
particle trajectory of the same particle. This dual reference frame avoids the use
of the classical Lagrangian particle labels as a reference space.

Biihler & Mclntyre (1998) state that for the present interpretation to work
properly, one has to assume that exactly one mean trajectory passes through
each point « at a given time t. Otherwise £ (z,t) would not be unique. In other
words, mean particle trajectories must not cross each other. It is not a priori
clear whether or not this will occur. Distinct fluid particles may share the same
mean position. Nevertheless, the mean trajectories are assumed not to cross.
Andrews & Mclntyre (19784, p.615) translate this assumption in mathematical
terms by requiring that the mapping z — x + £ («, t) is invertible.

2.2.3 Basic properties of GLM operator

Before the GLM theory is applied to the flow equations for the combined motion
of water waves and currents, some basic properties of the GLM operator are
derived. For that purpose, we use the following notation. Latin indices ¢, j or &
take the value 1, 2 or 3. It is sometimes convenient in the subsequent analysis
to distinguish between horizontal coordinates z, (o = 1,2) and the vertical co-
ordinates z = z3 by employing Greek indices for horizontal variables and Latin
variables for all three coordinates. Similarly, u, denotes a horizontal velocity
component and w = ug the vertical velocity. A different notation has been used
for vectors operating in all three directions, u = (uj,up, u3) and those involv-
ing the horizontal direction, u, = (u1, us). Furthermore, Einstein’s summation
convention is used, i.e. u;v; = u1v; + Vs + u3vs3.

The disturbance related quantities, like £ and u’, scale with the wave motion,
which has amplitude a. This wave amplitude is supposed to be small with respect
to both depth and wavelength. Despite the fact that @ is not dimensionless, the
order of approximation is denoted by O(a™). Since the equations of motion
are not non-dimensionalized, O(a) is used for convenience instead of O(¢) with
e=kaore=a/h.

In order to deal properly with the transformation from Eulerian to GLM
formulation and vice versa via the mapping £ — x + £, some important con-
sequences of the chainrule are outlined. Although the properties of the latter
mapping have been given by Andrews & Mclntyre (19784, appendix A1), or in
a more fundamental way by Dingemans (1997, p.239-241), they are repeated




18 Chapter 2. The generalized Lagrangian mean framework

here for their relevance in the derivation of the GLM flow equations. First, the
chainrule itself yields

ot Oy 05, <3go> dp ¢t Ox; (2.11)

ox; 9=, O i 0%,  0m; 05,

The latter factor dz;/0Z; in (2.11) can be expressed in terms of 0Z;/0z; = d;; +
0¢;/0x; by introducing K;; as the cofactors of the Jacobian J of the mapping ¢ —
xz + &, i.e. J = det(0Z;/0z;). Here §;; denotes Kronecker’s delta. By definition
K;;j = (=1)"*J det B;; with B;; the matrix that is obtained after deleting the i-th
row and j-th column from the matrix 8=;/0z;. By expressing the inverse of
latter matrix in terms of its cofactors, the following relation can be derived,

0=;

Ky = Jo = "Kji . (2.12)
O

a.’li,;

For small disturbances |€| the following approximate expression for the cofactor
K;; can be derived form the first relation in (2.12),

3, 9% 096

K"":J(‘S"" dz; * Oz, Oz

) +0(a%) . (2.13)
Application of (2.12) yields for the second relation in (2.11) that

3 \* _ Ky 04t
(Bzi) J oz, (214)

Let Z;; = 0Z;/0z;. Now upon using relation (2.12), an expression for the
variation of the Jacobian J has been obtained,

0 _ 01 3Eiy _ , iy

8y 0=, oy oy (219)

where 0/8¢y denotes 8/0t or 3/8z;. This property will be employed in the
derivation of the mass conservation equation in section 3.1. In that derivation
the material derivative of J is required. From relation (2.12) and property (2.14)
the following relation can be derived

=L a'—'t
D"J = K,;D" (611)

o | 0 1\ OukOE\  ouf,  ouf
_K,J{ -(D'=:) - 5o, sz} 52, oz, +EoiJ . (2.16)
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Relation (2.14) yields that K;; (Buf/amj) = J(Ou;/dx;)*. Therefore, (2.16) re-

duces to c i
— ; 0t;
D'y=J { <%> - ﬁ} . (2.17)
635,- 8wj
A direct consequence of relation (2.2) and the chainrule (2.11) is that
De\¢ —1 ¢

where D/Dt = /0t + u - V denotes the material derivative with respect to the
total velocity u. Transformation from an Eulerian setting to its GLM counterpart
yields the application of the ’dual’ mapping that associates with a fixed point
x the actual particle position =. A relation between an Eulerian and a GLM
quantity can be derived directly by Taylor series expansion around the actual
particle position Z. For some quantity @(z, t) this yields,

cp(a:,t)=<p(E-£,t)
e D (E
_W(H’t)+1lzz:1 n! 5,71 éJnaEnaEJn ‘ (219)

By applying the chainrule (2.14) to the partial derivatives occurring in the sum-
mation in the right-hand side of relation (2.19), the partial derivatives with re-
spect to Z; can be replaced by partial derivatives with respect to z;. By defining
for some quantity ¢ = ¢ (, ) the operator

T(¢,€ 1) (2.20)

R N Gt KPP INPYE SN B S lg 00
- Z n! 5116_72 fJnJKjlmx axml JK32m2 al'mg JK]nmn Ozm" )

n=1
relation (2.19) can be written as,
¢ (@,t) = ¢ (@,1) - T(¢%, € ,1) . (2.21)

According to definition (2.7) of the Stokes correction, relation (2.21) shows that
an expression for the Stokes correction in terms of GLM quantities can be ob-
tained by averaging the operator 7 (4%, §, ¢, t). By substituting (2.13) into (2.21)
and (2.20) a second-order approximation for the Stokes correction is obtained,

7 (x,t) =7 (2,) - B (1)

80t 0&. 0Lt 8%,¢
<£j (3—% - 5%5%» - <%£j§kﬁx—k> +0(c). (222)
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The operator 7 will be exploited in section 3.2 to derive a set of GLM flow
equations that differs from the original derivation of the GLM flow equations
given by Andrews & Mclntyre (1978a).



Chapter 3

Derivation of 3D flow equations
in GLM formulation

The derivation of the GLM equations of motion is based on the Reynolds-
averaged equations of motion for an incompressible homogeneous fluid in an
Eulerian formulation, which are given by the mass-conservation equation,

Bu]-
— =0 3.1
5 =0 (3.1)
and the momentum equations,
Duy; 10p
= _X;=F. 3.2
Dt + p Ozx; (32)

The density p is assumed to be constant. X is a function which allows for
contributions that can be ascribed to viscosity and/or turbulence. In subsection
3.2.1 the function X will be specified. F represents large-scale driving forces for
the mean flow in horizontal direction and equals the gravitational acceleration
in vertical direction. These equations are completed with boundary conditions
at the bottom and free surface, which are derived in section 3.3.

3.1 Original derivation of GLM equations

Andrews & Mclntyre (1978a) derived the exact GLM equations of motion from
the compressible Navier-Stokes equations. Nevertheless, the GLM theory can
also be applied to incompressible flow problems. For an extensive derivation of
the GLM flow equations reference is made to Andrews & McIntyre (1978a) and
Dingemans (1997, §2.10.6). Once again, the main steps in that derivation are
repeated here.

21
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The general idea is to consider the quantities in (3.1), (3.2) at their displaced
positions, multiplying the momentum equations by 0=;/9z; and taking the mean
of the resulting equations. Following Andrews & McIntyre (1978a) the mass
conservation equation for a compressible fluid is considered,

Dp = Ou,

Ft—i-p%j:O‘ (3.3)

In order to obtain a mass conservation equation of a similar form as (3.3) for the
GLM flow, Eckart (1963) introduced the density

p=rJ. (3.4)

Using relation (2.17), which expresses the material derivative of J in terms of ve-
locity gradients, the following relation for the material derivative of the modified
density (3.4) is derived,

A\ ¢ L
5LﬁEﬁL(p5J) = J(Dp/Dt)§+pr{(%) _ %}
8.73]' ij

ou; \* oul
=J (Dp/Dt + p—J) —-pf=L3 . (3.5)
{ ij Bar,-

Now the mass conservation equation in GLM framework follows directly by ap-
plying its Eulerian counterpart (3.3). Hence,

Ou
p@xj

L
D'p + p=t

=0. (3.6)

For an incompressible fluid the density p is constant. The mass conservation
equation for GLM flow then reduces to

out —r
—L =-D"(logJ) . (3.7)
52 = D" (08.)

Obviously, the GLM velocity field @” is no longer divergence-free in the presence
of waves.

For the derivation of the momentum equations in a GLM framework the
Eulerian counterpart (3.2) is considered in a disturbed position. Application of
relation (2.18) to the resulting equation leads to

¢
=L ¢, 1 {0p _
D+ (—ax) - X{=F}. (3.8)
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Multiplication of (3.8) by the matrix 0=;/0xz; and application of the chainrule
(2.11, first part) results in

Oyt 1P 95 ye 05 e
8x¢Du7+p8xj 6xiX’_8zi 7 (3.9)

The first term on the left-hand side of equation (3.9) can be rewritten by putting
0Z;/0z; under the material derivative D" and using relation (2.2),

a_::zﬁLug = D* (?uﬁ_) — D" (a_:_f

oz; z; 0 ox;

. o E 1z
— D"uf 4 D (%ué) - (o) 4

Oz; ! 7 0y, Ox;
L o€ ol om0 ouk
=D u E J .. £271 §75) k‘ ]
+D (c?zi ,) G T % ot Ggy aa, - O10)

An important quantity that will appear after averaging is the so-called pseudo-
momentum per unit of mass -IsL, which is given by

oL 8{1 E % 4
i = dz; ;0

(3.11)

Substituting (3.10) into (3.9) and averaging the resulting equation finally leads
to the GLM momentum equation, which was originally derived by Andrews &
Meclntyre (1978a, appendix B),

16p8 <1 =

D —L+—— X, - F;
p Oz;

— 9; ¢ 9¢; £ 9 1 —LaﬂL
_<5z—fixj>+<5g—c’;Fj +D"P +5—(5 (ufuﬁ))-i-Pj&i-. (3.12)

The averaged momentum equation (3.12), which is completely written in terms of
Lagrangian quantities, contains the fluctuating quantities on the right-hand side.
In order to quantify the wave-induced force on the mean motion the pseudomo-
mentum seems an important quantity. For the physical and conceptual meaning
of the pseudomomentum one is referred to e.g. Andrews & Mclntyre (1978b),
Craik (1982b) or Grimshaw (1984). In subsection 3.1.1 a brief description of this
quantity will be given.

The GLM equations of motions are exact equations in the sense that no
asymptotic analysis is required as long as viscous or turbulence effects are not
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fully specified and left as general as in (3.12). As Andrews & Mclntyre (1978a)
mentioned throughout their derivation of the GLM equations, these equations
also hold for finite amplitude waves. Incorporation of viscous effects unavoidably
requires some asymptotic analysis. A correct formulation of the viscous part in
terms of GLM quantities leads to lengthy expressions for the function X As to
be expected the situation is worse for turbulent motion. Therefore, the derlvatlon
of the GLM equations by Andrews & Mclntyre (1978q) is adapted in section 3.2.

3.1.1 The pseudomomentum

Like the Stokes drift @° the pseudomomentum P’ is a wave property in the sense
that it can be consistently computed from wave quantities alone. It turns out that
P” plays an essential role in mean-flow forcing if the GLM momentum equations
(3.12) are considered. Andrews & Mclntyre (19784, corollary II) showed this by
ta}fing the curl of (3.12). The vortical part of @’ is being forced by the curl of
P

Andrews & Mclntyre (1978b) interpreted the pseudomomentum in terms of
wave action. They considered () to be an ensemble average and obtained the
wave-action equation

DA+ paz] =F, (3.13)

by scalar multiplication of the shifted momentum equation by 9¢;/8x. In that
analysis each field is assumed to depend on the ensemble label x. If the average
operator () reflects time averaging instead of ensemble averaging, a similar ap-
proach as above will lead to a wave-action equation like (3.14). Its derivation is
given in appendix A. The wave action A is defined by

A= %5; ut, (3.14)

and the non-advective flux of wave action B by

B, = pfaaffK . (3.15)

The right-hand side of (3.13) is given by

861 l 66] I3
F=2lXi+ F, (3.16)

a wave property representing the generation or dissipation of wave action. For
conservative motion F = 0.
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The physical interpretation of P’ depends on the type of averaging. For cases
in which the mean is taken as the spatial average in z-direction, Andrews & Mcln-
tyre (1978b, section 2) proved that the z-component of the pseudomomentum Ff
equals the generalized wave action (3.14) with 0/0t replaced by —3/dz. They
also considered the special situation of slowly varying waves, assuming that

Eoxexplilk-z—wt—x%)] . (3.17)
Here k and w denote the wave number and wave frequency. Then, correct to

0(a),
8_5 = w—l_a_{ = —k1 o¢

=L
=w, DE, 3.18
Ox ot ' Ox; 0 ¢ (3.18)
with wy = w — k - w" the intrinsic wave frequency. Note that in the third
term there is no sum over index ¢. Consequently, for slowly varying waves the
pseudomomentum P and the wave action A, given by (3.14), are related as

=k (3.19)
[

One should be aware that () denotes the time-average operator. Substitution of
(2.5) into (3.18) yields to leading order that 8§/8t = (w/wo) uf. Substitution of
this result into (3.14), (3.19) leads to
=g, (3.20)
Wo

with E = pufu’ the density of wave energy. In fact, to leading order the pseu-
domomentum per unit of mass reduces to Bretherton & Garrett’s (1968) wave
action density F/wy times the wave number k in case of slowly varying waves.

After having rewritten A and B Andrews & Mclntyre (19785, section 4)
showed that the generalized wave-action equation (3.13) reduces, in the conser-
vative case F = 0, to

— E FE
0 (572 + 5V (e ) =0, (3.21)
wo Wo

with ¢y the intrinsic group velocity. After approximating 5 by p, w” by w and
defining ¢, = €40+ as the absolute group velocity, (3.21) reduces to Bretherton
& Garrett’s (1968) approximate form of the wave-action conservation law

% (MEO) V. <°"w£0) _9. (3.22)

Here use was made of the continuity equation (3.6). The foregoing analysis pro-
vides a simple and general derivation of Bretherton & Garrett’s equation, which
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does not depend on a variational principle. This was emphasized by Mclntyre
(1980a, p. 168).

Finally, the relation between pseudomomentum and Stokes drift is high-
lighted. Andrews & Mclntyre (1978a, p. 632) proved that if the Eulerian mean
velocity is of second order in wave-amplitude, the difference between the pseudo-
momentum P~ and the Stokes drift @ is of third order if and only if the waves
are irrotational. Weak currents that are wave-induced and occur in boundary-
layer streaming problems have a second-order mean velocity. After an extensive
derivation Uittenbogaard (1992) concluded that for a steady wave-induced dis-
placement ¢ and uniform Eulerian mean flow the pseudomomentum equals the
Stokes drift if the wave field is irrotational. This property of the pseudomo-
mentum is important in the derivation of the CL vortex force, which appears
as wave-induced driving force in the CL equations. As already mentioned in
subsection 2.1.2 these equations can be derived from the GLM equations (see
Leibovich 1980).

3.2 Alternative derivation of GLM equations

3.2.1 Inclusion of viscous and turbulent effects

Before proceeding with the alternative derivation of the GLM equations of mo-
tion, the function X is specified in order to deal with viscosity or turbulence
effects. When the flow is considered viscous and non-turbulent, the function X
can be expressed using the stress tensor,

_ 137’,']‘ Tij _ 6u,- an
X; , =v (azj + 5, ) (3.23)

p Oz; p
where v equals the kinematic viscosity 1y. The same representation can be used
in the turbulent regime as well. The shear stresses are directly related to the
strain-rate tensor by using Boussinesq’s hypothesis. A turbulence model has to
be implemented to determine the eddy viscosity v and provide a proper closure
of the model equations.

A review of turbulence models and their use in hydrodynamic problems can
be found in Rodi (1980). As will be discussed in chapter 4, a one-equation k — ¢
turbulence model has been implemented in the 1DV model to determine the
distribution of the eddy viscosity over the entire depth. A two-equation k — ¢
turbulence model has been implemented in the 2DV model. This will be outlined
in chapter 5.
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3.2.2 Similarity to radiation stress concept

The GLM counterpart X" can be expressed in terms of GLM quantities by
averaging (3.23) at disturbed positions. Second-order partial derivatives of the
velocities cause very lengthy expressions. Another option is to split the transfor-
mation of X into two steps in which the shear stress tensor 7;; is maintained as
dependent variable. However, evaluation at the disturbed positions still requires
a lot of effort. In order to obtain lucid expressions for YL, the equations are no
longer evaluated at the actual positions, but at the fixed positions @, which are
related with mean particle positions. Andrews & Mclntyre (19784, §8) used this
approach as well to show the general limitations of the 'radiation stress’ concept.

For the alternative derivation of the GLM equations of motion the momentum
equations in Eulerian formulation are transformed by applying the definition of
the total Stokes correction, which is defined as ¢¥ = T(¢%, €, z,t) according
to (2.21). The only difficulty concerns the treatment of the acceleration term.
However, relation (2.22) can also be exploited to express Du;/Dt entirely in
terms of GLM quantities. Substitution of relation (2.18) into the expression
that is obtained after expanding the acceleration term in Taylor series around
=, yields

Du; 7L ¢ 0 (=L ¢
Dt (:z:,t) =D u,; —ijTj (D Ui)

% 9 L, £ 1, 82 =L ¢ 3
o (D ui) + Qﬁgfkm(D ui) +0(a%) . (3.24)

Extra attention is paid to the second term on the right-hand side of relation
(3.24), which upon using (2.5), can be written as

0 /= 0 /= 0 i =
63, () = 5, (0" (68)) ~ 5 (oe) - 520"t 029

Substitution of the definition for the Stokes correction and the acceleration term

(3.24) into the momentum equation in Eulerian formulation results in a momen-
tum equation in terms of Lagrangian quantities,

£
D 1@5_1%_}#

3
ut +
Y opOz;  pOz;

18pS 1078 0 ,— 7] 0 =
= o pae  Fot g (0 () - 5, (wiud) - 520"

452, omn

0 8 [— ”
£ "—(DLuE)—%&&W(D%S)W(a“‘). (3.26)
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Note that the total velocity is considered in (3.26), so no averaging has been
carried out so far. Furthermore, in the right-hand side the divergence of the
disturbance displacement appears. As long as the Eulerian disturbance velocity
field v’ = u — @ is divergence-free, i.e. Ouj/0z; = 0, the divergence of the
disturbance displacement is of second order,

a;

= 0(a?) . (3.27)

For the GLM motion the following equation can be derived by averaging equation
{3.26) and using (3.27),

ﬁL—L + .l_a_z_)ﬁ laﬂ% _Ft
pOx; pOz;

1

10p° 10T =s 0 (=i )
= pom " pam Tt gy (07 (640) - 5 (4

<£]g§";>6zk (o'w) - 2'fﬂfkaza (ELﬂf’)+0(a3).(3.28)

Subtracting equation (3.28) from (3.26) provides the momentum equations for
the disturbed Lagrangian motion. Substitution of the fluctuating part of the
total Stokes correction into the resulting equation then leads to

19 op- [, orr
- — (- k o)
Duf+ p Oz; ( 5J8x,> oz (T" Oz, ‘536 ( >+ ().
(3.29)
The wave-induced driving force for the mean motion E,L can be written as,

-1 10p° 18—5 -5 -
Sf,: D FS+ L

%

(3.30)

; dz; 0 61:]

where

2

- 3r,-~ 3£ L__
R =G (650 s 0°0) - Wi, (0) 0. o3

and .
riy=uful =D (ulg;) . (3.32)
The tensor r;; is closely related to the radiation-stress tensors defined, amongst

others, by Longuet-Higgins & Stewart (1960). Andrews & McIntyre (19784,
p.634), who derived a tensor which depends on the pressure part of the driving
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force gf in (3.30), stated that in order to be called a radiation stress, r;; must

represent the sole effect of the waves on the mean flow. Although EiL will be
dominated by r;;, for turbulent motion the effect of the Stokes correction of the
shear stress 7; on the wave-induced driving force 57 will be significant. In case
of inviscid motion, Andrews and McIntyre concluded that r;; represents the sole
effect of the waves and thus can be called a radiation stress.

When viscous and/or turbulence effects are neglected, the GLM equations
consisting of the mass conservation equation (3.7) and the momentum equation
(3.28) are not exact, i.e. third and higher order wave-induced terms have been
omitted. In contrast to the original GLM momentum equation (3.12) the alterna-
tive GLM equations have to be modified if more accurate solutions are required.
Therefore, the alternative GLM equations do not seem to be convenient for invis-
cid flows. However, if the shear stresses have to be included, asymptotic analysis
will lead to descriptions which are more lucid in the alternative approach. More-
over, the function X; is written as a divergence of the shear stresses in order to
obtain a system of first-order differential equations. Furthermore, in the form
presented in this section the GLM equations have a similar form as the Eulerian
equations. By evaluating the right-hand side of equations (3.7) and (3.28) the
GLM quantities can be computed by existing numerical models which solve the
Eulerian equations (3.1), (3.2).

For completeness expressions are given which relate the mean and fluctuating
shear stresses ?,-Lj and 7'1% to the GLM and disturbed Lagrangian velocities for
arbitrary distributions of the eddy viscosity v. For the derivation of the GLM
shear stresses in terms of GLM velocities, definition (3.23) is used. By definition
the shear stresses have to be evaluated at disturbed positions. According to the
chain-rule (2.14) the following expression for the shear stresses is obtained,

€ L ¢ ;
El:"_(x. o L g a“J) . (3.33)
p

T\ %0z, T %o,

By averaging (3.33) and applying relation (2.12) a second-order approximation
for the mean shear stresses is obtained,

T_T {r <agk 3u5>+<3§m&> ot

p J —6—73 B 6_szzk Ex_jc?xm 0z,
ou; /96, 0y Om O \ 07
i <a7a—> + < 3a; Gey, | B (3:34)
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Subtracting equation (3.34) from (3.33) results in

G_v (o st oo

p  J |0z; Oz;0r Oz Oz; Omy
vt %JL oy 2
+7 {"’é}?'f‘ 6Ij}+0(a ). (3.35)

As already mentioned in subsection 3.2.1 the GLM and disturbed eddy viscosity
vL and 1 have to be determined by a turbulence model. Under specific cir-
cumstances the general expressions (3.34), (3.35) will reduce significantly. E.g.
when the flow is viscous and non-turbulent, 7* equals the kinematic viscosity
and v = 0. Another advantage of considering the stresses T;; as dependent vari-
ables is related to the formulation of boundary conditions. At the free-surface
boundary these are often expressed in terms of normal and tangential stresses.
Furthermore, near solid walls partial-slip conditions can be imposed. This means
that shear stresses are prescribed in terms of the friction velocity at this wall.
In the next section formulations of the boundary conditions in a GLM frame
will be worked out. In that section no-slip conditions, implying that tangential
velocities vanish at the wall, are considered instead of partial-slip conditions.

3.3 Boundary conditions

An important aspect in the GLM theory is the derivation of the boundary condi-
tions, especially at the free surface. The bottom is assumed to be impermeable,
resulting in a vanishing vertical velocity at the bottom. Furthermore, the bot-
tom is a so-called no-slip boundary, causing the horizontal velocity to vanish.
Therefore the following conditions hold at z = —h(z}),

u=0. (3.36)

Andrews & McIntyre (19784) already mentioned that at an impermeable bound-
ary the component of the GLM velocity normal to the bottom boundary equals
the velocity of the boundary itself. Moreover, since a particle at the bottom will
stick to its position the disturbance displacement as well as the GLM velocity
will vanish at the bottom,

&=0 , w =0. (3.37)

At the free surface, which is unknown beforehand, two types of boundary
conditions are imposed. The kinematic boundary condition states that the nor-
mal velocity component of the free surface equals the normal velocity component
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of the flow,
D¢
= =y
Dt
The dynamic boundary condition denotes a balance between the normal and
shear stresses on both sides of the free surface,

(3.38)

nmjnj —P=—DpFr, (339&)
niTyiTi = TF, , (3.39b)
TliTiij =TF, , (339C)

where n, 7, s form an orthonormal set of vectors, such that the n-direction is
normal to the free surface and the r and s-directions are tangential to the free
surface. In (4.5) surface tension effects are neglected. Moreover, pr denotes the
pressure and Tr,, Tp, equal the wind shear-stress components just above the free
surface.

The free-surface boundary conditions are transformed into a GLM formula-
tion without special effort, if the assumption that the mapping z — = + §(z, t)
is invertible, is accepted. Then, if the fluid particles are assumed to be in their
disturbed positions =, one can always split these positions as E = = + £(z, t).
Hence, if the free surface in Eulerian coordinates is given by

z—C(znt) =0, (3.40)

with ¢ the deviation of the free surface from the still-water level z = 0, and a
point on the free surface is considered to be in a disturbed position, then by
splitting the disturbed position, one finds

Z+ fS(zhv Z,t) - C(wh + €h(mha z, t)v t) =0. (341)

According to definitions (2.3) and (2.1) averaging relation (3.41) results in a
description of the free surface in GLM coordinates,

2=C (znt) . (3.42)

This result is one of the strong points of the GLM formulation. The free surface
varies slowly in time, in contrast to the corresponding rapidly varying level in
the Eulerian setting. At the free surface the vertical displacement equals the
oscillating part of the GLM free-surface elevation, i.e.

N(@h, 2,8) = Es(@p, 2,8) = Can,t)  for  z=C (on,t). (3.43)
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This approach was followed by Grimshaw (1981) as well. By applying relations
(3.41) and (3.42) the following identity can be derived,

(pf( Zp, ZL(whv t)a t)

=g { Ty + & [wh,ZL(fch, t),t] T (@n,t) +1 [ﬂlh,ZL(wh,t), t] .t}

=g { zh + &), [l'haCL(zh,t)»t] e (Ih + & [wh,ZL(iBh,t),t] ; t) , t}(3-44)

which implies that generalized Lagrangian arguments are attached to the free
surface in a GLM formulation if Eulerian arguments are evaluated at the free
surface in an Eulerian framework.

By applying relation (3.44) the kinematic boundary condition (3.38) is trans-
formed directly to

5LC§ =wt for z= EL(:Bh,t) . (3.45)

If the pressure and the wind shear stresses just above the free surface are ne-
glected, the dynamic boundary conditions (4.5) are equivalent to,

—pn; +T1m; =0 for 2= ((xh,t), (3.46)

with n, = —0(/0z4, ns = 1. Application of relation (3.44) immediately yields

—pfnf+rini =0 for z= e t) (3.47)
with
¢t g act
€ _ 95 _ 95 06 3 £ _
n, (3.’130, 92o 2, +0(@®) , n3=1. (3.48)

After averaging, proper boundary conditions at the free surface z = ZL (z,t) are
obtained. For the GLM flow they read up to second order as,

oo [0\ [aTt e act
Tas = <”55;>"’ (%‘<5?%

(o2 4rt ("’ZL - (5 5’4—>) +0(@), (3.49%)

Chrw 925~ \ By 92,

_ act act  /oe, act
_ =L L _ £ ZS =L S [ XSy ES 0] 3
P Ts <T3f’ 6x5> + T (a:cﬂ dz4 Oz, (a%),  (3.49)
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and for the fluctuating motion up to first order,

y
Tés = —pF gia +—§5gc +0(a?) , (3.50a)
¢
-t + Thy = Tgﬁac + O(a?) . (3.50b)

Equations (3.49) and (3.50) look extremely implicit. However, the terms in the
right-hand side of equations (3.49) are of second order, assuming that the hori-
zontal variation of the mean free-surface elevation, BZL /04, is of second order.
The present form of these boundary conditions is sufficient for implementation
in the numerical models which are described in chapters 4 and 5.






Chapter 4

1DV model

In this chapter a 1DV model is developed in order to obtain more insight in
wave-induced changes in the mean horizontal velocity profiles. Application of
a WKBJ perturbation series approach to the general three-dimensional GLM
flow equations derived in chapter 3 results in a series of ordinary differential
equations which have to be solved successively. The only dependent variable
is the vertical coordinate, which explains the abbreviation 1DV. In this model
the vertical distribution of current-affected orbital velocities is computed. Vice
versa, the vertical profiles of the mean velocities, which are influenced by the
wave motion, are determined.

In this chapter we restrict ourselves to the combined wave-current motion
over a horizontal bottom. The viscous or turbulent initial current is driven by
a vertically uniform body force. In case of a turbulent current, a one-equation
k — £ turbulence model has been implemented in order to obtain the vertical
distribution of the eddy viscosity.

The WKBJ approach is valid for irregular waves with narrow-banded spectra.
However, as already mentioned only regular nonbreaking waves are considered.
The waves are taken to be dissipative in spatial direction. In the WKBJ approach
this is represented by a complex-valued wave number, see subsection 4.2.1. In
general, waves are allowed to propagate under an arbitrary angle with the cur-
rent. Since the model has been validated with laboratory flume data, only the
situations of waves following and opposing the current have been considered. An
important aspect of this model is the omission of flow variations in the direction
perpendicular to the flow direction. In order to make a valid comparison be-
tween the model results and the measurements, the latter have to be considered
at locations where the lateral velocity component vanishes. Due to symmetry,
the laboratory flume measurements in the flume center are considered.

Before proceeding to a description of the 1DV model by means of the WKBJ
perturbation series approach the k — £ turbulence model will be outlined in the
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next section.

4.1 The k — ¢ turbulence model

In his review Rodi (1980) summed up a number of turbulence models with appli-
cations in hydrodynamics. One of these models is the so-called k — ¢ turbulence
model. Since k already denotes the wave number, the turbulence kinetic energy
per unit of mass is denoted by g. The evolution equation of ¢ has been modelled

a's)
Dq 0f;

2opio-2hoo, (41)
with
Ou,, Oug \ Oug
=y Lm | Tk ) T 4.
P=v (('hrk * axm) 01, (42)
3
D= chT, (4.3)
Y]

Here P, D, f; denote the turbulence kinetic energy production, dissipation and
flux in z,-direction respectively. Furthermore, £ is the prescribed turbulence
lengthscale and cp and oy are empirical constants. The eddy viscosity is related
to ¢ and ¢ by

v=cqit, (4.5)
with ¢, another constant.

Following Rodi (1980) the rate of change and the convective and diffusive
transport of turbulent kinetic energy are neglected at the bottom. Consequently,
the production of turbulence kinetic energy is in balance with the dissipation of
turbulence kinetic energy at the bottom. This results in the following boundary

condition, .
2
q——”—[(aﬂJra“—"‘)%} =0, (4.6)
(c,)? (\OTm = Oxy ) Oz
The boundary condition for the turbulence kinetic energy is assumed to be a
symmetry condition,
dq _ 9q
on - 8:1:]-
In subsection 4.2.2 the implementation of this turbulence model in the 1DV-
GLM model will be outlined in more detail. In that subsection an expression for
the mixing-length will be given as well. Values for the empirical constants will
be listed in subsection 4.3.

n; = f]—nj =0. (47)
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4.2 WKBJ perturbation series approach

As already pointed out above the equations for the mean and fluctuating motion
show that the wave motion has an impact on the mean motion and vice versa.
The equations describing both types of motion can be solved simultaneously but
this would be very inefficient due to nonlinearities. Therefore, a WKBJ type
expansion into perturbation series is carried out to distinguish between the slow
modulation of the current profile in time and horizontal direction and the fast
varying wave components.

4.2.1 Description of WKBJ method

The essence of the WKBJ-expansion method is to suppose that the amplitude
function ¥ of a quantity ¢(x,t) varies much more slowly in time and horizontal
space than the phase function S. We suppose that ¢ can be represented as

wlz, 1) = p(ap, 2,t) = U(xp, 2,t) exp (iS(zh, 2, 1)) , (4.8)

with i = v/—1. Let § be a small modulation parameter, indicating the slight rel-
ative variation in the mean motion on the scale of the characteristic wavelength.
By introducing slowly varying temporal and horizontal spatial coordinates

Xp=dz, , T=6t, (4.9)
the function ¢ in (4.8) can be rewritten as,
0(2,8) = W(Xs, 2,T) exp (iS(Xn, 2,8)/5) - (4.10)

More details on the WKBJ expansion method can be found e.g. in Olver (1974,
ch.6).

A variation on the WKBJ method is given by Chu & Mei (1970). They
introduced the characteristic wave slope £ = ka, with k£ and a characteristic
values of the wave number and the wave amplitude, as a nonlinearity parameter
and assumed € to be of the same order as the modulation parameter §. By
expanding to both nonlinearity and rate of modulation the following expansions
of WKBJ type were assumed

0 +n
px,t)=3e" Y ¢™™(Xy, 2, T)E™, (4.11)

n=0 m=-n

where
E =exp(i(ksXg—wT)/e) . (4.12)
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with ¢(™~™) complex conjugates of the amplitude functions p(*™). Chu & Mei
(1970) expanded k and w to nonlinearity as well, which is omitted here. The
approach of expanding each quantity, except the wave number and frequency,
into the perturbation series given by (4.11), has been used before by Lo & Mei
(1985). Both approaches have been described by Liu & Dingemans (1989). Due’
to the presence of dissipation, the waves will decay, either in time or in the
horizontal direction or both. Therefore k and w can be complex. The imaginary
part describes the wave attenuation. Since only periodic waves are considered,
w is real. The wave number is allowed to be complex.

4.2.2 Application of WKBJ method to the GLM flow
equations

Due to the introduction of slow horizontal and temporal coordinates, substitu-
tion of variables as perturbation series into the GLM equations of motion (3.7),
(3.28) results in a cascade of problems at the different orders of approximation,
which can be solved successively. These problems are systems of ordinary differ-
ential equations (ODEs) with the vertical coordinate z as the only independent
variable. Except for the (0, 0)-problem, these ODEs are linear. In the obtained
hierarchical system the (0, 0)-solution is the basic solution, describing a uniform
steady current. Slow variations are described by the (1,0)-solution. The (1,1)-
solution is the wave part, describing the motion of the waves according to the
linear theory including the effect of mean velocity shear. Finally, the (2,0)-
solution describes the second-order changes in the mean velocity profile due to
the presence of waves.

The WKBJ-type expansion (4.11) considered here concerns the total flow,
i.e. the sum of the mean (m = 0) and fluctuating (m # 0) part. Due to that
clear distinction, in the following analysis reference is made to equations and
conditions concerning the total motion for one moment and the mean and fluc-
tuating parts of that motion for the other. Substitution of the expanded forms
into the governing equations (3.7}, (3.28) and boundary conditions at the bottom
boundary (3.37) and at the free surface (3.45), (3.47), results in the following set
of ODEs for each index (n, m),

S mm)

—= Flm) (4.13)

imkga"™ +
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~(n,m (0,0)
—imw™™ + w(O‘U)%_) + imkal plram) _ ﬁ(n,m)QP_ +
0z o 0z
75"\ 10 r”Y _
— imk 2(nm) _ stmm) e} 2 9 L anm)  anm)PTa3 ) _ Anm)
im ﬂp ( af n az paz a3 7 9z Ga 3

pam) 1 5(0,0)
_imwow(n,m) + 7Lb((),o)_awa_ + _E <ﬁ(n,m) _ ﬁ(n,m) op ) i
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k ~(nm) __ s(nm)Z'38 (" m) _ ~(n,m)Y'33 _ G(ﬂ,m) )
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(4.14b)

% is the intrinsic frequency. The forcing functions Frnm)

Here wyp = w — kﬁﬁg),
G™™ are in terms of amplitude functions of order lower than n. This also holds
for the right-hand sides D{™™, g™ K™ fnm) Ti(j"’m) of the equations
(4.17), (4.20), (4.22), (4.23). For convenience, expressions for these functions are

given up to second order in appendix B. Since n(x,¢) = 0 due to restriction
(2.3), the zeroth harmonic (m = 0) of 5 equals zero

A" =0 for n>0, (4.15)

and because the still-water level is described by z = 0 not only in an Eule-
rian framework but in a GLM formulation as well, the zeroth-order free-surface
elevation vanishes,

00 =g, (4.16)

The amplitude function of the disturbance displacement & satisfies upon (2.5),

. Emm) -
—imuwe€™™ + 111(0*0)—%— =a™ + D™ for n>1,m#0, (4.17)
2
with the bottom boundary condition
fm) — 0 for z2=-h and n>1,m#0. (4.18)

Furthermore, at the free surface the vertical disturbance displacement equals the
fluctuating part of the surface elevation, according to (3.43),

Anm) = fm) for 2 =C" and n>1,m#0. (4.19)
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The boundary conditions at the bottom boundary are given by
o (n m) H(n m) (420)

The boundary conditions at the free surface (3.45), (3.47) may be expanded-
into Taylor’s series about z = 0,

00 7L k

sClo g
0 7\ k

=0 :

resulting in the following conditions at z = 0 for each index (n, m),

M, C(n ,m) + b ~(n,m) _ L(n’m) s (4223)
) ) a,f_(o:o) .
ﬁ:('g,m) + {nm) (imkaﬁ(o’o) imkg 7.(0 0)) 5(m)<(n,0)aL; = K‘(In,m) , (4.22b)

(nm) + 4 A(" m) ’L'mkgé("’m)'f'éo’o)

R (0,0) (0,0)
5(m)C®) (——6” 4 s ) — kP, (a220)

0z 0z

where §(m) = 1 for m = 0, otherwise §(m) = 0.
For the shear stresses the following expressions have been derived from rela-
tion (3.33),

~(n,m)

Tap  _ = p(00) (zmkﬁu(" ™ 4 imkg il m)) + Té;;’m) , (4.23a)
P

‘*(" m) ~(n,m) R

Ta3 _ _ p0o0) (——a"" + imkau“;("’"‘)> +TG™ (4.23b)
p 0z

~(n,m) ~(n.m,

T~ _ 50000 | pm) (4.23¢)
P 0z

The determination of the eddy viscosity v has been simplified. The distribu-
tion of v is assumed to consist only of the basic component #(%?). This means
that v is independent of both time and wave motion and thus determined only
by the steady current. Hence, after substituting the WKBJ-type expansions into
equations (4.1)-(4.5) and corresponding boundary conditions (4.6), (4.7), which
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describe the k — £ turbulence model, only the resulting zeroth-order equations
have to be considered. These nonlinear ODEs are given by

g0 . 500
2009977 _ B0 pooy _ T8 _ 4
w o P + % 0, (4.24)
with
3 a5 oug"”
PO = po0 s U5 4.2
R PR P (4.25a)
3
5(0,0))?
. q
DO = cD—(Z—) : (4.25b)
. 500\ §5(0.0)
0,0) _ v q
= —_— 4.2
702 (w4 ) 2 (4.250)
1
200 = ¢ (09 ¢, (4.254)
and
1
~(0,0) aa(o,o) aﬁ(o,o) 2
~00) _ Y 8 8 £ = _h 4.26
q (c’u)z( 9z 0z o # ' (4.262)
9 —0 for 2=0. (4.26b)

In these equations the mixing length has to be specified. According to Rodi
(1980) the turbulence length scale profile should be linear close to the bottom,
i.e. £(s) = ks, with s the distance to the bed and x = 0.41 the Von Kérman
constant. The following choice for the mixing length ¢, which is prescribed as
function of the flow geometry only,

—2+ 2,
h+ z,

was proposed by Bakhmetev (1932) for z, = 0. If 2z, = 0 the mixing length and
thus the eddy viscosity would be zero at the free surface, causing near-singular
behavior. The parameter z, > 0 is introduced to assure that the mixing length is
strictly positive. The present form of the mixing length induces a parabolically
shaped vertical profile for the eddy viscosity. The parameter z, is related to the
roughness of the bed and denotes the zero-intercept level of a log velocity profile
for the situation without waves.

Now all ingredients have been delivered to describe the vertical distributions
of both mean and oscillating motion. Since the flow equations involved cannot be
solved analytically, numerical techniques must provide solutions for the problems
at different orders. The numerical solution methods that have been used will be
discussed in subsection 4.3.2.

f(z):ﬁ(z+h+z0)< ) for —h<z<0,  (427)
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4.3 Application to wave-current channel prob-
lems

4.3.1 Simplification of present model

For model verification two test problems are considered, which both concern
wave and current motion in a laboratory flume with a horizontal bed. Since a
comparison with measurements in the center of the lume has been made and
influences from the side walls are not taken into account, lateral variations (in
horizontal direction perpendicular to the propagation direction, or y-direction)
have been neglected. Furthermore, in all experiments the mass transport through
all cross-sectional planes is assumed constant, or even zero if no initial current
is present, in a local area around the measuring point.

In a GLM setting the mass transport in the direction along the flume per
unit of channel width is given by

Q=</_Eh ufdz>=</_zh ﬂL+uldz>=/_Eh wtdz (4.28)

(see e.g. Grimshaw, 1981, p.336). As in the pure Lagrangian setting, the lower
and upper boundaries of the integral (4.28) are mean values. Consequently, the
GLM of the depth-averaged velocity equals the depth-averaged GLM velocity.
For the situation without waves (4.28) reduces to the discharge per unit of channel
width and equals the Eulerian equivalent,

Qr = [ iﬂdz . (4.29)

The discharges @ and Qg are no longer equal in the presence of waves. As
already mentioned in section 2.2, the Stokes drift is responsible. Here we restrict
ourselves to closed wave tanks. Without an ambient current it is appropriate to
choose @ equal to zero in a steady situation, see Grimshaw (1981, p.336) after
Longuet-Higgins (1953, p. 571). In order to be consistent with the latter, the
total mass transport should be equal to the mass transport observed without
waves, if @’ also contains a contribution from an ambient current. In fact, the
latter equals the measured discharge through the recirculation pipes.

A major advantage of the GLM method is outlined here. If waves are super-
posed on a current with a discharge @, the total mass transport still equals Q
and is given by (4.28). In an Eulerian description of the mean flow two parts of
the mass flux are being distinguished, i.e. Qg and a wave-induced mass flux. The
latter is related to the Stokes drift. In numerous papers these two components
have been given, see e.g. Mei (1989, section 10.2) and Battjes (1988, section 5).
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Since the measurements have been carried out in only one cross-section of the
flume and we are interested only in the local solution of flow field, information
about the free-surface elevation has to be specified. Therefore the mean free
surface elevation has been chosen equal to zero, (b0 = (29 = ( and the
amplitude function of the fluctuating part of the free surface is set equal to the
measured wave amplitude, (") = q.

The zeroth-order solution is supposed to be steady and uniform in horizontal
direction, thus only dependent of the vertical coordinate 2. According to (3.2)
the turbulent shear current is driven by a body force F. This vertically uniform
body force is directly expressed in terms of the bed shear stress fb(o,o) for the
uniform current, because the horizontal momentum equation (4.14a) yields a
linear shear stress distribution in the current direction, or z-direction,

49 = 400 (). (4.30)

The constant 7“',50‘0) is chosen such that for a given mass transport Q9 per unit

of channel width, the horizontal zeroth-order velocity (%% satisfies,
n 0
Q0O = / SCORPS (4.31)
—h

The hydrostatic pressure distribution is found from the vertical momentum equa-
tion,

P = —pgz. (4.32)

The nonlinear equations (4.24)-(4.26) together with the relations (4.30)-(4.32)
are solved numerically.

Since at first order (n = 1,-1 < m < 1) all forcing terms are zero, the
solution for the mean motion at first order is completely determined by the
mean free surface elevation (9 in a sense that the amplitude variables can be
written as,

PUO(X, T, z) = ®(z) (M (X, T) . (4.33)

For an arbitrary value of (09 the shape function ®(z) of each variable @19 is
determined numerically. Although 6(1,0) = 0 and thus (® = 0, their temporal
and spatial derivatives in horizontal direction are not necessarily equal to zero.

The first-order first-harmonic solution represents the carrier wave solution.
This problem is solved most easily by introducing related variables

(1080

ALY _ (L1 _ 5
® Y n oz

(4.34)

which up to first order can be seen as the Eulerian counterpart of the amplitude
function of the generalized Lagrangian variable ¢V, For laminar flow (v =
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1) the equations for the carrier wave reduce to the so-called Orr-Sommerfeld
equation, which is often used in the study of hydrodynamic stability, see e.g.
Drazin & Reid (1981). The derivation of the Orr-Sommerfeld equation in terms
of Eulerian type quantities (') is similar as the original derivation in a true
Eulerian setting. This can be found e.g. in Drazin & Reid (1981, chapter 25)
and Thomas & Klopman (1997, section 7.2) and will not be repeated here. The
carrier wave solution will show thin wave boundary layers near the bottom and
the free surface. Outside the boundary layers the velocities will be close to the
velocities obtained with the potential-flow theory. For a given frequency w, the
unknown complex-valued wave number k (k = (k,0)T) is determined from the
boundary conditions at the free surface. This is described in more detail in
subsection 4.3.2.

Our main interest concerns the second-order mean motion (n = 2,m = 0).
The forcing terms are no longer equal to zero, but contain temporal and (hori-
zontal) spatial derivatives of first-order zeroth-harmonic variables (n = 1,m = 0)
as well as correlations of wave-related variables (n = 1,m = £1). For second and
higher order problems (n > 2) the homogeneous problem is similar to the zeroth
and first-order problem. Because the forcing terms are nonzero, a constraint
must be imposed to avoid secular behavior of the particular solution. For m = 0
this so-called solvability condition reads as

0 o A
[, F®0dz =10 - A0 (4.35)

By substituting (B.5a), (B.5d), (B.5e) into (4.35) and writing @10 = U110,
the solvability condition reduces to a relation between the temporal and hori-
zontal derivatives of the first-order mean surface elevation,

VN Rt R
40 mgy) 2
T =0 oy +(/—hU dz) X
_ 0
=i(k-F) [ 1?0z + 50 o) (4.36)

Here i*® and @ denote the second-order approximation of the Stokes correc-
tion, given in appendix B by relation (B.4). By writing each temporal or spatial
gradient of a first-order dependent variable as a product of its shape function and
the gradient of the first-order mean surface elevation, as in (4.33), and substitut-
ing (4.36) to remove the temporal gradients from the expressions for the forcing
functions, an extra dependent variable 99 /9X,, is introduced. Therefore, an
additional constraint has to be imposed. As for the situation of currents without
waves, the gradient of the mean free-surface elevation is chosen such that rela-
tion (4.28) still holds at second order. Because the mean free surface elevation
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is assumed to be zero, this results in

0
/ @04z =0 . (4.37)
—h
After evaluation of the driving force, the linear non-homogeneous system of ODEs
is solved numerically.

4.3.2 Numerical solution method

In the previous subsection all ingredients have been delivered that describe the
vertical distributions of both mean and oscillating motion. Since these equations
cannot be solved analytically, numerical techniques must provide solutions for
the problems at different orders.

Due to the existence of boundary layers near the bottom and the free surface,
grid refinement (in vertical direction) has been carried out in these regions. This
refinement is based on a one-dimensional two-sided stretching function as pro-
posed by Vinokur (1983, section 3). All systems of equations at different orders
are solved on the same grid. As a consequence results obtained at one order
of approximation can be used in the solution method at a higher order without
requiring interpolation techniques.

The nonlinear system of ODEs describing the (0, 0)-problem, has been solved
iteratively using a relaxation method described in Press et al. (1992, section
17.3). It is primarily based on ideas, which amongst others can be found in
Keller (1968, chapter 3). The system of ODEs, which in general form can be
written as df/dz = g(f), is replaced by a system of finite difference equations
onagrd —h=2z <z <...<zpy =0,

fio—fr == 2 g (5 (et fin)) =0, (4.38)

so that fi ~ f(zx). This set is completed with boundary conditions for f; and
fm. Since g is a nonlinear function, Newton’s iteration method is applied to
solve (4.38). Each iteration a system of linear equations, Bf = b with f ~
(f1,---, fmM)T and B a bi-diagonal block matrix, has to be solved. The form of
this matrix is given in figure 17.3.1 in Press et al. (1992). The solution f can
simply be obtained by means of Gaussian elimination.

For higher order problems (n > 1) the numerical solution method is simpler,
because the problems to be solved are linear. For the (1,1)-problem not only
the quantities 421, (LD, 511 and 73V have to be determined, but the wave
number £ is unknown as well. The former four unknowns satisfy four ODEs
and five boundary conditions, two at the bottom given by (4.20) and three at
the free surface given by (4.22). The extra boundary condition determines the




46 Chapter 4. 1DV model

value of k for a given wave frequency w. The wave number is obtained by Newton
iteration. More specifically, each iteration the four ODEs with the four boundary
conditions (4.20), (4.22b,c) are solved, using the wave number k at the previous
iteration level. A Newton step is applied to the kinematic boundary condition
at the free surface (4.22a) in order to update & .

The set of linear ODEs is solved with the trapezoidal rule, which is of second-
order accuracy. The resulting system of linear equations consists of a bi-diagonal
block matrix once again. Notice that this matrix is different than the block
matrix B obtained for the (0, 0)-problem. This system is also solved by applying
Gaussian elimination. For the solution of the (2, 0)-problem the wave number
is not a dependent variable. Now Q9 = 0 is an extra restriction in order to
satisfy (4.37). Apart from that the numerical solution method is the same as for
the (1, 1)-problem.

4.4 Comparison with observations

Two different types of laboratory wave current channel measurements have been
used to verify the present model. Firstly, the drift flow generated by a uniform
regular wave train has been studied and secondly, the combined motion of a
regular wave field imposed on an ambient current has been considered.

4.4.1 Mass transport in water waves

For the situation of no ambient current both the analytical conduction solution
presented by Longuet-Higgins (1953) for the horizontal drift, or mass transport
for waves, in a viscous fluid, and experimental observations of the drift velocities
in a closed wave channel by Mei et al. (1972) are taken as a reference. Although
these references are based on pure Lagrangian averaging, i.e. averaging by follow-
ing a single fluid particle, it is nevertheless legitimate to compare the results with
the GLM results obtained by the present model. This is due to the fact that the
present model provides GLM velocities which are of second order, and if there is
no initial current, the difference between a pure Lagrangian mean velocity and a
GLM velocity can be proven to be of third order.

Note that the 1DV model computes the solution over the whole depth at
once, whereas Longuet-Higgins used a three layer approach. He first solved the
equations for the mean flow in the boundary layers in order to obtain boundary
conditions for the interior problem. The solution for a progressive wave was
referred to as ’conduction solution’ (p. 571) and given by

_;, _ wa?cotanh(kh) [§ (f_ ) 1, 2(253 )]
Uy (z+h) 15 1 +2kh h+1
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wa?k 9/2\2 3
———— |+ (7] — > +cosh(2k , _
S sinh? (kh) {4 (h) g T cosh (2k(z + b)) (4.39)

Furthermore, Longuet-Higgins (1953) neglected the effect of wave decay. In the
present model this effect is taken into account. The wave decay, which is assumed
to be spatial and not temporal, is ruled by the imaginary part of the wave number
k.

Mei et al. (1972) generated a regular wave field in a closed 12 m long, 0.76 m
wide tank with a smooth bed. The still-water depth & = 13 cm. For waves in a
closed channel a constant horizontal pressure gradient is imposed which is chosen
to yield zero mass transport § = O0m3s~!. Two sets of measurements from a
station 3.5 m from the wave maker are considered, viz. a = 1.1cm, T = 0.81s
(Re(kh) = 1.02) and a = 0.76 cm, T = 0.56 s (Re(kh) = 1.81).

For these boundary layer streaming problems the eddy-viscosity distribution
has been assumed constant over the vertical and chosen equal to the kinematic
viscosity, v = vy = 1078 m?s~!. This means that the second-order GLM velocity
should be equal to Longuet-Higgins’ conduction solution, if dissipative effects
such as wave decay would have been neglected. In figure 4.1 the results from
our model are compared with the conduction solution and the observations by
Mei et al. (1972, figures 4.1a and 4.1 in their report). The differences with the
conduction solution are too small to be seen in this figure.

In view of the agreement between the computed solution and the conduc-
tion solution, the conclusion is justified that the wave decay has little influence
when the flow is viscous and non-turbulent. Craik (1982a, p.201) remarked that
significant departures from the conduction solution can be expected when the
magnitude of the imaginary part of k becomes comparable with (or greater than)
h~1. However, in both test problems this is not the case, since Im(kh) = O(1073).

Comparison with the experimental results shows good agreement for the first
case (Re(kh) = 1.02). However, the velocity gradient in the upper part of the
water column is clearly overpredicted for the second case. Mei et al. (1972,
p.152) remarked that for 0.9 < Re(kh) < 1.5 the measurements agreed with the
conduction solution. The model results confirm this statement. Furthermore,
Longuet-Higgins (1953, p.580) pointed out that observations in deep water do
not seem to be greatly different from those predicted by irrotational wave theory.
The latter theory provides a velocity gradient at the free surface being half of the
one predicted by the conduction solution (4.39), see e.g. Longuet-Higgins (1953,
p.536). This can be seen in figure 4.1b.
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Figure 4.1: Second-order drift velocities: (a) Re(kh) = 1.02, (b) Re(kh) = 1.81.
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4.4.2 Combined wave-current motion

In this subsection wave-induced changes in an initial turbulent current are con-
sidered. Model results are compared with measurements, obtained by Klopman
(1994), in a wave-current laboratory flume. The channel is 45m long and 1m
wide. The bed was roughened using coarse sand, with a grain size of about
2mm. Klopman (1994) used Laser Doppler velocimetry (LDV) flow meters to
measure horizontal and vertical velocities of the total turbulent fiow at a measur-
ing section 22.5m away from the wave boards. Since the bed is neither smooth
nor rough, the flow is in the intermediate turbulent regime. A flow-circulation
circuit provided a turbulent current with a constant discharge Q = 0.08 m®s~!
in a flume with a still-water depth A = 0.50m. A monochromatic wave field with
a wave period T = 1.44s and wave amplitude a = 0.060m is imposed on the
current. The following values for the empirical constants in the turbulent model
have been used, ox = 1, Cp = 0.156, C}, = 0.54. These values are normally used
for these type of problems, see Rodi (1980, section 2.5). From the measurements
the bed roughness parameter z; = 0.037 mm, confirming the intermediate turbu-
lence regime. The choice 2z, = 1 mm results in a length scale £, = 0.01 m at the
still-water level.

Uniform current: (0,0)-solution

The 1DV-model provides a (0, 0)-solution for which the initial current profile is
almost logarithmic. Only in the upper part the current profile deviates from a
log-profile. In figure 4.2 the model results are compared with Klopman’s (1994,
test serie SP) velocity profile for the initial current. In that same figure the
corresponding computed eddy-viscosity profile is given. Due to the choice of the
mixing length (4.27) the profile is almost parabolic. For this run the 1DV model
predicts a bottom shear stress #*” = 5.4-10~2Nm~2.

Carrier wave: (1,1)-solution

The solution for the first order first harmonic problem consists of complex-valued
amplitude functions. For the situation of a following current both real and imag-
inary parts of the amplitude functions of the horizontal and vertical velocities,
4D and @Y, the pressure f1) and the shear stress #3'") are given in figure
4.3 — 4.6. Outside the predicted boundary layers near the bottom and the free
surface these profiles are similar to those obtained with potential wave theory. In
the boundary layers the imaginary parts of () and ¥ deviate significantly
from the characteristic values in the interior. The boundary layer thickness is
determined by the magnitude of the eddy viscosity. Since #(%% is assumed to
be valid for the wave motion as well, a boundary layer thickness 6, of a few
centimeter may be expected, 6, = O(2v/w), v = O(107*) m?s71.
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Figure 4.2: (0, 0)-solution: (a) mean horizontal velocity, (b) eddy viscosity.
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Figure 4.3: (1, 1)-solution for following waves: horizontal velocity.
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Figure 4.4: (1,1)-solution for following waves: vertical velocity.
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Figure 4.5: (1, 1)-solution for following waves: pressure.
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Figure 4.6: (1, 1)-solution for following waves: shear stress.
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Figure 4.7: GLM results (present model) and experimental results (Klopman,
1994) first-order Eulerian horizontal velocity amplitude profile.

The effect of wave decay has been taken into account. The predicted complex-
valued wave number equals k = 2.11 + i1.74 - 10~3rads~!. Unfortunately, the
wave-decay was not reported by Klopman. Hence, validation is not possible.
For the situation of waves without an initial current the eddy-viscosity profile
is assumed to be constant over depth, v = 10~®m?s~!. This constant is chosen
larger than the kinematic viscosity because of the intermediate bed roughness.
For this situation and the situation of an opposing current the computed wave
number is k = 2.35 +11.66 - 1073 rads™! resp. k = 2.69 + ¢4.04 - 10~3rads~!.
The fact that the wave attenuation is significantly larger for an adverse current
agrees with conclusions on wave decay by Kemp & Simons (1983) and Simons
et al. (1988) who compared all three situations in their experimental research on
wave decay.

In figure 4.7 the absolute value of the complex-valued amplitude functions of
the first harmonic Eulerian horizontal velocity %(1Y) are given for the cases of
no current, a following current and an opposing current and they are compared
with the values measured by Klopman (1994) in the test series WMN, CMP
resp. CMN. The interaction with a following current results in a decrease of the
vertical gradient of the amplitude of the horizontal velocity component, while the
interaction with an opposing current is shown to increase this vertical gradient.
This is in accordance with the change of magnitude of the wave number, which
increases for waves opposing the current and decreases in the opposite situation.
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Figure 4.8: GLM results (present model) and experimental results (Klopman,
1994) first-order Eulerian horizontal velocity amplitude profile normalized to
their values at z = —10cm.

The model results do not correspond exactly with the measurements, although
a qualitative agreement can be observed. In the wave tank the measured signal
includes the reflected wave. In the 1DV model reflection is not taken into account
and the incoming wave height and wave period are taken as input parameters.
Klopman (1994, table 1) noticed that the reflection coefficient was about 7 &
8 % or less for all tests. By giving the profiles of the normalized velocities
]a”z“*”(z)‘/ ﬂ(l’l)(A)| with A = —10cm in figure 4.8 the form of the profiles of
the measured and computed velocity amplitudes are shown to coincide.

Changes in mean velocity profile: (2,0)-solution
Determination of the second-order mean motion requires evaluation of the wave-
induced driving forces. The wave-induced stress <u‘w£> and the Stokes correction
of the shear stress 7, are the main contributions in the driving force for the
horizontal mean motion. In figure 4.9 their distribution is given for waves on
a following current. The strong gradients near the free surface are remarkable.
These are caused by the strong variations of the first harmonic velocities and
shear stress in the free-surface boundary layer.

The modifications of the mean horizontal velocity profile are shown in figure
4.10. Here the Eulerian-mean velocity profiles in case of waves following and
opposing the current can be compared to the current profile in the situation
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Figure 4.9: Vertical distributions of wave-induced stress and the Stokes correction
of shear stress for the situation of waves propagating in current direction (unity
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is cm?s7%).

without waves. By comparing the model results with the experimental data of
Klopman (1994) not only a qualitative agreement can be observed, but the com-
puted velocity profiles show quantitative correspondence as well. The changes of
the current velocity profiles due to the presence of following or opposing waves
are significant. The waves propagating in the current direction cause a reduction
of the mean velocity shear, or vertical gradient of the mean horizontal velocity,
whereas waves opposing the current increase the velocity shear. This kind of
behavior has also been reported by Bakker & Van Doorn (1978) and Kemp &
Simons (1982, 1983).

In the boundary layer at the free surface, where no experimental data are
available due to the Eulerian measuring procedure, a rather sharp gradient of
the horizontal velocity can be observed as a result of the sharp gradients in the
wave-induced driving force.

4.4.3 Conclusions from numerical experiments

Results from the test problems are satisfactory. The wave-induced horizontal
drift profiles, which have been obtained for the situation without initial cur-
rent, agree with Longuet-Higgins’ conduction solution. However, these results
do not agree with experimental results of Mei et al. (1972) in all situations that
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Figure 4.10: GLM results (present model) and experimental results (Klopman,
1994) for Eulerian-mean horizontal velocity profile.

were considered. There might be several reasons for this. As in the analysis
of Longuet-Higgins, correlations between mean quantities are neglected in the
present model, if no initial current exists. Mei (1989, §9.5) showed that ne-
glecting nonlinear convective terms might be dangerous, especially if the wave
amplitude is of the same magnitude as the boundary layer thickness, which is
true for this problem. The present WKBJ expansion, which only takes into ac-
count the first harmonic at first order, is only valid for currents that are not
weak compared to the wave motion. In fact, if there is no initial current higher
harmonics should be taken into account. Since these higher harmonics have been
neglected the applied WKBJ method might lead to wrong solutions for boundary
layer streaming problems. These higher harmonics might have a greater impact
on the solution, as the velocities in the boundary layers at the free surface and
the bottom are larger. These velocities are large in magnitude for small and large
values of Re(kh), probably so large that the analysis in the present model does
not hold anymore.

The changes of the vertical gradient of the horizontal velocity amplitude pro-
file, caused by a following or opposing current, are in good qualitative agreement
with the experimental results. The form of the predicted velocity profiles corre-
spond to the measured profiles. The observed profile shift has been considered
to be caused by reflection in the wave tank.

The changes of the vertical gradient of the mean horizontal velocity, induced
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by the modified wave field propagating in the current direction or opposite to
this direction, match both qualitatively and quantitatively with the experimental
data. For these problems it is not useful to go to higher order in the WKBJ
expansion. The model verification of the boundary layer streaming problem
showed that inclusion of higher harmonics might be necessary. Since these higher
harmonics have been neglected in the present WKBJ expansion, the model results
will not necessarily be improved by going to higher order of approximation in
the GLM equations or higher order of accuracy in the WKBJ expansion.

4.5 Qualitative explanation for profile changes

In the previous section the velocity profile changes observed in the laboratory
experiments have been predicted reasonably accurately with the 1DV model.
In this section a qualitative explanation is given for the changes in the vertical
profile of the Eulerian mean velocity.

In a situation without waves the vertical variation of the shear stress is in
balance with the horizontal gradient of the pressure. Hence, the shear stress
varies linearly over depth, vanishing at the free surface. Together with a parabolic
eddy viscosity, this leads to a logarithmic velocity distribution.

Decay of waves in the propagation direction, as in a flume, causes a downward
transport of forward momentum in the surface layers, equivalent to a shear stress.
This is most obvious for breaking waves. For waves following the current, this
wave-induced shear stress has the same sign as the shear stress related to the
current, say positive (dotted line in figure 4.11), whereas for waves opposing the
current it has the opposite sign (not shown).

The total shear stress of the combined motion must still be linearly varying
in the vertical, vanishing at the free surface, to maintain equilibrium with the
mean pressure gradient (solid line in figure 4.11). Since for following waves the
wave contribution to the shear stress in the surface layers is positive, the shear
stress related to the current (dashed line in figure 4.11) must become negative
in that region, as shown in figure 4.11. This causes a backward bending of the
mean horizontal velocity profile in the upper layers for following waves, and a
forward bending in case of opposing waves, as observed.

In the following the qualitative outline above is made more precise, although
strong assumptions are made. The momentum equations (3.28) are simplified
by neglecting horizontal variations (8/0zs = 0), except for the horizontal GLM
pressure gradient, which is assumed to depend on the horizontal gradient of
the GLM free-surface elevation, 0p~/0z = prZL /0z. Following Nielsen & You
(1996) Tyot represents the total shearing force per unit area of a cross section or
the total transfer of z-momentum in the z-direction. If only the dominant terms
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Figure 4.11: Typical distributions for the total shear stress and its wave-induced
and current-related part for the case of following waves.

are taken into account,
= =L _ = ¢
Trot = Tis — Tia — p(u'w’) (4.40)

with 74 = vdur/8z. The total normal stress ooy or horizontal transfer of
z-momentum is given by

Ttot = —B" +P° — putut — p(utut) . (4.41)

In a two-dimensional steady flow these two satisfy the following force balance,

ot tot + aatot -
0z oz

0. (4.42)

Further simplifications are made to Giot. The effect of the current on the
wave motion is neglected. Consequently, the Lagrangian and Eulerian orbital
velocities are equal, at least to leading order, u® = u’. The Stokes correction
of the pressure can be evaluated up to second order as p° = (w'w'). The 2DV
balance (4.42) then reduces to

—_L —S =L
% (T—; - T—; - (u'w')) = %C; + % (') — (w'w')) . (4.43)
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The wave-induced stresses in (4.43) are approximated by assuming linear wave
theory. First of all the wave-induced shear stress (u'w’) is considered. Several
sources of nonzero wave-induced shear stresses (u'w’) for flow over a horizontal
bed have been described in literature. Firstly, the oscillatory boundary layer
streaming (Longuet-Higgins 1953) is a consequence of the (u'w') distribution,
which is in turn produced by the vorticity generation and diffusion in the bottom
boundary layer.

Secondly, a nonlinear vorticity transfer from the current to the wave mo-
tion takes place (Peregrine 1976), which directly influences {u'w'). As long as
8%*ul /822 = 0 the wave motion will remain irrotational. Moreover, Rivero &
Sénchez-Arcilla (1995) showed that the wave vorticity, and thus (u'w'), will be
stronger for larger curvature of the current. For the logarithmic-distributed cur-
rents considered in this study, the strongest current curvature is located in the
lower part of the vertical.

These two sources for nonzero (u'w') mainly influence the mean horizontal
velocity profile from below. The vorticity is generated in the lower regions and
transferred upward. However, the major velocity changes are observed near
the free surface. Therefore, we focus on the influence of wave decay. Wave
amplitude gradients are known to generate nonzero wave-induced stresses. Using
a perturbation analysis Deigaard & Fredsge (1989) proved that the horizontal
orbital velocity lags behind in phase compared to the free surface elevation. This
means that the horizontal and vertical velocity are less than 90 degrees out of
phase, causing a positive wave-induced stress. In the present setting this is easily
seen from the continuity equation. Under the present assumptions the horizontal
orbital velocity reads

_ _walz)

u = Sab([k|7) cosh(|k| (z + h)) exp [i(krz — wi)] , (4.44)

with a(z) = agexp[—k;z] and k., k; the real and imaginary parts of the wave
number k. The vertical velocity component w' is determined from the continuity
equation,

] z au'
w = _/;h gdz
_ wsinh(|k|(z+h)) (Oa . _
- |k} sinh(|k| h) (a_x + "kra) exp [i(k,z — wt)]
_ wasinh([k| (2 + h)) ki o
" |k|sinh([k[A) r (—Z + k_,) exp[i(krz —wt)] . (4.45)

The phase shift between v’ and w’ is determined by the complex factor —i+k;/k,
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and is thus slightly less then 90 degrees. Combining (4.44) and (4.45) yields,

—w?asinh(2 k| (2 + h)) da

. 4.46
4|k|sinh®(|k|h) Oz (4.46)

(') =

This expression coincides with relation (67) given by You (1997). In the present
analysis only this contribution to (u'w') is taken into account.

The second wave-induced stress term, being the latter term in the right-hand
side of (4.43), is evaluated as

wla Ba

sinh?(|k| h) Bz (4.47)

a
() — (uw'u)) =
which is constant over depth.
In the following the influence of T3, is neglected. Integration of (4.43) from
the bed to some level z then yields
—z

T+ Tw="T (—h—> . (4.48)

Here 7, = — pgh,azL /0z is the bed shear stress and the contribution of the waves
to the shear stress is given by

u = p{u0) = e+ W) () ~ ()
poa 00 k] (+B) — Akl +B)] . (4.49)

~ 4 [k|sinh?(k| k) Oz

The latter expression is obtained by substitution of (4.46) and (4.47). For the
conditions of Klopman’s (1994) following wave experiments 7, is plotted in figure
4.12. Clearly, the current contribution to the shear stress 7%, varies linearly over
depth in the situation without waves, because then 7,, = 0 (dashed line in figure
4.12).

We first assume that waves and current are propagating in the same positive
z-direction. The vertical profile of the total shear stress 7oy = 713 + 7, is linear
with a bed shear stress 7,(—2/h) being larger than in the situation without waves.
This explains the difference between the two linear profiles in figure 4.12. The
shear stress 71; is smaller than the total shear stress, because the wave-induced
shear stress is positive. Clearly, the current shear stress becomes negative in the
upper part of the vertical. Consequently, the horizontal velocity T* decreases in
this region.

For waves opposing a current the wave-induced stresses are opposite, and the
bed shear stress is reduced. Compared to the situation without waves, the shear
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Figure 4.12: Total shear stress distributions and their wave-induced and current-
related contribution for the situation without waves and following waves under
the conditions in Klopman’s (1994) experiments (unity is N / m?).

stress increases in the upper part. Consequently, the vertical gradient of the
horizontal velocity increases.

The more quantitative explanation given here is based on strong assumptions.
The influences of the current vorticity and the boundary layer streaming have
not been taken into account. The wave-induced stresses are evaluated from linear
wave theory, neglecting the influence of an ambient current. Furthermore, the
Stokes correction of the shear stress has been neglected. The Stokes correction of
the shear stress can be interpreted as a wave-induced disbalance term of the shear
stress. Since the forward excursion of a water particle is larger than its backward
excursion, the water particle does not describe a closed orbit. Consequently, a
drift velocity %° is generated. A sufficient condition for @S to exist is that the
orbital velocity uf is nonuniform over depth. Analogous, the Stokes correction of
the shear stress 77, is significant in regions where the fluctuating part of the shear
stress 74, is changing rapidly over depth. Obviously, this is in the regions near
the bed and the free surface. For laminar situations the Stokes correction of the
shear stress is negligible, whereas in the turbulent regime the vertical variation
of 74, is significant. Figure 4.9 shows that for the situation under consideration
73, and (u'w’) are of comparable magnitude.

The Eulerian-mean velocity is obtained by subtracting the Stokes drift from
the GLM velocity. The horizontal component of the Stokes drift is positive over
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the entire depth in the direction in which the waves are propagating. Com-
pared to the GLM velocity the Eulerian-mean horizontal velocity then reduces
for following waves and increases for opposing waves.

Summarizing, the cause of the change in the Eulerian-mean horizontal veloc-
ity profiles is twofold. Since the mass transport is defined in terms of the GLM'
velocity, one part of the reduction can directly be ascribed to the Stokes drift.
Secondly, vorticity generation and wave decay produce a nonzero wave-induced
shear stress, a wave-induced normal stress and a wave-induced disbalance in
the shear stress. The current shear stress must balance for these wave-induced
contributions to the shear stress, resulting in a vertical transfer of horizontal mo-
mentum. Because the mass transport is equal in the situation with and without
waves, the depth-integrated GLM correction of the horizontal velocity vanishes.
Therefore, the changes due to the wave-induced contribution to the shear stress
and the Stokes correction of the shear stress only cause a redistribution of hori-
zontal momentum over depth.




Chapter 5
2DV lateral model

5.1 Secondary circulations

In modelling the wave-channel problems, variations in cross-direction have not
been taken into account in the 1DV model. Due to the finite channel width sec-
ondary circulations will arise. For the situation without waves these are ascribed
to asymmetries in the turbulent stresses. This was e.g. confirmed by Knight &
Patel (1985). For various aspect ratios, i.e. width to depth ratios, they observed
secondary circulation cells. For an overview on turbulence-driven three dimen-
sional flow structures in general, and secondary currents in non-circular open or
closed channels in particular, one is referred to Nezu & Nakagawa (1993, chapter
5).

These circulation cells have also been observed in laboratory flume experi-
ments for the combined motion of wave and current, see e.g. Nepf & Monismith
(1991), and more recently Nepf et al. (1995), Klopman (1997) and Melville et al.
(1998). The secondary circulations have been related to Langmuir circulations.
As already mentioned in subsection 2.1.2 the Craik-Leibovich (CL) theory pro-
vides an explanation for this phenomenon. In the following we briefly set out
the CL theory, and how in this theory the generation of Langmuir circulations
is explained.

Leibovich (1980) showed that under mild conditions, the GLM equations
(3.12) reduce to, as they are called nowadays, the CL equations in Eulerian
coordinates. These equations can be written as
g; u; p 1 -
;af+ﬁja—é+é%(gz+§+<5u;u;>) ~ T+ X, (5.1)
where & and u' are the (Eulerian) mean velocity and the orbital velocity, T'
denotes the CL vortex force and X is a vector representing viscous or turbulence
effects. The mild conditions for which the approximation is valid stress that the

63
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waves are dominated by their irrotational part. This can be shown by comparing
the pseudomomentum and the Stokes drift, which also learns that an additional
restriction has to be imposed on the mean velocity. If the mean shear rate and the
mean velocity curvature are weak, the pseudomomentum may be approximated
by the Stokes drift, which then appears in the CL vortex force T = @5 x @ with
€1 = V x u the mean vorticity. Craik (1982b) gave an approximation of T which
is valid for a flume, '

(5.2)

T
TxTy= (0,'7136‘17 HS@) )

8y’ 9z
with y the spanwise and z the vertical direction. The effect of the waves is thus

reflected by the Stokes drift.
Leibovich (1980) included viscosity in his original derivation and arrived at

(5.3)

However, the derivation crucially depends on the assumption of a constant eddy
viscosity. Inclusion of viscosity is necessary for the following reason. The essential
point in the CL theory is that a combination of a shear flow and a Stokes drift of
the wave field is unstable to disturbances in lateral direction. Viscosity is needed
to obtain shear.

Leibovich (1983) reviewed the two classes of mechanisms CL1 and CL2, which
originally applied for laterally unbounded water bodies. In the CL1 model, which
was proposed by Craik & Leibovich (1976), the vorticity component §2; in longitu-
dinal direction can be generated by a Stokes drift that varies in lateral direction.
However, for a laboratory channel there is no significant amplitude variation in
lateral direction. Neither can the waves propagate consistently in a flume in a
direction deviating form the mean flow direction.

The CL2 mechanism was originally suggested by Craik (1977) and further
developed by Leibovich (1977) and is based on an instability mechanism. The
vorticity component §2; may be generated by the combination of a laterally uni-
form Stokes drift and a pre-existing vertical vorticity 3. Here only the principal
result in the latter paper is mentioned. The system is stable if

o ou’®
over the entire depth, and is unstable otherwise. For an extensive description of
the CL2 mechanism one is referred to the original description of Leibovich (1977)
or his review paper (1983).
Despite numerous field observations and increasingly sophisticated numerical
solutions of the governing model equations (see Melville et al. (1998) for a list of
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references) the number of successfully generated and measured Langmuir circula-
tions in laboratories is limited. Faller & Caponi (1978) and Melville et al. (1998)
studied the evolution of wind-driven Langmuir circulations as an instability of a
wind-driven surface shear layer. The CL2 forcing mechanism was demonstrated
by Nepf & Monismith (1991) and Klopman (1997) by combining regular non-
breaking waves and a current in a narrow flume with an aspect ratio 2L/h = 2.
A pair of streamwise vortices was produced from the permanent vertical vorticity
in the side-wall boundary layers.

The observations of Klopman (1997) for waves opposing an ambient current
are in contrast with the CL2 mechanism. Although (5.4) has been fulfilled and
instabilities were not expected according to the CL2 mechanism, streamwise
vortices were present. Nepf et al. (1995) conducted a set of experiments in
a 1.2m wide flume with a still-water depth of 10cm. They considered both
breaking and nonbreaking waves propagating in the current direction. Dependent
on the distance from the wave maker they observed two or more vertical streaks of
downwelling in the cross section under consideration for the situation of breaking
waves. This indicates the presence of two or more vortex pairs. This behavior was
not observed for nonbreaking waves. Apparently a strong wind-induced shear or
wave-instability is required to obtain more than one pair of streamwise vortices.
Otherwise only the vortices in the boundary layers can provide the instabilities
which lead to the evolution of one pair of vortices.

In order to obtain an explanation for the observed wave-induced changes in
the mean horizontal velocity profile in a flume, Radder (1994) considered the
addition of the CL vortex force to the Reynolds-averaged momentum equations.
For waves following the current the vertical component of T is positive and sec-
ondary flows consisting of counter-rotating vortices with their axis in streamwise
direction are induced, with upwelling along the side walls and downwelling in the
center of the lume. Low forward momentum from the bed and the side walls is
transferred along the upper part towards the center of the flume. Consequently,
the mean longitudinal horizontal velocity in the upper regions is expected to de-
crease. This is confirmed by Leibovich & Paolucei (1980, fig. 3 and 16). For the
situation of waves opposing the current, the turbulent mixing is reduced and the
mean flow becomes more stable. As a result the mean velocity shear is expected
to increase as observed in several experimental studies.

The explanation for the changes of the mean horizontal velocity profile given
above is based on the existence of secondary circulation cells. This mechanism
contradicts the 1DV explanation of chapter 4 in which lateral uniformity has
been assumed. In the 1DV model the driving force for the mean motion is
dominated by its longitudinal component. In the CL theory the latter component
is neglected, according to (5.2), whereas the lateral and vertical components are
responsible for the wave-induced circulations in the cross-sectional plane. In the
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following a 2DV lateral model will be developed in which all three components
of the wave-induced driving force are included. In this way the effect of the
secondary circulations on the mean longitudinal velocity can be compared with
the direct influence of the longitudinal component of the driving force.

5.2 Formulation of 2DV model in GLM setting

Following the idea of Radder (1994), Dingemans et al. (1996) developed a 2DV
non-hydrostatic numerical flow model in order to reproduce the vertical veloc-
ity profiles of the horizontal current measured in the laboratory experiments of
Klopman (1994). A detailed description of this model is given in the report of
Van Kester et al. (1996). They observed in their simulations that secondary cir-
culations induced by the CL vortex force caused changes in the vertical structure
of the mean horizontal flow. However, due to poor estimates of the Stokes drift
and the CL vortex force in the boundary layers, quantitative agreement with
Klopman’s experimental results was not obtained for situations of waves follow-
ing or opposing a current. It is remarked that the conditions for the validity
of the CL equations are not satisfied in the regions where the mean flow has
relatively strong shear. Corrections of the CL vortex force are required here.

In the following, a 2DV model is obtained by simplifying the three-dimensional
GLM equations, derived in chapter 3. This simplification is based on the neglect
of longitudinal variation of all GLM quantities, except the hydrostatic part of
the pressure. This results in 2DV equations for the GLM flow. The form of
these equations is almost similar to the CL: equations used in the 2DV model of
Dingemans et al. (1996).

Apart from the fact that the quantities in the GLM model are not Eulerian,
the major difference concerns the wave-induced driving force. The CL vortex
force Ty is implemented in Dingemans et al. (1996) as a force acting in the
cross-sectional plane. However, in the GLM approach the wave-induced driving
force is still three dimensional. Consequently, the velocity distribution is not
only influenced by the changes of the motion in the cross section. On the other
hand, circulation patterns in the cross-sectional plane, as observed in the nu-
merical simulations reported by Dingemans et al. (1996), are still expected to be
predicted.

The 2DV model is developed for the same flow regime as has been considered
in chapter 4. However, side wall effects have been included now. The amplitude
functions of the orbital quantities and the mean quantities are allowed to vary
over the entire cross section under consideration.

The development of the 2DV model consists of three analytical phases. Firstly,
the 2DV-GLM equations have been formulated (subsection 5.2.1). Secondly, the
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distribution of the oscillatory motion in a cross-sectional plane has been deter-
mined (subsection 5.2.2) and thirdly, the wave-induced driving forces have been
evaluated (subsection 5.2.3). The 2DV-GLM equations have been implemented
in the numerical solver which was also used by Dingemans et al. (1996), (sub-
section 5.3.2). The model verification is presented in section 5.4.

5.2.1 Derivation of the 2DV-GLM equations in a cross-
sectional plane

As mentioned above a lateral 2DV model, providing a local solution in a cross-
sectional plane, will be obtained by neglecting variations in longitudinal direction
of GLM quantities in the general three-dimensional GLM equations (3.7), (3.28).
Only the hydrostatic part of the GLM pressure which is related to the GLM
surface elevation ZL, is not neglected. The total pressure p* is decomposed in a
hydrostatic and non-hydrostatic part, p* = pg (ZL - z) + 7k

In this chapter the focus is entirely on wave-current motion in a channel.
Therefore, the Latin indices used so far are replaced by indices z,y, z indicating
the relationship with the directions under consideration. As mentioned in section
5.1 y and z denote the lateral and vertical direction respectively, whereas z is
the direction along the flume. The continuity equation and the three momentum
equations read as,
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The horizontal gradient of the hydrostatic pressure, BZL/ Oz, is assumed constant
over each cross section V(z) = {(y, 2) : -L<y<L,-h<z< ZL(x,y,t)l} at
a distance z from the wave maker and is chosen such that the discharge of the
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combined flow equals the discharge @ of the flow without waves,

Q= /_ LL /_ Z: atdzdy . (5.7)

The GLM free-surface elevation (_jL is determined from the continuity equation.
Integration of (5.5) over depth and substitution of the boundary conditions for
the vertical GLM velocity,

ot =D'C" atz=C", (5.8a)

7t =-D'h=0 atz=-h, (5.8b)

yields

N (. N\ [
W.;.a(/_hudz>+5§(/_hvdz _——/_hD (log J)dz . (5.9)

Since longitudinal variations of GLM quantities are neglected, the second term
in (5.9) vanishes.

In the right-hand side of (5.6) S denotes the wave-induced driving force,
given by
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The tensor r;; contains the well-known wave-induced stress in terms of La-
grangian quantities and is given by (3.32). In the 1DV model the wave-induced
driving force consists of first-order first-harmonic quantities as well as zeroth-
order mean quantities. A perturbation series approach has not been used in the
2DV model. In fact, the total mean motion is considered. Therefore, " has
to be evaluated at each time step of the numerical integration procedure. For
that purpose expressions for the fluctuating quantities are required. These will
be determined with the 1DV model. According to the WKBJ perturbation se-
ries approach (chapter 4) the fluctuating quantities depend on the initial current
instead of the instantaneous current. Hence, the part of the driving force that is
expressed completely in terms of fluctuating quantities is influenced by the ini-
tial current instead of the total mean motion. This inconsistency in the model is
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not expected to have significant consequences. The direct influence of the mean
motion within the wave-induced driving force is larger than the indirect effect of
the mean motion through the fluctuating quantities.

As for the CL equations the flow should be nonuniform in lateral direction
in order to induce a nonzero y-component of the driving force. Regarding the
wave motion this non-uniformity is limited to the side-wall boundary layer. As a
consequence, superimposing a wave field, that is nonuniform only near the side-
walls, on an initially uniform current will lead to longitudinal vortices evolving
from the side wall. Due to the symmetry and the limited flume width and depth
the growth of the vortices is limited as well.

From (5.10) it is obvious that the longitudinal component of the driving force
is nonzero, in contrast to the corresponding component in the CL vortex force.
The 1DV model already proved that Fﬁ is significant and will be responsible for
some part of the mean velocity profile changes.

5.2.2 Side-wall effects on fluctuating quantities

In the 1DV model laterally uniform vertical distributions of oscillatory quantities
have been determined. Needless to say, this solution does not reflect the side wall
influence. In order to take side wall effects into account a procedure has been
adopted that was also used by Mei et al. (1972). They analyzed mass transport
caused by progressive waves for a situation of constant viscosity and no initial
current.

A cross section V(z) of the flume at a distance z from the wave maker is sub-
divided into five regions, viz. the inviscid core region and the boundary layers at
the bottom, the free surface and the two side walls. This is sketched in figure 5.1.
In the 1DV model the surface and bottom boundary layers are already included.
Here the approach of the 1DV model is extended, such that lateral variations of
the fluctuating quantities, being strongest in the side-wall layers, are included. In
the following the analysis of Mei et al. (1972), originally for the bottom boundary,
is applied to the side-wall boundary. Viscous effects are neglected outside the
side wall boundary layers. Consequently, the lateral variations of the amplitude
functions of the fluctuating quantities can be neglected in this region. The flow
equations for the fluctuating motion are then reduced to those derived for the
1DV problem. The solution of the latter problem will be denoted by ¢ = ;. By
neglecting the influence of the mean current and variations of the eddy viscosity
v in the side-wall boundary layers, Mei et al. (1972, appendix I) showed that the
orbital velocity including the no-slip condition at the side walls satisfies Stokes’
shear wave solution,

uf = [1 —exp (BY)]ut, (5.11a)
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Figure 5.1: Division of a cross section V(z) into five regions.
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vi=v =0, (5.11b)

w! = [1 — exp (BY)] wi . (5.11¢)

with the factor 8 = (—iwp/v)"/? and Y the distance to the nearest side wall. The
complex-valued S is responsible for phase and amplitude changes in the side-wall
layer.

To sum up: the 1DV model is used to determine the vertical distribution of
the fluctuating quantities. The 2DV profiles are obtained by multiplying the 1DV
profile (subscript 1) by a y-dependent factor, which only affects the fluctuating
motion in the side-wall boundary layers. The fluctuating quantities are influenced
by a current that is assumed to be uniform in horizontal direction. The effect on
the oscillatory motion of the secondary current, i.e. the second-order correction of
the longitudinal component of the mean velocity and the secondary circulation,
has been neglected.

The distribution of the wave-induced driving forces in the entire cross section
can now easily be evaluated by substituting the laterally and vertically varying
oscillating quantities in the general expressions for the driving forces.

5.2.3 Determination of wave-induced driving forces

For the general three-dimensional situation expressions for the wave-induced
driving forces have been derived in chapter 3. These expressions are not only
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given in terms of mean and fluctuating quantities as in (3.30)-(3.32) but also in
terms of amplitude functions of the latter quantities, see (B.5a)-(B.5c), which
have been obtained after application of a WKBJ perturbation series approach.

In subsection 5.2.2 the velocity components have been written as the product
of the 1DV solution and a correction term in lateral direction (Stokes’ shear
wave solution). Under the assumptions stated in subsection 5.2.2 the lateral
component of both the disturbed velocity and the displacement vanishes. As a
result the second-order approximation of the Stokes correction %° given by (2.22)
can be written as

7 =% (1 - exp(BY)) (1 - exp(BY)) (5.12)

where 3 denotes the complex conjugate of 3 and @° the Stokes correction of ¢
determined by the 1DV model. Hence, the dependence of z and z-coordinates
is separated from the dependence of the y-direction. A separation of variables
of the latter form is only possible for quantities whose oscillating part shows a
boundary layer behavior as for the velocity components in (5.11). Relation (5.12)
holds in particular for the Stokes drift #° and the shear stress components ?,-S]-
that do not point in the lateral direction (7,7 # 2). Furthermore, the radiation
stress terms r;; can be expressed in the form of (5.12) as well. The only terms

in S" that require special attention are 75, and T3, Under the assumption
that the influence of the current and the lateral variations in the eddy-viscosity
distribution can be neglected, as has been done in subsection 5.2.2, the oscillating
part of the shear stress reads

Hut dY

Tt =v— = —ip exp(ﬂY)d—y : (5.13)

A similar expression is obtained for 77, by replacing u* by w® in (5.13). Further-
more 7%, = 0. In terms of 1DV first-order first-harmonic amplitude functions the

Yy
Stokes correction of the shear stress component ?fy is expressed as

o, =

) A(1L-1) . )
(<ikéenan + o) (—ﬂexp(mf)%) (1 - exp(BY)) BB

) AL i} ]
+ (ik§(1"1)z/ﬁ(1’l) + 7‘7“"”—%) (—ﬂ exp(m’)%) (1 - exp(3Y)) EE,

(5.14)

with E given by (4.12). A similar expression can be obtained for 75,. A separa-
tion as found in (5.12) is not possible here. The components of the wave-induced
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driving force can now be expressed in quantities that are computed for the greater
part by the 1DV model.
The correction term in the continuity equation (5.5) is approximated up to
second order by
P EE
26 0T

see e.g. Dingemans (1997, p.241). Alternatively, by applying (3.27) the continuity
equation can also be written as

ou; _ _ 0w 3

Because the lateral component of the Stokes drift vanishes, C can be derived
directly from the 1DV model,

C = C; (1 - exp(8Y)) (1 — exp(BY)) . (5.17)

~logd =155 L ogepy (5.15)

The correction of the depth-integrated continuity equation (5.9) is equal to C
integrated over depth.

At several stages further modifications have to be made. The shear stresses
are given by the strain rate relations, following Boussinesq’s hypothesis. The
corresponding GLM shear stresses can be defined accordingly, however with an
extra wave-induced correction. In tensor notation this reads

a—L a—L
Ti = (63, + 32, T,,) , (5.18)
according to (3.34). Here,
T = 8, Ouf + 06, 0uj\ 06 06m\ O _ [0k 06m\ BT} O(I€]P) -
Y\ Oz, Oz 0z, Oz, 8z, 0y | Oz  \Oz; Ok
(5.19)

The wave-induced corrections T;; are determined with the 1DV model and cor-
rected for variations in the lateral direction. Since the lateral components of the
displacement and the disturbed velocity equal zero, the modifications in lateral
direction are easily obtained

Tyj = Ty (1~ exp(BY)) (1 — exp(3Y)) . (5.20)

Obviously, the variations in lateral direction are only significant in the side-
wall boundary layers. For each column in the cross section under consideration
the 1DV quantities are modified with an expression which either decays or in-
creases exponentially to unity away from the side walls.
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5.3 Numerical solution method

Because the form of the CL equations is similar to the form of the GLM equations,
the 2DV model of Dingemans et al. (1996) has been used to solve the 2DV-
GLM equations numerically. Only the minor corrections listed in the previous
subsection have to be carried out. The numerical treatment of the CL-based
model is given by Van Kester et al. (1996), rather than Dingemans et al. (1996).
In Van Kester et al. (1996) several solution techniques were investigated to solve
the 2DV flow equations. The pressure correction method of Casulli (1995), which
is described in subsection 5.3.1, was concluded to be the best for problems dealing
with the combined motion of waves and currents. After all, the superposition
of waves on a current introduces a significant deviation from the hydrostatic
pressure.

5.3.1 Pressure correction method

Casulli & Stelling (1998) applied the pressure correction method in their con-
struction of a computational framework that allows numerical integration of the
full Reynolds-averaged Navier-Stokes equations for simulating large-scale non-
hydrostatic flows. In this fractional step method the hydrostatic and the hydro-
dynamic component of the pressure are considered separately. For the numerical
implementation and properties of the fractional step method introduced by Ca-
sulli (1995) one is referred to Casulli & Stelling (1998).

The solution procedure consists of two stages. In the first step the hydrody-
namic part of the pressure is neglected. In the correction step the intermediate
velocity computed in the first step is corrected by adding the hydrodynamic
pressure terms. Because the driving force s responsible for the existence of
the hydrodynamic pressure 7, S~ should be taken into account in the second
step. However this would lead to complications in the numerical treatment of
the second stage, because the divergence of the wave-induced driving force would
have to be evaluated. Therefore 5" is incorporated in the first stage. This choice
is justified because the splitting of the equations in two stages is consistent. Use
of an infinitely small time step would result in identical solutions irrespective
whether S~ were incorporated in the first or second stage. Concluding, the
computation is split in the following two parts:

Stage 1

The depth-integrated continuity equation (5.9) and the momentum equations
(5.6) are considered with 7 = 0. This differs from the usual approach in a
shallow water model where the vertical velocity is obtained from the continuity
equation. Consequently, the velocity field not necessarily satisfies the continuity
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equation (5.5) after the first stage. The resulting shallow-water equations are in-
tegrated following the integration schemes of Delft Hydraulics’ models TRISULA
and TRIWAC, for a complete time step. For stability reasons the vertical advec-
tion and a part of the vertical shear stress terms are treated implicitly.

Stage 2
The momentum equations are considered without the convective terms and only
the hydrodynamic pressure is taken into account,

gut 10w
_.+_ —

Ty ol (5.21)

By taking the divergence of (5.21) and applying the continuity equation as a side
condition a Poisson equation for the hydrodynamic pressure is obtained. The
conditions of zero normal flow at the bottom and side walls and a vanishing
hydrodynamic pressure at the free surface provide a unique solution. A second-
order discretization on a rectangular grid leads to a system of equations, with a
symmetric positive-definite matrix, that is solved with the preconditioned Con-
jugate Gradient method. The second stage is completed after substitution of 7~
in (5.21), resulting in a new estimate for the velocity components.

5.3.2 Implementation of 2DV-GLM equations in existing
numerical flow model

Certain aspects considering the implementation of the GLM equations in the
2DV numerical model are highlighted in this subsection. Some attention has
been paid to the implementation of the wave-induced terms. Computations by
the numerical solver are carried out on a grid for which the vertical resolution
is different than the grid used for the 1DV model. Therefore interpolation tech-
niques are required. A rational function interpolation through at least three and
at most six points based on an algorithm in Stoer & Bulirsch (1980, section
2.2) has been implemented. After having evaluated the wave-induced terms in
these grid points, they have been incorporated in the continuity equation and
the momentum equations.

The implementation of the bottom and side-wall boundary conditions has to
be considered as well. Whereas in the 1DV model no-slip conditions have been
imposed at the bed, Dingemans et al. (1996) imposed partial-slip conditions at
the bottom and the side-wall boundaries, using a logarithmic law-of-the-wall
formulation. This approach has been outlined in appendix C. Given a shear
velocity at a certain height or distance from the side wall, the friction velocity
and related shear stress are determined, following Grant & Madsen’s (1979)
formulation. This formulation is given in an Eulerian framework. In order to
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obtain the GLM shear stress at a closed boundary, the following algorithm has
been applied:

1. The GLM velocity at a certain height or distance from the side wall is
transformed to its Eulerian equivalent at the same height.

2. The formulation applied by Dingemans et al. (1996), is used to determine
the Eulerian shear stress.

3. The Eulerian shear stresses are transformed to GLM shear stresses by
adding the Stokes correction of the shear stress under consideration.

Finally, for simulating turbulent flow a turbulence model has been imple-
mented. In a first approach a classical turbulence model has been used. Any of
the turbulence models implemented by Van Kester et al. (1996) can be used. For
this study a k£ — £ model was chosen. For closure of the turbulence model the
production term is computed with Eulerian velocities, which are determined by
transforming the GLM velocities. This implies that the k — & model as imple-
mented by Van Kester et al. (1996) needs no further correction. For completeness
a description of the turbulence model is given below.

The two-equation k& — € turbulence model provides both the mean turbulent
kinetic energy, here denoted as g, and mean dissipation Z by means of a transport
equation with flow dependent source and sink terms. Following Rodi (1980) the
transport equations for § and &, which are nonlinearly coupled by means of the
eddy viscosity v and the dissipation terms, are given by
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where 1 denotes the kinematic viscosity. The advection and diffusion terms

along the flume have been neglected and the eddy viscosity v and the production
term Py are given by

o

v=cus (5.23)
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In P; the longitudinal variations of the velocity components have been neglected.
The calibration constants in (5.22)-(5.24) are defined according to Rodi (1980)
by: ¢, = 0.09, c1c = 1.44, ¢5c = 1.92, 0} = 1.0 and 0, = 1.3. Substituting (4.3
in (4.5) and comparing the result with (5.23) yields ¢, = cp¢), = (c¢,)*.

As in the 1DV model the boundary conditions for the turbulent kinetic energy
at the side walls y = £ L and the bed z = —h is derived from a local equilibrium

between production and dissipation of turbulent kinetic energy,

2 2

_ Uy — Uy

Tlomn = % v Tly=tz = —-—I\/c“_l . (5.25)
{7 7

The shear stress velocities u,; at the bed and u,, at the side walls are determined
from the velocity near the wall using a logarithmic law-of-the-wall formulation
(see appendix C). The only dependence of the wave motion is via the shear stress
velocities. As in the 1DV model the fluctuating part of the turbulence quantities
g and ¢ has been neglected. However, in that model the eddy viscosity was
entirely independent of the wave motion.

Uittenbogaard & Van Kester (1996) developed a boundary condition at the
bed and side walls for the dissipation rate which is imposed at a distance A from
the boundary and is independent of the roughness length z,

3

& oy=-tul,
(] KA
where ¥ = y or 9 = z and u, denotes the friction velocity at the bed or the side
wall. At the free surface the turbulent kinetic energy and dissipation vanish. In
fact this concerns the free surface in an Eulerian setting. Since the fluctuating
part of the turbulence quantities is neglected, § and ¥ may as well be assumed
to vanish at z = C_,

(5.26)

q ot = 0, E|Z=ZL =0. (5.27)

The time integration of the transport equations (5.22)—(5.24) combined with
the boundary conditions (5.25)—(5.27) consists of two stages. In the first stage
only horizontal and vertical advective transport is taken into account. The ad-
vection terms normal to the boundary are neglected in the computational layer
near the bottom and near the side walls. In the second stage the remaining
non-advective terms are integrated, of which the production, dissipation and dif-
fusion are assumed to be dominant terms in the transport equation. The vertical
transport terms are integrated implicitly.

5.4 Verification of 2DV model

The 2DV model has been verified against experimental data obtained by Klop-
man (1997) in a laboratory flume with a horizontal bed. He measured the two
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mean velocity components in streamwise and vertical direction in a cross section.
Furthermore, the numerical results obtained with the 1DV model are compared
with the 2DV model results obtained in the center a the flume.

5.4.1 Comparison with flume experiments

For situations of following and opposing waves the mean velocities in a cross-
sectional plane have been computed and compared with measurements of Klop-
man (1997). The initial conditions for those experiments are identical to those of
Klopman's (1994) measurements concerning regular waves on a turbulent current
and these have been mentioned in subsection 4.4.2. Klopman (1997) reported on
vertical and longitudinal mean velocities in 30 points in a cross-sectional plane.
Due to limitations in the LDV movements only one half of the cross section was
considered. In the ideal case of pure symmetric flow this is not a restriction. In
1994 wave heights and velocities were only measured in the center of the flume.

Klopman (1994) determined the mean horizontal velocity in the center of the
flume assuming uniformity in lateral direction. Side-wall effects were neglected.
This forced Van Kester et al. (1996) to perform a correction procedure in which
for the situation without waves the computed vertically averaged horizontal ve-
locity, evaluated in the center of the flume, was taken as a reference for the
vertically averaged velocity as resulting from the measurements. They found
that the measured velocities had to be enlarged by a factor 1.135. This factor
was also applied to the measured horizontal velocity profiles for the situations
where waves are present. In order to avoid these problems the model results are
only compared here with the experimental results of Klopman (1997). Moreover,
it is not useful to compare the model results with one data set for the center
points and with the second for all the other points in the cross section.

In the present 2DV model the wave-induced driving forces depend via the
orbital quantities on the factor § = (—iw/v)*/%. In our analysis v was assumed
to be independent of the lateral direction. In all experiments we have taken
v = 10"°m?s"!, representing a turbulent oscillatory motion. This choice for v
leads to a factor B for which Re(f) = — (w/2v)"/? ~ —467m~!. Consequently,
the thickness of the side-wall boundary layer is of the order 0.5 cm. For the spatial
discretization a computational grid of 100 points in lateral direction and 40 points
in the vertical has been used. In both directions the grid refinement procedure of
Vinokur (1983) was applied, such that 3 to 4 grid points are inside the boundary
layers, including the one near the bottom. The time step for the simulations is
0.01s. The computations have been carried out as if a wave field is superimposed
on a turbulent current. In initially still water a turbulent current is simulated.
After 200 s a steady turbulent logarithmic shear flow has developed, see figure 5.2.
However, the measured (Klopman 1997, figure 3.48) and theoretically expected
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Figure 5.2: Computed and measured vertical current profile in the center of the
flume (no waves).

(Nezu & Nakagawa 1993, section 5.3) secondary circulations for the situation
without waves have not been predicted, because the concept of isotropic eddy
viscosity, such as assumed in the k — ¢ model, is insufficient for predicting the
secondary currents in a rectangular channel. These are the result of asymmetry
in the turbulent stresses. Moreover, in a historical publication Gibson (1909)
inferred that secondary currents cause the mean horizontal velocity profile in the
center of the flume to deviate form a logarithmic velocity profile.

In figure 5.3 the nonuniformity in lateral direction of the horizontal velocity in
streamwise direction has been confirmed. Although at 25cm above the bed the
horizontal velocity has been underpredicted (see also figure 5.2) the predicted
lateral shear 0u/dy agrees with the measured shear. After 200s (t = 0) the
wave influence on the mean motion is taken into account by activating the wave-
induced driving force.

Since velocity measurements have been carried out at fixed locations and are
thus Eulerian, the GLM velocity field @” has to be transformed to its corre-
sponding Eulerian field, @ = @’ — @°. The lateral and vertical components of
the Stokes drift @° have been neglected.

In figure 5.4 and 5.5 the results for the mean velocity distribution in a cross
section at z = 22.5 m from the wave maker and the mean vertical velocity profile
at 5cm, 20 cm and 48.5cm (near the center of the flume) distance form the side
wall are shown for the situation of waves propagating in the current direction.
These profiles represent the steady solution obtained at ¢ = 600s. For clarity in
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Figure 5.3: Computed and measured horizontal current profiles at 25 cm above
the bed (no waves).

the plots, the velocity components have been interpolated to points which form
a regular grid (figure 5.4).

The measured mean vertical velocities given in figure 5.5 already indicate that
the position of the cell center is not in the middle of the half of the cross section
under consideration. Closer inspection of the data in Klopman’s (1997) report
shows that the cell centers are displaced towards the free surface and close to the
center of the flume. Figure 5.4 shows that the 2DV model predicts two counter-
rotating vortices. The vertical positions of the circulation cell centers coincide
with Klopman’s. This can also be concluded from figure 5.5, because the form
of the vertical distribution of the computed and measured mean vertical velocity
agree. However, the horizontal location of the cell centers is in the middle of
each half of the cross section. Nevertheless, qualitative agreement between the
computed and measured cross-sectional velocities has been obtained. Under the
same conditions Dingemans et al. (1996, figure 3) obtained secondary circulations
of which the cell centers are located 5 cm above the middle of both halves of the
cross section.

Figure 5.5 shows that the quantitative agreement between the computed and
measured velocities in the cross-sectional plane is far from perfect. The down-
welling in the center of the flume is overpredicted by a factor 2 and reaches a
maximum of 9mms~! at 13 cm below the water surface.

The influence of the wave motion on the mean motion is significant. For
various points of the time mean horizontal velocity profiles in the flume center
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Figure 5.4: Computed mean velocity distribution in cross section for waves fol-
lowing the current.
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Figure 5.5: Computed and measured (Klopman, 1997) mean vertical velocity
profiles at different distances Y from the side wall (following waves).
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Figure 5.6: Computed and measured vertical profiles of the mean horizontal
streamwise velocity in the center of the flume at various points of time (following
waves).

are given in figure 5.6. Comparison of the velocity profiles for ¢ = 0 (current
alone) and ¢ > 0 exhibits a significant reduction of the mean horizontal velocity
towards the free surface. The reduction is even stronger than was measured by
Klopman (1997) and predicted by the 1DV model (see figure 4.10) and the model
of Dingemans et al. (1996). Near the free surface the velocity is underpredicted
by approximately 1cms™.

For waves propagating against the current the steady secondary flow is pre-
sented in figure 5.7. The vortices rotate opposite to those for the case of following
waves. The cell centers are now displaced slightly downward towards the side
walls. According to figure 5.8 the measured circulation cells are located in the
upper half of the flow, close to the free surface. Despite the fact that the order
of magnitude of the lateral and vertical velocity components is predicted cor-
rectly, quantitative agreement between these measured and computed velocity
components has not been obtained. The 2DV model predicted an upwelling in
the center of the flume of at most 3.3 mms~!. This maximum is reached at 22 cm
above the bed. The maximal upwelling measured in the center of the flume is at
least 3.5mms~! and is attained at approximately 10 cm below the free surface.

Although the secondary circulations are not predicted correctly, the computed
mean horizontal velocity profiles are in good agreement with the measured pro-
files, as can be seen in figure 5.9. Compared to the situation without waves
the mean horizontal velocity reduces near the bed and increases significantly
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Figure 5.7: Computed mean velocity distribution in cross section for waves op-
posing the current.
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Figure 5.9: Computed and measured vertical profiles of the mean horizontal
streamwise velocity in the center of the flume (opposing waves).

towards the free surface. Only near the bed the velocity is overpredicted, by
approximately 1cms™'. The change of %/9z just outside the bottom boundary
layer is less abrupt than the one that has been measured (see figure 4.10).

5.4.2 Comparison with results 1DV model

To study the effect of the flume width identical situations are considered as in the
previous subsection, but now in a 5 m wide flume. The discharge is increased pro-
portionally, @ = 0.40m®s~!. In figure 5.10 the computed steady cross-sectional
velocity distribution for the situation of waves following the current is given. In
view of symmetry only half of the cross section has been plotted. In contrast to
the observation of two or more pairs of vortices in the laboratory experiments of
Nepf et al. (1995) with breaking waves, only one pair of counter-rotating vortices
is predicted. This suggests that the secondary flow in the cross section of the
flume is not due to Langmuir circulation and in fact confirms the statements in
section 5.1 that a strongly sheared current or instabilities in the wave motion are
required for that. Near the side walls the computed vertical velocities in the 5m
wide flume are of the same order of magnitude as those in the 1 m wide flume.
However, in the center of the flume the downwelling has decreased significantly
and is at most 1.6mms~!. The cell centers are located approximately 70 cm
away from the side wall halfway the water depth. This is relatively farther away
from the flume center than in the 1 m wide flume.
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Figure 5.10: Computed mean velocity distribution in the left half of the cross
section for waves following the current in a 5m wide flume.

Our main interest concerns the mean horizontal velocity profile in the center
of the flume. The 2DV model result has been compared with the prediction of
the 1DV model. Since the velocity distribution is nonuniform in lateral direc-

tion, the depth-averaged horizontal GLM velocity computed by the 2DV model is
larger than 0.16 ms™! in the center of the flume. Therefore, the 1DV model com-
putations have been carried out prescribing a depth-averaged horizontal GLM
velocity of 0.166 ms™!, being the depth-averaged horizontal GLM velocity in the
center flume computed by the 2DV model. The result of the two model com-
putations is shown in figure 5.11. In this figure Klopman’s (1997) experimental
results from the 1 m wide flume are also plotted. Although a comparison between
the measured and computed results is not fully realistic, e.g. the depth-averaged
horizontal velocities are different, it exhibits the fact that the reduction of the
horizontal velocity towards the free surface is not overpredicted anymore.
Figure 5.12 shows the results for the situation of opposing waves. The sec-
ondary circulation consists of two cells for which the centers are located relatively
close to the side walls. Once again the vertical velocities near the side walls are
comparable to those computed for the 1 m wide flume. The maximal upwelling
in the center of the flume is reduced to 0.3 mms~! and can be neglected as such.
The 1DV model has provided the horizontal streamwise velocity with a depth-
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Figure 5.12: Computed mean velocity distribution in a cross section for waves

opposing the current in a 5m wide flume.
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averaged value of 0.181 ms~!. Comparison with the profile computed by the 2DV
model in figure 5.13 shows good agreement between the two profiles. Further-
more, by taking Klopman’s (1997) measurements as a reference, comparison of
the predicted vertical profiles of the horizontal velocity in the center of the 1m
and 5m wide flume is possible. The form of both profiles is almost similar. Over
the entire depth the horizontal velocity predicted for the 5 m flume is approxi-
mately 0.5 cms™! larger than for the 1m flume.
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0.1 1DV model ----- —
2DV model
Klopman (1997
ook pman (1997) |
E
R -0.3 - e
-04 B
_0‘5 1 | 1

d = 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
T [ms™!]

Figure 5.13: Computed mean streamwise horizontal velocity profile in center of
a 5m wide flume for waves opposing the current.

5.5 Evaluation of model results

Qualitative agreement between the computed and measured horizontal and ver-
tical profiles of the mean velocity components has been obtained for both sit-
uations of waves following and opposing the mean motion. The vertical and
lateral components form circulation cells which are rotating in the correct direc-
tion. However, quantitative agreement with the measured velocities in the cross
sections has not been obtained.

The order of magnitude of the measured circulation velocities is 1 cms™! for
both following and opposing waves. For the situation without waves secondary
velocities of the same order of magnitude have been measured. Gibson’s (1909)
explanation for the reduction of the current velocity near the free surface due to
secondary circulations also holds for the combined motion of waves on a following
current. Low momentum is transported by the secondary motion from the side
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wall to the center, and high momentum is moved from the free surface to the
bed. The phenomenon that the maximum streamwise velocity does not appear
at the free surface, but rather just below it, is often referred as the 'velocity dip’,
and it is peculiar to currents in open channels.

In the combined motion of waves and currents in a rectangular channel the
asymmetry of the turbulent stresses will still appear. In the present 2DV model
it has not been taken into account and the circulations are purely caused by
the wave-induced driving force. In order to model the secondary circulations
properly a turbulence model giving rise to an anisotropic eddy viscosity should
be considered.

It is uncertain whether the proposed modification will lead to a correct pre-
diction of the secondary circulations. If the total effect due to the anisotropic
eddy viscosity and the wave motion were obtained by a linear combination of
these effects, the opposite of the 2DV model predictions should be obtained. For
the situation of following waves the two circulation velocities are in the same di-
rection. Inclusion of an anisotropic eddy viscosity in the 2DV model would then
result in an even stronger total circulation velocity. On the other hand, there
is no evidence that these effects can simply be added and that both effects do
not interact. E.g. wave-turbulence interaction has not been taken into account
in this study, whereas the asymmetry in the turbulent stresses may very well be
influenced by the wave motion. It is out of the scope of this study to investigate
wave-turbulence interactions. The aim was to study qualitatively the effect of
the secondary circulations on the mean horizontal velocity profile.

Despite the fact that the computations of the secondary circulations have
not led to a quantitative agreement with the measured circulations, the com-
puted and measured velocity component in streamwise direction show satisfac-
tory agreement in the center of the flume. For following waves a rather strong
overprediction of the downwelling caused an overprediction of the reduction of
the horizontal velocity.

In contrast to the 2DV GLM-based model the changes in the horizontal veloc-
ity profiles obtained by Dingemans et al. (1996, figure 4) are due to the secondary
circulations. For both following and opposing waves the order of magnitude of
the circulation velocity is overpredicted by a factor 3 to 4. Despite these strong
circulations the obtained reduction of the horizontal velocity in the center of
the flume is not as strong as measured for the situation of waves following the
current. An overprediction of 1cms™' to 2cms™! was obtained. For opposing
waves the secondary circulations seem to have hardly any influence, except in
the lower part where a reduction is predicted. However, this reduction is not
as strong as measured. This change however is partly due to the increase in
(apparent) roughness height.

From Dingemans et al.’s (1996) computations and the former GLM results
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the conclusion is justified that the secondary circulations have some effect on the
ambient current profile. However, the CL vortex force as a sole mechanism for
driving the mean motion is insufficient to predict the mean horizontal velocity
profiles that have been measured. To achieve this, the driving force requires a
significant component in longitudinal direction. To confirm this statement the
effect of the side walls, and thus the secondary circulations, has been studied by a
simple test. The side walls should have less effect on the mean velocity profile in
the center of the flume when a wider flume is considered. The secondary lateral
circulations should then decrease in magnitude. Moreover, the 2DV solution
should converge to the 1DV solution as L — co. Due to some principal differences
in the formulation of both models, such as the turbulence model and boundary
layer treatment, the results of the 1DV and 2DV computation in a 5m wide
flume are not identical, but the agreement is such that lateral variations seem to
have no effect near the flume center.

In so far as comparison between the numerical 2DV model results for a 1 m
and a 5m wide flume is possible, the predicted reduction of the mean horizon-
tal velocity in the center of the flume for the situation of following waves and
increase for the opposite case are comparable in magnitude. For the following
case the secondary circulation seems to have some influence, whereas it can be
neglected for the situation of opposing waves. On the other hand there is a sig-
nificant difference in the order of magnitude of the circulations near the center.
Therefore it is concluded that the effect on the mean horizontal velocity of the
longitudinal component of the driving force is dominant over the influence of the
cross-sectional part.



Chapter 6

Generalization to 3D

For applicability in the coastal regions, the three-dimensional structure of the
wave-induced currents has to be taken into account. If e.g. the wave-induced
cross-shore sediment transport is considered, descriptions of the near-bed cur-
rent velocity based on a 2D depth-integrated model will fail. On the other hand
2D-vertical models will not produce satisfactory solutions for lack of longshore
information. Improved predictions will be obtained by quasi-3D models. In
these models 3D current fields are described by coupling a 1DV and 2D depth-
integrated model. So far, only few quasi-3D models are able to describe nearshore
currents. The advantage of quasi-3D over fully-3D models is that their compu-
tational effort is relatively small. However, time-dependent and detailed spatial
information obtained from fully-3D models cannot be provided by quasi-3D mod-
els.

The final goal of the present research programme is to develop a GLM-based
model for 3D wave-induced currents in coastal areas. In these areas the waves
could be either breaking or non-breaking, regular or irregular and the velocity
distribution of an ambient current could be arbitrary in both horizontal and
vertical direction. In this chapter several points are mentioned that have to be
considered attentively to reach the goal just mentioned. In fact, they should be
looked upon as recommendations for future study. Furthermore, the proposed
ideas are compared with formulations that form the basis of wave-current inter-
action modelling in existing 3D and quasi-3D models. Some of those are reviewed
briefly in the next section.

6.1 Existing quasi-3D and fully-3D models
Ten years ago computers were not able to carry out the computations that are

performed nowadays. Therefore the evolution first passed quasi-3D models before
moving on to fully-3D. To describe the nearshore circulation several aspects in

89




0 Chapter 6. Generalization to 3D

the model have to be taken into account.

A wave model is required to determine the associated fluxes of mass, momen-
tum and energy and other wave characteristics to determine the wave-induced
driving force for the mean motion. In the surf zone a breaking model has to be
implemented as well. Moreover, wave breaking significantly increases the turbu-
lent mixing process. Therefore, its effect on the turbulence quantities have to be
reflected. In the following subsections the incorporation of these effects in the
various quasi-3D and 3D models is discussed.

6.1.1 Quasi-3D models

In general quasi-3D models combine the effect of the vertical structure by means
of 2 1DV model and a 2DH circulation models. This requires splitting of the
velocity field. The models are characterized by their splitting procedure.

De Vriend & Stive (1987) introduced a primary current field, driven by waves
and wind. The primary velocity is defined as the product of the depth-averaged
horizontal velocity and a shape function describing the variation of the velocity
along the vertical, which is independent of the location in the horizontal plane.
This result combined with the presence of vertical imbalances, e.g. between mo-
mentum fluxes due to convection and hydrostatic pressure, is used to calculate a
secondary current field, which in general is vertically nonuniform in both magni-
tude and orientation. Sanchez et al. (1990, 1992) split the current velocity into
a depth-uniform and depth-varying component, the latter yielding a zero mean
when integrated from bed to trough level. A similar approach was used in the
time-dependent SHORECIRC model, originally presented by Svendsen & Putrevu
(1990). A review of the physical concept of this model can be found in Svendsen
& Putrevu (1996). Van Dongeren & Svendsen (1997) also treated the numerical
solution techniques. The model is based on an analytical solution for the 3D
current profiles in combination with a numerical solution of the depth-integrated
2D equations.

The quasi-3D models mentioned here considered the time-dependent, nearly
hydrostatic, wave- and turbulence-averaged flow equations. Determination of
the vertical structure of the mean flow strongly depends on the type of splitting
of the velocity. Each model used a different wave model. However, they all
reproduced refraction, shoaling, diffraction and breaking phenomena, including
rollers. Consequently, the fluxes of mass, momentum and energy, as well as the
wave-induced driving forces can be computed in the locations of interest.

In all models the depth-integrated mass and momentum equations have been
exploited to obtain the 2D horizontal distribution of the current. The main
part of the driving forces for the current was formed by the gradient of the ra-
diation stresses. De Vriend & Stive (1987) followed Dingemans et al. (1987)
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who expressed these gradients in terms of energy dissipation of breaking waves.
Sénchez-Arcilla et al. (1992) determined the radiation stresses using the classi-
cal expressions of Longuet-Higgins (1970). They calculated the correlation be-
tween the horizontal and vertical wave velocity components according to Rivero
& Sanchez-Arcilla (1995), whereas other models neglected this term. In the
SHORECIRC model the radiation stress components are expressed in terms of
wave quantities like wave height and wave direction using potential wave theory.
The REF/DIF wave model (Kirby & Dalrymple 1994), based on the mild-slope
equations, is applied to determine these location-dependent wave quantities. To
obtain the driving force, gradients of the radiation stress components and thus
of the wave heights and directions have to be determined.

In order to determine the vertical distribution of the flow all models have
exploited a three-layer concept. De Vriend & Stive (1987) considered the region
below wave trough level for the determination of the secondary current profile.
The effect of the surface layer on the layer below was taken into account via an
effective shear stress at trough level and via the condition that the net undertow
must compensate for the mass flux in the surface layer. The secondary current
model induced by nonbreaking waves is very much like Longuet-Higgins’ (1953)
conduction solution for progressive waves.

For breaking waves the concept is the same as proposed by Stive & Wind
(1986), but the elaboration is somewhat different. Mass fluxes consist of con-
tributions due to the progressive character of the breaking waves and to the
surface roller (Svendsen 1984b). Notice that the depth-invariant driving force
for the primary current not necessarily cause the velocity profile to be uniform
over depth. For the situation without waves a logarithmic profile, typical for
open channel flow, will be obtained. De Vriend & Stive (1987) inferred that
their model required a more detailed investigation of the bottom boundary layer
for the current under breaking waves.

Sanchez-Arcilla et al. (1992) matched the bottom boundary layer solution and
the middle layer solution. The former is based on Fredsoe’s (1984) formulation
assuming logarithmic velocity profiles for both waves and currents. The solution
in the middle layer is dominated by wave-induced and turbulence-induced effects.
The matching conditions indicated continuity of current velocity and shear stress.

In the SHORECIRC model (Van Dongeren & Svendsen 1997) the computa-
tional domain is defined as the region between the wave boundary layer and the
mean water level. In the computations the total mass flux due to waves and cur-
rent is considered. Only if the depth-integrated current velocity is required, the
wave-induced mass flux being nonzero above trough level is considered. Further-
more, the bottom friction is modelled using a weak-current assumption (Liu &
Dalrymple 1978), whereas the cross-shore velocity is assumed to be nearly parallel
to the short-wave groups. A semi-analytic solution for the velocity distribution
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along the vertical is given in terms of short-wave forcing, bottom friction and
variables determined from the depth-integrated equations.

All models applied Boussinesq’s eddy-viscosity hypothesis and used exist-
ing formulations for the eddy-viscosity distribution, which accounted for turbu-
lence induced by purely slope-driven currents, wind-driven currents and breaking
waves. In the middle layer and bottom boundary layer De Vriend & Stive (1987)
prescribed different but constant eddy-viscosity profiles. Roelvink & Reniers
(1994) suggested an improved distribution by prescribing parabolic profiles of
the eddy viscosity in both layers. This is more realistic for general 3D flow.
Sédnchez-Arcilla et al. (1992) also considered a parabolic eddy-viscosity profile
as the result of the summation of the current- and breaker-induced eddy viscos-
ity. As in the other models Van Dongeren & Svendsen (1997) allowed the eddy
viscosity to vary in horizontal direction and assumed it to be constant over the
vertical.

The current-current and current-wave interactions have mostly been neglected
in the models described above. Only in the SHORECIRC model it has been ac-
counted for in an intermediate step. Svendsen & Putrevu (1994) recognized that
these interactions induce a nonlinear dispersion mechanism, which increases lat-
eral mixing significantly.

6.1.2 3D models

The problems that are characteristic for quasi-3D models, like the splitting of the
velocity field, do not appear in models concerning the combined flow of waves and
currents in all three dimensions. To the author’s knowledge the only operational
model is the TELEMAC-3D model of Péchon & Teisson (1994). At this moment
Delft Hydraulics is also developing a 3D model for describing the motion in
the surf-zone (Walstra 1999). The model is based on the 2DV model presented
by Walstra et al. (1994) and the mathematical formulation of a 3D hydrostatic
current model by De Vriend & Kitou (1990). It has been implemented in the
numerical flow solver DELFT3D-Flow (TRISULA).

Péchon & Teisson (1994) considered the time-mean Navier-Stokes equations,
containing the radiation stresses. The effect of breaking waves on the radiation
stresses was modelled by means of the wave energy dissipation formulation of
Dingemans et al. (1987). The waves were assumed to be regular. The contribu-
tion of nonbreaking waves was not included. The mixing of momentum induced
by turbulent fluctuations was modelled by the eddy viscosity concept. A uni-
form eddy-viscosity distribution expressed in terms of the dissipation rate of the
total energy due to bed friction and breaking was implemented. Furthermore,
the roller contribution was expressed by approximating the horizontal velocity
profile as suggested by Svendsen (1984a). In contrast to quasi-3D models of De
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Vriend & Stive (1987) and Sénchez-Arcilla et al. (1992) the computational do-
main stretches up to the mean water level. The total flux of momentum due to
breaking waves has been specified through the radiation stress and is distributed
uniformly from the bed to the wave trough and increases above trough level due
to drag from the roller. The shear stress at the free surface has been set to zero.
The estimation of the bed shear stress was obtained by a quadratic stress law
and the friction coefficient was enhanced by wave effects according to Soulsby
et al. (1993).

In the Delft Hydraulics model (Walstra 1999) the depth is divided into a
number of layers, indicating the vertical resolution in the numerical solver for
hydrostatic flow. The trough-crest region is a separate layer. The time-averaged
Reynolds equations are integrated over these layers. This integration procedure
leads automatically to the inclusion of wave effects. The mass flux is taken into
account implicitly by considering the total mass flux, i.e. the sum of the depth-
averaged Eulerian mean flow and the wave-induced mass flux, as a dependent
variable. At first the mass flux was conceived as taking place above the com-
putational domain. Recently, the mass flux has been related to a nonuniform
vertical distribution as well. As a first guess the distribution of the Stokes drift,
derived from potential wave theory, was implemented. The bed shear stress was
assumed to depend on the mean motion through the "Eulerian’ part of the ve-
locity (see also Battjes, 1988, p.274). After all, the flow in the bottom boundary
layer does not directly depend on the wave-induced mass flux. Due to the layer
approach the wave-induced current forcing has a nonuniform vertical distribu-
tion. The driving force has been given by gradients of radiation stresses. These
have been formulated in terms of wave-energy dissipation rate. The HiswA wave
model (Holthuijsen et al. 1989) has been applied to determine the required wave
characteristics. The energy dissipation due to breaking waves has been modelled
following Battjes & Janssen (1978). Furthermore, a roller concept contributes
to the wave-averaged fluxes of mass, momentum and energy. A k — ¢ turbulence
model has been implemented in order to obtain the eddy-viscosity distribution.
To incorporate the effects of breaking waves on the turbulence, the dissipation
of wave energy was introduced as production term in the transport equations for
both the turbulent kinetic energy and energy dissipation €. A similar approach
was applied successfully by Wind & Vreugdenhil (1986).

Both models have been validated against real-life situations. Péchon & Teis-
son (1994) computed cross-shore currents in a flume, 3D circulation along a rect-
angular beach and currents near a detached breakwater. Although the results
are promising, especially with respect to the flume experiments, more research
Is required on the representation of the wave-induced driving forces. These are
overpredicted due to an oversimplified description of the instantaneous wave or-
bital velocity in the surf zone.
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The DELFT3D-Flow model is the most extensive model and uses state-of-the-
art wave and turbulence models and other related formulations. Nevertheless,
the implementation of the short-wave effects on the 3D mean flow distribution in
the DELFT3D-Flow model and the associated validation and verification process
are still in a preliminary state. So far the model has only been tested against
flume experiments.

6.2 Towards a 3D model in GLM formulation

So far the GLM formulation has been applied only in a 1DV and a 2DV per-
spective for the combined motion of a turbulent current and regular nonbreaking
waves propagating in the same or opposite direction. For generalization to a
fully-3D model, that is capable of computing nearshore circulation patterns, sev-
eral aspects have to be considered carefully. First of all a suitable wave model
must provide wave characteristics for the evaluation of wave-induced driving
forces for the mean motion. For applicability in coastal areas the wave field can
no longer be considered regular. The presence of an ambient current under an
arbitrary angle should be accounted for. Furthermore, a breaker model must
be implemented not only to predict the wave height after breaking, but also to
determine the increase of turbulent mixing.

Three important subjects for further research are being discussed in more
detail, viz. wave modelling with special attention for breaking waves, a possi-
ble generalization of the existing models to a fully-3D GLM model and some
additional applications.

6.2.1 Modelling of wave motion

Complete 3D wave-induced driving forces have been derived in terms of wave-
related quantities in chapter 3. In a 3D description of the total flow, not only
quantities such as wave energy and wave height are required, but also the vertical
structure of the wave velocity fields in the presence of an ambient current.

Here a quasi-3D approach for the wave motion is proposed. In typical ap-
plications, the wave height distribution over a horizontal spatial area has to be
found by application of some wave energy model, e.g. the SWAN model (Booij
et al.,, 1999 and Ris et al., 1999). The present study has shown that the vertical
structure of the internal velocity field does not simply follow from potential flow
theory, but has to take account of the ambient current. In order to find the perti-
nent vertical structure, resource has to be made to a 2DV model of wave-current
interaction. As already mentioned before, the 1DV model developed in this study
could be applied in the main-wave direction at each location in the 2DH wave
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amplitude field as results from a wave energy model. This also means that the
breaking model in the wave energy model is responsible for the amplitude field
shoreward of the breaker line.

Instead of applying the 1DV model for a complete spectrum of wave fre-
quencies, vertical distributions obtained with the peak frequency and rms wave
height or significant wave height as input parameters might as well be suitable.
Before applying the 1DV GLM-based model in the coastal area, one first has
to investigate whether the assumptions made in the GLM theory are still valid
for the entire region of interest. Strictly, the GLM theory can be applied as
long as a displacement vector £ can be defined with zero mean. Outside the surf
zone, where depth-induced breaking has not taken place, the assumptions for the
applicability of the GLM theory are fulfilled. From a conceptual point of view
a meaningful relation between the fluctuations such as the displacement vector
and the Eulerian point x only exists if |£| is fairly small. Therefore, the motion
under breaking waves, including the onset of breaking, and a turbulent bore, in
which the breaking waves transform onshore, have to be regarded critically.

6.2.2 Modelling of 3D wave-induced currents

The 3D wave-induced current motion is described by the 3D equations in chapter
3. To close these equations several quantities must be evaluated. First of all the
wave-induced driving force must be determined from information provided by
some wave model (see subsection 6.2.1). Secondly, a turbulence model must
provide the information about the turbulence characteristics in the region of
interest. Thirdly, the influence of the waves on the bed shear stress has to be
accounted for and finally, the numerical implementation in a 3D solver for either
hydrostatic or non-hydrostatic flow has to be carried out. These aspects will be
discussed briefly.

In coastal areas the depth is not horizontally uniform. Due to depth-induced
breaking, wave energy dissipation is a dominant factor in the surf zone. There-
fore, the gradient of the wave radiation stress, & (<ulu’> - <w‘we>) /0z, plays
an important role in this area, in contrast to the coastal region outside the surf
zone. Furthermore, the role of the wave-induced shear stress (u‘w?) should be
emphasized. In most nearshore circulation models this term was neglected. For
both harmonic and broken waves De Vriend & Kitou (1990) stressed the impor-
tance of this term, which was shown to play an essential part in the consistency
of the model. This was confirmed by the analysis of the wave-induced driving
force in section 4.5.

In the 3D model of Péchon & Teisson (1994) both wave radiation stress and
wave-induced shear stress have been taken into account and both are directly
related to wave energy dissipation using wave potential theory (Longuet-Higgins
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1970). In the DELFT3D-Flow model the wave-induced shear stress has been
neglected whereas the wave radiation stress gradient is expressed in terms of
the wave dissipation following Dingemans et al. (1987). Stive & Wind (1986)
showed that the wave-induced stress terms are hardly varying over depth, as far
as they are due to breaking waves. If this would also hold for the wave-induced
driving terms in a GLM setting there might be a possibility to express these
driving forces in terms of wave characteristics such as wave energy dissipation.
However, interaction with an arbitrarily distributed ambient current will cause
vertical variations in the wave-induced driving terms.

For the implementation of a turbulence model the effect of waves on tur-
bulence has to be taken into account in the 1DV and the 2DV model. In the
region outside the surf zone the nonbreaking waves affect near-bed motion and
bed shear stress and to some extent the turbulence above the wave boundary
layer. An additional production of turbulence is introduced by breaking waves,
which has to be accounted for in the 3D model. This influence extends not
only in vertical direction but in horizontal direction as well. In the transition
zone, where waves start breaking, there is a transformation of organized motion,
through overtopping and roller formation, into turbulence. The k — ¢ turbulence
model implemented in the model of Delft Hydraulics (Walstra 1999) seems a
reliable option, in particular because the three situations above have been dis-
tinguished. Breaking and nonbreaking wave effects are included. This concept
has been validated and verified in a 2DV surf-zone model (Walstra et al. 1994).

In the 2DV model given in chapter 5 the bed shear stress was influenced
by the wave motion by means of Grant & Madsen’s (1979) formulation. Many
formulations for the bed shear stresses due to waves and currents have been
suggested so far, see e.g. Soulsby et al. (1993), Davies & Villaret (1997). The
bed shear stress depends quadratically on the two-dimensional friction velocity,
which is determined by the current velocity and the orbital velocity. As shown
in appendix C.1 for Grant and Madsen’s formulation the angle between both
velocity components is important and should therefore be accounted for.

In general, oblique incident waves in the surf zone induce currents with a
typical three-dimensional vertical profile. Depending on the bathymetry both
longshore and cross-shore velocity components are significant. Whereas longshore
uniformity is required in 2DV cross-shore models and a vertical distribution lacks
in a 2DH description of the motion, the three-dimensional model will provide
wave-induced or wave-affected three-dimensional current velocity profiles.

The basic form of the 3D equations in GLM and Eulerian setting are similar.
Therefore, as long as the hydrostatic flow assumption is valid any numerical
hydrostatic flow solver can be used to predict the GLM flow. The numerical
solver developed by Van Kester et al. (1996), which has been used here to solve
the 2DV GLM-based equations, is in fact a 2DV version of the numerical solver
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DELFT3D-Flow. The former was extended for allowing the pressure to be non-
hydrostatic, whereas the latter only handles hydrostatic flow. In the shallow
regions of the coastal area the non-hydrostatic part is often neglected. In some
situations the non-hydrostatic part of the pressure might be significant to the
prediction of the mean flow field. Then a numerical model for 3D non-hydrostatic
flow would be required. The pressure-correction method applied to 3D flow by
Casulli & Stelling (1998) might be suitable. However, for large regions of interest
the computational time may be enormous.

6.2.3 Possible applications of 3D GLM-based model

For validation and verification as well as for possible applications of the 3D model
a number of practical situations that could be considered are listed.

The various formulations in the turbulence model and the wave-induced driv-
ing forces for breaking and nonbreaking waves must be validated. First of all one
could think of the validation of the model under well-controlled circumstances
as wave-current channels (2D) or basins (3D). A number of flume experiments
have already been mentioned in previous chapters. Among those, boundary layer
streaming should be considered, since the situation of waves in a flume without
ambient current is in fact a limit situation. A first verification could be carried
out by using field observations of a three dimensional circulation along a rec-
tilinear beach. Furthermore, interpretation and validation of the 3D results is
possible by deriving 2DV and 2D depth-averaged (2DH) quantities and compare
these with corresponding quantities derived from existing 2DV or 2DH models,
like those listed in section 1.2. Finally, for the specific situation just mentioned
model results might be compared with results obtained with the quasi-3D mod-
els listed in subsection 6.1.1 and the 3D models of Péchon & Teisson (1994)
and Delft Hydraulics (Walstra 1999). These models have already been tested
for some 2D and 3D situations. Performing the same tests would therefore be
advisable.

Important phenomena of 3D wave-induced flow in the nearshore region may
be analyzed using measurements, physical knowledge and numerical modelling.
Dependent on the availability of the field data one could think of rip currents, 3D
flow around breakwaters and 3D flow in estuaries. In the end the developed flow
model might be coupled to a model for the morphodynamics. At this point the
GLM setting is relevant, because Lagrangian velocities might be more useful in
describing transport of sediment and suspended material than Eulerian velocities.

Situations occurring outside the coastal area could be considered as well. For
the verification of the 1DV and 2DV model, interactions between waves and a
horizontally uniform current with a logarithmic velocity distribution have been
examined only. Several other features of the mean motion could be considered
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as well, such as a strongly sheared wind-driven current. It is a priori not clear
what would be the influence of this current on the wave motion, and vice versa,
the return influence of the current-affected wave motion on the initial current.
Among others the stream function solution of Swan (1992) and his flume data
concerning regular (Swan 1990) and irregular waves (Cummins & Swan 1994)
may be used for model validation and verification.

A typical product of wave-current interactions in open seas and large lakes
are Langmuir circulations. Although they were not observed in the 2DV model
results for the flume experiments, they might be predicted by a 3D model. The
results can be compared e.g. with observations in the upper ocean by Smith
(1992) or Weller & Price (1988).




Chapter 7

Conclusions and
recommendations

7.1 Introduction

The aim of this work was to apply the GLM theory to water wave-current prob-
lems and to gain more insight in the mechanism responsible for wave-induced
changes in current profiles and the effect of a current on the orbital quantities.
Two types of models have been developed describing the combined motion of reg-
ular, nonbreaking waves and an ambient current. In the 1DV model, based on the
WKBJ perturbation series approach, lateral variations have been neglected. In
the 2DV model the side-wall effects have been taken into account. Comparison of
the model results enables the quantification of the role of secondary circulations
on the current profile changes.

7.2 Conclusions

From the present study the following conclusions are drawn, based on:

1DV model

e The WKBJ approach applied in this study is valid for the type of problems
that are of interest for this study, viz. regular, nonbreaking waves on a
relatively weak current.

e In the limit situation of no ambient current the inclusion of harmonics

higher than only the first might be required at first order, in order to be
able to determine the correct mass transport velocity profiles.

99
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GLM-model predictions of the mass transport velocities perfectly agree
with Longuet-Higgins’ analytical conduction solution. Neglect of nonlinear
convective terms seems to be the reason for the mismatch between the com-
puted and measured wave-induced mass transport velocity in very shallow
and very deep water.

For both situations of a following and an adverse current, the vertical dis-
tribution of the amplitude functions of the orbital velocity components are
in good agreement with the measured orbital velocity profiles of Klopman
(1994).

For waves following an ambient current the observed reduction of the mean
horizontal velocity in the upper part of the vertical has been predicted cor-
rectly. The same holds for the strong increase of the vertical gradient of
the mean horizontal velocity in the entire region above the wave bound-
ary layer for opposing waves. The obtained model results were in good
agreement with Klopman’s (1994) experimental data.

Evaluation of the wave-induced driving forces showed that the wave-induced
shear stress, due to phase shifting in the bottom boundary layer, vorticity
transfer from the current to the wave motion and wave height decay, the
wave-induced normal stress and Stokes correction of the shear stress, re-
sulting from the oscillating part of the shear stress, are dominant terms in
the wave-induced driving force for the mean motion. Following Nielsen &
You (1996) a local force balance proved that the second-order changes in
the mean horizontal velocity profile, or more precisely in the current shear
stress, are due to a combination of these wave-induced stress terms.

Application of the time- and wave-independent eddy-viscosity profile, re-
sulting from the strongly simplified k¥ — ¢ turbulence model, as a closure
for the first-order first-harmonic problem results in vertical distributions of
the wave-induced shear stress and the Stokes correction of the shear stress
that are significant over the entire depth. Current-induced turbulence af-
fects the wave motion not only in a small boundary layer near the bed and
the free surface, but in the interior region as well.

2DV model

e Theoretical and experimental studies have demonstrated the presence of

secondary circulations in flows without surface waves in straight laboratory
channels. The concept of isotropic eddy viscosity, such as assumed in the
k — € turbulence model, can not produce those secondary currents.
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e Using a 2D-GLM model, qualitatively correct distributions of the secondary
circulations, consisting of two counter-rotating vortices, have been obtained
for both situations of waves following and opposing the current. Although
the order of magnitude of the maximum velocities agree, the predicted posi-
tions of the cell centers do not. The orders of magnitude of the circulations
in the situations with and without waves are comparable. Therefore, in the
presence of waves the secondary circulations are caused both by the waves
and the asymmetry in the Reynolds stresses. However, the latter part has
not been taken into account in the model, neither are the effects of wave-
turbulence interaction. Beforehand it is not clear whether the asymmetries
in the Reynolds stresses are increased or reduced by the presence of the
wave motion.

o For following waves a reduction of the mean horizontal velocity in the center
of the flume has been predicted, being stronger than measured by Klopman
(1997). This is due to an overprediction of the downwelling in the center of
the flume. The upwelling in the flume center has not been overpredicted for
opposing waves. The mean horizontal velocity profile is in good agreement
with the measured profile.

e Comparison between the results of the 2DV model based on the CL vortex
force (Van Kester et al. 1996) and the 2DV GLM-based model proves that
secondary circulations cannot be ruled out in laboratory experiments such
as Kemp & Simons (1982, 1983) and Klopman (1994, 1997). However, the
CL theory is insufficient to predict the observed velocity profile changes.

e The CL2 theory states that Langmuir circulation is the result of an insta-
bility of the mean flow with a Stokes drift in flow direction. This theory
excludes instability when waves are propagating opposite to the mean flow
direction. However, both experiments (e.g. Klopman, 1997) and simula-
tions (this thesis and Van Kester et al., 1996) show vortex pairs irrespec-
tive of the wave propagation direction. It is concluded that the appearance
of secondary circulations is due to the addition of the CL vortex force, or
more general the lateral and vertical components of the GLM wave-induced
driving force, but not due to the CL1 or CL2 mechanisms. If either one of
the theories is used to define Langmuir circulation, then the measured and
computed circulations in a laboratory channel can not be called Langmuir
circulations.

General

e From the 1DV and 2DV model results the conclusion is drawn that an
explanation for the wave-induced changes in the mean horizontal velocity
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profile can be found in the interplay between the wave-induced shear stress
and the Stokes correction of the shear stress, both acting in longitudinal
direction. These effects are dominant over the transport of longitudinal
momentum by the secondary circulations.

7.3 Recommendations

General

o The GLM flow equations in the 1DV and 2DV model are accurate up to

second order. For the problems that have been considered in the present
study this accuracy is sufficient. If nonlinearity effects are important or
if a relatively strong current is considered, higher order approximations
are required. The entire derivation has to be carried out once again. Al-
ternatively, the GLM equations derived by Andrews & Mclntyre (1978a)
are exact for inviscid flow. If higher order approximations are required for
viscous flow, only the shear stress terms have to be adjusted. However,
as explained in section 3.1 this is a rather tedious task. Further research
is required to find out which approach is most suitable for higher order
approximations of the solutions sought.

Numerical aspects have not been investigated here. In order to improve the
model effectiveness and efficiency from a numerical point of view other and
higher order numerical schemes have to be considered. Furthermore, opti-
mization of the grid resolution and time step, for the 2DV model, will lead
to improvements in accuracy and/or computational time. In the present
2DV model the wave-induced driving force has been taken into account ex-
plicitly in each time step. A more stable solution will be obtained if those
terms containing GLM quantities were solved implicitly.

In order to be valid for strong current applications and boundary layer
streaming problems the WKBJ perturbation series should take more har-
monics into account. Experimental data are available for validation and
verification purposes.

To obtain more reliable results in the wave boundary layer for e.g. bed shear
stress and the velocity profiles, the turbulence model has to be extended
with an oscillatory component that depends on the wave motion and/or is
time-dependent. The wave-part of the turbulence kinetic energy is expected
to be concentrated in the bottom and the free-surface layers and to be small
in the interior region. It will be interesting to see its influence on the wave-
induced driving force.
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2DV model

e The turbulence model should be adapted such that asymmetries in the
turbulent stresses are accounted for. This is not only to produce secondary
currents in a flow without waves, but also to obtain quantitatively better
predictions of the secondary circulations in the presence of waves. This
is also useful in a 3D model, when this is applied to determine secondary
currents in a flume.

e The solution of the wave-related quantities in the side-wall boundary layer,
as presented in chapter 5, depends on a constant eddy-viscosity coefficient.
It is more realistic to prescribe a distribution of the eddy viscosity that
increases linearly from the side wall and is e.g. parabolic in vertical direc-
tion. Another option is to apply the 2DV eddy-viscosity profile related to
the mean motion. This is comparable to the approach in the 1DV model.

e Presently, the k — ¢ turbulence model has been applied using partial-
slip conditions based on shear stress and boundary conditions for log-law
boundary layer velocity profiles. Having several grid points in the wave
boundary layer, computations have been carried out in the viscous sub-
layer as well. The logarithmic law-of-the-wall formulation is not valid in
this region. In order to predict the turbulent motion correctly, a different
approach must be followed. For this purpose Van Kester et al. (1996) pro-
posed a so-called low Reynolds number k —¢ turbulence model which allows
for solving the velocity profile down to the wall. Then a no-slip condition
can be applied at the wall, similar to the 1DV model at the bottom (see
chapter 5).

e If one persists in imposing partial-slip conditions, the sensitivity of the bed
shear stress formulations for the combined wave-current motion in general
and the secondary circulations in particular should be considered carefully.
Several boundary layer models have been developed in the past decades
and can be implemented to gain more insight in the influence of the friction
formulations.

¢ Unfortunately only few measurements of the cross-sectional velocity distri-
bution of wave-induced currents have been carried out so far. Especially
near the side wall there is a lack of experimental data. Also for validation
of the computed side-wall shear stresses a larger set of data is desirable.
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3D model

o In order to develop a complete model in the GLM formulation that de-
scribes the three-dimensional character of the combined motion of waves
and currents in the coastal area, closure criteria for the fluxes of mass, mo-
mentum and energy, as well as the wave and turbulence characteristics have
to be validated and verified against laboratory and field data and existing
model results. These models may be either 3D, quasi-3D, 2D vertical, 2D
horizontal or even 1DV. Recommendations to achieve this goal have been
listed in chapter 6.
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Appendix A

Derivation of wave-action
equation

Andrews & Mclntyre (1978, appendix A) considered ensemble averaging in their
derivation of the wave-action equation. Similar steps like they followed are taken
here to arrive at a wave-action equation in case of a slow-modulation average.
Important in this analysis is the assumption that for any field ¢,

By _
5 =0 (A1)

This property does not hold for general waves. Only for slowly-varying waves
changes in the mean motion may be discarded.

The shifted momentum equations (3.8) are multiplied by 8¢;/8t and averaged.
For the first term this gives,

0=t ¢ _ Ot
5 D u; = ED (0

1 (T 1 (0
:DL(atJ"f)_”ﬁDL(a;>
_*L(af-)
= atju‘; : (A.2)

Latter equality results directly from (2.5) and the fact that <6(u§u§) /8t> =0, in
virtue of (A.1). In manipulating the second term application of (2.15) yields

oJ 9%,

ot~ " otdr; (8.3)

Substitution of (A.3) into the expression that is obtained after application of the
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chainrule (2.11, second part) then leads to the following relation

194 ¢ 194Ky 0pf
33:,

p Ot T8t J ox

7
:,62 (85’ Jwé) ! ‘f;t. (A.4)

The latter term on the right-hand side of (A.4) vanishes due to property (A.1),

3
1 .8J 10 J+13pJ 18p§

Pl iy it il (A.5)

As a result of foregoing the wave-action equation is obtained,

EL(%% §)+%( %KJ) %ft]xu%’ftfﬂ (A6)




Appendix B

Driving forces at different orders
of approximation

The explicit solutions will be presented here up to second order. For the zeroth-
order problem (n = 0) the forcing terms are given by

FOO m(o,o) = f(i("’“) = L% = T}f‘m =0, (B.1a)

G‘go,o) _ ﬂ(,(;’o)/h ’ (B.1b)

GO = g (B.1c)
3 g

At first order (n = 1) all the forcing terms are zero. i.e.

F‘(I,O) = G"1(:1,0) = Hi(l,O) = IA{i(l’O) = Ii(l’o) = T’S’O) =0 , (B2)

PO égl,l) _ bl(l,l) _ I‘{i(l,l) — R—i(l,l) = D — Tigl,l) -0, (B.3)

The equations for the second-order mean motion (n = 2,m = 0) contain
forcing terms which are no longer equal to zero, but contain temporal and (hori-
zontal) spatial derivatives of first-order zeroth-harmonic variables (n = 1,m = 0)
as well as correlations of wave-related variables (n = 1,m = %1). The second-
order approximation of the Stokes correction of the variable ¢ will be denoted
as ¢29. From relation (2.22) the following expression for 3>% can be derived,

_ o ) 11,0900 - L o 3@(0,0)
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with kg the complex conjugate of ks and
functions for n = 2, m = 0 are given by
"(110)

Appendiz B. Driving forces at different orders of approzimation

E = exp(i(kgzs — wt)). The forcing
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Appendix C

‘Boundary layer affected by
orbital motion

The influence of the wave motion on the shear stresses in the vicinity of the bed or
the side wall has been modelled by means of the formulation of Grant & Madsen
(1979). In section C.1 this formulation is briefly revised. The implementation in
the 2DV model of Van Kester et al. (1996) has been outlined in section C.2.

C.1 Grant & Madsen’s formulation of the fric-
tion velocity

The following outline is given for the bottom boundary layer, but is also ap-
plicable to the side-wall boundary by a simple permutation of the coordinates.
For the combined wave and current motion Grant & Madsen (1979) defined the
instantaneous bed shear stress as

T
7o = 30 few (U +07) [ -, ] ; (C.1)

Jun]” Tun|

1 . .
with Jus| = (u? + v?)? the magnitude of the horizontal velocity of the combined
wave-current motion. The magnitude of the maximum bed shear stress can then
be expressed as,

I"'b,ma.x| = %pfcwa I'abl2 y (CZ)
where ,
_ Iﬁa!) (lml)
a=1+ (Iflb| +2 ] cos(¢e) - (C.3)

Here @, is the steady current velocity vector evaluated at a height a above the
bed; ¢, denotes the angle made by @, with the direction of wave propagation;
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% is the maximum near-bottom orbital velocity from linear wave theory. The
combined friction velocity is defined as

N

1
= (L) ? | - (C.4)

The turbulent intensities are characterized by the eddy viscosity v. Within the
wave boundary layer Grant & Madsen (1979) assume v to be of the form

sl = (I7b,max! /0)

v==rludz , 2 <2< by, (C.5)

with the wave boundary layer thickness 61,) defined as
= — [Ux| . C.6

Outside this region the wave-induced turbulence has been assumed to be negli-
gible,
V=Kl 2 , 2> 0y, (C.7)

where the shear velocity u,. is based on the time-averaged shear stress,
|u*c| Uye = Fb/p . (CS)

Regarding the current motion, the region close to the boundary has been assumed
to be a region of constant stress, i.e. relation (C.4) is valid. Therefore,

K |uy| z%—f = |Uge| Use 20 <2< 0y, (C.9a)
n]u*c| z% = |t Une z2> 6y - (C.9b)

The no-slip condition & = 0 at z = z, implies the following logarithmic distribu-
tion for the steady current velocity inside the wave boundary layer,

m= 2 (l—uLcl) log (i> ) 2 <2< 6y - (C.10)

K |24 2

Equation (C.9b) for the velocity distribution outside the wave boundary layer
will also be logarithmic. The two logarithmic distributions are matched at z = 4,
by introducing an apparent roughness length z,., which reflects the turbulence
level that is increased by the presence of the waves. The law of the wall now
becomes

=0 atz= z., (C.11)

and thus u
= 2 0g (i) L 2> 6. (C.12)
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Matching relations (C.10) and (C.12) for the magnitude of the current velocity
at z = 4, results in the following relation

[u.| _ log(du/20)

= . C.13
]~ 10 (5u/250 (c13)
Re-arrangement of (C.13) yields that 2y, satisfies for d,, > 2q,
v
Poe _ (6—”) , y=1- [hee] . (C.14)
) 20 |

The remaining task is to determine the wave-current friction factor f,, or velocity
[u,|. Since Ty max = Tp + Th,max With 5 max the maximum of the oscillating part
of the instantaneous bed shear stress, the wave-related friction velocity is defined
as

‘Fb,max/p = Ium,ma.xl Ui, max - (C15)

Hence |u,| can be expressed as

1
[ua] = | (|tae| vse + %, max] W max) 12 - (C.16)

Given a certain mean velocity field @ the shear velocity |u,.| can now be
determined in two ways, both giving the same result. Firstly, an expression can
be derived directly from (C.12),

K [uc(z1)]
log (z1/24c)
with z,. determined by (C.14). Secondly, relation (C.10) yields

1%
B 2 Iu*w maxl 1’ K |’ll,c(21)|
x| = —7= |1 — y B=———F=, 20<21 <4y .
e 7z [ + {1 + ( B B Tog (21 20) 20 < 21 Sy

(C.18)
Both relations are given here, since the shear velocity depends on the current
velocity. If the current velocity is evaluated in a grid point near the wall that

happens to be in the wave boundary layer, then relation (C.18) has to be used
instead of (C.17).

|Use| = 21> 0y, (C.17)

C.2 Inclusion of bottom and side wall friction

The effects of bottom and side wall friction are incorporation via the boundary
conditions at the bed and the side walls. The mean shear stresses 7, and 7, at
these boundaries are given by

Th = PUgb |u*bl v Ts = PUyg lu*sl ’ (Clg)
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with .y = (Usb, Vas, 0)T and U, = (U, 0, w,s)T the mean shear velocities. Here
only the situation in the bottom boundary layer is considered. Van Kester et al.
(1996) followed Grant & Madsen (1979) in defining the mean shear velocities
which are effected by wave motion. The general idea is that the wave motion
increases the turbulent intensities. Grant & Madsen (1979) modelled this phe-
nomenon by introducing an apparent roughness length 2. (see (C.14)), which
senses the wave boundary layer as a bed with increased roughness,

Y
Ze _ (5_’“) Coy=1- [t _. (C20)

%0 % |{|u*cl Uy + I'u'*w,maxl 'U'-:rw,max“E

Here u,, and %y may are the friction velocities related to the mean and oscillating
part of the shear stress, defined by (C.8) and (C.15). The wave friction velocity
is determined from L
Usw,max = (%fw) 2y, (C21)

where f, is the wave-related friction coefficient, for which an expression given
by Soulsby et al. (1993, p.59) has been applied, and %, denotes the near-bottom
horizontal orbital velocity magnitude. Van Kester et al. (1996) used potential
theory for infinitesimal waves on a uniform current to compute @, and thus
Uswmax- This approach differs from the one used by Grant & Madsen (1979),
who substituted expression (C.5) for the eddy viscosity into the relation between
the wave-related shear stress and the orbital velocity. As a result an expression
was derived for the wave-induced friction velocity in terms of the Kelvin functions
Ker and Kei.

The magnitude of the shear velocity |u.,.| for the mean motion is related to
the magnitude of the mean horizontal velocity evaluated at a position A outside
the wave boundary layer,

K !ﬁ (A + Zbc)l
—_— A> by, C.22
log (1 4+ A/zy) - ( )

as given by (C.17). If A were inside the wave boundary layer, relation (C.18)
should be applied. Relations (C.20) and (C.22) are implicitly related and have
to be solved iteratively. Because the mean bed shear stress must balance the
steady current, the direction of the friction velocity u.. equals the mean flow
direction, thus for each component

[Use| =

(u*c)i = ﬂi% . (023)

The latter approach for incorporation of wave-induced friction is generally
applicable both at the bottom and the side wall. However, the solutions for z
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and u.. depend on the roughness length 2. For a rough bottom this constant is
known, but for the hydraulically smooth side walls z is related to the initially
unknown wall shear velocity,

v

2o = 0.116 ,
¢ |u*0|

(C.24)
with v the kinematic viscosity. Instead of solving (C.20), (C.22) and(C.24) simul-
. taneously, Van Kester et al. (1996) first determined zy from (C.22) and (C.24)

assuming that z,. = 2. After substituting the value 2, in (C.22) the nonlinear
equations (C.20) and (C.22) are solved using Picard iteration.
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