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WAVE ACTION AND WAVE-MEAN
FLOW INTERACTION, WITH
APPLICATION TO STRATIFIED
SHEAR FLOWS

R. Grimshaw

Department of Mathematics, University of Melbourne, Parkville, Victoria
3052, Australia

1, GENERAL THEORY

Over the last two decades wave action principles and the associated wave-
mean flow interaction theorems have become increasingly important for
the study of the various kinds of waves that occur in fluid mechanics. Action
density is a well-established entity in classical mechanics and plays a central
role in the Lagrangian and Hamiltonian development of that subject.
However, only relatively recently have the corresponding entities in fluid
mechanics been identified and exploited. This is partly because fluid
mechanics has traditionally been developed in an Eulerian framework and
wave action principles are more obvious in a Lagrangian framework, and
partly because the classes of waves for which wave action principles are
particularly useful (e.g. internal gravity waves in stratified shear flows) have
only recently received much attention.

The current interest in wave action began with the pioneering work of
Whitham (1965, 1970), who introduced the wave action equation through
the averaged variational principle. Although the initial motivation was the
study of finite-amplitude waves, it was soon recognized that the wave action
equation was also useful for the study of linearized waves on a mean flow
(Bretherton & Garrett 1968). However, because these early theories were
Lagrangian in concept, it became necessary to develop Lagrangian
equations of motion in contrast to the more familiar Eulerian equations of
motion. The key concept here is a correct definition of the Lagrangian-
mean flow with respect to which particle displacements can be defined;
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12 GRIMSHAW

these particle displacements then serve as the appropriate field variables in
a Lagrangian formulation. The preliminary ideas were developed by Dewar
(1970) and Bretherton (1971) and culminated in the generalized
Lagrangian-mean formulation of Andrews & McIntyre (1978a,b).

In this review, we describe wave action principles and wave-mean flow
interaction theorems in three stages. In this section, we present a general
theory based on a Lagrangian formulation of the equations of motion. Our
treatment is in the spirit of Whitham’s approach (Whitham 1965, 1970), but
follows the development by Hayes (1970) more closely. Because wave action
and wave-mean flow interaction are intertwined concepts, we complement
the discussion on wave action by introducing the radiation stress tensor
and describing its role in the wave energy equation and the mean flow
equation. Our treatment is based on the ideas of Dewar (1970) and
Bretherton (1971), but goes beyond their results in that there is 
restriction to slowly varying linearized waves.

In order to apply this general theory to fluids, we turn in Section 2 to a
description of the generalized Lagrangian-mean formulation of Andrews &
McIntyre. Although the results of this section are complete, they are
obtained in a form where their application to specific problems generally
requires more discussion. Rather than give a catalog of all the contexts in
fluid mechanics where wave action principles have been invoked, we
instead give in Section 3 a brief account of internal gravity waves in a
stratified shear flow. Our purpose here is didactic; that is, our concern is not
so much to present some specific results as to illustrate how the general
theory is adapted in a specific case.

Formulation

We begin by supposing that the physical system is specified by the vector-
valued field ~b (xi) , where xi (i = 0, 1, 2, 3) are the independent variables.
Subsequently it will be useful to distinguish between Xo -= t, a timelike
coordinate, and x, (~ = 1,2,3), which are spacelike coordinates.
Throughout we employ the dual summation convention that Latin indices
are summed over the range 0 to 3, but Greek indices are summed over the
range 1 to 3. In the absence of dissipation, we suppose that the physical
system obeys a variational principle with a Lagrangian density L (q~i, (P ; xi),
where 4~ denotes the partial derivative Oc~/Ox~. Then the equations of
motion are

Ox, ~ --~= Q" (1.1)

Here the generalized force Q represents the effects of dissipation. A useful
consequence of this formulation (see Hayes 1970) is that if ~0 is any field with
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the same dimension as ~b, then

(SL) ~LSL’
For instance, putting ~k = ~bj in (1.2), it follows that

OL

where

WAVE ACTION 13

(1.2)

(1.3a)

¢ 8LT~’i = J ff~i -- L 6ji. (1.3b)

Here OL/Ox~ on the right-hand side of (1.3a) is the explicit derivative of 
with respect to x j, and T~i can be identified as the energy-momentum tensor
of classical theoretical physics (see, for example, Landau & Lifshitz 1962).
Although the precise physical interpretation of the components of T~i will
depend inter alia on the choice of Lagrangian density, we shall find it useful
to identify Too as the energy density and To, as its flux, and T~o as the
momentum density and T~a as the corresponding fluxes.

WAVE ACTION In order to define wave action density and its flux, we must
first introduce the notion of an ensemble average (). We base our
discussion on the ideas of Sturrock (1962) and Hayes (1970), which 
further developed by Andrews & Mclntyre (1978b). The relationship with
the more specialized notions of Whitham (1965, 1970), Dewar (1970),
Dougherty (1970), and Bretherton (1971) are developed below. We suppose
that ¢(xl, 0) depends smoothly on the ensemble parameter O, such that

dp(xi, 0 + 2n) = ¢(xi, 0). (1.4)

We then define the averaging operator

( ) ( ) dO. (1.5)

For simplicity, we sometimes denote the mean field (¢} by ~;, and we note
the important observation that all mean quantities are independent of 0.
The averaging operator commutes with O/Oxi, and has other simple and
obvious properties [see Andrews & McIntyre (1978a,b) for an extensive
discussion].

We next define the wave perturbation or disturbance field @xi, O) of¢ by

¢ = ~ + ~. (1.6)

Clearly q5 has a zero mean ((~) = 0). Although we have called ~ the 
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14 GRIMSHAW

perturbation of ~b, there is at present no restriction on the magnitude of $
vis-fi-vis that of ~, nor on their relative scales. Next put ~/, = ~0 in (1.2),
where q~0 = ~q~/~O, and apply the averaging operator (). It follows that
(see Hayes 1970)

~xi ~o
= <~oQ>. (1.7)

This is the wave action equation. In the absence of dissipation (Q = 0), 
gives a local conservation law. It is a consequence of the invariance of the
mean Lagrangian <L> to changes in 0. We shall find it useful to identify

~ = 0 , B~ = 0 (1.8)

as the wave action density and flux, respectively. Here and subsequently, we
write ~t in place of 40, which denotes the partial derivative 04/~t. From (1.8)
it is clear that both ~ and B~ are O(a~) in the limit of small wave amplitude a.
Here the wave amplitude parameter a is a measure of the magnitude of ~
and its derivatives. Consequently, ~ and B~ are wave properties and are the
appropriate general measures of wave activity. The analogue of (1.7) 
classical mechanics is obtained by restricting the independent variables to t
alone. The action density A can then be recognized as ~p d~, where p is the
momentum conjugate to ~, and the integral is over one cycle. The action
equation (1.7) is then the basis for the study of adiabatic invariants (for 
lucid discussion, see Landau & Lifshitz 1960).

It may be shown that both the density and flux are unaffected by smooth,
monotonic transformations of the ensemble parameter 0, and by the
addition of flux te~s to the Lagrangian density L that leave the equations
of motion (1.1) unchanged. Further, under a Galilean transformation
x; = x~-U~t, t’ = t, where U~ is a constant velocity, ~ is invariant, and
B~ transforms to B~-U~; thus (1.7) is left invariant. Under a Lorentz
transformation, the four-vector (A, B~) transforms according to the usual
laws for a relativistic four-vector. These properties are in strong contrast to
the corresponding properties of the energy-momentum tensor and
Equation (1.3a).

The application of (1.7) depends upon the delineation of the Nmily
~(x~, 0). One possibility that has received much attention is to identify 0 as 
phase shift in the phase of the wave; the averaging operator (1.5) is then 
average over this phase. Thus we put
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WAVE ACTION 15

and

~’ = ~x~"
(l.9b)

Here s(xi) is the phase, and q5 is periodic in s. Let ~c~ be the wavenumber
components, and ~o = -~o the frequency. It follows that

A = (L), B~ - a~ (L), (1.10)

and the wave action equation (1.7) takes the form obtained by Whitham
(1970). In this form, the wave action equation can be recognized as the Euler
equation that is obtained when the mean Lagrangian (L) is subjected 
variations in the phase s(xl), and is an application of Whitham’s averaged
variational principle (Whitham 1965, 1970), here extended to include
dissipative effects (Ostrovsky & Pelinovsky 1972).

It is a remarkable fact that the wave action equation (1.7) is formally
exact. It is valid without any restriction in wave amplitude, or without any
assumption that the mean field is slowly varying with respect to the waves.
However, the utility of this is reduced in practice by the presence of two
kinds of error. The first of these has been called by Hayes (1970) the
identification error, and occurs whenever the ensemble parameter 0 is
interpreted as a phase shift. It arises as a result of the identification of the
family (1.9a) with a particular solution of interest, and can in principle 
made arbitrarily small with respect to a small parameter characterizing the
difference in scale between the rapidly varying phase of the waves and other
variations, such as those in the mean field. The second kind of error is due to
the implicit hypothesis that only a single wave is present, and is particularly
severe in strongly nonlinear systems. To some extent it can be removed by
allowing 0 to be vector-valued (see Hayes 1970), so that the family qS(xi, 
describes a multiple wave system. This aspect has been largely neglected in
the wave action literature, although this is compensated by the extensive
literature on wave interactions. In the extreme case of strongly nonlinear
random wave interactions, the action density obeys a diffusion equation in
phase space (see, for instance, Abarbanel 1981).

PSEUDOMOMENTUM If the averaging operator (1.5) is applied to (1.3a) 
obtain equations for the total energy (Too) and total momentum (T~o).
However, these equations are not generally as useful as the wave action
equation in determining wave properties, as they contain both wave and
mean flow expressions; in particular, the mean flow expressions will
contain O(a2) contributions due to the waves. To obtain a mathematical
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16 GRIMSHAW

analogue of (T~j) for the waves, we follow the procedure of Andrews 
Mclntyre (1978b). First define the "undisturbed" Lagrangian 

Lo = L((~i, ~;xi) (1.11)

and then put

Ll(~i, ~;xi) = L-Lo. (1.12)

Note that L1 is an O(a~) wave property, and that the explicit dependence of
L1 on xi includes the dependence of L1 on the mean field ~ and its
derivatives ~i. Then put $ = $i in (1.2) and apply the averaging operator
(1.5). The result 

8x~ Tj~ -- -- \~x~/ + (8~Q), (1.13a)

where

/,~.8L~ 3~,). (1.13b)T~i = \-rj Oqg~ -- L~

Tj~ is an O(a2) wave property. We shall call Too the pseudoenergy, To~ its
flux, -T~o the pseudomomentum, and -T~, the corresponding flux. The
sign conventions have been chosen to agree with historical convention (see
Andrews & McIntyre 1978b). Note that T~ can be identified as the averaged
energy-momentum tensor for the disturbance Lagrangian L~. Unlike the
wave action density, Too is not Galilean invariant and transforms to
Too+U~T~o; however, the pseudomomentum -T~o is Galilcan in-
variant. Equation (1.13a) is a conservation equation only in the
absence of dissipation (Q = 0) and when L~ is explicitly independent of ~.i;
in particular, this latter condition requires the mean field ~ to be
independent of xj.

The relationship between (1.13a) and the wavc action equation 
obtained by observing that when the mean field ~ is independent of a
particular coordinate x j, then, by invoking a suitable ergodic principle, we
may replace the averaging operator (1.5) with averaging ovcr that
coordinate and so identify 0 with -x~. The wave action equation then
reduces to (1.13a), the wave action density to - T~o forj # 0, and the flux 
to --T~ for a #j; note that the diagonal term T~i is now absent from
(1.13a), being independent of x~ by definition. This application of the wave
action equation is quite common, although in the literature it has not
always been recognized as such. It is important to note the distinction
between energy and momentum on the one hand, and pseudoenergy and
pseudomomentum on the other. The former quantities are conserved, in the
absence of dissipation, whenever the total system, represented by the full
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WAVE ACTION 17

Lagrangian L, is independent of t or x~ respectively. The latter quantities
are conserved, again in the absence of dissipation, whenever the mean field,
represented by (La), is independent of t or x~, respectively.

WAVE ENERGY Wave energy is a constantly recurring theme in the
literature, although as we show below it is generally not as useful a concept
as wave action. This arises, in part, from ambiguities in its definition.
Bretherton & Garrett (1968) have given a comprehensive discussion of 
appropriate definition for wave energy in the context of linearized waves.
Adapting their conclusions, we define the wave energy density E as the
pseudoenergy in a frame with respect to which the mean state is locally at
rest. Specifically, let us now postulate that the mean field ~ consists of a
mean velocity ~ and a vector-valued mean field Z In applications, ~, will
incorporate the mean density, mean magnetic field, mean fluid depth, etc.
Thus we define

E = Too + ti~T~0, (1.14a)

or

E = ~-~ tg~b, L~ , (1.14b)

where

d ~ ~
d~

Note that d/dt is the time derivative following the mean motion. The
corresponding definition of wave energy flux is

(d~ ~L~ ~,(L~ +E)).
(1.15)

Then from (1.13a), or more directly by putting ¢ d~/dt in(1.2), it fol lows
that the wave energy equation is

Ot + (ff, E+F~)=-~+a~0x,/+~T~,+ ~Q . (1.16)

Note that here, as in (1.13a), OL~/Oxi denotes the explicit derivative of L~
with respect to xi, including the dependence of L~ on xi through a~ and L
Equation (1.16) demonstrates that whenever the mean state is varying, wave
energy is not conserved, and is generally exchanged with the mean flow.
This contrasts unfavorably with the wave action equation, which states that
wave action is conserved in the absence of dissipation, regardless of the
variability of the mean state.
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18 GRIMSHAW

RADIATION STRESS At this point is is useful to make some further
hypotheses concerning the Lagrangian L. These are motivated by the
generalized Lagrangian-mean description of fluid flow introduced by
Andrews & McIntyre (1978a) (see also Dewar 1970, Bretherton 1971),
which we describe in more detail in Section 2. We suppose that L1 depends
on (~t only through its dependence on d~/dt; further, apart from the
dependence of L1 on ~ through d~o/dt, any other explicit dependence of L1

on G is bilinear’ in G and the disturbance variables ~ and ~i. This last
property arises from the fact that the full Lagrangian is usually at most
quadratic in the velocity field. It then follows that

/ =
Next, following Garrett (1968) and Dewar (1970), we observe that in 
cases of interest 2 will satisfy an equation of the form

d2 A 0~
+ ~.2~ = #. (1.18)

d~

Here a represents dissipative effects. When a is zero, 2 is a mean quantity
(2 = ~; however, it is useful for the applications to be discussed later to
allow 2 to haw a fluctuating component ~ when a is nonzero. These dissi-
pative components are not included in the disturbance components ~,
but are included in the radiation stress tensor defined b~low. The wave
~nergy equation then becomes

where

/ 8L~ N

Although the nomenclature is not universal, we shall call R~ the radiation
stress tensor. Here (SL~/Sx~)~ denotes the explicit derivative of Lx with
respect to x~ when the disturbance variables ~, ~ and the mean variables ff~
and 2 are all held constant. Also note the useful results in this context that
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WAVE ACTION 19

(1.20b)

Since Lo is quadratic in fi~, this is just the mean momentum equation and
can be obtained by averaging the full-momentum equation [i.e. those
equations in (1.1) corresponding to the components of 0 for which ddp/dt is
the total velocity u~].

However, a simpler and more revealing derivation of (1.21) is to apply
Whitham’s averaged variational principle (Whitham 1965, 1970, Ostrovsky
& Pelinovsky 1972)

6f<L> dx, dt = -f<06 > dx, dt (1.22)

with respect to variations in a, and 2. This is the procedure used by Dewar
(1970) and Bretherton (1971) in the context of small-amplitude waves. 
variations in a, and 2 are obtained by considering variations Ax, in x,,
where Ax, is a Lagrangian variation, or a variation incurred on a given fluid
particle moving with the mean velocity. The corresponding Lagrangian
variations A~ in any mean quantity ~ must be distinguished from the
Eulerian variation 6~, the variation incurred at a given point x, [-see

F, = -g

/ _ /OL~ -L~ 6,~. (1.20c)

Here (OL~/#~)a denotes the derivative with respect to ~, when d~/dt is held
constant. An important consequence of these equations is that when the
averaging operator (1.5) can be interpreted as an average over the
coordinate x~ (i.e. 0 can be identified with -xr), then the off-diagonal
components of Rvo differ from B~- ~aA only by the terms involving Ava ;
in particular, if Ara is itself diagonal, then Rra for 7 ¢ B is exactly equal to

~y F~ow To complete the description of the interaction between the
waves and the mean flow, equations describing the forcing of the mean flow
by the waves are needed. These can be obtained by applying the averaging
operator (1.5) to (1.1) or, alternatively, to (1.3). In the present context, 
the mean field consists only of the mean velocity a~ and the vector-valued
mean field ~ that satisfies (1.18), the most convenient result 
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20 GRIMSHAW

Bretherton (1970) for a lucid discussion of this point]. They are related 
the expression

65 = At~-Ax~ ~--x~ " (1.23)

Thus the variations in ~ and 2 are given by

~t 0a~
(1.24a)a,~ = (Ax~)-Axa cgxa,

~ 02
(1.24b)a2 = - A~2 (Ax,) - Ax~

The expression (1.24b) is valid only for a restricted class of tensors A=~ (see
Dewar 1970), which, however, includes all cases so far encountered in the
literature. Applying the principle (1.22), it now follows that

+

+ ax~ a0~<L> Xax~ N = <Q=> +<~=Q>" (1.25)

Decomposing L into L~ and Lo (1.12), we can derive (1.21) by using (1.13a),
(1.17), and (1.19b). An alternative to (1.21) that does not involve 
radiation stress tensor R=a but instead contains the pseudomomentum
--T=o can be derived from (1.25) by decomposing L into L, and o (1.12)
and then using only (1.13a). This latter form is the one preferred by Andrews
& McIntyre (1978a) and is often more useful, particularly for irrotational
flow and for situations where one component of the divergence of the
radiation stress tensor is larger, by an order of magnitude in some small
parameter, than all the other terms in (1.21). For examples of this, see
Andrews & Mclntyre (1978a) or Grimshaw (1979). An important appli-
cation of this alternative procedure arises when the averaging operator (1.5)
can be interpreted as an average over the coordinate xv (i.e. 0 can be
identified with - x~). Then if A=~ is diagonal, the off-diagonal components
of R~a are just B~- O~A, and so in the y-component of (1.21) the divergence
of the radiation stress tensor is given by

aR~¢ aA
#x~ - at ~ (a~a)-<~,Q>. 026)

If(1.2!) is multiplied by a~ and the result is added to (1.19a), we obtain 
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mean-energy equation

c3ET

c3t

where

WAVE ACTION 21

(1.27a)

ET = /~, t~Lo
ff~ Lo+E.

(1.27b)

Here Ef is the total mean energy. In some applications this equation is more
useful than the wave energy equation (1.19a), as it is in conservation form 
the absence of dissipation and explicit time dependence.

The mean field equations are thus (1.18) and (1.21), and apart from 
dissipative terms and the term representing the effects associated with
external forces (<~L/~3x~>)c, the radiation stress tensor R~# represents the
sole effect due to the waves. Note that R~O is generally asymmetric and has
no simple relationship to the Reynolds stresses and buoyancy fluxes
encountered in Eulerian formulations of the mean flow equations. These
mean-field equations are complemented by the wave action equation (1.7),
which is generally the most useful way of describing the effect of the mean
field on the waves. For finite-amplitude waves the two sets of equations are
coupled. However, for linearized wave motion the action density and flux
can be evaluated correct to O(aZ), with the mean field fixed at the basic state
values. The mean field changes due to the waves can then be calculated from
(1.21), where R~ can be evaluated correct to O(az) independently of the
mean field changes. Much of the literature on wave action and wave-mean
flow interaction has considered only this special case of linearized wave
motion.

SLOWLY VARYING WAVES Slowly varying, almost-plane waves have the
representation (1.9a) where the dependence on the phase s(xi) is rapidly
varying relative to the explicit dependence on xi (although Rossby waves on
a fl-plane are an important exception). From (1.9a) it follows that

(1.28)

where the explicit derivative ~/dx~ can be neglected compared to x~q~o. The
following approximate expressions can then be derived from (1.8), (1.13b),
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22 GRIMSHAW

(1.14a), (1.15), and (1.19b) 

Too ~ coA-L1, To~ ~ ~oB~, (1.29a)

T~o ~ -x~A, T~ ~ -x~,B~-L1 6~,1~, (1.29b)

E ~ co*A-L1, F~ ~ co*(B~--ti~A), (1.29c)

R~ ~ ~:~(B~-/I~A)+ L1 6~- (A~2~L~/, (1.29d)

where

co* = co - x~ti~. (1.29e)

Here co* is the intrinsic wave frequency.

SLOWLY VARYING LINEARIZED WAVES For small-amplitude waves further
simplifications are possible. First note that if we put ~ = $ in (1.2), then 
follows that

Ox, \ + + (1.30)

This can be regarded as a virial theorem (Hayes 1974, Andrews & Mclntyre
1978b). For linearized wave motion, L~ is at most quadratic in the
disturbance quantities $ and $~. Hence the first term on the right-hand side
is just 2L~. For slowly varying waves, the left-hand side can be neglected
and, assuming that the dissipative term can likewise be neglected, it follows
that L~ ~ 0. This in turn implies equipartition of energy in nonrotating
systems. Thus for slowly varying linearized waves, (1.29c) shows that the
action density A is given by the classical result E/co*. In the context of fluid
mechanics, this result was first derived by Bretherton & Garrett (1968)
using the averaged variational principle (Whitham 1965), although the
identification of action density in terms of an energy density divided by a
local frequency has antecedents in the classical theory of adiabatic
invariants (Landau & Lifshitz 1960). Analogous results in the context 
plasma physics were developed by Dewar (1970) and Dougherty (1970).

Next, for linearized waves, L~ will be quadratic in the wave amplitude,
and hence given by an expression of the form

L1 ,~ D(CO*, t% ; ,~,)a2, (1.31)

where the explicit dependence on co*, rather than just ~o, is a consequence of
the hypothesis that the mean velocity ti~ is slowly varying. Hence, assuming
Galilean invariance, the averaged Lagrangian Lt can be evaluated
approximately in a frame with respect to which the mean state is locally at
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WAVE ACTION 23

be equivalent to the localrest. But L~ ~ 0 and so D ,~ 0; this must
dispersion relation

~o* = W*(x~ ; 2). (1.32)

But from (1.10) it now follows that

B~ ~ c~A, (1.33a)

where

c~ = ~+c~*, (1.33b)

and

0W*
c~* = ~-x~" (1.33c)

Here c~* is the intrinsic group velocity. The wave action equation (1.7) now
reduces to the form proposed by Bretherton & Garrett (1968). In the
absence of dissipation this is

~-~ ~ + [ti~+c~*] ~0. (1.34)

With the same approximations, the energy flux F, ~ c~*E, and the wave
energy equation (1.19a) becomes

OE 0 0a~
(1.35a)

where

Ow*lE x~c~ + A~a2-~-~-~.
(1.35b)R~ ~ ~

It is readily verified (see Garrett 1968) that (1.34) and (1.35a) are equivalent.
Finally, we note that the pseudomomentum -T~0 is approximately given
by x~E/~o*.

MODAL WAVES In many applications the waves are confined to a
waveguide by the presence of boundaries. Consequently, the waves possess
a propagating character only with respect to coordinates that vary along
the waveguide, and have a modal character across the waveguide.
Following the notions of Hayes (1970) and Andrews & McIntyre (1978b),
we suppose that a boundary Z to the waveguide is undisturbed and
impermeable to the fluid. The appropriate boundary condition on Z is then

either ~=0 on E, (1.36a)
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24 GRIMSHAW

~L
or ni~-~/=0 on Z. (1.36b)

Here nl are the components of the normal to E ; for instance, ire is given by
F(xi) = O, then ni ~c OF/gxi. We also allow for the possibility that (1.36a)
holds for some components of q3, and (1.36b) for the remaining components.
It follows that

dL
~oni~-~$~=O on Z. (1.37)

Thus, the wave action flux normal to E vanishes on E. For simplicity, we are
considering only nondissipative boundary conditions on Y~ ; for cases where
dissipative boundary conditions are discussed, see Grimshaw (1981, 1982).

Let us now suppose, for simplicity, that the x3-coordinate varies across
the waveguide, which is bounded above and below by the surfaces
x3 = F ±(t, xl, x2), respectively. The coordinates t, x1, and x2 thus charac-
terize the propagation space. The wave action equation (1.7) continues 
hold locally. However, the x3-derivative in this equation will generally
be the dominant term, and it is useful to remove it by integrating
across the waveguide. Using the boundary condition (1.37), it follows that

(~aoQ) dx3. (1.38a)

Sf = (L) dx3.
(1.39b)

where

~ = A dx3, (1.38b)

~ = B~ dx3. (1.38c)

Equation (1.38a) is a global form of the wave action equation appropriate
for modal waves; ~/ and ~ are the global wave action and flux,
respectively. The analogue of (1.9a) for modal waves is obtained 
restricting the phase s to be a function of only the variables t, xl, and x~.
Since integration across the waveguide commutes with the averaging
operator (1.5), it follows from (1.10) 

~’ - ~m ’
N~

~,
(1.39a)

where
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WAVE ACTION 25

Thus, the wave action equation (1.38a) can be obtained from Whitham’s
averaged variational principle applied directly to

The analogous global results for other quantities, such as the wave
energy, the pseudomomentum, and the mean field, can also be obtained by
integration across the waveguide. However, simple results analogous to
(1.38a) are not generally obtained. For slowly varying waves, O~/Oxl can be
neglected compared with xi~0 for i= 0, 1,2, but t?~o/~3x3 cannot be
neglected. Nevertheless, the relations (1.29a-d) will continue to hold, pro-
vided the indices ct, fl are restricted to the values 1 and 2. Quantities such as
the global wave energy, etc., can then be obtained by integrating (1.29a-d)
across the waveguide. In this context, it is useful to note that thc virial
theorem (1.30) holds locally. By considering linearized waves, integrating
across the waveguide, and using the boundary conditions (1.36a, b), it may
be shown that the integral across the waveguide of Lx (i.e. £al) 
approximately equal to zero. Thus for slowly varying, linearized modal
waves whose dispersion relation is co = W(x~; t, xl, x2), we have ¢3~ = c~¢,
where c~ is the total group velocity ~W/~rc~. This is the counterpart of
(1.33a) for modal waves. Also, if we define

d~ = (co-~v~)~¢ co*A dxs, (1.39c)

where these equations also act as the definition of the mean velocity v~, then
we obtain the counterparts of (1.34) and (1.35a) for modal waves, i.e. replace
E with ~ and co* with co-x~v~, etc. The terms involving the mean field
must of course be interpreted to apply to a different quantity that obeys a
relation analogous to (1.18), with ti, replaced with v~ and e, fl restricted 
the values 1 and 2. Also, the dispersion relation is assumed to take the form
(1.32), with co* replaced with co-x~v,.

2. FLUIDS AND THE GENERALIZED

LAGRANGIAN-MEAN FORMULATION

An important feature of the general theory of Section 1 is that a Lagrangian
formulation of the problem is an essential preliminary step to the efficient
derivation of the wave action equation and the mean flow equations. Thus,
in order to apply the results of Section 1 to specific cases involving fluids, the
following points should be noted :

1. The problem should be formulated in terms of particle displacements
from a mean position that moves with the mean velocity

2. The wave action equation (1.7) is obtained by scalar multiplication of the
momentum equation with ~/O0, and averaging.
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26 GRIMSHAW

3. The wave energy equation (1.19a) is obtained by scalar multiplication 
the momentum equation with d~/dt, and averaging.

4. The mean flow equations should take the form (1.18) and (1.21), where
the latter is obtained from averaging the momentum equation.

If these procedures are followed, it is often not necessary to identify the
Lagrangian specifically, although its existence underlies the general theory.
In particular, the radiation stress tensor is often most conveniently
obtained by deriving the wave energy equation (1.19a) and thc mcan-flow

equation (1.21) and consequently identifying R=~.

Laoranoian-Mean Formulation
The equations of motion for a conducting, compressible fluid in the
nonrelativistic case are

du~

dp
d-7 + =0,

dS

dt

dB~
dt

where

B 6u, B Oua .
-- - ~&-7 + ~x’~ =s~’

Oq B~
- pX,, (2.1 a)

(2.1b)

(2.1c)

(2.1d)

1q = p + -~B,B= (2.1e)

and

d ~ ~

= ~7 + u= ~--..
(2.1f)

d~ XO ~

Here x’, is the Eulerian coordinate such that a fluid particle at x’~ has
velocity u,. The notation is standard; in particular, g/, is the constant
angular velocity of the frame of reference, ~(x’,) is the potential for both the
gravitational and centrifugal forces, p(p, S) is the thermodynamic pressure,
S is the entropy, and B, is the magnetic field. The terms X,, h, and j,
represent, respectively, the effects of nonconservative and dissipative forces,
nonadiabatic motion, and finite magnetic conductivity. In particular, note
that ¢3joJOx’~ = 0, so that OB~/~x’= = 0 is a consequence of (2.1d).
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WAW. ACTION 27

The appropriate Lagrangian formulation of these equations is the
generalized Lagrangian-mean formulation of Andrews & McIntyre (1978a)
(see also Dewar 1970, Bretherton 1971). For a comprehensive account and
justification of this theory in the absence of a magnetic field, the reader is
referred to Andrews & McIntyre (1978a) [see also McIntyre (1977, 1980),
Grimshaw (1979), or Dunkerton (1980) for simplified versions], as here 
give only a brief outline. Let x, be generalized Lagrangian coordinates and
let ~,(t, xt~) be the particle displacements, defined so that

x’, = x, + ~=. (2.2)

Then, for any given u, there is a unique "reference" velocity a=(t, xa), such
that when the point x= moves with velocity a, the point x’, moves with
velocity u=. It follows that the material time derivative (2.10 is also given by

d O ~

= a~ + a,~,.
(2.3)

d~

The generalized Lagrangian-mean formulation is now obtained by letting
~ be the mean velocity, precisely that introduced in Section 1, and requiring
that

(¢=~t, x~)) = 0. (2.4)

Note, in particular, that (2.3) agrees with our previous definition (1.14c). 
reader should also note that our notation differs in one important respect
from that of Andrews & McIntyre (1978a,b); here ~= denotes the
Lagrangian-mean velocity, rather than a~" used in Andrews & McIntyre
(1978a,b), who use the single overbar to denote Eulerian means. 
cohfusion should arise, as Eulerian means are not discussed in this article.

Next we define a mean density ~, so that

It is an immediate consequence of (2.1b) and (2.5) 

pJ = fi,

where

J = det [Sx~Oxa].

For the magnetic field, we define a new variable H, by

JB~, = HaW, or H~ = BaKa~.

(2.6a)

(2.6b)

(2.7)
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28 GRIMSHAW

Here K~e is the ~, fl-cofactor of J, and so

ax’~ ax’~K=P-~x~ = 6p,J = Ke= ff~x, .
(2.8)

It is useful to note that K=a is the derivative of J with respect to ax ax and
that aK=d&~ = o. With the definitions (2.7), it can now be shown that
(2. ld) becomes

H~ + H=~ = k= =jaK~=. (2.9)
dt

Also, Ok,/Ox, = 0, so that OH~Ox, = 0 is a consequence of (2.9). The
entropy equation (2. lc) is left unchanged, and the final step is the converting

of the momentum equation (2.1a) to its Lagrangian form. The result 

,du~ 2" , ,0~ 0 ( B~H~)= fiX~" (2.10)

Here the velocity u= is given by

d{=
u. = a. + d~" (2.1~)

In summary, the generalized Lagrangian-mean equations are (2.10), the
entropy equation (2. lc), the magnetic equation (2.9), and the mean density
equation (2.5). They can be identified as the Euler equations (1.1) for 
Lagrangian

~u=, x;, Ox~Oxa, ~, S,

= p{~u,u=+e,a~fl, xaur-O(x=)-E(p,S)} - B=B,. (2.12)

Here we recall that p and B= are defined in terms of fi and H= by (2.61) and
(2.7), respectively. Also, E(p, ~ is the internal energy per unit mass, and

dE p dE
Op p2, aS T, (2.13)

where T is the temperature. Variations in X~ (0t equivalently {~) then give
(2.10), with Q= =fiX,. Equation (2.5) for fi involves only mean quantities,
and so acts as a constraint on the Lagran~an variations Axe, which
determine the mean flow eqoation (1.21). Since S and H= are mean
quantities when the dissipative terms h and k= vanish, Equations (2.1c) and
(2.9) are in the same category. However, in order to keep the correspon-
dence with the general theory of Section 1 as close as possible, we define the
generalized forces Qs and Qn, so that the corresponding Euler equation is
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WAVE ACTION 29

an identity :

Qs = fiT, Qrr~ = -~ B~ ~-~ . (2.14)

Finally, we identify 2 as the 5-vector whose components are fi, S, and H~.
Then it may be verified that each of the equations (2. lc), (2.5), and (2.9) 
to an equation of the form (1.18) for 2 (Dewar 1970), and that the variations
in 2 then satisfy (1.24b) as required.

WAW ACTION This can now be obtained directly from (1.7), or 
following the procedure of Andrews & McIntyre (1978b) and multiplying
(2.10) by ~/00 and averaging. The result 

~A

0~ + ~ = O,
(2.15a)

where

A = \-~- tp- ~- + fie~arflaCr , (2.15b)

D = XN NpT+ ~0 , Ox,/" (2.15d)

That D represents the effects of dissipation follows from the identification of
X~ as representing noneonservative and dissipative forces, and from the Net
that S and H~ are disturbance quantities only when the dissipative terms h
and k, are nonzero. The expressions (2.15M) agree with those obtained 
Andrews & McIntyre (1978b) in the absence of a magnetic field, although
the dissipative term has been written in a different form here.

For linearized wave motion, it is useN1 to introduce the Eulerian pressure
perturbation

q’ = q-¢,~ + O(a~). (2.16)

Then it may be shown that [see Andrews & McIntyre (1978b) or Grimshaw
(~980)]

~/ ~xe
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30 GRIMSHAW

Note that the second term here is identically nondivergent and can be
omitted from (2.15a). In many applications only the first term of (2.17) 
significant; for instance, if all mean quantities depend only on a single
coordinate, say x3, and H~ is normal to this direction (H3 = 0), then the only
relevant component of B~ is Ba and this is just (q’~3/~O). Equation (2.15a)
can be rederived correct to O(a2) without invoking the generalized
Lagrangian-mean formulation; the linearized momentum equation is
multiplied by 0(JO0 and then averaged. If one invokes the basic flow
equations (i.e. the mean flow equations to zeroth order in a), Equation
(2.15a) follows with A given by (2.15b) and B, by (2.17) (Mclntyre 
1980, or Grimshaw 1980). This derivation also applies the useful result that
the Eulerian velocity perturbation is given by

u’~, = d--~- - ~-~x~ + O(aZ)" (2.18)

~A~RA~IA~-~AY WOW To conform with the definitions of Section 1, we
define

Lo = ~a,,x,,3~a,~,S,H,), (2.19)

where L is given by (2.12). The mean flow equation is then obtained from
(1.21), or more directly by averaging (2.10) (Andrews & Mclntyre 1978a).
The result is

- -- + (~X,), (2.20a)

where

~ = p(~, ~ + ~ H,H,, (2.20b)

and

\/ ~x~0¢r Kr \ 
R~a = ~ < qJ -- ~> -- ( -- -- < B, Ha -- H,Ha>. (2.20c)

It can be verified that R~a is the radiation stress tensor defined by (i. 19b). 
alternative form of (2.20a), involving the pseudomomentum -T~o, can be
obtained by first multiplying (2.10) by ~x~x~ and then averaging (see
Andrews & Mclntyre 1978a). Here, from (1.13b),
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(2.21b)

where we recall that L1 is L--Lo [-see (2.12) and (2.19)]. The wave energy
density E (1.14b) and flux F~ (1.15) are given 

}E = fi dt at + ¢(x, + ~) - ¢(x,) + E(fiJ- 1, S)- e(fi, 

The wave energy equation can now be obtained from (1.19a) or 
multiplying (2.10) by d~/dt and averaging. The result is

+(p~,(-~x~(xl~+~,) (2.23a,

where

D~ = fiX~+hfi{T(p,S)-T(fi,~)} + ~k,~na~-- a~ (2.23b)

Here D~ represents the effects of dissipation. Finally, the total energy
equation is (1.27a), which here becomes

OET ~ HaH~
~ +

~ u~X~+h~r(O,S ) +-JB~ , (2.24a)

where

J B~B~). (2.24b)

~sco~ssm~ F~ow The corresponding results for an incompressible
flow may be obtained by taking a limit in which the local sound speed
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32 GRIMSHAW

becomes infinite, although some care should be taken when the Boussinesq
approximation is aIso made due to the presence of a large hydrostatic
component in the pressure field [see Grimshaw (1975a) or McIntyre (1977,
1980)]. Alternatively, we may proceed directly from the equations of
motion for incompressible flow. These are just (2.1a) and (2.1d), with (2.1b)
and (2. lc) replaced with

- 0, (2.25a)

1 dp
p dt- m, (2.25b)

where m is the counterpart of h in (2.1c) and represents the effects 
nonadiabatic motion. In (2.1e) the pressure p is no longer the thermo-
dynamic pressure, and is instead an independent variable in its own right.
In the generalized Lagrangian-mean formulation we again define/5 and J
by (2.6a) and (2.6b), respectively. In place of (2.5) we now 

1 dfi
~ d-~- + ~ = m.

(2.26)

Also, J is a mean quanity Y, which satisfies th~ equation

dY _
+ J = 0.

Note that because of the dissipative te~m m in (2.25), ~ will have 
fluctuating component. The Lagrangian-mean equation is then (2.10), and
we identify 2 with the 5-vector fi, Y, and H,. A suitabte Lagrangian is

L(u,, x’,, Ox~Ox~, p, ~, 

. ~ ~ , , . ~ B~Ba
= p{~u,u,+e,~xCu~--~(x,)} +p(J--J)--J~. (2.28)

Here the disturbance fields to be varied are x’, (or equivalently ~,) and 
However, Q~ is now given by ~X, + ~m(u, + e~fl~x’~). We also define Q~
and Q~, so that the corresponding Euler equations are identities.

The wave action equation is again (2.15a), with A and B, again given 
(2.15b) and (2.15c), respectively. However, the dissipative term D is 

(2.29)
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WAVE ACTION 33

If we assume for simplicity that m is zero, the mean flow equation is again
(2.20a), with the proviso that in the expression (2.20b) for ~, p(fi, :~) 
replaced with/~. The radiation stress tensor is again given by (2.20c). The
pseudomomentum and its flux are still given by (2.21a) and (2.21b), with 
proviso that L0 is now L(fi~, x~, 6~,/~, ~, J, H~), where L is given by (2.28).
The wave energy density is again given by (2.22a), with the proviso that the
terms involving the internal energy E are replaced by ~(1-J); the wave
energy flux is again given by (2.22b). The wave energy equation is again
(2.23a), but the dissipative term now takes a different form from (2.23b), 
an extra term (1 --J)d~/dt must be included on the right-hand side.

CURVILINEAR COORDINATES So far, our results in this section have been
expressed in Cartesian coordinates. However, in the general theory of
Section 1 we may allow the coordinates x~ to be any set of spacelike
coordinates. By way of illustration, let us now consider the case when x, are
the cylindrical polar coordinates r, 2, and z. Analogous results using
spherical polar coordinates have been obtained by F. P. Bretherton
(personal communication). Thus, we let

xl = r, x2 = 2, x3 = z, (2.30)

be generalized Lagrangian coordinates, whose Eulerian counterparts are r’,
2’, and z’. The particle displacements are then defined by [see (2.2)]

~1 = r’--r, ~2 = 2’--2, ~a = z’--z. (2.31)

The velocity components in the Eulerian coordinate directions are

dr’
= r’ d2’

dz’
ul = ~-~, u2 dt ’ ua = -~-, (2.32a)

where

d c~ 3 ~2 0 ~

d~ = c9--~ + t/~ ~r + ~- ~-~ + ~3 ~.
(2.32b)

Here ~ are the mean velocity components in the Lagrangian coordinate
directions, which must be carefully distinguished from the Eulerian
coordinate directions. The Lagrangian is again given by (2.12); for
simplicity, we suppose that the axis of rotation is in the z-direction, that the
potential ¯ is axisymmetric, and that there is no magnetic field (B~ = 0).
Thus the Lagrangian is

L ua, x~,-~x~, rp, S) = rfi{½u~u, + ar’u2 -- ¢#(r’, z’)-- E(p, S)},

(2.33a)
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34 GRIMSHAW

where

r’ pJ = rfi, (2.33b)

and J is again defined by (2.6b), but now x’, and x~ are the cylindrical polar
coordinates. Variations in x’, (or equivalently ¢,) then give the equations 
motion :

. dul u~ 2~u2 + + - (pK,/~) = fiX1, (2.34a)P-~ / ~ r

./duz
~u~u2 ) ~O (PK~)r ~X2’ (2.34b)p~ + + 2~u~ + =

{du~ ~ r’ ~

~ + W) + -r~ ~er~.) = ~x~. ~z34~)
Here the generalized forces are given by Q~ = firX~, Q2 = ~rr’X2, and
Q3 = firX3. The counterpart of (2.5) 

~trp)+rP~ + 7 ~ + 0z J = 0,
(2.35)

while S again satisfies (2.1c), where d/dt is now given by (2.32b).
The wave action equation can now be obtained from (1.7), or 

multiplying (2.34a), (2.34b), and (2.34c) by O~O0 and averaging. The 
is (2.15a), where now

A = rp~n,u, +xzr ~/, (2.36a)

B~ = hfXfi, A+ ~_ . (2.36b)

~ = rp~Nh;x~ + oo /’ (z36~

where

hq =h~=l; h~=r,h~=r; h;=h3= 1. (2.36d)

For linearized wave motion, we introduce the Eulerian pressure pertur-
bation p’ by (2.16), with q replaced by p, and x~ and ~ defined by (2.30)
and (2.37), respectively. It may then be shown that [compare (2.17)]

B~-a~A = rp’ + rP~a ~0 / + O(a~)" (2.37)
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WAVE ACTION 35

The second term is identically nondivergent and can be omitted from
(2.15a). When the basic flow is zonal [i.e. 1 and ti 3 are O(a2)] and th
averaging operator is interpreted as a zonal average (i.e. (9 is identified with
-2), the wave action equation (2.15a) reduces to the generalized Eliassen-
Palm relation derived by Andrews & McIntyre (1978c), and r-1A is the
angular pseudomomentum.

The mean flow equations can now be obtained from (1.21) [after
allowing for the presence of geometrical factors involving r in L, (2.33a) and
(1.18)], or more directly, by averaging (2.34a-c). For instance, from 
azimuthal equation (2.34b), we obtain

~dM ~ 1 c9
P-d-f- + 02 - r Ox~ R~+ (~r’X~), (2.38a)

where

R~ = 6~(r’ pJ--r~)--(r’ pS K~), (2.38b)

and

m = (r’u2 +Dr’2). (2.38c)

Here ~ is p(~, ~, M is the mean specific angular momentum about the z-axis,
and R~a is the azimuthal component of the radiation stress tensor. In
particular, when the averaging operator is interpreted as a zonal average

0.e. 0 is identified with -2), the off-diagonal components of Rxa are
identical with Ba- aaA; note that the diagonal components will not now
appear in (2.38a). With the further restriction to linearized waves on a zonal
basic flow, (2.38a) reduces to a generalized Charney-Drazin theorem (see
the similar results obtained by Andrews & McIntyre 1978c). Since the
divergence of the radiation stress tensor in (2.38a) is here given by (1.26a), 
follows that the M will change only in response to wave transience or
dissipative effects (for an explicit demonstration of this and the relationship
between M and the zonal mean flow, see Dunkerton 1980).

These results and their counterparts in spherical polar coordinates are
now finding extensive application in stratospheric meteorology. In this
context the literature abounds with results on conservation equations for
wave activity, derived usually for linearized waves and using various
approximations (e.g. quasi-geostrophy, hydrostatic, slowly varying mean
flows). These results are now generally called Eliassen-Palm relations after
the pioneering work of Eliassen & Palm (1961), and can be recognized 
special cases of the wave action equation. The corresponding results for the
mean flow, such as (2.38a), are known variously as nonacceleration
theorems, or Charney-Drazin theorems after the initial work by Charney &
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36 GRIMSHAW

Drazin (1961). For recent and comprehensive reviews of this now extensive
and rapidly growing subject, see Andrews & Mclntyre (1978c), Mclntyre
(1980), Dunkerton (1980), and Uryu (1980). The significant feature 
Eliassen-Palm relations on the one hand and the Charney-Drazin theorems
on the other is the equality between the flux terms of the wave action
equation and the wave forcing terms in the mean flow equation. The general
theory of Section 1 shows that this duality is not a peculiarity of the
equations governing stratospheric circulation, but is instead a general
property of wave-mean flow interactions.

3. APPLICATIONS TO STRATIFIED SHEAR FLOWS

It is not possible in a single article to cover all instances where the wave
action equation has proved a useful tool in elucidating wave-mean flow
interaction. Instead, we discuss a specific case that is relatively familiar and
sufficiently simple to permit a compact description. In applying the general
theory, the reader is reminded that it is preferable to use the principles
enunciated at the beginning of Section 2, rather than a slavish use of
the subsequent formulae. This is particularly relevant when additional
approximations, such as small wave amplitude or slowly varying waves,
are being invoked.

Internal Gravity Waves

We consider internal gravity waves propagating on a basic state consisting
of a horizontal shear flow Uo(Z) in the x-direction and the density profile
po(z). Here z is a coordinate in the vertical direction. We assume that the
flow is incompressible and ignore the effects of rotation, magnetic fields, and
dissipation. Then the linearized, two-dimensional equations of motion for
the particle displacements ~(t,x,z) and ~(t,x,z) in the horizontal and
vertical directions, respectively, are

d2~ + ~3p’
Po~- ~-x = 0, (3.1a)

d2( 0p’

P°-d-~ + -~z + P°NZ( = 0,
(3.1b)

Ox ~- ~zz = 0,
(3.1c)

where

d 0 0
(3.1d)

dt - Ot + Uo O~"
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WAVE ACTION 37

Here d/dt is the linearized approximation to the material time derivative
(Z3), and 2 i s t he Brunt-V/iis~il~i f requency -9Pff 1dpo/dz. Note that th e
equations have been formulated using the Eulerian pressure perturbation p’
[see (2.16)], rather than its Lagrangian counterpart i0. For incompressible
flow, p’ is generally found to be a more convenient entity than i0, which is
dominated by a large hydrostatic component [see Grimshaw (1975b) 
McIntyre (1977, 1980)]. Also note that the Eulerian velocity perturbations
are given by (2.18) 

u’
d~ 0Uo d~
-d[ (~-z’ w’at

(3.2)

The derivation of(3. la~) is either from (2.10) (Grimshaw 1979), or from 
linearized Eulerian equations after using (3.2).

Next we seek solutions of (3.1 a~) for which

~ = ~ exp (ikx-- i~t-- iO) c.c., (3.3)

with similar expressions for the other variables. At first, suppose that ~ is a
function of z alone. Then ~(z) satisfies the equation

~ PoW
+ pok2(NZ-~*~)~ = 0, (3.4a)

where

~* = ~- kUo. (3.4b)

Here ~* is the intrinsic frequency (1.29e). Equation (3.4a) is transformed
into the Taylor-Goldstein equation when ff is replaced by ~ = ~*ff. As
such, its properties are well known (see, for instant, Booker & Bretherton
1967). Equation (3.4a) has the wave invariant

= / ,

or

,m (3.5b)

Here ( ) is an average over the phase-shift parameter 0 [see (1.5)], and 
(3.3) is equivalent to an average over a wavelength in the x-direction. From
(2.17), B can be recognized as the vertical component of the wave action
flux, correct to O(aZ), where for simplicity we have omitted the subscript 3. It
is a constant of the motion except at critical levels where ~* = 0. Of course,
this result is a consequence of (2.15a), where only the z-derivative term
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38 GRIMSHAW

survives; it can also be derived directly from (3.4a) or by using (3.5b). Using
(3.1a) and (3.2), we can show 

kB = (pou’w’), (3.6)

which is the vertical flux of horizontal momentum, or the xz-component of
Reynolds stress. Historically it was in this form that B was first identified,
but the general theory of the previous sections shows that (3.5a) is the more
fundamental expression.

CRITICAL LEVELS AND OVER-REFLECTION Let us now suppose that Uo(Z)
~ U1.2 and N --, N1.2 as z ~ _ ~, respectively. Then

p~/2~b ~ I exp (im2z) + exp (- - imzz) asz ~--~,

p~/2~ ~ T exp(imlz) as z ~ 

where

+ N* N2

(3.7a)

(3.7b)

Here v is the phase speed ~ok- 1 in the x-direction. We suppose that the wave
frequency ~o and wave number k are such that ml,z are both real, and that
the signs of ml.2 are chosen so that I, R, and T correspond to incident,
reflected, and transmitted waves, respectively. From (3.5b),

B = 2m2(v- U2)2{IRI2- Ill 2} as z --, - ~, (3.8a)

and

B = -2m~(v-U~)21TI 2 as z~ ~. (3.8b)

Since, from (3.5a), B co*(p’w’) and (p’w’) isthevertical flux of wave
energy, it follows that

-km~,2(v- U~,2) > 0. (3.9)

If there are no critical levels in the flow, then B is constant throughout and
we can equate (3.8a) with (3.8b). The result is an expression for 
conservation of wave action and implies that IRI2 < Ill2.

However, if there is a critical level, then B is constant throughout except
at the critical level. Suppose there is a single critical level at z = 0, where
co* = 0. Then, near z = 0,

p~/2~O ~ A(v - Uo)- ~/2 + i~, + B(v - Uo)- ~/2 (3. lOa)

where

=/. \OzJ -- at z=O.
(3.lOb)

(3.7c)
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WAVE ACTION 39

Following Booker & Bretherton (1967), we determine the branch of v--Uo
as z passes through zero by assuming that the critical level is viscosity
dominated. To be explicit, suppose that k > 0 and OUo/OZ is positive at
z = 0; then v - Uo is real and positive for z < 0, and is given by Iv- Uol ei~ for
z > 0. Suppose first that # is real and positive (i.e. the local Richardson
number is greater than 1/4). Then, from (3.5b),

B= 2I, t(~-~ {]A]2-]B]2} for z<O (3.11a)
\oz/ 0

and

B= -2#(~z-~-~o{lA,2\~,, exp(-2#rc)-lB,z exp (2#re)}
for z > 0. (3.11b)

Recalling the sign conventions, it follows that the "A"-wave is upgoing and
the "B"-wave is downgoing. In either case a wave passing through the
critical level is absorbed (Booker & Bretherton 1967). Further, since B 
constant throughout z ~ 0, respectively, we may equate (3.8a) with (3.1 la),
and (3.8b) with (3.11b). It then follows that 2 < III 2.

However, if~ = iv, where 0 < v < 1/2 (i.e. the local Richardson number is
less than 1/4), then

B= 2iv(OU°~ {AB*-A*B} for z <0, (3.12a)
k ~z )o

B = - 2iv(~) {AB* exp(- 2iw)-- A*B exp(2iv~)}o

for z > 0. (3.12b)

Again, we may equate (3.8a) with (3.12a), and (3.8b) with (3.12b). As 
the critical level looks more like a vortex sheet and B is continuous at z = 0.
It follows that IRI2 > Ill 2 in this limit, and the incident wave is over-reflected
(Acheson 1976). For small but nonzero v, this argument suggests that there
may be over-reflection, since, from (3.12a,b), the jump in B across the critical
level is O(v).

The importance of this discussion in relation to the wave action equation
is that it illustrates how a knowledge of local solutions [i.e. (3.7a,b) 
(3.10a)], together with a wave invariant (3.5b), enables a number 
si~ificant conclusions to be made without necessarily solving the wave
equation (3.4a). For a similar account of critical levels when compress-
ibility, rotatioh, and magnetic effects are included, see Grimshaw (1980),
which also contains a review of the extensive literature in linearized wave
motion near critical levels.
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40 GRIMSHAW

WAVE ACTION AND ENERGY As a preliminary to discussing the mean flow,
we first allow ~ in (3.3) to depend on both z and t. Then the wave action
equation (Z15a) 

c~A c~B

~3--~- + ~-z = 0,
(3.13a)

where

and ~ is given by (3.$a). The ~xpr~ssions (3,$h) and (3.6) for B ar~ no 
valid, although they arc first afproximations wh~ ¢ is a slowly varyiag
function of t. Equation (7.13a) can h~ d~riv~d directly from (7.1a,h) 
multiplying with ~i~O and D(IDO> r~sf~ctiwly. Not~ here that si,ce ~ is a
phase-shift parameter in th~ s-di~otion, w~ oa~ identify ~A as tho x-
~omfon~nt of ps~domom~ntum -T~0, and ki is th~ oorr~sfonding
wrtioal flux.

As a comparison, th~ waw ~nergy ~quation (2.23a) 

8E 8F 8u0 (3.14a)
8t + 8z - R~3 8z ’

where

E = ~po~t~7 +t~ ) +NZ( 2 , (3.14b)

F = (p’w’), (3.14~)

R~3 = -- (p’~x) = k~. (3.14d)

Here R~3 is the sz-oomponent of the radiation stress tensor (2.20c).
Equation (3.14a) is most simply d~rived from (3.1a,b) by multiplying 
d~idt and d(idt, r~spectively. It can also be obtained from the counterpart of
(2.22a,b) for inoompressible flow. However, if this approach is followed,
(2.22a) yields an expression for E that differs from (3,14b) 

1 ~(po(2)}. (3.15)

Note, however, that a corresponding term (O/Ot) {~} occurs in F (2.22b),
and consequently can be omitted in (3.14b,c). This illustrates the Nct that
expressions such as (2.22a,b) derived from a Lagrangian may not always
yield familiar expressions, and emphasizes the desirability of a direct
derivation from the particular equation of motion being considered.
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WAVE ACTION 41

When ~ is slowly varying in both z and t, it is readily shown that
E ,~ co*A and F ~ ~o*B, in agreement with the general results (1.29c) for
slowly varying waves, recalling that for linearized waves LI ,~ 0. Further,
slowly varying waves have a slowly varying vertical wave number re(t, z),
determined from the dispersion relation

co,~ = N2k2(k2 + m2)- 1. (3.16)

The vertical group velocity is ca = &o/Om, and B ~ c3A. In this form the
wave action equation (3.13a) holds without restriction on wave amplitude,
provided that u0 is replaced with t~ in o* (3.4b), since, for slowly varying
waves in incompressible flow, the waves are transverse and expressions
such as (3.3) hold without restriction in amplitude (see Grimshaw 1975a).

~n~AN fLOW The horizontal component of the Lagrangian-mean flow
equation (2.20a) is, correct to O(a~),

0~
- C3Uo 0R13 (3.17)Po ~ + pOW~z = ~z "

Also, the vertical component ~ is determined from (2.27), which, correct 
O(a2), is

and

(3.18a)

(3.18b)

Assuming a state of no disturbance before the arrival of the waves, and
using the wave action equation (3.13a), it follows that

kA ~Uo ~ (½~2). (3.19)po(a- Uo) = - Po-~z

Remarkably, this result is exact without any restriction to slowly varying
waves. If the slowly varying hypothesis is invoked, the second term on the
right-hand side of (3.19) is omitted.

The total energy equation (2.24a) is here most simply obtained 
multiplying (3.17) with Uo and adding the result to (3.14a). We find 

~ (E + pouokA) + (F + uokB) = 0. (3.20)

Here the wave-induced total energy density is (E + pouokA), and (3.20) gives
a succinct description of how the wave-induced mean flow term kA

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

98
4.

16
:1

1-
44

. D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 D
r 

Fa
br

ic
e 

A
rd

hu
in

 o
n 

08
/0

8/
07

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


42 GRIMSHAW

combines with the wave energy 1~ to ensure conservation of total energy. In
particular, note that for slowly varying waves the total energy density is
Ev(v -Uo)- 1, and the total energy flux is just this quantity multiplied by the
vertical group velocity c3. Acheson (1976) has shown how these expressions
provide an energetic explantation of the phenomenon of over-reflection
where the wave energy flux is directed away from the critical level in both
z > 0 and z < 0, but the total energy flux is one-signed.

For slowly varying waves, both the wave action equation (3.13a) and the
mean flow equation (3.17) are valid without any restriction on wave
amplitude (Grimshaw 1975a). Combined with the dispersion relation (3.16),
in which ~o* is ~o-/¢u, they form a set of three coupled equations for the
wave action density A, the mean flow ~, and the vertical wave number m.
Numerical solutions of this set are described by Grimshaw (1975b), and
Dunkerton (1981) has obtained analytic solutions by invoking the hydro-
static approximation in the dispersion relation (3.16). This is one of the rare
instances where finite-amplitude wave-mean flow interaction can be
analyzed in a simple analytic manner.

Conclusion

This brief account of wave action and wave-mean flow interaction for
internal gravity waves is intended as a didactic illustration of the general
theory. Although this particular example can also be analyzed using
Eulerian means and wave energy arguments, it should be clear that wave
action and Lagrangian-mean concepts lead simply and directly to the main
conclusions. The advantages that ensue when the wave action equation and
Lagrangian means are employed are particularly clear when Coriolis forces
are included (Grimshaw 1975a, McIntyre 1980, Andrews 1980).

Dissipative and nonconservative effects are readily incorporated in the
above discussion in the manner described in Section 2. However, some
caution is needed when the basic state is maintained by nonconservative or
diabatic terms that may not appear explicitly in the linearized wave
equations [i.e. (3. la-c) or their counterparts]. In this situation, wave action
is not generally conserved. An example of this occurs when the Brunt-
Vfiis~ilfi frequency varies with time, but there is no corresponding basic
vertical velocity; the time variation in the basic density profile must then be
maintained by diabatic terms and so rn in (2.26) is nonzero, and
consequently the dissipative term D (2.29) in the wave action equation
(2.15a) is nonzero (see Rotunno 1977). An analogous situation occurs 
Rossby waves on a nonzonal flow (Young & Rhines 1980).

The wave action equation occurs in a variety of other physical systems.
The extension of the theory described in this section to include Coriolis
forces and its application to stratospheric meteorology has already been
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referred to at the end of Section 2. Completely contrasting physical systems
are sound waves and surface gravity waves, as in both cases the Eulerian
flow is irrotational. For a summary of wave action conservation in acoustic
waveguides, the reader is referred to Andrews & McIntyre (1978b). The
development of wave action concepts in water waves can be found in the
pioneering work of Whitham (1965, 1970) and Bretherton & Garrett (1968);
applications to finite-amplitude water waves began with Lighthill (1965)
and have been extensively developed by Peregrine & Thomas (1979) and
Stiassnie & Peregrine (1979). Finally, although it is beyond the scope of this
review to delve into applications to plasma physics, the reader may like to
consult Dewar (1970, 1972) or Dougherty (1970, 1974) for the development
of Lagrangian concepts in that context.
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