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Introduction

Recent advances in two-dimensional (2D) fully nonlinear wave models based on potential flow
theory (e.g., Grilli et al., 1989; Grilli, 1993) (FNPM) have made it possible to calculate “numerically
exact” solutions for arbitrary waves shoaling over a complex bottom geometry 4.

Early FNPM were limited to deep water periodic waves (e.g., Longuet-Higgins and Cokelet,
1976; Vinje and Brevig, 1981; Dold and Peregrine, 1986) and were mostly used to simulate and
study characteristics of deep water plunging breakers. Using such a model, Dommermuth et
al. (1988) provided a detailed confirmation of the validity of potential flow theory to describe
deep water plunging breakers produced in an experimental tank. The authors concluded that “the
calculated free surface elevations are almost indistinguishable from measured profiles”.

Recent FNPM combining wave generation and absorption/radiation truly represent “numer-
ical wave tanks” in which (numerical) experiments can be set-up and used to gain physical insight
into complex wave phenomena like shoaling and breaking over a slope (e.g., Subramanya and
Grilli, 1994; Grilli and Horrillo, 1996). Although periodic waves can be, and have been, used in
such experiments, solitary waves have often been used instead, first of all due to their intrinsic
interest as a good model of both tsunamis and very long nearshore waves 5, and also because they
are much simpler to deal with in a FNPM than periodic waves 6. Motivations for such studies can
be found mostly in the needs of coastal engineers for accurate predictions of height and location
of breaking waves, and in the needs of surf-zone modelers for detailed characteristics of waves
at the breaking point (BP), to be used as a forcing for surf-zone dynamics and sediment transport
models (e.g., radiation stresses, crest height and celerity, particle kinematics; e.g., Svendsen et al.,
1978). Another important use of FNPM results is for the validation of approximate wave theories,
like the recent study by Wei et al. (1995) in which standard and fully nonlinear Boussinesq models
(FNBM) were compared to FNPM results used as a reference.

Thus, using a 2D FNPM, Grilli et al. (1994) calculated shoaling of solitary waves over a
1:35 slope and showed that surface elevations agreed to within 1% with high accuracy laboratory
experiments, up to and slightly beyond the BP defined as the location where the wave front face
has a vertical tangent (this is also usually the definition of the BP in laboratory experiments). Such
an agreement indicates, as was already pointed out by Camfield and Street (1969), that, on a mild
slope, bottom friction and other dissipative effects—not included in the FNPM—are not important
for solitary wave shoaling. The same results also showed that exact shoaling rates significantly
differ from predictions of both Green’s and Boussinesq’s laws and that horizontal velocities become
very non-uniform over depth, as depth decreases, unlike predictions of nonlinear shallow water
equations (NSW). This also causes the wave celerity at the BP to significantly differ from predictions

4Three-dimensional (3D) FNPM were also developed but such calculations are still considered computationally
prohibitive (Broeze, 1993).

5Raichlen and Papanicolaou (1988), for instance, comment based on their experimental results that there are
“striking similarities between these (cnoidal and solitary) two types of breaking waves”.

6Periodic waves require the implementation of an absorbing beach if one does not want to interrupt computations
at the time of impact of a breaker jet on the free surface (e.g., Grilli and Horrillo, 1996).
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of NSW equations (the last points will be further substantiated in the present study).
From the earlier work discussed above, it appears that potential flow theory can quite well

predict the physics of wave shoaling over a slope, up to and into the early stages of breaking,
before touch down of the breaker jet on the free surface. Hence, a FNPM can be used to investigate
detailed characteristics of breaking waves, provided great care is taken in the numerical model
to ensure high numerical accuracy of results. Because of the easy access to computed results,
information can readily be obtained for flow details, such as those during the formation of the
overturning jet of a wave, that are very difficult to accurately measure in laboratory experiments.

The present paper represents the second part of studies reported in Grilli et al. (1994), in
which Grilli et al.’s (1989) FNPM was used to calculate characteristics of solitary waves shoaling
over plane slopes. In the present paper, a much more accurate version of this model is used to
compute detailed characteristics of solitary wave breakers, like jet shape and wave height variation,
throughout early breaking (i.e., from the BP onward). Computations are carried out for a wide range
of slopes and wave heights and results are used to derive both a breaking criterion and equations for
predicting wave characteristics at breaking. Numerical results are validated by comparison with
laboratory experiments 7.

More complete literature reviews and description of solitary waves shoaling and breaking
characteristics may be found in the works by Camfield and Street (1969), Skjelbreia (1987), Syn-
olakis (1987), Raichlen and Papanicolaou (1988), and Zelt (1991).

Description of the numerical model

Governing equations, boundary conditions, and numerical schemes for the present FNPM can
be found in Grilli et al. (1989) and in Grilli (1993), and a summary of these is given in Ap-
pendix I. Fig. 1 shows a typical sketch of computational domain for solitary waves propagating
over a slope s. Only the important aspect of accuracy of computations is briefly discussed hereafter.

Numerical accuracy.— In the present computations, to achieve sufficient accuracy both for highly
nonlinear waves propagating over gentle slopes (i.e., over long distances) and for small scale breaker
jets, three levels of improvements of the initial Grilli et al.’s model were needed : (i) a higher-order
representation of both the free surface geometry and kinematics, ensuring continuity of the slope
(“Mixed Cubic Interpolation method”; Grilli and Subramanya, 1996); (ii) selective and adaptive
node regridding techniques allowing a higher resolution of computations in breaker jets and also
preventing nodes from moving too close to each other (Grilli and Subramanya, 1996); and (iii)
adaptive quasi-singular integration methods accounting for the proximity of nodes in breaker jets
(Grilli and Subramanya, 1994).

Accuracy is checked in the present computations by verifying global conservation of wave

7The present study will only deal with waves that break during runup. It turns out that solitary waves that do not
break during runup may still do so during run-down. This was pointed out by Synolakis (1987) and was also predicted
in the computations by Svendsen and Grilli (1990) and Otta et al. (1993), using a FNPM.
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volume and total energy (Grilli et al., 1989). In all cases, spatial and temporal discretizations are
selected for both errors on wave energy and volume to stay smaller than 0.05% during most of the
wave propagation (see Grilli and Subramanya, 1996, for details of typical discretizations, numerical
parameters, and computational errors for solitary wave shoaling). When breaker jets are forming,
however, errors in volume and energy increase in the initial discretization. These errors are reduced
by improving the resolution in breaker jets through addition and regridding of discretization nodes.
Due to the smaller distance between nodes in regridded breaker jets, the (adaptive) time step very
much reduces beyond the BP, which further improves computational accuracy. In the present ap-
plications, computations were stopped when global errors became larger than 1.0%. This criterion
usually allowed following the development of breaker jets up to impending touch down on the free
surface 8.

Shoaling and breaking of solitary waves over a slope

The first problem addressed in this paper is the question of how do solitary waves behave imme-
diately before and after the breaking point (BP), as a function of both incident wave height and
beach slope, with particular attention paid to breaker shape and self-similarity, and to pre- and
post-breaking variation of the wave heights.

Breaker shape and self-similarity.— Figs. 2-5 show computations for the shoaling and breaking
of solitary waves on plane beaches with slopes, s =1:100, 1:35, 1:15, and 1:8. Three different
incident wave heights, H 0

o = Ho=ho, are shown for each slope. Earlier studies by Grilli et al.
(1994) concentrated on the shoaling aspects (illustrated in Fig. 1) and were carried out with a
version of the model that was not able to pursue computations with sufficient accuracy further
than the BP (represented by curves a in Figs. 2abc, 3abc, 4abc, 5c, and curve d in Fig. 5b). The
new improvements of the model by Grilli and Subramanya (1994, 1996) allow computations to be
pursued beyond the BP, almost up to touch-down of the breaker jets on the free surface without the
model showing signs of break down (curves d in the same figures). Data and times, t0 = t

q
g=ho, of

plotted curves a to d for the cases in Figs. 2-5 are given in Table 1. Unfortunately no experimental
data are available for the details of the flow at this critical moment of the breaking.

Results in parts (a), (b), and (c) of Figs. 2-4 show that, for a given wave, a decrease in jet-size
occurs as the slope decreases 9. On the (smallest) 1:100 slope, waves overturn with a fairly small
size plunging jet (for Ho � 0:40, the jet touches down less than half the wave height down the
slope; this is even more clear in Fig. 6 discussed below). On the other hand, Figs. 2-4 also show
that the size of the jet does not change relative to the wave height for waves with different incident
height on a given slope.

8Note that no local error check was used but various numerical methods used in the computations, particularly the
node regridding technique combined to the adaptive time stepping scheme, were tested for convergence and stability
by Grilli and Subramanya (1996).

9Jet size is defined here as the vertical distance between wave crest and jet tip.
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This suggests that, for a fixed initial wave height, the height of the jet would tend to zero
as the slope tends to zero. On a very gentle slope, the wave would propagate for long distances
before reaching breaking, in a manner similar to the instability of the almost highest solitary wave
on constant depth analyzed by Tanaka et al. (1987). Its breaker height would thus be very close
to the maximum stable wave height on a horizontal bottom (' 0:78ho). Based on the present
computations, our conjecture would be that, in this case, the breaking would still be plunging but
at first on a very small scale. After touch-down of the (small) jet, however, the turbulent region
would propagate down the slope in a situation that is usually associated with a spilling breaker.

The implication of this hypothesis is that all (so-called) spilling breakers actually start as
(small scale) plunging breakers. High speed laboratory photographs by Papanicolaou and Raichlen
(1987) (PR) and Raichlen and Papanicolaou (1988) (RP), of solitary waves breaking over a (very
gentle) 1:164 slope, support this hypothesis and show that a very small scale curl-up of the wave
crest occurs just before the bore usually associated with spilling breaking is observed. Local
analytic solutions of potential flow equations by Jenkins (1994) also indicate the occurrence of
very small size jets and that spilling and plunging breaking can be “regarded as being basically the
same phenomenon except with a smaller length scale” 10. Hence, for convenience, we have chosen
here (arbitrarily) to use the term spilling breaker for a plunging breaker with a jet height less than
half the wave height. Based on this criterion, the waves in Figs. 2bc represent spilling breakers
while the waves in Figs. 2a, 3abc, and 4abc represent plunging breakers.

After reaching a vertical tangent at the BP (curves a in Figs. 2-4), breaking waves propagate
for 1 to 3ho in horizontal distance, depending on H 0

o and s, before the jets impact the free surface
(curves d in the figures). Propagation distances on this order can also be seen in PR and RP’s
experiments.

On the steepest slope (1:8; Fig. 5), waves behave radically different from the plunging
breakers in Figs. 2-4. As will be seen in Fig. 10, we are here at the limit between breaking and
non-breaking waves. The wave in Fig. 5b (H 0

o = 0.40) will eventually break as a surging breaker
in which the vertical tangent of the front occurs at the toe. In Fig. 5a (H 0

o = 0.20), the wave front
never becomes quite vertical and the wave just runs up the slope without breaking. In Fig. 5c
(H 0

o = 0.60), computations were stopped at profile d but this case seems likely to develop into a
collapsing breaker in which the toe shoots forward in spite of the already overhanging front.

Figs. 2-5 (a to c) indicate a fairly strong similarity between breakers for different waves on
the same slope. To make it easier comparing breakers, parts (d) of Figs. 2-5 show a superposition
of breaker shapes scaled in elevation by the incident wave height Ho and horizontally translated
to the location xc of breaker crests. Breakers correspond to curves d for the three different wave
heights in each figure (note that in Fig. 5a curve a has been used to show the (non-breaking) wave
shape just before it starts running up). We see that, on the same slope, breaking waves of different
incident heights have a similar shape. The most important differences are that, the smaller the

10Note that recent experimental evidence by Duncan et al. (1994) suggests that when the scale of the instability that
leads to breaking becomes sufficiently small, capillary effects dominate leading directly to a (small) turbulent roller
without an overturning jet. Such small scales of instability, however, have not been investigated in this paper.
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incident wave, the higher and more peaked the breaking wave and these differences become more
pronounced the milder the slope. This implies that, on a given slope, the breaking index, Hb=hb,
is larger the smaller the incident wave. An equivalent similarity in shape is not found for waves
of same incident height on different slopes. In Fig 6, we see that the overturning jets grow both in
length and thickness as the slope becomes steeper (curves a to d). In all cases (except for curve d
in Fig. 6a, the runup case), we are technically looking at plunging breakers (although some have
formally been termed spilling as mentioned earlier) but it is obvious that a significant increase in
the intensity of breaking takes place when the slope increases. On the basis of this observation, it
would seem reasonable to consider the area of the jet at the instant of touch down as a measure of
the strength of breaking. A dimensionless parameter could be obtained by dividing this area, say,
by HL or H2.

Wave height variations before and after breaking.— Fig. 7 shows wave height variations as a
function of depth h(x0), for the cases in Figs. 2-5. We see, again, that the slope is more significant
than the incident wave height in determining changes in H up to and beyond the BP (symbols (�)).

Before the BP, wave height variations confirm the patterns discussed in Grilli et al. (1994)
: (i) for all slopes, no wave has a real tendency to follow Green’s law11, G � H / h�1=4; (ii) for
gentle slopes, Boussinesq law, B � H / h�1, only frames the results and, in average, no wave
grows faster than 1=h; (iii) on the steeper (1:8) slope, wave height essentially does not change and
even slightly decreases towards the BP.

The more accurate model used in the present studies allows computations to be accurately
pursued beyond the BP. One thus sees that, on the gentler slopes, wave height rapidly decreases
over a short distance before touch-down of the jet. Since there is no dissipation in the FNPM, this
decrease in height must entirely be due to a reorganization of potential energy into kinetic energy
in the wave. This is easily confirmed by computing these quantities in the FNPM (which cannot
readily be determined from experiments). Computations show that, even before the BP, potential
energy starts slowly transforming into kinetic energy (see, e.g., Fig. 7 in Grilli et al., 1994). Due to
the increasing wave asymmetry during shoaling (Fig. 1), however, despite the decrease in potential
energy, the crest elevation still increases up to the BP while the back of the wave spreads out
and flattens. Beyond the BP, results show that the transformation of potential into kinetic energy
accelerates due to the large particle velocities associated with the plunging jet (see, e.g., Fig. 6 in
Grilli et al., 1994). This leads to the rapid decrease observed in wave height.

Synolakis and Skjelbreia (1993) (SS), based on experimental results for mild slopes (s �1:50),
identified a zone of rapid decay for the wave height beyond the BP where, H / h�. Present FNPM
results give an average � = 2:7, 1.7, and 0.84, for the 1:100, 1:35, and 1:15 slopes, respectively,
i.e., smaller than the value � = 4 found by SS. The latter value, however, averaged both dissipative
and non-dissipative effects and a smaller rate of decay in FNPM computations should thus be
expected. PR and RP provided detailed measurements of wave height variations beyond the BP
for solitary waves breaking on mild slopes. In PR-RP’s results, it is clear that wave height initially

11Except maybe for part of the shoaling on a slope that would be about 1:15, but this would be considered fortuitous.
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decreases over a horizontal distance about 2-8 hb beyond the BP (almost linearly in a log-log
diagram). At this point, wave height starts more strongly decreasing. Comparing these wave
height variations to the photographs also given in PR-RP’s study, it can be conjectured that the
initial wave height decrease observed in experiments represents the non-dissipative wave height
reduction calculated in the FNPM, corresponding to jet development before touch down, whereas
the stronger subsequent reduction is due to dissipations throughout breaking. Based on the curves
in PR-RP’s study, one can estimate � ' 1:95 for the initial wave height decrease beyond the BP
on a 1:52 slope, which is within the range obtained in the present computations.

Breaking criterion and prediction of breaking characteristics

The second problem addressed in this paper is the question of which waves break on which slopes
and with which characteristics, with particular attention paid to the transition to breaking, the
breaking criterion, and to the breaking indices, depths, and types.

Transition to breaking .— Computations in Figs. 2-5 showed that, on a given slope, breaking may
or may not occur and breaker types may differ depending on both incident wave height H 0

o and
slope s. Results of these computations are summarized in Fig. 10 along with many other similar
numerical results obtained both here and in previous studies by Grilli et al. (1994) and Otta et
al. (1993) (see Table 1). The figure shows which waves break and which do not. Breaker types
(spilling (SP), plunging (PL), or surging (SU)), also marked on the figure, are discussed in the next
Section. We see first of all that a very large wave with H 0

o = 0:75 (i.e., close to the maximum
stable height ' 0:78; Tanaka, 1986), does not break if the slope is too steep (s =1:1.73, 1:4),
whereas the wave does break on the milder slopes (s =1:8 and 1:15) 12. For smaller waves, the
figure clearly shows a limit between breaking and non-breaking solitary waves that depends on the
slope and, in the log-log plot for (H 0

o; 1=s), shows up as a linear dependence between log H 0

o and
log 1=s (bold solid line in Fig. 10). To more exactly locate this limit and to better understand the
transition between breaking and non-breaking waves, numerical experiments were carried out on
a few different slopes, for waves with height that was incrementally increased across this line.

Figs. 8 and 9 present some of these calculations for 1:15 and 1:8 slopes, respectively, and for
three different wave heights for each slope : (i) in part (a), a non-breaking wave height (i.e., below
the limit in Fig. 10); (ii) in part (b), a wave height that is barely breaking (i.e., on the limit in Fig
10); (iii) in part (c), a clearly breaking wave (i.e., above the limit). Parts (d) of the figures show a
comparison between the first (non-breaking) profiles (curves a) in part (a) and the last (breaking)
profiles (curves d) in parts (b) and (c) of the figures, each scaled by the incident wave height. Data
and times t0 for curves a to d for cases in Figs. 8 and 9 are given in Table 1. (Several similar

12The question of whether such a large wave would occur or not in nature or, more precisely, would be stable for
long enough to reach a beach slope, has not been addressed here. These waves are predicted to exist within the frame
of FNPM’s, both numerical and semi-analytical (e.g., streamfunction theory), and are thus relevant to the present study.
Besides, results for large waves certainly do not undermine or contradict our conclusions for smaller waves.
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computations with small wave height increments—-not reported here—-were performed for other
slopes as well, to determine the exact position of the line in Fig 10).

Both cases in Figs. 8b and 9b appear to break as surging/collapsing breakers for which
no crest overturning actually occurs but the whole wave collapses on itself before surging up the
slope. To determine which waves were actually breaking and which were not, we checked if we
could calculate a complete runup/run-down cycle without disturbance or break down of the water
surface.

The barely breaking profiles in Figs. 8b and 9b show a marked increase in the slope of the
wave front face, as compared to the non-breaking profiles in Figs. 8a and 9a (see also parts (d)). The
slope never becomes completely vertical, however, and it is conjectured that there is a non-vertical
value of this slope which defines the point of transition to breaking. A closer investigation of this,
however, requires more computations for a more detailed analysis of the wave kinematics close to
the point of intersection of the water surface with the slope, and will have to be left out for further
studies.

Cases in Figs. 8b and 9b can be identified in Fig. 10, as delimiting part of the breaking limit.
Characteristics of the latter are further discussed in the following section.

Breaking criterion, breaking type .— The limit between breaking and non-breaking solitary
waves, i.e., the breaking criterion (represented by the bold solid line in Fig. 10), was determined
using a Least Square method based on the calculations, as,

H 0

o > 16:9 s2 (1)

which indicates that incident solitary waves satisfying (1) will break sometime during runup on a
slope s.

Many past studies have attempted to define breaking criteria and breaking characteristics
for solitary waves on plane slopes. Camfield and Street (1969) (CS) concluded, on the basis of
their experiments and of experiments by Ippen and Kulin (1954), that “there was no evidence of
breaking” for slope angles larger than 12� (or, s >1:4.7). This fully agrees with the criterion (1)
which predicts that a wave of maximum height, H 0

o = 0:78, will only break for s < 1 : 4:7.
A different criterion was found by Synolakis (1987). Using the NSW equations, he suggested

that waves would eventually break during runup if, H 0

o > 0:818 s10=9. This criterion is indicated
by the dashed line in Fig. 10, and we see that the NSW equations predict that much smaller waves
will break than found using the present more accurate method 13 (this could be expected as a result
of the shallow water steepening occurring in the non-dispersive NSW equations). NSW equations

13For waves of sufficiently small height (such as tsunamis), the extrapolation of the two criteria in Fig. 10 will
intersect for, H 0

o = 0:019 and s =1:30. Hence, only for one wave height on one slope would the NSW and FNPM
methods give the same limit but it is not clear, however, that equation (1) could be extrapolated to such small values
of H 0

o
, for which we have not at the present time performed any numerical experiments. Besides, even such small

waves will become quite steep when they approach breaking, which means the NSW approximation breaks down.
Near breaking, the deviation from the hydrostatic pressure assumed in the NSW equations is important for the wave
development.
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were shown in a number of studies to quite well predict the runup value for non-breaking solitary
waves on mild slopes (e.g., Synolakis, 1987). Since runup is greatly reduced if waves break,
however, the prediction of breaking for waves that actually do not break also means that the NSW
equations predict much less runup for this class of non-breaking waves.

Non-dimensional parameters are usually used to predict breaking waves characteristics. A
surf-similarity-type parameter would be a possible candidate (Yasuda et al., 1992). Here, we will
use the slope parameter So, defined as sLo=ho where Lo is a characteristic horizontal length scale
for the initial wave. The question remains which wave length scale Lo to use for a solitary wave.
Raichlen and Papanicolaou (1988) suggested to use the width of the incident solitary wave at a
height Ho=2 above still water level. In the present study, following Klinting and Svendsen (1974),
this width is measured between the points of maximum slope on the solitary wave profile. Using
Boussinesq’s solitary wave theory, we thus get,

Lo =
2hoq
3H 0

o=4
arctanh

p
3

3
(2)

and the slope parameter So for solitary waves is then defined as,

So =
sLo

ho
= 1:521

sq
H 0

o

(3)

Incidentally this parameter has a 99.9% correlation with the parameter, �s = s=H 0

o
0:4, introduced

by Yasuda et al. (1992) on a heuristic basis.
Combining (1) and (3),we see that criterion (1) for occurrence of breaking simply corresponds

to So < 0:37. In Fig. 10, a family of lines corresponding to So = 0:025 to 0.80, has been plotted
and we see that (1) is almost identically represented by, So < 0:37. Values ofSo for the calculations
in Figs. 2-5 and 8,9 are given in Table 1. One can see, in particular, that the barely breaking waves
shown in Figs. 8b and 9b have, as expected, So ' 0:37. Now, referring to the breaking types
marked by various symbols in Fig. 10 and listed in Table 1, one can also see that they can be
predicted in terms of values of the parameter So as,

i) surging breaking : 0:3 < So < 0:37

ii) plunging breaking : 0:025 < So < 0:30

iii) spilling breaking : So < 0:025

Hence, using one single parameter So, we can predict whether a solitary wave will break or not on
a given slope and which type of breaking will occur. Wave characteristics at breaking are discussed
in the next sections.

Breaking index and breaking depth.— The simple limit, Hb=hb ' 0:80, corresponding to the
maximum stable solitary wave in constant depth, has been and is still often used as a breaking
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index for both solitary and long periodic waves breaking over very mild slopes. To improve on this
value, CS proposed an empirical breaking index for solitary waves, based on an average of their
experimental results and of those by Ippen and Kulin (1954), for all wave heights on a given slope,

Hb=hb = 0:75 + 25s� 112s2 + 3870s3 (4)

Results of our computations can be used to derive a similar, albeit improved, relationship.
Using a Least Square method for the results of computations in Figs. 2-5, and 8,9, summarized in
Table 1, along with results of other computations by Grilli et al. (1994) and Otta et al. (1993), also
summarized in Table 1, we get.

Hb=hb = 0:841 exp (6:421So) (5)

with a correlation coefficient 14, R = 0:997. Similarly, for the breaking depth, we get hb=ho as a
function of So=H

0

o, for SP and PL breakers, as,

hb=ho =
0:149

(So=H 0

o)
0:523

with So < 0:30 (6)

and for SU breakers, as,

hb=ho =
0:0508

(So=H 0

o)
1:00

with 0:30 < So < 0:37 ; So=H
0

o > 0:385 (7)

with correlation coefficients, R = 0:967 and 0.995, respectively.
An extensive collection of experimental data is available for the breaker index and breaker

depth of solitary waves (PR, for 1:52 to 1:164 slopes; Skjelbreia (1987), for 1:52 to 1:161 slopes;
CS, for 1:33 to 1:100 slopes; and Grilli et al. (1994), who reported experiments by Veeramony and
Svendsen (1994) for a 1:35 slope). These results are all listed in Table 2 and compared 15 in Fig.
11 to values predicted by eqs. (5), (6) and (7), along with numerical data from Table 1. Notice that
there are no experimental data for SU breakers 16. We see that the empirical expressions represent
both the numerical and the experimental data very well. It is also seen that types of breaking in
each experiment agree with the numerical predictions. More importantly, however, we observe
that, when plotted as a function of So, the data for all slopes and wave heights collapse into one
single curve for the breaking index in Fig. 11a. This even applies to the numerical data for SU and
one sees that the maximum breaking index, beyond which waves are non-breaking (NB), is 9.05
for a SU breaker, with So = 0:37. Similarly, the parameter So=H

0

o makes all data for hb=ho fall on

14A similar result was obtained for periodic waves by Svendsen (1987). Because of the use of the conventional wave
length for Lo in that work and the use of parameters at the break point, the two results are not directly comparable.

15To facilitate the comparison, the experimental data have been fitted to expressions similar to (5) and (6), and the
results are shown as dashed curves in Fig. 11.

16For the breaker index in Fig. 11a, the data available from numerical and physical experiments does not make it
possible to distinguish different laws for the two radically different breaking processes of PL and SU. For this, more
data would be needed in the interval of So between 0.2 and 0.3. In Fig. 11b, on the other hand, the two processes
clearly distinguish themselves in the hb=ho data.
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the same curves in Fig. 11b. No other representation is capable of this. Note, however, that hb

is measured as the undisturbed depth under the wave crest (see Fig. 1) and as this depth becomes
very small when we approach large values of So, results obviously become similarly uncertain.

The breaking index relationship (5) is compared in Fig. 12a to CS’s experimental criterion
(4). It is immediately seen that, because CS’s (dashed) expression uses s rather than So, it cannot
account for the influence of wave height on a given slope 17, which is rather significant for average
to steep slopes (curves a-h). It is noticed, however that for very gentle slopes (1:100 or less; So

very small) both criteria (5) and (4) predict breaker indices close to the constant depth limit of
Hb=hb ' 0:80, with no noticeable influence of slope or wave height. Now, considering that CS’s
average criterion falls in the middle of the values predicted by criterion (5) for wave heights ranging
between H 0

o = 0:05 and 0.78, the agreement between both criteria is, hence, fairly reasonable.
Fig. 12b, finally, summarizes the present findings for both breaking indices and breaking types as
a function of (H 0

o; 1=s), in a form that allows for easy prediction for given incident solitary wave
height and slope.

Wave celerity at breaking.— The crest celerity c0b at breaking is given in Table 1 for the com-
putations in Figs. 2-5, along with the ratio c0bs=c

0

b in which the numerator denotes the celerity
predicted by NSW equations 18, c0bs =

q
H 0

b + h0b, which is often used in surf-zone models to
estimate wave celerity at breaking. Computations show that : (i) on the two milder slopes, wave
celerity decreases during shoaling up to a point close to the BP and then increases up to the BP;
(ii) on the two steeper slopes, celerity increases during shoaling up to the BP. In all cases, celerity
rapidly decreases beyond the BP.

At the BP, results in Table 1 for c0b show that, on the two milder slopes, the NSW equations
mostly overpredict crest celerity (by up to 59%), the overprediction being larger for the smaller
waves on the milder slope. The comparison of results of FNBM and FNPM results by Wei et al.
(1995), for a range of slopes 1:100 to 1:8, showed that wave celerity is quite well predicted in the
FNBM, except right at the BP where the FNBM slightly underpredicts celerity. Since the FNBM
has fully nonlinear terms, as do NSW eqs., the larger discrepancies observed here with the NSW
equations are thus likely due to a lack of dispersive effects in these equations (such observations
were already made by Grilli et al., 1994, on the basis of two computations). This is well supported
by the larger discrepancies observed in Table 1 for the smaller waves shoaling over the milder
slopes, for which the longer distances of propagation are likely to make dispersive effects increase.
On the two steeper slopes, overprediction of celerity is less, with a maximum of 10%, but celerity
is underpredicted in most cases (by up to 43%). These results, again, show the inadequacy of
the NSW equations to describe wave kinematics close to the BP, where vertical accelerations (i.e.,
dispersive effects) and, hence, non-hydrostatic pressure increase.

17In fact, (4) was obtained by averaging experimental results for all wave heights on a given slope and thus lost
wave height information.

18Note that the breaker height obtained in the FNPM was used in the NSW celerity equation. This is acceptable since
NSW equations are known to predict wave elevations better than kinematics, but still represents an approximation.
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An empirical expression was derived for c0b based on results in Table 1. It was found that the
only significant factor explaining the variation of c 0b was H 0

o, with very little effect of slope. The
expression thus reads,

c0b = 0:466+ 2:58H 0

o � 1:82H 0

o
2 (8)

with a correlation coefficient, R = 0:991.

Conclusions

Summarizing the results, we conclude that :

� No wave that can propagate stably on a constant depth breaks on slopes steeper than 12�

(> 1 : 4:7). With So = sLo=ho, waves break on a given slope : (i) as surging breakers
(SU) when 0:30 < So < 0:37 (with 5:8 < Hb=hb < 9:1); (ii) as plunging breakers (PL)
when 0:025 < So < 0:30 (with 1:0 < Hb=hb < 5:8); and (iii) as spilling breakers (SP) when
So < 0:025 (with Hb=hb < 1:0). For s <1:4.7, waves do not break when So > 0:37. These
results are supported by both computations and experiments. The NSW equations fail to
predict which waves break and which do not.

� The most important parameter deciding the shape of breaking waves is the slope, the initial
wave height being of secondary importance. Thus, breaker shapes are fairly self-similar on
a given slope. On the milder slopes, however, breakers are more peaky and deformed for the
smaller incident waves. Sizes of plunging jets for SP and PL increase significantly with the
slope. SP and PL waves propagate for 1 to 3ho beyond the BP, before their breaker jet hits
the free surface.

� Shoaling rates for mild slopes (s <1:20) increase monotonously towards breaking and may
even increase faster than h�1, the rate predicted by Boussinesq theory for solitary waves.
Shoaling rates decrease dramatically with increasing slope steepness and, on steeper slopes
(> 1 : 15), the rates are much lower than predicted by Green’s law and can even be negative
(i.e., wave height decreases towards the BP). Beyond the BP, wave height initially decreases
withH / h(2�3). This (non-dissipative) decrease, also observed in experiments, is associated
with a transformation of potential energy into kinetic energy in the wave, at an increased
rate beyond the BP due to larger velocities in plunging jets. After touch-down of the jet, the
FNPM is not applicable and experiments show that wave height decreases at a higher rate
due to dissipations in the flow.

� For all slopes investigated here, the breaking index Hb=hb is well above the limit of ap-
proximately 0.80 of the steepest stable wave on constant depth. This is also supported by
experiments. For moderately steep slopes or very small waves (i.e., large So < 0:37), waves
may break very close to the shoreline and the breaking index becomes very large (with a
maximum of about 9 for hb measured under the wave crest). On a given slope, the breaking
index increases with the decreasing wave height.

12



� Empirical expressions (5)-(7) for the breaking index and the breaking depth, developed by
curve fitting of the numerical results, agree well with experimental results and can be used
to predict wave characteristics at breaking. Results for breaking criterion, breaker-type, and
indices are summarized in Fig. 12b.

� Wave crest celerity decreases when waves propagate beyond the BP. At breaking, wave
celerity is significantly over- or under-predicted by the NSW equations (by up to 59%), for
mild or steep slopes, respectively. The empirical expression (8) can be used to predict wave
celerity at breaking.
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Appendix I—A review of FNPM governing equations

Equations and numerical methods for the FNPM are briefly reviewed here. Details can be found in
Grilli et al (1989), Grilli (1993), and Grilli and Subramanya (1994, 1996). The velocity potential
�(x; t) is used to represent inviscid irrotational 2D flows in the vertical plane (x; z) and the
velocity is defined by u = r� = (u;w) (Fig. 1). Continuity equation in the fluid domain 
(t)

with boundary �(t) is a Laplace’s equation for the potential

r2� = 0 in 
(t) (9)

Using free space Green’s function, G(x;xl) = �(1=2�) log j x� xl j, and Green’s second iden-
tity, equation (9) transforms into the boundary integral equation (BIE),

�(xl)�(xl) =
Z
�(x)

[
@�

@n
(x)G(x;xl)� �(x)

@G(x;xl)

@n
] d�(x) (10)

in which x = (x; z) and xl = (xl; zl) are position vectors for points on the boundary, n is the unit
outward normal vector, and �(x l) is a geometric coefficient.

Equation (10) is solved by a boundary element method (BEM; Brebbia and Walker, 1978),
using a set of collocation nodes on the boundary and higher-orderelements to interpolate in between
the collocation nodes. Integrals in (10) are numerically evaluated and the resulting algebraic system
of equations is assembled and solved for the equivalent discretized problem.

Along the stationary bottom �b, a no-flow condition is prescribed by

@�

@n
= 0 on �b (11)

Solitary waves are generated in the model, over a region of constant depth ho, by simulating
a piston wavemaker motion on the “open sea” boundary of the computational domain, �r1(t) (as in
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laboratory experiments), or by specifying the potential � normal velocity @�=@n and the elevation
� at initial time t0, for the incident wave, directly on the free surface (as in Tanaka, 1986).

On the free surface �f (t), � satisfies the kinematic and dynamic boundary conditions,

Dr

Dt
= (

@

@t
+ u �r) r = u =r� on �f (t) (12)

D�

Dt
= �gz + 1

2
r� �r�� pa

�
on �f (t) (13)

respectively, with r, the position vector on the free surface, g the gravitational acceleration, z the
vertical coordinate, pa the pressure at the free surface, assumed zero in the applications, and � the
fluid density.

At a given time, computations in the model proceed forward in time by integrating the fully
nonlinear free surface boundary conditions (12) and (13), using third-order accurate explicit Taylor
series expansions for � and r, expressed in terms of a time step �t and of the Lagrangian time
derivative D=Dt. Terms in both series expansions are calculated by solving two BIE’s of the type
(10) for � and @�=@t, in sequence at each time step, the solution of the first BIE providing boundary
conditions for the second BIE. Trajectories of individual free surface particles — identical to nodes
of the BEM discretization — are thus calculated as a function of time.

The time step in the model is adaptively selected based on a constant mesh Courant number
(optimal value ' 0:35� 0:5) to ensure optimal accuracy and stability of computations. Time step
is thus reduced when the distance between free surface nodes decreases.
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Appendix III–Notations

cb = breaking wave celerity (FNPM);
cbs = breaking wave celerity (NSW);
g = gravitational acceleration;
h = local water depth;
hb = water depth at breaking measured under the wave crest;
ho = constant reference water depth;
s = beach slope;
t = time;
x = horizontal coordinate;
xb = location of the breaking point;
z = vertical coordinate;
BP = breaking point;
FNBM = fully nonlinear Boussinesq model;
FNPM = fully nonlinear potential flow model;
H = local solitary wave height;
Hb = solitary wave height at breaking;
Hb=hb = breaking index;
Ho = incident solitary wave height;
NB = non-breaking wave;
NSW = nonlinear shallow water;
PL = plunging breaking wave;
SP = spilling breaking wave;
SU = surging breaking wave;
So = slope parameter;
� = local wave amplitude;

Subscript
b = quantities at the breaking point;
o = quantities for the incident wave;

Superscript
’ (prime) = dimensionless variables according to long wave theory : lengths are divided by ho,
times by

q
ho=g, and velocities and celerities by

p
gho.
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Appendix IV—Tables

s H 0

o So H 0

b Hb=hb x0b c0b c0bs=c
0

b t0a t0b t0c t0d Type

1:100 0.20 0.0340 0.361 1.066 66.13 0.878 1.586 66.93 68.16 69.13 69.89 PL
1:100 0.40 0.0240 0.629 1.041 39.56 1.213 1.154 34.37 35.47 36.20 36.77 SP
1:100 0.60 0.0196 0.781 1.033 24.46 1.351 1.038 19.41 20.26 21.20 21.73 SP
1:35 0.10 0.1370 0.203 1.950 31.36 —- —- —- —- —- —- PL
1:35 0.15 0.1120 0.296 1.473 27.96 —- —- —- —- —- —- PL
1:35 0.20 0.0972 0.364 1.402 25.90 0.943 1.388 25.91 26.74 27.40 27.80 PL
1:35 0.25 0.0870 0.422 1.385 24.29 —- —- —- —- —- —- PL
1:35 0.30 0.0790 0.476 1.380 22.93 —- —- —- —- —- —- PL
1:35 0.40 0.0687 0.592 1.378 19.97 1.231 1.067 17.10 17.80 18.44 19.04 PL
1:35 0.60 0.0561 0.754 1.312 14.89 1.364 0.973 11.60 12.29 12.72 13.10 PL
1:20 0.20 0.1701 0.332 2.104 16.84 —- —- —- —- —- —- PL
1:15 0.06 0.4140 —- —- —- —- —- 17.11 17.54 18.31 19.14 NB
1:15 0.08 0.3650 0.099 8.735 14.83 —- —- 15.51 15.89 16.22 16.48 SU
1:15 0.10 0.3210 0.111 6.660 14.75 —- —- 15.38 15.76 16.01 16.20 SU
1:15 0.30 0.1851 0.398 2.651 12.75 1.064 1.103 11.43 11.86 12.19 12.52 PL
1:15 0.45 0.1512 0.556 2.372 11.48 1.229 0.970 9.29 9.87 10.35 10.73 PL
1:15 0.60 0.1309 0.689 2.180 10.26 1.342 0.900 7.78 8.61 9.18 9.41 PL
1:15 0.70 0.1210 0.820 1.970 8.72 —- —- —- —- —- —- PL
1:8 0.20 0.4251 —- —- —- —- —- 7.54 8.03 8.53 9.03 NB
1:8 0.22 0.4050 —- —- —- —- —- 6.58 8.16 9.19 10.21 NB
1:8 0.26 0.3720 0.291 9.100 7.74 —- —- 5.19 5.98 6.39 6.54 SU
1:8 0.30 0.3470 0.321 8.050 7.68 —- —- 5.41 5.73 6.00 6.34 SU
1:8 0.32 0.3360 0.346 7.395 7.63 —- —- —- —- —- —- SU
1:8 0.34 0.3260 0.362 7.005 7.52 —- —- —- —- —- —- SU
1:8 0.36 0.3170 0.384 6.361 7.51 —- —- —- —- —- —- SU
1:8 0.40 0.3006 0.407 5.373 7.39 1.219 0.570 5.68 5.76 5.91 6.01 SU
1:8 0.60 0.2455 0.592 4.689 6.99 1.392 0.791 5.35 5.41 5.48 5.56 PL

Table 1: Numerical results for computations in Figs. 2-12. t0a-t0d denote times of curves a-d in
figures 2-5 or 8,9, parts (a)-(c), with t0 = 0 corresponding to the incident wave crest passing the
toe of the slope. Note, h0b = 1� x0b s.



s H 0

o So Hb=hb hb=ho Type Source

1:100 0.20 0.0340 1.00 —- —- CS
1:50 0.20 0.0680 1.28 —- —- CS
1:33 0.20 0.1020 1.52 —- —- CS
1:35 0.10 0.1374 1.93 0.100 PL GR
1:35 0.15 0.1122 1.50 0.177 PL GR
1:35 0.20 0.0972 1.36 0.252 PL GR
1:35 0.15 0.0869 1.34 0.300 PL GR
1:164 0.40 0.0147 0.967 0.617 SP PR
1:106 0.35 0.0242 1.015 0.544 SP PR
1:80 0.20 0.0429 1.073 0.368 PL PR
1:80 0.30 0.0350 1.086 0.467 PL PR
1:80 0.40 0.0303 1.071 0.532 PL PR
1:63 0.25 0.0481 1.102 0.395 PL PR
1:52 0.20 0.0654 1.222 0.312 PL PR
1:161 0.40 0.0149 0.840 0.630 SP SK
1:133 0.20 0.0256 0.910 0.420 SP SK
1:52 0.20 0.0654 1.240 0.300 PL SK

Table 2: Experimental results for solitary waves of height H 0

o shoaling and breaking over a slope
s. CS : Camfield and Street (1969); GR : Grilli et al. (1994); PR : Papanicolaou and Raichlen
(1987); SK : Skjelbreia (1987).



Appendix V—List of figure captions

Figure 1: Definition sketch for the FNPM computations of a solitary wave of height H 0

o shoaling
and breaking over a slope s. BP : Breaking point for which the wave front face has a vertical tangent.

Figure 2: Computations for the shoaling of solitary waves with, H 0

o = (a) 0.20; (b) 0.40; (c) 0.60,
on a slope s =1:100. Times of curves a-d are given in Table 1. Curves a in parts (a)-(c) correspond
to the BP. Part (d) shows a superposition of curves d from parts (a)-(c), scaled by Ho and translated
to the crest location xc.

Figure 3: Same as Fig. 2 for s = 1:35.

Figure 4: Same as Fig. 2 for s = 1:15 and H 0

o = (a) and a’ : 0.30; (b) and b’ : 0.45; (c) and c :
0.60.

Figure 5: Same as Fig. 2 for s = 1:8, except that breaking does not occur in part (a) and that curve
a in part (a) is used as curve a in part (d).

Figure 6: Shoaling of solitary waves of initial wave heights H 0

o = (a) 0.20; and (b) 0.60, on slopes
of s = a: 1:100; b: 1:35; c: 1:15; and d: 1:8. Scaled curves are directly imported from Figs.
2d-5d, except for curve c in part (a) which has been recalculated.

Figure 7: Shoaling curves for computations in Figs. 2-5 : s = (- - - - -) 1:100; (——) 1:35; (— -
—) 1:15; (— —) 1:8. Symbols (�) denote the BP. G : Green’s law; B : Boussinesq’s law.

Figure 8: Computations of the transition to breaking, with H 0

o = (a) 0.06; (b) 0.08; (c) 0.10, on a
slope s = 1:15. Times of curves a-d are given in Table 1. Part (d) shows a superposition of curves
a from part (a) and curves d from parts (b) and(c), scaled by Ho.

Figure 9: Same as Fig. 7, with H 0

o = (a) 0.22; (b) 0.26; (c) 0.30, on a slope s = 1:8.

Figure 10: Computational results from Table 1 as a function of wave height H 0

o and slope s : (�)
SU; (�) PL; (�) SP; (—–) breaking criterion (1); (– – – –) NSW breaking criterion; (- - - - - -)
parameter So from equation (3).

Figure 11: Combination of breaking criterion, breaking depth and indices, for incident waves H 0

o

on a slope s, with : (——) curve fits to computations : (a) (5) and (b) (6),(7); (- - - - -) curve fits to
experiments. Numerical data in Table 1 are represented by : (�) SP-PL and (�) SU. Experimental
data in Table 2 are represented by : (a) (�) PL and (4) SP; (b) (�) SP-PL.

Figure 12: The empirical values of the breaker index determined from : (a) (- - - - -) CS index (4)



and (——–) (5) for H 0

o = a: 0.05, b: 0.10, c: 0.20, d: 0.30, e: 0.40, f: 0.50, g: 0.60, h: 0.78; (b)
(——–) (5) where upper numbers on curves denote constant values of Hb=hb and lower numbers
constant values of So.
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