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3D Wave-Current Interactions in Wave-Current Channels
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Abstract

Measurements of mean velocity pro�les in a wave-current ume have shown

some features for which the mechanism is far from trivial. A 2DV model based

on the so-called Generalized Lagrangian Mean formulation is developed to study

the inuence of waves on the mean motion, the mean horizontal velocity in par-

ticular. This inuence can be split in two parts, viz. a direct e�ect of the waves

via wave-induced driving forces and an indirect e�ect of waves via secondary

circulations. To include both e�ects an existing 1DV model is extended by

introducing lateral variations including side-wall boundary layers. Resulting

formulations have been implemented in an existing 2DV non-hydrostatic nu-

merical ow model. Computations for regular waves following and opposing a

turbulent current have been carried out and compared with both experimental

results and results from an existing numerical model.

Introduction

Understanding the mechanism of wave-current interaction is of great impor-

tance for a good prediction of vertical pro�les of horizontal velocities. The

study of these pro�les is relevant from both a hydrodynamic point of view

(bed friction), and a morphodynamic point of view. Observations in labora-

tory experiments by e.g. Kemp & Simons (1982; 1983) and Klopman (1994)

of the e�ect non-breaking waves on a steady turbulent current over a rigid

rough bed show signi�cant and unexpected changes in the pro�les of the mean

horizontal velocity (see �gure 1).

To the authors' knowledge only Nielsen & You (1996) and Dingemans

et al. (1996) presented theoretical models to explain the wave-induced changes

in the Eulerian-mean horizontal velocity pro�les. The model of Nielsen & You

(1996) is based on a local force balance. In a steady two-dimensional ow the
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Figure 1: Eulerian-mean velocity pro�les for the situation of no waves (+),

following waves (�) and opposing waves (�) of the same size (depth 0:5m,

wave period 1:44 s, wave amplitude 0:06m). After Klopman (1994).

vertical variation of the total shearing force per unit area of a cross-section

was balanced by the horizontal variation of the total normal stress. Assuming

linear wave theory, expressions were derived for the mean wave contribution

h~u ~wi and for the local radiation stress. Although their model gives a qualita-

tive explanation of the physical mechanisms involved, quantitative agreement

with Klopman's results was obtained only after a signi�cant ad hoc enhance-

ment of h~u ~wi by a linearly depth-dependent empirical factor. The empirical

adjustment is based on the fact that the interaction with a current induces

extra vorticity of the wave motion.

Dingemans et al. (1996) developed a 2DV model, the results of which were

compared with the wave ume experiments of Klopman (1994). A detailed de-

scription of this model is given in the report of Van Kester et al. (1996). The

e�ect of waves has been incorporated by adding the so-called Craik-Leibovich

(CL) vortex force, consisting of uS�! with uS the Stokes drift and ! = r�u

the mean vorticity. Among others Leibovich (1983) showed that under certain

assumptions the vortex force is the main term in the ensemble-averaged mo-

mentum equations in a so-called GLM formulation. Dingemans et al. (1996)

observed in their simulations that secondary lateral circulations induced by the

CL vortex force caused changes in the vertical structure of the mean horizontal

ow. However, due to poor estimates of the Stokes drift and the CL vortex

force in the boundary layers, quantitative agreement with Klopman's experi-

mental results was not obtained for situations of waves following or opposing
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a current.

Groeneweg & Klopman (1998) developed a 1DV model, based on the Gen-

eralized Lagrangian Mean (GLM) formulation. This approach, in which the

Lagrangian motion is described in a �xed Eulerian framework, has been intro-

duced by Andrews & McIntyre (1978) in order to obtain a clear separation of

the mean and uctuating motion. In the model lateral variations have been

neglected. Comparison with Klopman's results shows both qualitative and

quantitative agreement.

An intriguing point is that two models of Nielsen & You (1996) and Groe-

neweg & Klopman (1998) con�rm the theory that changes of the mean horizon-

tal velocity pro�le are purely caused by phenomena in longitudinal direction,

whereas Dingemans et al. (1996) suppose the secondary lateral circulations to

be the reason for changes in the mean horizontal velocity pro�le in streamwise

direction. Their prediction of the existence of lateral circulations is supported

by laboratory measurements of Klopman (1997).

The purpose of this work is to develop a 2DV model, which describes the

mean ow under the inuence of the wave motion, in a Generalized Lagrangian

Mean (GLM) formulation in order to provide more insight in the e�ect of the

secondary circulations on the mean horizontal velocity pro�le. The work is

presently in a preliminary state and the results of the developed 2DV model

are not yet completely satisfactory. Therefore, the presentation of the model

will not be given in detail and frequent reference is made to Groeneweg &

Klopman (1998) (to be denoted as GK hereafter). General formulations of the

ow equations in a GLM setting as well as a 1DV application of a combined

wave-current problem have been given in detail in that paper.

GLM approach

As already mentioned in the introduction a hybrid Eulerian-Lagrangian ap-

proach, the so-called GLM approach, will be adopted to simulate the com-

bined motion of waves and currents in a ume. For the de�nition of the GLM

theory we refer to Andrews & McIntyre (1978), or for an introductory outline

to McIntyre (1980) and Dingemans (1997, note 2.10.6). The notation in this

paper is exactly the same as applied by GK. Here, only the essential idea of the

GLM theory is outlined. A Cartesian coordinate system (x; y; z) is used, where

z is the vertical direction, x and y the horizontal coordinates in longitudinal

and lateral direction respectively. Central in the GLM description is the map-

ping x! x+ �(x; t), where �(x; t) is a �eld denoting the displacement about

the position x. By introducing '
�(x; t) = '(x + �(x; t); t) for an arbitrary

particle-related function ', Andrews & McIntyre (1978) de�ne a Lagrangian
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mean operator ( )
L
by

' (x; t)
L
=
D
'
�(x; t)

E
; (1)

where in our case h( )i will be a time-average operator. This implies that

the average assigned to the �xed point x is taken over disturbed positions

x+�(x; t). In order that � is a true disturbance, it is required that �(x; t) = 0.

The uctuation '
` is de�ned in a natural way as '` = '

��'
L, and thus '` = 0.

Finally, the di�erence between the GLM velocity and Eulerian mean velocity

is given by the so-called Stokes drift, uS = u
L � u. A Stokes correction '

S

can be expressed in terms of uctuating quantities.

In GK the three-dimensional GLM ow equations have been derived in

a general way. Therefore, the lateral 2DV model, providing a local solution

in a cross-sectional plane, can be obtained just by neglecting variations in

longitudinal direction of GLM quantities, except for the hydrostatic part of

the GLM pressure which is related to the GLM surface elevation �
L
. The

total pressure p
L is decomposed in a hydrostatic and non-hydrostatic part,

p
L = �g

�
�
L
� z

�
+ q

L. The horizontal gradient of the hydrostatic pressure,

@�
L
=@x, is assumed constant over the entire cross-section and chosen such that

the discharge of the combined ow equals the discharge Q of the ow without

waves. A cross-section at a distance x from the wave maker is de�ned as 
(x) =n
(y; z) : �L � y � L; �h � z � �

L
(x; y; t)

o
. Here we restrict ourselves to

vertical side walls and a horizontal bottom pro�le.

The ow equations in GLM coordinates are of the same form as those in

Eulerian formulation. Only the wave-induced driving forces in the momentum

equations are di�erent, and a wave-related correction in the continuity equation

causes the mean velocity to be no longer divergence free.

The wave-induced driving forces are expressed in terms of uctuating quan-

tities in GK. The 1DV model presented in that paper provides the vertical

pro�les of the uctuating quantities as well. In order to take side wall e�ects

into account we adopt a procedure that was also used by Mei et al. (1972),

who analyzed mass transport caused by progressive waves for a situation of

constant viscosity and no initial current. A cross-section 
(x) of the ume

is subdivided into �ve regions, viz. the inviscid core region and the boundary

layers at the bottom, the free surface and the two side walls. This is sketched

in �gure 2.

Analogous to the analysis of Mei et al. (1972) viscous e�ects are neglected

outside the side wall boundary layers. Consequently, the lateral variations of

the amplitude functions of the uctuating quantities can be neglected. The

ow equations for the uctuating motion are then reduced to those derived for

the 1DV problem in GK. The solution of the latter problem will be denoted

by ' = '1. Following e.g. Mei et al. (1972) one can easily show that the �rst

order �rst harmonic velocity including the no-slip condition at the side walls
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Figure 2: Division of a cross-section 
(x) into �ve regions.

satis�es Stokes' shear wave solution given by

~u = [1� exp (�Y )] ~u1 ; (2a)

~v = ~v1 = 0 ; (2b)

~w = [1� exp (�Y )] ~w1 : (2c)

with the factor � = (� i!0=�)
1=2

and Y the distance to the nearest side wall.

The inuence of the mean current and variations of the eddy viscosity � have

been neglected in the side-wall boundary layers. To sum up: the 1DV model is

used to determine the vertical distribution of the uctuating quantities. The

2DV pro�les are obtained by multiplying the 1DV pro�le (subscript 1) by a

y-dependent factor, which only a�ects the uctuating motion in the side-wall

boundary layers.

The distribution of the wave-induced driving forces in the entire cross-

section can now easily be found by substituting the laterally varying oscillating

quantities in the general expressions for the driving forces.

Implementation of GLM equations in existing numerical model

Although the ow equations are given in a GLM formulation, their form is

similar to their Eulerian counterpart. For this reason an Eulerian ow solver

can be used to integrate the GLM ow equations. We have chosen for the

2DV non-hydrostatic ow solver developed by Van Kester et al. (1996). For

the numerics in this model one is referred to loc. cit. After the wave-induced

driving forces S
L
and the GLM-correction term in the continuity equation

have been evaluated, implementation of these terms is straightforward.
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The implementation of the boundary conditions at the bottom and side-

walls needs special care. In Van Kester et al. (1996) partial-slip conditions

are imposed at those boundaries, using a logarithmic law-of-the-wall formula-

tion. This type of boundary condition di�ers from the no-slip condition used

in the 1DV model. Therefore, correct expressions had to be determined for

these boundary conditions in a GLM setting. For the time being the simplest

possible approach has been adopted. The formulation applied by Van Kester

et al. (1996) is based on a formulation of Grant & Madsen (1979) and takes

the presence of the wave motion into account. Given a shear velocity at a

certain distance from the wall, the friction velocity and related shear stress are

determined. This formulation is given in an Eulerian framework. In order to

obtain the GLM shear stress at a closed boundary, the following algorithm has

been applied:

1. The GLM velocity at a certain height or distance from the side wall is

transformed to its Eulerian equivalent at the same height.

2. The formulation of Grant & Madsen (1979) which has been applied by

Van Kester et al. (1996), is used to determine the Eulerian shear stress

at the boundary.

3. The Eulerian shear stresses are transformed to GLM shear stresses by

adding the Stokes correction of the shear stress under consideration.

Finally, for simulating turbulent ow a turbulence model has to be imple-

mented. In a �rst approach a classical turbulence model has been used. Any of

the turbulence models implemented by Van Kester et al. (1996) can be used.

For this study a k � " model was chosen. In order to take the wave inu-

ence into account, boundary conditions for the turbulent kinetic energy and

dissipation are related to the shear velocity near the boundary. As mentioned

above the shear velocities are determined using a logarithmic law of the wall.

For closure of the turbulence model the production term is computed with

Eulerian velocities, which are determined by transforming the GLM velocities.

Model results

Mean velocities have been computed for situations of following and opposing

waves. In order to compare the model results with experimental data, the

initial conditions of one of Klopman's (1994; 1997) measurements have been

applied. In the present model a turbulent current with a constant discharge of

Q = 0:08m3 s�1 was generated in a 1:0m wide ume (L = 0:50m) with a still-

water depth h = 0:50m. A monochromatic wave �eld following or opposing

the current with a wave period T = 1:44 s (relative to the ume) and wave
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amplitude a = 0:060m is superposed on the current. All presented results

refer to the situation at t = 1600 s and have been obtained on an equidistant

grid with horizontal and vertical resolution �x = 0:01m, resp. �y = 0:0125m

and a time step �t = 0:02 s.

In the present 2DV model the wave-induced driving forces depend via

the orbital quantities on the factor � = (� i!=�)
1=2

. In our analysis the

quantity � was assumed independent of the lateral direction. We have taken

� = 10�4m2 s�1 in all experiments, representing a turbulent oscillatory mo-

tion. This choice for � leads to a factor � for which Re(�) = � (!=2�)
1=2

�

�148m�1.

Since velocity measurements have been carried out at �xed locations and

are thus Eulerian, the GLM velocities uL have to be transformed to Eulerian

velocities. In this section these are denoted as U . As already mentioned

U = u
L � uS.

In �gure 3 and 4 the results for the mean velocity distribution in a cross-

section at x = 22:5m from the wave maker and the mean horizontal velocity

pro�le in streamwise direction in the center of the ume are shown for the

situation of waves propagating in the current direction. The agreement with

measurements of Klopman (1997) is only qualitative. The direction of the

computed secondary circulation is correct, but the velocity magnitude is a

factor 2, and at the side walls even a factor 3 larger than measured. Near

the side wall the maximum velocity magnitude is 2:0 cm s�1 and in the center

1:6 cm s�1. The computed secondary circulations are comparable to those ob-

tained by Dingemans et al. (1996). The mean horizontal velocity in the center

of the ume is fairly well predicted by the 2DV model. Compared with the

measurements of Klopman (1994) and the 1DV results of GK there is a slight

overprediction in the lower region of the ume and an underprediction in the

higher region.

In �gure 5 and 6 the results have been plotted for the situation that waves

are propagating in the opposite direction. Once again, the maximum veloc-

ity magnitude near the side wall is 2:5 cm s�1 and in the center of the ume

1:8 cm s�1, which is even an overprediction of Klopman's (1997) experimental

data with a factor 4 to 5. The prediction of the mean horizontal velocity pro-

�le in streamwise direction is even worse. Whereas for the situation of waves

following the current at least the trend was predicted correctly, this is not

true in the opposite case. In the upper 40% of the ume the velocity gradi-

ent seems to vanish whereas the experiments of Klopman (1994) and the 1DV

computations of GK show an increasing velocity gradient.

The side walls should have less e�ect on the mean velocity pro�le in the

center of the ume when a wider ume is considered. The secondary lateral

circulations should then decrease in magnitude. Moreover, the 2DV solution

should converge to the 1DV solution as L ! 1. However, we remark that
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Figure 3: Mean velocity distribution in cross-section for waves following the

current. Note di�erence between horizontal and vertical scale.
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Figure 4: Mean streamwise horizontal velocity pro�le in center of the ume

for waves following the current.
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Figure 5: Mean velocity distribution in cross-section for waves opposing the

current.
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Figure 6: Mean streamwise horizontal velocity pro�le in center of the ume

for waves opposing the current.
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some principal di�erences in the formulation of both models, such as the tur-

bulence model and boundary layer treatment, will induce some di�erences in

the results.

To study the e�ect mentioned above, the same situation with a following

current is considered as before, but now in a 5m wide ume. The discharge

is increased proportionally, Q = 0:40m3 s�1. In �gure 7 the velocity distribu-

tion is shown only in the region 50 cm from the left side wall. The velocity

magnitude is obviously smaller, at most 0:8mm s�1. A circulation cell can still

be observed. Our main interest concerns the mean horizontal velocity pro-

�le in the center of the ume as given in �gure 8. Comparing this with the

distribution obtained in a 1m wide ume only shows a slight di�erence.
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Figure 7: Mean velocity distribution in a part of the cross-section for waves

following the current in a 5m wide ume.

Discussion

Two important philosophies explaining the wave-induced changes in the mean

horizontal velocity pro�les are known so far. One is based on a 1DV local force

balance neglecting lateral variations, and in the other secondary circulations

in the cross-section are essential. In order to �nd out which phenomenon is

dominant a 2DV numerical ow model based on the GLM formulation has
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Figure 8: Mean streamwise horizontal velocity pro�le in center of a 5m wide

ume for waves following the current.

been developed. It is still in a preliminary state and the numerical results

obtained so far are not always satisfactory.

Numerical experiments with the 2DV model for a 1m and a 5m wide ume

give almost similar predictions of the mean horizontal velocity in streamwise

direction in the center of the ume and a signi�cant di�erence for the order of

magnitude of the circulations. One might therefore conclude that phenomena

in streamwise direction are dominant over those in lateral direction. However,

the 2DV model overpredicts the velocity components in vertical and lateral

direction measured by Klopman (1997). Two possible reasons are given here.

Firstly, the computations have been carried out on a regular grid with a grid

size of 1 cm, which was too coarse to represent the side-wall boundary layers

well. These are only a few millimeters thick (order �
�1). An irregular grid

which is �ner towards the boundaries has already been implemented. Results

of these numerical experiments will be reported in the future.

Secondly, in the formulation of wave e�ects in the partial slip conditions and

the k� " turbulence model, the simplest approaches have been applied. GLM

quantities are computed by Eulerian based models. Transformations from

GLM to Eulerian and vice versa have been carried out only at the beginning

and at the end of those processes. Improvement of this approach might lead

to better results for the circulations.

Furthermore, extra attention has to be paid to the mean horizontal ve-

locity pro�le for the situation of opposing waves. Towards the free surface a

completely deviant behavior was observed compared to the measurements and
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predictions with the 1DV model. The cause of this is unknown for now and

will be considered carefully in the near future.
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