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ABSTRACT

Two models of coastal currents are described that allow fully nonlinear wavelike solutions for the limit of
long waves. The first model is an adaptation of a model used by Yi and Warn for finite-amplitude §-plane
Rossby waves in a channel. It utilizes a particular choice of continental shelf topography to obtain a nonlinear
evolution equation for long waves of finite amplitude. The second model describes the waves that form at the
vorticity interface between two regions of constant potential vorticity. Again a nonlinear evolution equation is
obtained for long waves of finite amplitude. For both model equations, numerical results are presented and
compared with the corresponding results for the BDA equation, which is the weakly nonlinear limit for both

models.

1. Introduction

The availability of intensive datasets, obtained both
by remote sensing techniques and by the refinement
of in situ experimental methods, has resulted in the
ability to resolve the structure of flow on the continental
shelf and slope on increasingly smaller scales. It now
seems clear that coastal currents are often characterized
by systems of meanders and “squirts,” which some-
times lead to the formation of detached eddies. On the
theoretical side, the traditional approach to under-
standing this phenomena is to study the linearized sta-
bility of a model current, which is usually assumed to
be uniform in the flow direction. While this approach
may well be successful in identifying mechanisms that
may initiate meander formation, clearly a nonlinear
theory is needed to study the meanders themselves. Of
course, techniques for extending linear theory to the
weakly nonlinear regime are now well understood (for
instance, see Craik 1985 or Pedlosky 1986, for appli-
cations in the geophysical fluid dynamics area), al-
though applications to coastal currents are relatively
few. However, observed meanders are often of a size
which would seem to preclude the direct applicability
of a linearized theory, or even a weakly nonlinear the-
ory. Hence it is desirable to attempt to find solutions
of the fully nonlinear equations. One option here is to
resort, ab initio, to numerical methods. An alternative
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option, and the one we shall pursue here, is to seek
finite-amplitude wavelike solutions of the fully nonlin-
ear equations, since this approach has proved fruitful
in other physical contexts. In this paper we discuss two
models of coastal currents for which we are able to
obtain fully nonlinear wavelike solutions in the limit
of long waves. Of course, the restriction to long waves
precludes a direct application of the present theory to
observations since observed meanders typically have
longshore scales comparable with the offshore scales.
Nevertheless we believe the present study of fully non-
linear long waves is useful for examining finite-ampli-
tude effects and can also serve as a benchmark for (nu-
merical) studies that are not necessarily restricted to
long waves. ‘

The first model, discussed in section 2, is an adap-
tation of a model developed by Warn (1983) and Yi
and Warn (1987) for finite-amplitude 8-plane Rossby
waves propagating on a weak shear flow in a channel.
The main new features here are the replacement of the
B-plane with the continental shelf waveguide, and the
necessity to match the flow on the continental shelf,
where the long-wave hypothesis is used, to the flow in
the adjoining deep ocean where the flow is nearly in
geostrophic balance. The result is a nonlinear evolution
equation similar to that obtained by Warn (1983) and
Yi and Warn (1987),. the principal difference being
that the KdV-type dispersive term in their work is re-
placed here by a dispersive term analogous to that
which appears in the evolution equation describing in-
ternal solitary waves in a deep fluid (Benjamin 1967
or Davis and Acrivos 1967), denoted in this paper as
the BDA equation.

The second model, discussed in section 3, considers
waves on the interface between two regions of constant
potential vorticity. The analysis is in the spirit of the
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work of Stern (1980), Stern and Pratt (1985) and Pratt
and Stern (1986), who studied potential vorticity
fronts, but without the effect of bottom topography,
which is the main new feature here. Although piecewise
constant vorticity models are generally amenable to
the powerful techniques of contour dynamics, here we
restrict attention to the long-wave limit but impose no
a priori restriction on wave amplitudes. The result is
a nonlinear equation similar to that obtained in section
2. In particular the dispersive term is again analogous
to that which appears in the BDA equation.

In both cases the nonlinear evolution equations that
we derive are similar to the KdV, or BDA, equation in
that there is a balance between time evolution, nonlin-
earity and dispersion. We have already noted that the
dispersion is of the same kind as that which occurs in
the BDA equation. However the present model equa-
tions differ significantly from the weakly nonlinear
BDA equation in that there is no necessity to introduce
a small parameter characterizing the magnitude of the
nonlinearity. The model equations discussed here are
fully nonlinear, and consequently the nonlinear terms
are much more complicated than the simple quadratic
term which appears in the BDA equation. For both
cases we present some numerical solutions whose main
aim is to identify the presence of finite-amplitude
waves.

In the remainder of this section we shall present the
equations of motion, using the shallow-water nondi-
vergent approximations for barotropic flow. We use

“nondimensional coordinates based on a horizontal
length scale L, (typical of the shelf width), a time scale
/i7" where f; is the magnitude of the Coriolis parameter,
and a vertical length scale /; (a typical depth). The
nondimensional equations of motion are then

ég—fu+§x=0 (1.1a)
dv
—‘;l—+fu+§‘y=0, (1.1b)
(hu) + (), =0, (l.1¢)
‘where
d=£+u6+v-— (1.1d)

dr a ax dy

Here u, v are the velocity components in the x, y di-
rections respectively and ¢ is the sea-surface elevation.
The coast is located at x = 0, and the ocean depth is
h(x) where h2(x) is an increasing function of x which
tends to Ay as x = oo (see Fig. 1). We shall allow for
a possible discontinuity in 4 at the shelf-break, where
h changes abruptly from A, to /. The boundary con-
ditions at such a discontinuity are derived in Appendix
A. Elimination of ¢ from (1.1a, b) leads to the potential
vorticity equation
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where
Q= (n+/)h (1.2b)
N = Uy — Uy. (1.2¢)

The boundary conditions at the coast, and in the deep
ocean, are zero mass flux in the on—offshore direction,
so that

(1.3a)
hu—> 0, as (1.3b)

Next, from (1.1c), we introduce the transport
streamfunction ¢,

hu=1vy,,
Hence, from (1.2¢)

n=—x/M)x— (y/ )y, (1.5)

and the potential vorticity equation (1.2a) is an equa-
tion for ¢ alone. We now replace x with a new variable
£, where /

hu—>0, as x—>0.

X > 0.

= —y,. (1.4)

=f h(x")dx'. (1.6)
0
Then, from (1.4) and (1.2b) respectively
V==Y, (1.7a)
Q=flh— Y — ¥y /. (1.7b)

Also note that the material time derivative (1.1d) is
now given by

d a

— ==ty =Y.

a Y FY: Ve dy
The equation to be solved is thus (1.2a), where Q is

given by (1.7b)and d/dt is given by (1.8). The bound-
ary conditions ( 1.3a, b) become, in-terms of ¥,

¥,=0, as £—>0
¥, =0, as

(1.8)

(1.9a)

£—> . (1.9b)
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2. Waves produced by shear velocity and topographic
perturbations

a. Theory

In this section we shall suppose that the ocean region
is £ > 1 where & = hy, while the shelf region is 0 < §
< 1. Note that the shelf-break is £ = 1 and corresponds
to x = x; where

X
1 =J; h(x)dx. (2.1)
We shall allow for a discontinuity in depth at £ = 1 so
that A = hg say as £ = 1—. It is shown in Appendix
A that suitable boundary conditions at £ = 1 are con-

tinuity of Au and v, or from (1.4) and (1.7a) respec-
tively,

¥, ¥ continuous at £ = 1. (2.2)
In the shelf region we let
1
@—Ho(é)"'aH(E), (2.3a)
where
Hy(¢) = D + Bt. (2.3b)

Here «a is a small parameter, and so H(§) is a topo-
graphic perturbation. We shall assume that H(0)
= H(1) = 0 so that the topographic perturbation is
locally confined to the shelf. The choice (2.3b) for the
unperturbed topography is made to ensure that the
unperturbed equations have a simple solution to the
fully nonlinear equations (see subsection 2b). Note
that D + B = h,™' > 0, and we must choose D > 0,
and B < 0 in order that 4£(£) is an increasing function
of £. Further, ignoring the topographic perturbation
term aH (&) for the moment, we see that the unper-
turbed depth is (D? + 2Bx)™"? and x, = D + iB
+ O(a).

We propose to discuss finite-amplitude long waves
on a weakly sheared current, in analegy to the theory
of Yi and Warn (1987) for Rossby waves on weakly
sheared currents. Hence we suppose that

Yy~—-VE+ag(E), as y—>—ow0. (24)
The corresponding longshore current is V' — ag; [see
(1.2a)], and hence the unperturbed state is a uniform
longshore current V, while g(£) corresponds to a shear
velocity perturbation. We shall suppose that g(§) is
confined to the shelf zone, so that g(£) =0 for £ = 1.
Further, to ensure that the flow (2.4) satisfies the
boundary conditions (1.3a) and (2.2) we must have
g(0) = 0 and g(1) = g(1) = 0.

Next we anticipate that in the unperturbed flow (i.e.,
o = () waves may propagate with a speed ¢, which we
determine in subsection 2b. Hence we write

s=y—ct, (2.5)
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and we also find it convenient to let

V= %;—CE ; (2.6a)
where
c'=c—V. (2.6b)
Then the condition (2.4) becomes
¢'~E+§,g(£), as s— —co.  (2.7)

Also the potential vorticity equation (1.2a) becomes,

recalling (1.7b) and (1.8)
O+ (Y@ — ¥:0s) =0 (2.8a)

where

1
0=t -c(vit k). @)

To complete the formulation the boundary conditions,
(1.9a, b) become .

¢Y=0, as £—>0 (2.9a)
Y ~§E as £E—> oo, (2.9b)

while the shelf-break conditions become
v, ¢; continuousat &= 1. (2.10)

Note that in developing (2.9a, b) from (1.9a, b) we
must use the asymptotic condition (2.7).

To describe long waves we now introduce the slow
variables

0=es, 7=eal. (2.11)
Then (2.8a, b) are replaced by
aQ, + ' (Y0 — ¥ Q) = 0 (2.12a)

where
2
0= % - C'(\sz +om %o) . (212b)

Subsequently we shall show that the appropriate bal-
ance between the small parameters ¢ and « is o = ¢
when A,/ hg is O(1), or a = €2 if hy/ho is O(€). Also,
from the boundary condition (2.9b) it is useful to put

Y=£(+7, (2.13a)
so that
2
o=L _cfw. + W),  (2.13b)
h h
The boundary conditions (2.9a, b) become
v=0, a £—0, (2.14a)
¥=0, as {—> . (2.14b)
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1) OCEAN REGION

This is the region £ > 1 where the depth 2 = h,.
Here the longshore and offshore scales must be iden-
tical, and since we have already put 6 = es (2.11), we
must now put

¢ =¢eE—1). (2.15).
It then follows from (2.12a, b) and (2.13a, b) that
— f 2(1)
Q==+ 0, (2.16a)
ho
where )
an(l) - C'Qo(l) + EC'(‘I’on:“) - ‘I’¢Qa(1)) =0,
(2.16b)
1
oW = —c’(\If¢¢ to3 \I/”) . (2.16¢)
0

Here we recall that a = ¢ when A,/ A is O(1), or «
= ¢2if h,/hy is O(¢). We now observe that an exact
solution of (2.16b) is Q") = 0, and this is consistent
with the boundary conditions that ¥ = 0 as ¢ - o©
(2.14b), and ¥ = 0 as § = —oo [see (2.7) where g
= 0 for £ = 1]. Indeed, using this latter boundary con-
dition, (2.16b) implies that Q" is O(e¢), and this result
alone would be sufficient for the subsequent analysis.
For simplicity we shall work with the stronger hypoth-
esis that Q'Y = 0. However, it should be noted that
either hypothesis implies that there is a discontinuity
in potential vorticity across the shelf-break, and hence
the equation for conservation of potential vorticity
(1.2a) does not hold at the shelf-break. In Appendix
A we show that the boundary conditions at a shelf-

~break where there is a discontinuity in depth (i.e., /o
> hy) are (2.10) representing the conservation of on-
shore mass transport and longshore momentum. It is
clear that for /s, > h; potential vorticity is not generally
simultaneously conserved, and the present approach
is most useful when there is a significant discontinuity
at the shelf-break. Note that with Q") = 0, particle
paths may cross the shelf-break but their dynamical
effect on the ocean is limited. To take full account of
the transition from the shelf region to the ocean region
requires a more detailed analysis than we can give here,
and, in particular, a detailed examination of the tran-
sition from the shelf variable £ to the ocean variable ¢
(2.15). Here, of course, we have assumed that this takes
place precisely at the shelf-break, and it is in fact this
hypothesis that leads to the conclusion that Q") = 0.
In section 3 we shall consider an alternative model in
which the dynamical effect of particle paths crossing
the shelf-break is taken more fully into account.

With Q") = 0, it follows from (2.16c) that

1
\I/M-}-F\I/,,,,:O,_for ¢>0. (2.17)
o
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Further, we have already noted that since g = 0 in the
ocean region it follows from (2.7) and (2.13a) that ¥
= (0 as # > —oo. The solution of (2.17), with the
boundary condition (2.14b) is now constructed using
Fourier transforms. We find that

/]

1 * _ i
-2—1;”;) F(¥ (¢ =0)) exp(zM 7o cb)dl,

(2.18a)

where
F4) = fw A(0) exp(—ild)ds. (2.18b)

Here F( - ) is the Fourier transform with respect to 0.
Next, using (2.13a) and (2.15) the boundary conditions
(2.10) at the shelf-break £ = 1 (i.e., ¢ = 0) become

Vi (E=1)= h—o B(Y (£=1)), (2.19)

where

By =—— [ 111F(4) exp(il6)dl. (2.19b)
27(' -0 ’

Here B(-) is a pseudodifferential operator and is
equivalent to the Hilbert transform which appears in
the evolution equation describing internal solitary
waves in a deep fluid (Benjamin 1967 or Davis and
Acrivos 1967). Note that here we have used the fact
that ¥, ¥, are continuous at the shelf-break to write
(2.19a) in terms of the shelf region solution W(¢, 6, 7).
In effect the entire effect of the ocean region on the
shelf solution is contained in the boundary condition
(2.19a), which thus replaces (2.10).

2) SHELF REGION

This is the region 0 < ¢ < 1 where the governing
equations are (2.12a, b), subject to the boundary con-
ditions (2.14a) at £ = 0, (2.19a) at £ = 1 and the
asymptotic condition (2.7) as § = —co. The solution
is obtained using the method described by Yiand Warn
(1987). Thus we note that

(99
VoQr — ¥i0s = —¥i| = > (2.20a)
a0 y/=const
provided that
Y+ 0. (2.20b)

Here the notation indicates that we are taking the de-
rivative of Q with respect to § while keeping ' constant.
It follows that (2.12a) becomes

a [ Q,) ey
== - ag' + F . (221
o-2[" ( Vi), E. @2

Here F(y') is a function of ' alone which is to be
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determined by considering the limit # = —oo . Noting
(2.3a, b) we put
F(Y')=f(D+ BY') + aG(Y'). (2.22)
Then taking the limit § - — oo and using (2.3a, b) and
(2.7) we obtain
o
F(E + ;g(é)) =f(D + Bt) + ao(fH(E) — gg).

(2.23)

Comparing (2.22) and (2.23) we can determine G({'),
and we find that

/B
GW)Y=fHW') — ga(y') — % g(¥’) + O(a).

(2.24)

Recalling (2.13a) we now let
V=@ tayW+ ... (2.25a)
YO =¢f4 O, (2.25b)

Here we shall adopt the balance a = ¢ when A,/ hy is
O(e). Then from (2.12b), (2.21) and (2.22) we find
that

¢V + fBY® =,
Vi’ +/BYD = fH(E) — G + 1)

1 o QT © " 62 0
- —,f (T—‘ITTO—)) df —— ' Ho* ¥y,
€ J-w + ¥ ¥{®=const «

(2.26b)

(2.26a)

where
Q. @ =¥, (2.26¢)
The boundary conditions (2.14a) and (2.19a) give

O =0 y¢yM=0, at £=0 (2.27a)
€
VO =0, ¢ = - BOYO (£ = 1)),
at £=1. (2.27b)

Also the asymptotic condition (2.7) shows that
V@ > 0asf—> —oo,and 'V —> g(£)asfd > —0.
The choice (2.3b) for Hy was made to ensure that
(2.26a) was a linear equation for ¥, With the
boundary conditions (2.27a, b) the solution is

TO = 4(6, 7)0(£), (2.28a)
where
o) = 1y sin (n+ d)at) - 2280)

/B

2
o= (n +%) w2, for n=0,1,2, - -+ . (2.28c)
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Thus, as anticipated earlier, the speed c¢ is determined
at this stage by (2.28c¢). Since B < 0, f¢’ < 0 and the
intrinsic speed ¢’ [see (2.6b)] is negative (positive) in
the northern (southern) hemisphere as expected. The
amplitude 4(6, 7) is undetermined at this stage, and
the evolution equation determining A4 is found by con-
sidering the equation (2.26b) and boundary conditions
(2.27a, b) for ¢ (1. Note that 4 — 0 as § - —c0, and
that the eigenfunction v(§) has been normalized so
that v(1) = 1. Next we put

1
g = \Il“’+;g(£) (2.29)
and find that
VP +BY = ND, (2.30a)
where
N = —G(¢ + Av) + G(§)
" ) 2
_l, Q—"_. ao — €c HOZUAga.
oo \1 + A0/, 01 const «
(2.30b)

Since we are assuming that g(0) = 0 and g(1) = g:(1)
= 0, the boundary conditions (2.27a, b) for ¢ ) apply
alsoto ¥ and ¥ - 0 as § > —oo. The compat-
ibility condition for Eq. (2.30a) is

1
EIL AUTEER A0)E fo NOvdg.  (2.31)

This is the required evolution equation for the ampli-
tude A(6, 7). Using the boundary conditions (2.27a,
b), (2.28a) and (2.30b) for NV we find that (2.31)
reduces to

/B (" (A ’
7_[) U(E)dglf_oo (1 + Avg)‘p(o):constdo]

! ec’
+f v(é){G(£+Av)—G(E)}d5+7$(A)
0 angy

621

1
+—cAggf Ho*v?dt = 0. (2.32)
o (4]

The equation (2.32) is similar to that derived by Yi
and Warn (1987) in their study of Rossby waves in a
shear flow. Indeed, the main differences are that here
the eigenfunction v is given by (2.28b) rather than
sinnwéin Yiand Warn (1987), and here the dispersive
term involves the operator B(A4) as well as Ag. We
write (2.32) in the form

] '
f K(4, 4') ‘Zi dv’ + m(A)
—o T

+ 0B(A)[+XAp] =0, (2.33)
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- where the kernel K(A4, A') is given by

! LE+
=2 [ HEHE e
(2.34)
In this expression the equation
v O = £+ Av(§) (2.35)

determines £ = £(4, ¢©) provided that ¢,© # 0
[compare (2.20b)] and hence we must impose the
condition | Av| < I, or

;A[(n +%)1r <1

Following the analysis of Yi and Warn (1987), the
expression (2.34) can be written more compactly in
the form

(2.36)

" oE o
94 o4’

where here, in the integrand £ is determined as a func-
tion of 4(A4')and ¢ ¥ from (2.35), and we recall from
(2.28b) that v(1) = 1. Next the nonlinear term m(A4)
and the coeflicients é and A are given by

K(4,4") = 2f0 dy®, (2.37)

. 2 1 )
. m(4) = mﬁ) V(E){G(£ + Av)
— G(§)}dE,

5= 2ec’
Otho(n + %)2%‘2 ’
_ 2¢2¢!
a al(n+ 3)°x?

Equation (2.33) is an integro~differential equation for
A. The first term represents the evolution of A4, the
second term is a nonlinear term, and the last two terms
represent linear dispersion. When A,/ hg is O(1), we
choose @ = ¢, and 6 is O( 1) while X is O(¢€). Hence we
have placed this term in brackets in (2.33) as it can
then be ignored. However, if /;/ hy is O(e), we choose

= ¢2, and then both § and X are O(1), so that both
the dispersive terms in (2.33) must be retained. In the
limit 4 = O it follows from (2.34) that K(A4, A") =
1, and (2.33) becomes an equation of the KdV -type.
The nonlinear term m(A4) is given by (2.38a) and its
precise form depends on the choice of G(£), which in
turn is defined by (2.24). If we suppose, for instance,
that

g(&) = BiE(1 — £)%, H(E) = b1 — §), (2.39)

then G(£) is a cubic polynomial in £ and m(A4) is a
cubic polynomial in 4,

(2.38b)

1 .
f Hy*v%dE.  (2.38¢)
0

m(A) = 714+ 37247 + 2 y;4°, (2.400)

(2.38a)
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where

1 1 :
Y1 =J; v2Gd§, ’72=J; v’Gyds,

1 .
73=L U4G555dg. (240b)

The coeflicients v, v, and 73 are readily calculated

from (2.24), (2.39) and (2.40b). The linear term in

(2.40a) with coefficient vy, can be omitted, since a Gal-

ilean transformation 6 — ¢ — ;7 will remove it. To

show this we must use the identity

B. 1 aAI 7
K(4,4) %0 ag’' = A,

-0

(2.41)

which may be readily established from (2.37).

Steady solitary wave solutions of (2.33) have the
form A(#), where # = § — wr and w is the wave speed,
or more precisely aw is the correction to the basic speed
¢. Substitution into (2.33), and utilization of (2.41),
thén gives

—wA + m(A4) + 6B(A)[+vA4u] = 0. (2.42)

For the case ¢ = 0, the solitary wave solutions of (2.42)
have been discussed by Warn (1983). For the particular
case when m(A4) is given by the cubic polynomial
(2.40a), it reduces to the integrated form of the mod-
ified KdV equation, which has the solitary wave solu-
tion (see Kabutani and Yamasaki 1978 or Miles 1979)

4= sech2(8/8)
1 — btanh?(8/8)°

(2.43a)
where

1 1 4
w— v =§’y2a+ﬁ'y3a2=-—— (243b)

g*’
a |
G (1=b)=5ma+iya.  (2430)

For the solutions to be bounded, » < 1, which implies
that either y3a/vy2 > —2 or ysa/v, < —4. Of course,
when v3 = 0, b = 0 and (2.43a-c) reduce to the well-
known “sech?’-solitary wave solution of the KdV
equation. It is also of interest to note that when Avy;
< 0, there exist borelike solutions,

A=—-2(1 +tanh(§/B)}, (2.44a)
RE]
where
2
Y2 4)\
—y == 2.44b
w Y1 373 '32 s ( )

which correspond to the limit 4 — 1 in (2.43b, c).
On the other hand, when A = 0 and m(A4) is given

by (2.40a) with v3 = 0, Eq. (2.42) reduces to an in-

tegrated form of the equation which describes internal
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solitary waves in deep fluids (Benjamin 1967 or Davis
and Acrivos 1967), which we shall call the BDA equa-
tion. It has the solitary wave solution

a

= —————— 4
A 1T G/5)2 (2.4523)
where
1 )
W“‘Yx=z’)’2a=3- (2.45b)

However, when v; # 0, or m(4) is given by some other
nonlinear expression than (2.40a), explicit solitary
wave solutions of (2.40a) do not appear to be known.
A similar situation exists when § and A are both non-
zero, although when m(A) is given by (2.40a) with v;
= 0, we have found the solitary wave solution

1 g
A= a{l + (9/6)2 + (1 n (9/B)2)2] (2463)
where .
wom=sgm@+or=5(1+50), a6
Y1 43 Y2 5 5 ’ .
5“553(“’;)’ (2.46¢)

(2.46d)

However, this solution is just a curiosity as it is isolated
in parameter space, since (2.46¢) shows that § (and
hence w, a) must take a unique value.

b. Numerical results

The equation to be solved is (2.33), where we now
assume that m(A) is given by (2.40a) with v, = 0. As
it stands (2.33) can be regarded as a Volterra integral
equation of the first kind for d4/dr. The numerical
solution of such integral equations is generally ill-posed,
and hence, as in Yi and Warn (1987), we convert
(2.33) to an integral equation of the second kind by
differentiation with respect to 6. The result is

!

L 94
A,+Aof K(A,A’)-é—dﬂ’
—o T

1

K a) A+ 0B(4) + [Muw]} = 0
(2.47a)
where
coa = Kl
R(4, 4) = 250 (2.47b)

The numerical procedure for solving (2.47a) is a pseu-
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dospectral method of a kind developed by Fornberg
and Whitham (1978) for equations of the KdV-type.
The novel feature here is the integral term. The method
of treating this term, and other details of the numerical
scheme are analogous to those used by Yi and Warn
(1987) for a similar equation, and we refer the reader
to this publication for further information.

In the small-amplitude limit 4 — 0, K(4, 4’) = 1
and (2.42a) reduces to

A-,- + ‘YzAAg + 63(/45) + [)\Aoge] = 0. (248)

When the term [\ Aggp] is omitted, (2.48) is the BDA
equation. On the other hand, when é = 0 (i.e., iy =
o) and the term [AAgy,] is retained it is the KdV
equation. Thus, the equation (2.47a) can be regarded
as a higher-order nonlinear extension of either of these
canonical equations, and it is from this point of view
that we shall present our numerical results. Since the
integral equation discussed by Yi and Warn (1987)
corresponds to the case § = 0, here we shall concentrate
on the opposite case when the term [ A4g] is omitted
(i.e., we set A = 0), but é is nonzero.

In choosing numerical values for the constants 4,
v32, v3 and A, we note that the first two are disposable
since a rescaling of the variables 7 and 6 allows both
to be chosen arbitrarily. If v, > 0 (<0) the sign of §
is preserved (changed), while the sign of 7 is, of ne-
cessity, preserved. Note also that § has the same sign
as ¢’ [see (2.38b) where ¢' is positive in a Southern
Hemisphere scenario, see (2.28c)]. Here we shall put
5 = 2.5, v, = 10 and vary the remaining parameters,
vsand \. Also we shall only consider the fundamental
mode n = 0 [see (2.28b)]. For the initial condition we
choose

ao
1+ {(8—00)/Bo}*

A(r=0)= (2.49)

Varying the parameters ap and 3 allows us to generate
a variety of solutions. It is pertinent here to recall the
condition (2.36) which, with n = 0, implies that we
must choose aq so that |ag| < 2/x. The parameter 8,
simply determines the origin for the #-coordinate, and
in each case is chosen to fit the maximum information
into the computational domain.

At first we choose y3 = 0 and A = 0, and, as discussed
above we shall always put v, = 0. We have already
shown that for this parameter setting, the BDA solitary
wave (2.45a, b) is a solution of (2.47a), as well as
being a solution of the BDA equation (2.48). Hence
interest for this case centers on the time evolution of
the solutions of the fully nonlinear equation when
compared with the small-amplitude limit (2.48). We
put By = 10 and consider the numerical integration of
(2.47a)for a range of values of go from 0.1 to 0.5. First,
we note that when aqp = 0.1, oy = 46/, = 1, thus
satisfying the condition for a solitary wave solution
(2.45a, b). For this case, the numerical integration in-
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deed produced a single solitary wave. A typical result
for other values of a, is shown in Fig. 2 for a; = 0.3.
We see that a well-defined wave has emerged, accom-
panied by the formation of a secondary wave; although
it cannot be seen on the scale of the figure, a third wave
has also formed, together with some trailing oscilla-
tions. These features are qualitatively similar to the
behavior to be expected from the BDA equation (2.48),
which for this particular initial condition, would be
expected to produce three solitary waves. It is pertinent
to note here that for the BDA equation (2.43) the
choice of ay is immaterial provided that ay3, is fixed,
since a rescaling of 4 allows g, to be chosen arbitrarily.
However, this is not possible for the fully nonlinear
equation (2.47a). While the time evolution of the wave
field is analogous to that of the BDA equation (2.48),
a major difference is the presence of the constraint
(2.36) (here with n = 0) for the fully nonlinear equation
(2.47a). For the case ag = 0.2, the numerical results
indicate that the constraint is satisfied for all times 7
= 0. However, for a;, = 0.3, the constraint is violated
at 7 = 7., where 7, =~ 37; further as qq is increased, 7.
is decreased. Once 7, is reached, the numerical inte-
gration cannot be continued further, and hence for
these cases, the final form of the wave field cannot be
determined. We recall that the constraint (2.36) is due
to the requirement (2.20b) that ¢} # 0, or more pre-
cisely ¢; > 0. Recalling (1.7a) and (2.6a), and that
here ¢’ is positive, we see that the constraint is equiv-
alent to v < ¢, where we recall that v is the longshore
velocity, and c is the wave speed defined.by (2.6b) and
(2.28c). Thus the constraint, in a frame of reference
moving with speed c, is equivalent to the requirement
that the relative longshore velocity should be negative,
and hence excludes the presence of regions of reversed
flow. It would be tempting to conclude that the con-
straint can be interpreted as a criterion for wave break-
down. However, we adopt the more cautious view that
the constraint is a consequence of our formulation of
the problem, and that waves with regions of reversed
flow are not automatically excluded.

VOLUME 20

Next, we retain the conditions y; = 0 and X = 0,
and again use the initial condition (2.49), but now
choose ap < 0. A typical result is shown in Fig. 3 for
ao = —0.3 and 8, = 10. With the exception of the sign
of ay, the parameter setting is the same as that for Fig.
2. However, the wave field now consists of an oscilla-
tory wavetrain propagating in the negative 6-direction.
Again these features are typical of the behavior to be
expected from the BDA equation (2.48), which for
this negative initial condition would produce a similar
trailing oscillatory wavetrain.

Let us now turn to the case when 73 is not zero,
although we still put A = 0. Note that for the illustrative
examples (2.39), 3 is zero for a purely topographic
perturbation (i.e., 8; = 0, but 8, ¥ 0); otherwise v,
will generally be of comparable magnitude to y,. Here
we put ;3 = +20 so that |vy;] = 2+,. Typical results
for these two cases are shown in Figs. 4a, b, where we
have again used the initial condition (2.49); the results
shown are for q; = 0.2 and 8, = 10. Referring to equa-
tion (2.47a), where m'(A) is obtained from (2.40a),
we see that the effect of the parameter 3 on the non-
linear term m’'(A)A, is to replace the term v, A4, with
(y2 + 1y34)AA4,. Thus, with our positive initial con-
dition, we would expect the case v3 = 20 (—20) to
resemble the corresponding case for v; = 0 but with
an increase (decrease) of the effects of nonlinearity.
This is apparent in Figs. 4a, b, since in Fig. 4a for v,
= 20 a secondary wave can be seen in addition to the
main well-defined wave, a feature which is not apparent
in Fig. 4b for v; = —20. Also the main wave is higher
and steeper for y; = 20 compared to y3; = —20. In
both cases the general features are comparable with the
case v3 = 0 (see Fig. 2) when due account is taken of
the increase (decrease) of the effects of nonlinearity.

Finally, in our discussion of (2.47a), we consider
the effect of allowing the coefficient A to be non-zero,
in order to consider the influence of KdV-type disper-
sion vis-a-vis that of BDA-dispersion. We set v3 = 0
and A = 2.5, with 6 and v, retaining the values set
previously. We again use the initial condition (2.49),

T AR

35. \§\§\\“‘\
= @

28. ———————————"' = X\\\

21. —‘_—_—_‘_———/ = ——————
_—__—___—__"/ A

14. -

=—— #
7. g = .
M 4 ;
&%/Agza O
0. 32. 64. 96. 128. 160. 192. 224, 256.

FIG. 2. Results for the numerical integration of the nonlinear evolution equation (2.47a). The
parameter setting is § = 2.5, A = 0, y, = 10, 43 = 0. The initial condition is (2.49) with g, = 0.3

and G, = 10.
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F1G. 3. As in Fig. 2, but a, = —0.3.

set 8o = 10, and consider the numerical integration of
(2.47a) for a range of values of ay. A typical result is
shown in Fig. 5 for gy = 0.3. This should be compared
with Fig. 2 which shows the result for the same param-
eter setting except that A = 0. The results are qualita-
tively similar; as in Fig. 2, a well-defined main wave
has emerged, accompanied by the formation of a sec-
ondary wave. However, a third wave could not be
identified, possibly because the integration was ter-
minated at 7 = 20 (in contrast to + = 35 in Fig. 2).
The main wave is slightly smaller in amplitude, slightly
slower and slightly wider, than the corresponding wave
in Fig. 2.

3. Waves on a potential vorticity front
a. Theory

In this section we shall consider the waves that form
on the interface which separates two regions of constant
potential vorticity. As we foreshadowed in section 2a
one of our aims here is to construct a model that takes
into account the dynamical effect of particle paths
which may cross the shelf-break. The analysis is anal-
ogous to the long-wave limit of the work of Stern and
Pratt (1985) and Pratt and Stern (1986 ), who consid-
ered similar problems to that being discussed here but

T
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FIG. 4. As in Fig. 2, but the parameter setting is § = 2.5, A = 0, v, = 10 and (a) y; = 20,
(b) v3 = —20. The initial condition is (2.49) with @, = 0.2 and 8, = 10.
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F1G. 5. As in Fig. 2, but the parameter setting is 6 = 2.5, A = 2.5, vy, = 10, v3 = 0.
The initial condition is (2.49) with gy = 0.3 and 3, = 10.

without the effect of the bottom topography. Here we
shall suppose that the depth A(§) is given by

1
e Ho(&),
where Hy(§) is everywhere continuous, finite and tends
to hy ! as £ = oo. Specific forms for Hy(¢) will be
defined later. However, it is useful to define £ = 1 as
the shelf-break, where we anticipate that /# will be ef-
fectively equal to /4 in &£ > 1.
Suppose that £ = L(y, t) denotes the interface be-
tween two regions of constant vorticity, where L > 0
and L - 1 as y = —oo0. Thus we put

0=0,, 0<t<L, (3.2a)

Q=0Q, &>1L, (3.2b)

where Qg = f/hy, and Qp # Q,. This expression for
the potential vorticity satisfies the potential vorticity
equation (1.2a) for all points, except those on the in-
terface, where the following boundary conditions must
hold,

(3.1)

continuous at £ =L, (3.3a)

\05 ‘r,/E

J
L= oy {UL,y,0D}. (3.3b)

These boundary conditions are derived in Appendix
B. In addition the boundary conditions (1.3a, b) must
be satisfied at the coast, and at infinity respectively. To
describe long waves we introduce the slow variables

T=e, (3.4)

where ¢ is a small parameter.

Y=¢,

1) SHELF REGION

This is the region 0 < £ < L. Using (3.2a) and (3.4)
we see that (1.7b) becomes

fHo — Y — €Ho'¥yy = Q1, (3.5)
while the boundary condition (1.3a) will be satisfied

by choosing ¥ = 0 at £ = 0. Omitting the term of O(?),
the solution of (3.5) is

Y= —V(Y, T)i—3 Q& +fI(5), (3.62)
where

3 5’
I(¢) =fo dt’' A Hy(&)dE'. (3.6b)
Here V (Y, T) is undetermined at this stage, and rep-
resents a longshore current at the coast (see 1.7a). The
boundary condition (3.3b) now becomes [to O(e?)],

d 1 2
= a—Y[_VL ~3 oL +fI(L)] . (3.7)
This provides one equation linking L and V. A second
equation is needed, and this will be obtained from the
boundary conditions (3.3a) and the solution in the
ocean region.

Lr

2) OCEAN REGION

This is the region £ > L. As we intimated in section
2 [see the first paragraph of subsection a(1)] strictly
speaking it is necessary to use an intermediate matching
to describe the transition from the shelf region where
¢ scales with 1 to the outer ocean region where £ scales
with ¢ ~'. However, for simplicity, we describe here an
alternative procedure which sub-divides the ocean re-
gion into two parts, L < £ < & and £ > &. Here &
scales with 1 and is chosen so that L < £y forall Y, T
(e.g., a simple choice could be & = 2, and then the
solution must satisfy 0 < L < 2). In L < ¢ < &, ¢
scales with 1, but in £ > &, & will scale with ¢”'. In
effect the intermediate matching is compressed into
the location £ = &, where we require ¥, ¥, to be con-
tinuous. For this procedure to be effective it is essential
that the final result, the evolution equation for L,
should not depend on &, and indeed we find this to
be the case.
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For L < ¢ < & we proceed similarly to subsection
1. Thus (1.7b) becomes

fHo — ¥ — €Ho'Yyy = Qo, (3.8)

where we recall that Qy = f/hy. Omitting the term of
O(€?) the solution of (3.8) is

V=C- Wi QE +/IE),  (39)

where C, W are functions of Y, T, and are undeter-
mined at this stage. They are found by imposing the
continuity conditions (3.3a). We then find that

y=-VE+(Q - Qo)( L? - LE)

—3 0%+ fI(5). (3.10)

For ¢ > &, we proceed similarly to the analysis of
the ocean region in section 2a(1). Thus we put

¢ = e(£ — &) (3.11)
and since / is effectively equal to 4, here, we see that
(3.8) becomes

1
Voo +h_02¢n'=0 (3.12)

Using the boundary condition (3.1b) the solution of
(3.12) is
y=C—

where

WO(& - EO) + \I/(d)’ Y, T)7

e l¢
ho

(3.13b)
We recall that the Fourier transform & (-) is defined
by (2.18b). Here Cy and W, are constants, and the
first two terms in (3.13a) are needed to allow for a

uniform longshore current (i.e. W,) in the ocean re-
gion. We note that

1
¥, (¢=0) =;l—0i3(M)

(3.13a)

\I/——f F(Y (¢ = 0))exp(llY

(3.14a)

where
MY, T)=¥(¢ =0), (3.14b)

and the operator B( - ) is defined by (2.19b). Next we
impose the conditions that ¥, ¥, are continuous at §
= &0, and we note that the main reason for introducing
o is so that the Fourier transforms in (3.13b) and
(3.14a) can be matched across a straight line, rather
than the variable interface £ = L. We find that

~VEo + (0 - Q0>(§ L* - Lso) ~ 3 oo’

+fI(&) = Co+ M, (3.15a)
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=V —=(Q1 — Qo)L — Qobo + ST’ (%)

= —Wp + — B(M).
ho

This pair of equations determines A and V in terms
of L and hence closes the evolution equation (3.7).

(3.15b)

3) RESULTS

To proceed, we first note that since 4 is effectively
equal to A, for £ > 1, we may deduce from (3.6b) that

2
I(§) = 257+I,£+12, for £>1, -(3.16a)
0
where
© 1
I, = fo [Ho(f) - h—o}df, (3.16b)

0 0 , L ,
12=—L dEJ; [HO(E)—hO]dE. (3.16¢)

Next we suppose that L = 1, V= Vyand M — 0 as
Y = —oo. Taking this limit in (3.15a, b) we find that

QO) +f125

Wo=Vo+(Q1— Qo) — fh. (3.17b)

Then using the expressions (3.16a—c) and (3.17a, b),
we find that (3.15a, b) simplify to

M =2(Qi = Qo)(L* = 1) + O(e),

Co = —£Wo +3 (0 = (3.17a)

(3.18a)

V= Vo= =(Q = Qo)(L = 1) = 3= B(M), (3.18b)
which are the required relations expressing M and V'
in terms of L. The O(¢) term in (3.18a) will not be
needed as it gives only an O(€?) correction to (3.18b),
and we have already rejected terms which are O(¢?)
in (3.5) and (3.8). Finally the expressions (3.18a) are
substituted into (3.7) to give

J
LTZE,[_VOL +(Q1 — Qo)L(L — 1)

- % O\L* + fI(L) + -;5 ’B(M)} , (3.19a)
0
where

M=2(Q= Q)L —1).  (3.19)

This equation can be further simplified by writing
(3.6b) in the form (compare (3.16a))
2 ')
e =5+ he+ Bt [ JEde (3200
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where

J(§) = fj {Ho(E) - hio}df. (3.20b)

On substituting (3.20a) into (3.19a) we obtain
Lr=(-Vo+fL)Ly+ (Q1 = Qo)(L — 1)Ly

—fJ(L)Ly + [ 53(M)} )

Y

(3.21)

With M given by (3.19b), this is a nonlinear evolution
equation for L in which the nonlinear terms derive
both from the vorticity discontinuity (Q; — Qp), and
the topographic term J(L) (3.20b), while the dispersive
term involving the operator B( - ) is also here nonhnear
The error term in (3.21) is O(€?).

To assist in the integration of (3.21) we now intro-
duce some further changes of variable and rescaling.
We put

L=1+4, (3.22a)
0=Y—-Vo—fINT, 7=101—0lT, (3.22b)
J(L) = —(Q: — Qo)K(L). (3.22¢)

Note here that since 4 is effectively equal to A, for £
> 1, J(L)=0for L= 1,andso ¥V, — fI, is the speed
of an infinitesimal long wave on the interface. Using
(3.22a-c), (3.21) becomes

TA, + Ady + fK(1 + A) 4

€ 1 _
+[h—0(1 + A)B (A+§A2)} =0,

[

(3.23)

where the alternate signs refer to the cases Q) = Q
respectively. Unlike the case considered in section 2
-the dispersive term here remains of O(e) but is, of
course, needed to oppose wave-steepening. We shall
seek solutions of (3.23) such that 4 = 0 as § = oo
and subject to the restriction that 4 > —1 (correspond-
ing to L > 0). In the limit 4 — 0, (3.23) reduces to
the deep-fluid internal solitary-wave equation derived
by Benjamin (1967) and Davis and Acrivos (1967),
which we have denoted here as the BDA equation. In
the absence of the topographic term [i.e., K(L) = 0]
it agrees in this limit with the analysis of Stern and
Pratt (1985) of vorticity fronts. The fully nonlinear
form (3.23) has some similarities with the small-cur-
vature, finite-amplitude equation of Pratt and Stern
(1986) (see also Pratt 1988) for potential vorticity
fronts in the absence of topography. In considering
(3.23) we shall always assume that the coefficient of
A, is +1 corresponding to Q) < Qp. For the case Q;
> Qp, the transformation 6 — —6 reverses the sign of
the coefficient of 4,, and leads to the same equation.
Finally in order to obtain numerical solutions to (3.23)
we must give an explicit form for K(L). For simplicity
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we choose Hy(§) = D + BE, 0 < £ < 1, which is the
same depth profile used in section 2 [see (2.3b)]. We
then find that

fK(1+4)=< 7A2H(—A), (3.24a)

where

=fB(Q1 — Qo).

Here H(-) is the Heaviside function.

(3.24b)

b. Numerical results

Equation (3.23) was integrated numerically using a
pseudospectral scheme analogous to that developed by
Fornberg and Whitham (1978) for the Korteweg-de
Vries equation, and similar to that used for (2.47a) in
section 2b, although now, of course, without the com-
plications caused there by the integral terms. In the
small-amplitude limit 4 — 0, (3.23) reduces to the
BDA equation. .

Ao+ Ado + 5 B(4g) = 0 (3.25)
0

which has the solitary wave solution [cf. (2.45a, b)]

a .
A= 170 —on)/ AR’ (3.26a)
where
_a__¢€
w= 3" hp (3.26b)

In our discussion of (3.23) we shall use this result as
a benchmark, and hence use the initial condition [cf.
(2.49)]

Qo

L+ {(6—00)/Bo}?"

For the BDA equation (3.25), with ao80 = 4¢/ h this
will produce the solitary wave (3.26a) with speed w
given by (3.26b). In choosing numerical values for the
coefficients v and ¢/ Ay, we note that €/ Ao is disposable,
even though ¢ is a small parameter, since a rescaling
of the variables 7 and 8 allows it to be chosen arbitrarily.
However v is not disposable. We choose €/ 4, = 0.25,
and either set ¥ = 0 corresponding to the effective ab-
sence of any topographic effects, or set v = %1, the
alternate signs corresponding to a northern or southern
hemisphere scenario respectively (see ( 3 24b) and recall
that we have chosen Q; < Q).

First we put y¥ = 1 and consider the numerical in-
tegration of (3.23) with 8o = 10 for a range of values
of a (0.1 to 0.5). A typical result is shown in Fig. 6
for a; = 0.3. In general the results are similar to the
analogous results for the BDA equation (3.25) [and
also to our results for the numerical integration of

A(r=0)= (3.27)
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FIG. 6. Results for the numerical integration of the nonlinear evolution equation (3.23). The
parameter setting is ¢/h, = 0.25, ¥ = 1. The initial condition is (3.27) with g, = 0.3 and 8,

=10.

(2.47a)]. Note that for ag = 0.1, ayBy = 4¢/hy thus
satisfying the condition (3.26) for a solitary wave so-
lution of the BDA equation (3.25). For this case the
numerical integration indeed produced a single solitary
wave. As g is increased, more waves are produced.
For the case ap = 0.3 we see from Fig. 6 that in addition
to the main wave, a secondary wave is forming; al-
though it cannot be seen on the scale of the figure, a
third wave is also forming together with some trailing
oscillations. These features are qualitatively similar to
the behavior to be expected from the BDA equation
(3.25), which for this particular initial condition would
be expected to produce three solitary waves. To com-
pare the main wave produced with the solitary wave
solution of the BDA equation (3.25), the numerical
integrations were repeated with ay8, = 1 (i.e., aoBo
= 4¢/hy) and the same range of values of a,. In Fig. 7
we plot the numerically determined speed w, width 8
as functions of the amplitude a. Here 28 is defined to
be the width of the wave when the amplitude is ia,
where a is the amplitude at the crest. Note that there
is some uncertainty in determining w and 8, as the
waves were not quite steady throughout the time of
the numerical integration. Nevertheless, the results give
some quantitative indication of how the speed w and
width 8 vary with amplitude a. In Fig. 7 we compare
these numerical results with the corresponding predic-
tions (3.26b) of the BDA equation. We see that the
waves are wider, for a given amplitude, than the cor-
responding BDA solitary wave, with the trend increas-
ing as the amplitude increases. However, the speeds
are very close to those of the corresponding BDA sol-
itary waves. Finally we note that with the choice aq
> 0, the wave field produced has 4 > 0 except in the
region of the trailing oscillations, which were generally
of very small amPlitude. Hence the topographic term
(3.24a) whose coefficient is v, makes only a very small
contribution, since it is nonzero only when 4 < Q. Thus
we would expect the choice of «v, either positive or
negative, to have very little effect on the solutions when
the initial condition has gy > 0. Indeed, repeating the

numerical integrations with the same initial conditions
described above, but putting v = 0, gave results that
were numerically indistinguishable from those for
vy =1
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FIG. 7. Results for the amplitude, speed and width of the waves
found by numerical integration of (3.23). (a) A plot of the amplitude
aas a function of 87!, where 8 is the width. (b) A plot of the amplitude
a as a function of the speed w. The numerical results are denoted by
(X), and the corresponding results (3.25) for the BDA equation are
denoted by the solid straight line.
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Next we put v = 1, 8o = 10 but choose gy < 0 in
the initial condition (3.27). A typical result for g
= —0.3 is shown in Fig. 8. The wave field now consists
of an oscillatory wavetrain propagating in the negative
6-direction. Again these features are typical of the be-
havior to be expected from the BDA equation (3.25)
for this negative initial condition. Since, for a; < 0, the
choice of v is now significant [see (3.24a)], the nu-
merical integrations were repeated with v = —1. The
results are generally similar to the case ¥ = 1, but the
evolving wave field is larger in amplitude and extent,
and is faster in its development. The reason for this is
that the nonlinear term in (3.23) is, with 4 < 0, A(1
+ 1yA4)A4,. Hence the nonlinearity is increased (de-
creased) when v < 0 (>0).

Finally we note that in the theoretical development
of this section we chose to place the shelf-break at ¢
= 1, which is the same location as the vorticity interface
as Y — oo (i.e. L~> 1 as Y - o). This was done for
simplicity, and we now explore the consequences of
relaxing this condition and supposing instead that the
shelf-break is at £ = £;. Then the theoretical develop-
ment of section 3a is largely unchanged, and (3.23) is

obtained as before. If we again choose Hy(£) = D + BE, .

T
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but now this holds for 0 < £ < £, we find that, in place
of (3.24a),

SK(1 +4)= % v(A; — A)’H(A, — 4), (3.28)
where v is again given by (3.24b),and 4, = §, — 1. If
A; < 0 and we use the initial condition (3.27) with a,
> 0, then the wave field produced has 4 > 0 except
for some very small amplitude trailing oscillations. In
this case the topographic term (3.28) does not con-
tribute to the solution for any value of v. Only if A4,
> ( will the topographic term (3.28) have some influ-
ence on the solution for the case when ao > 0. In Fig.
9 we show the result of the numerical integration of
(3.23) for the initial condition (3.27) with a, = 0.4
and B = 10; weset 4, = 0.2 and v = £5. The evolving
wave field is qualitatively similar to the case y = O,
although the main wave to emerge is larger in ampli-
tude, but slower. Further, for the case v = —5 the main
wave is larger in amplitude and slower in speed than
for the case v = 5. The reasons for this behaviour can
be sought by considering the impact of the topographic
term (3.28) on the nonlinear term AA4,. Note that the

topographic term equals y4,%> when 4 = 0 (since here
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F1G. 9. Results for the numerical integration of the nonlinear evolution equation (3.23), when
adapted by (3.28). The parameter setting is ¢/ /4o = 0.25, 4, = 0.2 and (a) v = 5, (b) v = —5.
The initial condition is (3.27) with g, = 0.4 and 8, = 10.
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Ay > 0), and this term can be interpreted as a contri-
bution to the speed of a wave. On this basis we would
expect waves for v > 0 to be faster than waves for v
< 0. However, relative to this level of $y4,?, the to-
pographic term ( 3.28 ) enhances the nonlinearity when
v < 0, and reduces it when v > 0; this tendency runs
counter to the effect of the term 1v.4,? when considered
alone, since an increase in nonlinearity generally im-
plies an increase in speed. Thus, it is possible, as our
numerical results show, for the topographic term (3.28)
to have the effects described above.

4. Summary

In this paper we have described two models of coastal
currents which allow us to obtain fully nonlinear
wavelike solutions in the limit of long waves. The first
model, described in section 2, uses a particular choice
of shelf topography (2.3b) for which, at leading order,
the potential vorticity is a linear function of the trans-
port streamfunction [see (2.21) and (2.22)]. This de-
vice enables us to derive the nonlinear evolution equa-
tion (2.47a) for long waves without any restriction to
small-amplitude waves, except for the constraint
(2.36). Topographic and shear perturbations contrib-
ute to the nonlinearity of the equation while dispersion
is derived from the interaction of the wave field with
the flow in the adjoining deep ocean.

The second mode), described in section 3, describes
the waves that form at a vorticity interface separating
two regions of constant potential vorticity. For long
waves this allows for a relatively simple description of
the flow on the shelf, and the result is the nonlinear
evolution (3.23) for which the dispersive term is again
provided by the effect of the adjoining deep ocean. For
this model the choice of shelf topography is not so
crucial, and affects only the form of the nonlinear
terms.

For both model nonlinear evolution equations we
have presented some numerical results that explore the
dependence of the solutions on various parameters,
including those which occur in the equations them-
selves as well as those occurring in the initial conditions.
In qualitative terms the wave fields produced are similar
for the two model equations, and also similar to the
waves described by the BDA equation, which is the
weakly nonlinear limit for both evolution equations.
This is reassuring as it implies that the BDA equation,
which is exactly integrable, can be used to study non-
linear long waves for situations where the present fully
nonlinear equations do not apply. Indeed the BDA
equation is the canonical evolution equation for weakly
nonlinear long waves in the contmental shelf waveguide
(Smith 1975).

There are a number of areas where the present the-
ories could be improved. For instance, inclusion of the
effects of density stratification and bottom friction is
necessary if model calculations are to be of practical
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quantitative utility. However, more pertinent is the
need to relax the long-wave hypothesis, and develop
models for fully nonlinear wave fields which allow the
flow to develop on all length scales, including poten-
tially very short scales. In this respect the vorticity in-
terface model of section 3 clearly can be extended in
this way, and the result would be a nonlinear integral
equation which can be solved by the method of contour
dynamics. The model proposed here is similar to that
developed by Pratt and Stern (1986). Work on this
approach is proceeding.
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APPENDIX A
Boundary Conditions at a Discontinuity in Depth

Suppose there is discontinuity in depth at x = x; so
that h = hgas x = x;— and h = hg as x = x,+ (see
Fig. 1). Assuming that %, v and { are likewise discon-
tinuous at x = x;, we derive here the appropriate dis-
continuity conditions. To do this, we employ a limiting
procedure in which we suppose that / is continuous
over an interval of width & centered on x = Xx;, and
varies from A, for x < x; — 6 to Ay for x > x, + 6.
Consequently £, scales with 87! as x passes through x
— x,. Likewise the derivatives of 1, v and { with respect
to x will scale with 6 ', Each equation ( 1.1a~c) is then
integrated with respect to x over the interval x; — 6 < x
< x; + 8. We then take the limit § = 0. Applying this
procedure to (1.1c) we find that

[Au] =0 (A1)

where [ - ] denotes the discontinuity across x = x,. Using
(1.4) we see that this is equivalent to the continuity of
¥ at x = x,, where we assume that ¢ is continuous as
¥ = 0. The condition (A1) reflects the contlnulty of
the onshore mass flux.

Applying the same procedure to (1.1a, b) we find

that
LI
[g‘+2u] 0,

[huv] =0 (A2b)

Here (A2b) expresses the continuity of the x-compo-
nent of the longshore momentum flux. Since hu is
continuous, (A2b) is equivalent to

[v]=0 (A3)

where we have assumed that /u is not identically zero
at the shelf-break. From (1.7a) we see that (A3) is
equivalent to the continuity of {;. Thus (A1) and (A3)
determine the behavior of u and v respectively, while
(A2a) then gives the discontinuity of: ¢. It is noteworthy

(A2a)



18

here that the discontinuity conditions (A1) and (A3)
differ from those which are usually applied in linear
problems. Indeed, the corresponding derivation in a
linear problem leads to (A1) and the linearized form
of (A2a), namely, that { is continuous.

It should be noted here that in the region where the
depth varies rapidly significant vertical velocities will
be generated, and these may be of sufficient magnitude
to invalidate the barotropic, shallow-water equations
(1.1a—c). Indeed the vertical velocity scales with A,/
L, relative to the horizontal velocities, where we recall
that 4, is a typical vertical dimension, and L, is a typical
horizontal length scale. However, in the regions where
the depth varies rapidly the vertical velocity will scale
with h;/6L,, and hence the preceeding derivation re-
quires that /, /L, < 6 < 1. This condition is likely to
be met in many practical situations. However a deri-
vation, similar to the above, which allows 4 to be com-
parable with £, /L, has also been carried out, and again
leads to (A1) and (A3).

APPENDIX B
Boundary Condition at a Potential Vorticity Front

Suppose that £ = L(y, t) denotes a curve across
which the potential vorticity Q is discontinuous. In
deriving the boundary conditions we find it convenient
to revert here to the original (x — y)— coordinates,
and so we let the interface be given by [see (1.6)]

L
x=L(y,t), where L=f h(x")dx'. (B1)
. 0

Then since the interface is a material curve, the fol-
lowing kinematic condition must hold

u=L+vLl,, on x=1L (B2a)

or
hu=L +vL,, on £=1L. (B2b)

Introducing the streamfunction ¥ [see (1.4) and
(1.7a)], (B2a, b) becomes
a
L,=— L,y 1)}. B3
b {UL,y,0)} (B3)
It follows from (B2) that ¢ is continuous across £
= L, where we assume that ¢ is a continuous function
offasy—> —0.
The remaining boundary condition is the continuity
of the pressure, {. However, to be useful in the present
context this condition must be translated into a con-

dition on y. To achieve this we first use the equations
of motion (1.1a, b) and (B2a) to show that
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J - . dv - du
5}{{([")):[)}_ th—dl_L.VE’

on x=L. (B4)
But, using (B2a) it may be shown that
d d d
AL )—( +v—){(u v)(L,y, 1)},

on x=L. (BS)

On substituting (B5) into (B4), using (B2a) and letting
[ {1, [v] denote the discontinuity in {, v respectively
at the interface, we may show that

d -
T {a+ Lyz)[v]}

_9 XN
ay{(l—!-Ly)[zv]}. (B6)

Hence, if [ {] = 0, it follows that [v] is conserved along
the interface, and assuming that [v] = 0 as y —>
—o0, we have shown that [v] = 0 on x = L. Recalling
(1.7a) we see that this is equivalent to ¥, being contin-.
uous across the interface. Also we note from (B6) that
the converse is true, namely, if [v] = 0, then [{] =

0
5;[?]—
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