BREAKING CRITERION AND CHARACTERISTICS FOR SOLITARY WAVES
ON SLOPES

By S. T. Grilli,' Member, ASCE, 1. A. Svendsen,” Member, ASCE, and R. Subramanya®

ABSTRACT: Shoaling and breaking of solitary waves is computed on slopes from 1:100 to 1:8 using an
experimentally validated fully nonlinear wave model based on potential flow equations. Characteristics of waves
are computed at and beyond the breaking point, and geometric self-similarities of breakers are discussed as a
function of wave height and bottom slope. No wave breaks for slopes steeper than 12°. A breaking criterion is
derived for milder slopes, based on values of a nondimensional slope parameter S,. This criterion predicts both
whether waves will break or not and which type of breaking will occur (spilling, plunging, or surging). Empirical
expressions for the breaking index and for the depth and celerity at breaking are derived based on computations.
All results agree well with laboratory experiments. The nonlinear shallow water equations fail to predict these
results with sufficient accuracy at the breaking point. Prebreaking shoaling rates follow a more complex path
than previously realized. Postbreaking behaviors exhibit a rapid (nondissipative) decay, also observed in exper-
iments, associated with a transfer of potential energy into kinetic energy. Wave celerity decreases in this zone

of rapid decay.

INTRODUCTION

Recent advances in two-dimensional (2D) fully nonlinear
potential flow wave models (FNPMs) [e.g., Grilli et al. (1989);
Grilli (1993)] have made it possible to calculate ‘‘numerically
exact” solutions for arbitrary waves shoaling over a complex
bottom geometry. [Three-dimensional (3D) FNPMs were also
developed but such calculations are still considered computa-
tionally prohibitive (Broeze 1993).]

Early FNPMs were limited to deepwater periodic waves
[e.g., Longuet-Higgins and Cokelet (1976); Vinje and Brevig
¢1981); Dold and Peregrine (1986)] and were mostly used
to simulate and study characteristics of deepwater plunging
breakers. Using such a model, Dommermuth et al. (1988) pro-
vided a detailed confirmation of the validity of potential flow
theory to describe deepwater plunging breakers produced in
an experimental tank. The authors concluded that ‘‘the cal-
culated free surface elevations are almost indistinguishable
from measured profiles.”’

Recent FNPMs combining wave generation and absorp-
tion/radiation truly represent ‘‘numerical wave tanks’’ in
which (numerical) experiments can be set up and used to gain
physical insight into complex wave phenomena like shoaling
and breaking over a slope [e.g., Subramanya and Grilli (1994)).
Although periodic waves can be, and have been, used in such
experiments, solitary waves have often been used instead, first
of all due to their intrinsic interest as a good model of both
tsunamis and very long nearshore waves [Raichlen and Papa-
nicolaou (1988), for instance, comment based on their experi-
mental results that there are ‘‘striking similarities between
these (cnoidal and solitary) two types of breaking waves’’],
and also because they are much simpler to deal with in a
FNPM than periodic waves, which require the implementation
of an absorbing beach if one does not want to interrupt com-
putations at the time of impact of a breaker jet on the free
surface [e.g., Subramanya and Grilli (1996)]. Motivations for
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such studies can be found mostly in the needs of coastal en-
gineers for accurate predictions of height and location of
breaking waves, and in the needs of surf-zone modelers for
detailed characteristics of waves at the breaking point (BP), to
be used as a forcing for surf-zone dynamics and sediment
transport models [e.g., radiation stresses, crest height and ce-
lerity, particle kinematics; e.g., Svendsen et al. (1978)]. An-
other important use of FNPM results is for the validation of
approximate wave theories, like the recent study by Wei et al.
(1995) in which standard and fully nonlinear Boussinesq mod-
els (FNBMs) were compared to FNPM results used as a ref-
erence.

Thus, using a 2D FNPM, Grilli et al. (1994) calculated
shoaling of solitary waves over a 1:35 slope and showed that
surface elevations agreed to within 1% with high-accuracy lab-
oratory experiments, up to and slightly beyond the BP defined
as the location where the wave front face has a vertical tangent
(this is also usually the definition of the BP in laboratory ex-
periments). Such an agreement indicates, as was already
pointed out by Camfield and Street (1969), that, on a mild
slope, bottom friction and other dissipative effects—not in-
cluded in the FNPM~—are not important for solitary wave
shoaling. The same results also showed that exact shoaling
rates significantly differ from predictions of both Green’s and
Boussinesq’s laws and that horizontal velocities become very
nonuniform over depth, as depth decreases, unlike predictions
of nonlinear shallow water (NSW) equations. This also causes
the wave celerity at the BP to significantly differ from predic-
tions of NSW equations (the last points will be further sub-
stantiated in the present study).

From the earlier work discussed here, it appears that poten-
tial flow theory can quite well predict the physics of wave
shoaling over a slope, up to and into the early stages of break-
ing, before touchdown of the breaker jet on the free surface.
Hence, a FNPM can be used to investigate detailed character-
istics of breaking waves, provided great care is taken in the
numerical model to ensure high numerical accuracy of results.
Because of the easy access to computed results, information
can readily be obtained for flow details, such as those during
the formation of the overturning jet of a wave, that are very
difficult to accurately measure in laboratory experiments.

The present paper represents the second part of studies re-
ported in Grilli et al. (1994), in which Grilli et al.’s (1989)
FNPM was used to calculate characteristics of solitary waves
shoaling over plane slopes. In the present paper, a much more
accurate version of this model is used to compute detailed
characteristics of solitary wave breakers, like jet shape and
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wave height variation, throughout early breaking (i.e., from
the BP onward). Computations are carried out for a wide range
of slopes and wave heights, and results are used to derive both
a breaking criterion and equations for predicting wave char-
acteristics at breaking. Numerical results are validated by com-
parison with laboratory experiments. [The present study only
deals with waves that break during runup. It turns out that
solitary waves that do not break during runup may still do so
during rundown. This was pointed out by Synolakis (1987)
and was also predicted in the computations by Svendsen and
Grilli (1990) and Otta et al. (1993), using a FNPM.]

More complete literature reviews and description of solitary
waves shoaling and breaking characteristics may be found in
the works by Camfield and Street (1969), Skjelbreia (1987),
Synolakis (1987), Raichlen and Papanicolaou (1988), and Zelt
(1991).

DESCRIPTION OF NUMERICAL MODEL

Governing equations, boundary conditions, and numerical
schemes for the present FNPM can be found in Grilli et al.
(1989) and in Grilli (1993), and a summary of these is given
in Appendix I. Fig. 1 shows a typical sketch of computational
domain for solitary waves propagating over a slope s. Only
the important aspect of accuracy of computations is briefly
discussed hereafter.

Numerical Accuracy

In the present computations, to achieve sufficient accuracy
both for highly nonlinear waves propagating over gentle slopes
(i.., over long distances) and for small-scale breaker jets,
three levels of improvements of the initial Grilli et al.’s model
were needed: (1) a higher-order representation of both the free-
surface geometry and kinematics, ensuring continuity of the
slope [‘*mixed cubic interpolation method’’; Grilli and Sub-
ramanya (1996)]; (2) selective and adaptive node regridding
techniques allowing a higher resolution of computations in
breaker jets and also preventing nodes from moving too close
to each other (Grilli and Subramanya 1996); and (3) adaptive
quasi-singular integration methods accounting for the prox-
imity of nodes in breaker jets (Grilli and Subramanya 1994).

Accuracy is checked in the present computations by veri-
fying global conservation of wave volume and total energy
(Grilli et al. 1989). In all cases, spatial and temporal discret-
izations are selected for both errors on wave energy and vol-
ume to stay smaller than 0.05% during most of the wave prop-
agation [see Grilli and Subramanya (1996) for details of
typical discretizations, numerical parameters, and computa-
tional errors for solitary wave shoaling]. When breaker jets are
forming, however, errors in volume and energy increase in the
initial discretization. These errors are reduced by improving
the resolution in breaker jets through addition and regridding

Definition Sketch for FNPM Computations of Solitary Wave of Height H, Shoaling and Breaking over a Slope s (BP for when

of discretization nodes. Due to the smaller distance between
nodes in regridded breaker jets, the (adaptive) time step very
much reduces beyond the BP, which further improves com-
putational accuracy. In the present applications, computations
were stopped when global errors became larger than 1.0%.
This criterion usually allowed following the development of
breaker jets up to impending touchdown on the free surface.
Note that no local error check was used but various numerical
methods used in the computations, particularly the node re-
gridding technique combined to the adaptive time stepping
scheme, were tested for convergence and stability by Grilli
and Subramanya (1996).

SHOALING AND BREAKING OF SOLITARY WAVES
OVER A SLOPE

The first problem addressed in this paper is the question of
how solitary waves behave immediately before and after the
BP, as a function of both incident wave height and beach
slope, with particular attention paid to breaker shape and self-
similarity, and to pre- and postbreaking variation of the wave
heights.

Breaker Shape and Self-Similarity

Figs. 25 show computations for the shoaling and breaking

. of solitary waves on plane beaches with slopes, s = 1:100,

1:35, 1:15, and 1:8. Three different incident wave heights,
H, = H,/h,, are shown for each slope. Earlier studies by Grilli
et al. (1994) concentrated on the shoaling aspects (illustrated
in Fig. 1) and were carried out with a version of the model
that was not able to pursue computations with sufficient ac-
curacy further than the BP [represented by curves a in Figs.
2(a~c), 3(a—c), 4(a—c), and 5(c), and curve d in Fig. 5(b)].
The new improvements of the model by Grilli and Subra-
manya (1994, 1996) allow computations to be pursued beyond
the BP, almost up to touchdown of the breaker jets on the free
surface without the model showing signs of breakdown
(curves d in the same figures). Data and times, ¢’ = £\/g/h,,
of plotted curves a—d for the cases in Figs. 2—5 are given in
Table 1. Unfortunately, no experimental data are available for
the details of the flow at this critical moment of the breaking.

Results in parts (a), (b), and (c) of Figs. 2—4 show that, for
a given wave, a decrease in jet size occurs as the slope de-
creases (jet size is defined here as the vertical distance be-
tween wave crest and jet tip). On the (smallest) 1:100 slope,
waves overturn with a fairly small size plunging jet (for H, =
0.40, the jet touches down less than half the wave height down
the slope; this is even more clear in Fig. 6 discussed in the
following). On the other hand, Figs. 2—4 also show that the
size of the jet does not change relative to the wave height for
waves with different incident height on a given slope.

This suggests that, for a fixed initial wave height, the height
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FIG. 2. Computations for Shoaling of Solitary Waves with H,
Equal to (a) 0.20; (b) 0.40; (c) 0.60, on a Slope 8= 1:100

of the jet would tend to zero as the slope tends to zero. On a
very gentle slope, the wave would propagate for long distances
before reaching breaking, in a manner similar to the instability
of the almost highest solitary wave on constant depth analyzed
by Tanaka et al. (1987). Its breaker height would thus be very
close to the maximum stable wave height on a horizontal bot-
tom (==0.784,). Based on the present computations, our con-
jecture would be that, in this case, the breaking would still be
plunging but at first on a very small scale. After touchdown
of the (small) jet, however, the turbulent region would prop-
agate down the slope in a situation that is usually associated
with a spilling breaker.

The implication of this hypothesis is that all (so-called)
spilling breakers actually start as (small-scale) plunging break-
ers. High-speed laboratory photographs by Papanicolaou and
Raichlen (1987) (PR) and Raichlen and Papanicolaou (1988)
(RP), of solitary waves breaking over a (very gentle) 1:164
slope, support this hypothesis and show that a very small scale
curl-up of the wave crest occurs just before the bore usually
associated with spilling breaking is observed. Local analytic
solutions of potential flow equations by Jenkins (1994) also
indicate the occurrence of very small-size jets and that spilling
and plunging breaking can be *‘regarded as being basically the
same phenomenon except with a smaller length scale.”” [Note
that recent experimental evidence by Duncan et al. (1994) sug-
gests that when the scale of the instability that leads to break-
ing becomes sufficiently small, capillary effects dominate lead-
ing directly to a (small) turbulent roller without an overturning
jet. Such small scales of instability, however, have not been
investigated in this paper.] Hence, for convenience, we have
chosen here (arbitrarily) to use the term spilling breaker for a

plunging breaker with a jet height less than half the wave
height. Based on this criterion, the waves in Figs. 2(b and c)
represent spilling breakers while the waves in Figs. 2(a),
3(a—c), and 4(a—c) represent plunging breakers.

After reaching a vertical tangent at the BP (curves a in Figs.
2-4), breaking waves propagate for 1 to 3h, in horizontal
distance, depending on H, and s, before the jets impact the
free surface (curves d in the figures). Propagation distances on
this order can also be seen in PR and RP’s experiments.

On the steepest slope (1:8; Fig. 5), waves behave radically
different from the plunging breakers in Figs. 2—4. As will be
seen later, we are here at the limit between breaking and non-
breaking waves. The wave in Fig. 5(b) (H, = 0.40) will even-
tually break as a surging breaker in which the vertical tangent
of the front occurs at the toe. In Fig. 5(a) (H, = 0.20), the
wave front never becomes quite vertical and the wave just runs
up the slope without breaking. In Fig. 5(c) (H, = 0.60), com-
putations were stopped at profile d but this case seems likely
to develop into a collapsing breaker in which the toe shoots
forward in spite of the already overhanging front.

Figs. 2-5(a—c) indicate a fairly strong similarity between
breakers for different waves on the same slope. To make it
easier comparing breakers, Figs. 2—-5(d) show a superposition
of breaker shapes scaled in elevation by the incident wave
height H, and horizontally translated to the location x. of
breaker crests. Breakers correspond to curves d for the three
different wave heights in each figure [note that in Fig. 5(a)
curve a has been used to show the (nonbreaking) wave shape
just before it starts running up). We see that, on the same
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slope, breaking waves of different incident heights have a sim-
ilar shape. The most important differences are that, the smaller
the incident wave, the higher and more peaked the breaking
wave, and these differences become more pronounced the
milder the slope. This implies that, on a given slope, the break-
ing index H,/h, is larger the smaller the incident wave. An
equivalent similarity in shape is not found for waves of same
incident height on different slopes. In Fig. 6, we see that the
overturning jets grow both in length and thickness as the slope
becomes steeper (curves a to d). In all cases [except for curve
d in Fig. 6(a), the runup case], we are technically looking at
plunging breakers (although some have formally been termed
spilling as mentioned earlier), but it is obvious that a signifi-
cant increase in the intensity of breaking takes place when the
slope increases. On the basis of this observation, it would seem
reasonable to consider the area of the jet at the instant of
touchdown as a measure of the strength of breaking. A di-
mensionless parameter could be obtained by dividing this area,
say, by HL or H*,

Wave Height Variations before and after Breaking

Fig. 7 shows wave height variations as a function of depth
h(x"), for the cases in Figs. 2—5. We see, again, that the slope
is more significant than the incident wave height in determin-
ing changes in H up to and beyond the BP [symbols (0)].

Before the BP, wave-height variations confirm the patterns
discussed in Grilli et al. (1994), that is (1) for all slopes, no
wave has a real tendency to follow Green’s law, G = H «

h™" (except maybe for part of the shoaling on a slope that
would be about 1:15, but this would be considered fortuitous);
(2) for gentle slopes, Boussinesq law, B = H « h™', only
frames the results and, in average, no wave grows faster than
1/h; (3) on the steeper (1:8) slope, wave height essentially does
not change and even slightly decreases towards the BP.

The more accurate model used in the present studies allows
computations to be accurately pursued beyond the BP. One
thus sees that, on the gentler slopes, wave height rapidly de-
creases over a short distance before touchdown of the jet.
Since there is no dissipation in the FNPM, this decrease in
height must entirely be due to a reorganization of potential
energy into kinetic energy in the wave. This is easily con-
firmed by computing these quantities in the FNPM (which
cannot readily be determined from experiments). Computa-
tions show that, even before the BP, potential energy starts
slowly transforming into kinetic energy [see, e.g., Fig. 7 in
Grilli et al. (1994)]. Due to the increasing wave asymmetry
during shoaling (Fig. 1), however, despite the decrease in po-
tential energy, the crest elevation still increases up to the BP
while the back of the wave spreads out and flattens. Beyond
the BP, results show that the transformation of potential into
kinetic energy accelerates due to the large particle velocities
associated with the plunging jet [see, e.g., Fig. 6 in Grilli et
al. (1994)]. This leads to the rapid decrease observed in wave
height.

Synolakis and Skjelbreia (1993) (SS), based on experi-
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TABLE 1. Numerical Resuilts for Computations in Figs. 2-12
s H, S, H; H,/hy xb c Che/Ch t; t t: ty Type
(4] 2 3 4 (6) G @ ® 9) {10) (11) (12) (13)
1:100 0.20 0.0340 0.361 1.066 66.13 0.878 1.586 66.93 68.16 69.13 69.89 PL
1:100 0.40 0.0240 0.629 1.041 39.56 1.213 1.154 3437 3547 36.20 36.77 Sp
1:100 0.60 0.0196 0.781 1.033 24.46 1.351 1.038 19.41 20.26 21.20 21.73 SP
1:35 0.10 0.1370 0.203 1.950 31.36 —_ —_ — — — —_ PL
1:35 0.15 0.1120 0.296 1473 27.96 — — — — — —_ PL
1:35 0.20 0.0972 0.364 1.402 25.90 0.943 1.388 2591 26.74 27.40 27.80 PL
1:35 0.25 0.0870 0.422 1.385 24.29 — — —_ — _ — PL
1:35 0.30 0.0790 0.476 1.380 22.93 —_ - — — — — PL
1:35 0.40 0.0687 0.592 1.378 19.97 1.231 1.067 17.10 17.80 18.44 19.04 PL
1:35 0.60 0.0561 0.754 1.312 14.89 1.364 0.973 11.60 12.29 12.72 13.10 PL
1:20 0.20 0.1701 0.332 2.104 16.84 — —_ — — —_— — PL
1:15 0.06 0.4140 —_ —_ —_ — -— 17.11 17.54 18.31 19.14 NB
1:15 0.08 0.3650 0.099 8.735 14.83 — — 15.51 15.89 16.22 16.48 SuU
1:15 0.10 0.3210 0.111 6.660 14.75 — —_ 15.38 15.76 16.01 16.20 SuU
1:15 0.30 0.1851 0.398 2.651 12.75 1.064 1.103 11.43 11.86 12.19 12.52 PL
1:15 0.45 0.1512 0.556 2372 11.48 1.229 0.970 9.29 9.87 10.35 10.73 PL
1:15 0.60 0.1309 0.689 2.180 10.26 1.342 0.900 7.78 8.61 9.18 941 PL
1:15 0.70 0.1210 0.820 1.970 8.72 — — — — — PL
1:8 0.20 0.4251 — — — — 7.54 8.03 8.53 9.03 NB
1:8 0.22 0.4050 — — — —_ 6.58 8.16 9.19 10.21 NB
1:8 0.26 0.3720 0.291 9.100 7.74 — 5.19 5.98 6.39 6.54 SU
1:8 0.30 0.3470 0.321 8.050 7.68 - 5.41 5.73 6.00 6.34 SU
1:8 0.32 0.3360 0.346 7.395 7.63 —_— — — — — SuU
1:8 0.34 0.3260 0.362 7.005 7.52 - — — — —_ SU
1:8 0.36 0.3170 0.384 6.361 7.51 — - —_ — — —_ SuU
1:8 0.40 0.3006 0.407 5373 7.39 1.219 0.570 5.68 5.76 5.91 6.01 SuU
1:8 0.60 0.2455 0.592 4.689 6.99 1.392 0.791 5.35 541 548 5.56 PL

Note: t. — t; denote times of curves a—d in Figs. 2—5 or Figs. 8 and 9, parts (a)—(c), with ¢’ = 0 corresponding to incident wave crest passing toe

of slope (h; =1 — x;5).
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FIG. 6. Shoaling of Solitary Waves of Initial Wave Heights H, =
(a) 0.20; and (b) 0.60, on Slopes of s = a, 1:100; b, 1:35; ¢, 1:15;
and d, 1:8 [Scaled Curves Are Directly Imported from Figs.
2(d)~5(d) Except for Curve c in Part (a), which Has Been Recal-
culated]

mental results for mild slopes (s = 1:50), identified a zone of
rapid decay for the wave height beyond the BP where, H
h*. Present FNPM results give an average o = 2.7, 1.7, and
0.84, for the 1:100, 1:35, and 1:135 slopes, respectively, that is,
smaller than the value a = 4 found by SS. The latter value,
however, averaged both dissipative and nondissipative effects
and a smaller rate of decay in FNPM computations should thus
be expected. PR and RP provided detailed measurements of
wave height variations beyond the BP for solitary waves
breaking on mild slopes. In PR-RP’s results, it is clear that
wave height initially decreases over a horizontal distance about
2-8h, beyond the BP (almost linearly in a log-log diagram).
At this point, wave height starts more strongly decreasing.
Comparing these wave height variations to the photographs
also given in PR-RP’s study, it can be conjectured that the

initial wave height decrease observed in experiments repre-
sents the nondissipative wave height reduction calculated in
the FNPM, corresponding to jet development before touch-
down, whereas the stronger subsequent reduction is due to
dissipations throughout breaking. Based on the curves in PR-
RP’s study, one can estimate o = 1.95 for the initial wave
height decrease beyond the BP on a 1:52 slope, which is within
the range obtained in the present computations.

BREAKING CRITERION AND PREDICTION OF
BREAKING CHARACTERISTICS

The second problem addressed in the present paper is the
question of which waves break on which slopes and with
which characteristics, with particular attention paid to the tran-
sition to breaking, the breaking criterion, and to the breaking
indices, depths, and types.

Transition to Breaking

Computations in Figs. 2—5 showed that, on a given slope,
breaking may or may not occur and breaker types may differ
depending on both incident wave height H; and slope s. Re-
sults of these computations are summarized in Fig. 8 along
with many other similar numerical results obtained both here
and in previous studies by Grilli et al. (1994) and Otta et al.
(1993) (see Table 1). The figure shows which waves break and
which do not. Breaker types [spilling (SP), plunging (PL), or
surging (SU)J, also marked on the figure, are discussed in the
next section. We see first of all that a very large wave with
H!, = 0.75 [i.e., close to the maximum stable height =0.78;
Tanaka (1986)], does not break (NB) if the slope is too steep
(s = 1:1.73, 1:4), whereas the wave does break on the milder
slopes (s = 1:8 and 1:15). [The question of whether such a
large wave would occur or not in nature or, more precisely,
would be stable for long enough to reach a beach slope, has
not been addressed here. These waves are predicted to exist
within the frame of FNPMs, both numerical and semianalytical
(¢c.g., streamfunction theory), and are thus relevant to the pres-
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the transition between breaking and nonbreaking waves, nu- '
merical experiments were carried out on a few different slopes, /M
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Figs. 9 and 10 present some of these calculations for 1:15
and 1:8 slopes, respectively, and for three different wave
heights for each slope: (1) in part (a), a -nonbreaking wave
height (i.e., below the limit in Fig. 8); (2) in part (b), a wave
height that is barely breaking (i.e., on the limit in Fig. 8); and
(3) in part (c), a clearly breaking wave (i.e., above the limit).
Parts (d) of Figs. 9 and 10 show a comparison between the
first (nonbreaking) profiles (curves a) in part (a) and the last
(breaking) profiles (curves d) in parts (b) and (c) of the figures,
each scaled by the incident wave height. Data and times ¢' for
curves a to d for cases in Figs. 9 and 10 are given in Table 1.
(Several similar computations with small wave height
increments—not reported here—were performed for other
slopes as well, to determine the exact position of the line in
Fig. 8).

Both cases in Figs. 9(b) and 10(b) appear to break as
surging/collapsing breakers for which no crest overturning ac-
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FIG. 9. Computations of Transition to Breaking with H., Equal
to (a) 0.06; (b) 0.08; (c) 0.10 on a slope 8 = 1:15

tually occurs but the whole wave collapses on itself before
surging up the slope. To determine which waves were actually
breaking and which were not, we checked if we could calcu-
late a complete runup/rundown cycle without disturbance or
breakdown of the water surface.

The barely breaking profiles in Figs. 9(b) and 10(b) show
a marked increase in the slope of the wave front face, as com-
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pared to the nonbreaking profiles in Figs. 9(a) and 10(a) [see
also parts (d)]. The slope never becomes completely vertical,
however, and it is conjectured that there is a nonvertical value
of this slope that defines the point of transition to breaking. A
closer investigation of this, however, requires more computa-
tions for a more detailed analysis of the wave kinematics close
to the point of intersection of the water surface with the slope,
and will have to be left out for further studies.

Cases in Figs. 9(b) and 10(b) can be identified in Fig. 8, as
delimiting part of the breaking limit. Characteristics of the
latter are further discussed in the following section.

Breaking Criterion, Breaking Type

The limit between breaking and nonbreaking solitary waves,
that is, the breaking criterion (represented by the bold solid
line in Fig. 8), was determined using a least-square method
based on the calculations as

H > 16.95" )

which indicates that incident solitary waves satisfying (1) will
break sometime during runup on a slope s.

Many past studies have attemnpted to define breaking criteria
and breaking characteristics for solitary waves on plane slopes.
Camfield and Street (1969) (CS) concluded, on the basis of
their experiments and of experiments by Ippen and Kulin
(1954), that ‘‘there was no evidence of breaking’’ for slope

angles larger than 12° (or s > 1:4.7). This fully agrees with
the breaking criterion, (1), which predicts that a wave of max-
imum height, H, = 0.78, will only break for s < 1:4.7.

A different criterion was found by Synolakis (1987). Using
the NSW equations, he suggested that waves would eventually
break during runup if H, > 0.818s'*. This criterion is indi-
cated by the dashed line in Fig. 8, and we see that the NSW
equations predict that much smaller waves will break than
found using the present more accurate method (this could be
expected as a result of the shallow water steepening occurring
in the nondispersive NSW equations). NSW equations were
shown in a number of studies to quite well predict the runup
value for nonbreaking solitary waves on mild slopes [e.g.,
Synolakis (1987)]. Since runup is greatly reduced if waves
break, however, the prediction of breaking for waves that ac-
tually do not break also means that the NSW equations predict
much less runup for this class of nonbreaking waves.

Note that for waves of sufficiently small height (such as
tsunamis), the extrapolation of the two criteria in Fig. 8 will
intersect for H, = 0.019 and s = 1:30. Hence, only for one
wave height on one siope would the NSW and FNPM methods
give the same limit, but it is not clear, however, that (1) could
be extrapolated to such small values of H,, for which we have
not at the present time performed any numerical experiments.
Besides, even such small waves will become quite steep when
they approach breaking, which means the NSW approximation
breaks down. Near breaking, the deviation from the hydro-
static pressure assumed in the NSW equations is important for
the wave development.

Nondimensional parameters are usually used to predict
breaking waves characteristics. A surf-similarity ~type param-
eter would be a possible candidate (Yasuda et al. 1992). Here,
we will use the slope parameter S,, defined as sL,/h,, where
L, is a characteristic horizontal length scale for the initial
wave. The question remains which wavelength scale L, to use
for a solitary wave. Raichlen and Papanicolaou (1988) sug-
gested using the width of the incident solitary wave at a height
H,/2 above still water level. In the present study, following
Klinting and Svendsen (1974), this width is measured between
the points of maximum slope on the solitary wave profile.
Using Boussinesq’s solitary wave theory, we thus get

2h, 3
L,= arctanh — 2
\V3H,/4 3 @

and the slope parameter S, for solitary waves is then defined
as

S, =— = 1.521 3
e VI, @

Incidentally this parameter has a 99.9% correlation with the
parameter, &, = s/H,’*, introduced by Yasuda et al. (1992) on
a heuristic basis.

Combining (1) and (3), we see that criterion for occurrence
of breaking, (1) simply corresponds to S, < 0.37. In Fig. 8, a
family of lines corresponding to S, = 0.025—0.80 has been
plotted and we see that (1) is almost identically represented
by S, < 0.37. Values of S, for the calculations in Figs. 2-5
and Figs. 9 and 10 are given in Table 1. One can see, in
particular, that the barely breaking waves shown in Figs. 9(b)
and 10(b) have, as expected S, = 0.37. Now, referring to the
breaking types marked by various symbols in Fig. 8 and listed
in Table 1, one can also see that they can be predicted in terms
of values of the parameter S, as

» Surging breaking: 0.3 < S, < 0.37
* Plunging breaking: 0.025 < §, < 0.30
» Spilling breaking: S, < 0.025
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Hence, using one single parameter S,, we can predict whether
a solitary wave will break or not on a given slope and which
type of breaking will occur. Wave characteristics at breaking
are discussed in the next sections.

Breaking Index and Breaking Depth

The simple limit, H,/h, = 0.80, corresponding to the max-
imum stable solitary wave in constant depth, has been and is
still often used as a breaking index for both solitary and long
periodic waves breaking over very mild slopes. To improve
on this value, CS proposed an empirical breaking index for
solitary waves, based on an average of their experimental re-
sults and of those by Ippen and Kulin (1954), for all wave
heights on a given slope

H,/h, = 0.75 + 255 — 112¢* + 3,8705° @)

Results of our computations can be used to derive a similar,
albeit improved, relationship. Using a least-square method for
the results of computations in Figs. 2-5, and Figs. 9 and 10,
summarized in Table 1, along with results of other computa-
tions by Grilli et al. (1994) and Otta et al. (1993), also sum-
marized in Table 1, we get

Hy/lh, = 0.841 exp(6.4215,) &)

with a correlation coefficient R = 0.997. [A similar result was
obtained for periodic waves by Svendsen (1987). Because of
the use of the conventional wave length for L, in that work
and the use of parameters at the break point, the two results
are not directly comparable.] Similarly, for the breaking depth,
we get h,/h, as a function of S,/H), for SP and PL breakers
as

0.149

hy/h, = W with §, < 0.30 ©6)
and for SU breakers as
hylh, = (Si‘/(;j,lﬁ&; with 0.30 < S, < 0.37; S,/H, > 0.385 (7)

with correlation coefficients R = 0.967 and 0.995, respectively.

An extensive collection of experimental data is available for
the breaker index and breaker depth of solitary waves [PR, for
1:52 to 1:164 slopes; Skjelbreia (1987), for 1:52 to 1:161
slopes; CS, for 1:33 to 1:100 slopes; and Grilli et al. (1994),
who reported experiments by Svendsen and Veeramony (in
press, 1997) for a 1:35 slope]. These results are all listed in
Table 2 and compared in Fig. 11 to values predicted by (5)—
(7), along with numerical data from Table 1. To facilitate the
comparison, the experimental data have been fitted to expres-
sions similar to (5) and (6), and the results are shown as
dashed curves in Fig. 11. Notice that there are no experimental
data for SU breakers. [For the breaker index in Fig. 11(a), the
data available from numerical and physical experiments does
not make it possible to distinguish different laws for the two
radically different breaking processes of PL and SU. For this,
more data would be needed in the interval of S, between 0.2
and 0.3. In Fig. 11(b), on the other hand, the two processes
clearly distinguish themselves in the h,/h, data.] We see that
the empirical expressions represent both the numerical and the
experimental data very well. It is also seen that types of break-
ing in each experiment agree with the numerical predictions.
More important, however, we observe that, when plotted as a
function of S, the data for all slopes and wave heights collapse
into one single curve for the breaking index in Fig. 11(a). This
even applies to the numerical data for SU, and one sees that
the maximum breaking index, beyond which waves are non-
breaking (NB), is 9.05 for an SU breaker, with S, = 0.37.
Similarly, the parameter S,/H’ makes all data for hy/h, fall on

TABLE 2. Experimental Resuits for Solitary Waves of Height
H, Shoaling and Breaking over Slope s

s H, S, H,/h, he/h, Type | Source*

1 2) 8 4) (5) (6) {7)
1:100 020 | 0.0340 1.00 — —_ CS
1:50 0.20 | 0.0680 1.28 —_ — CSs
1:33 020 | 0.1020 1.52 — — (o
1:35 0.10 | 0.1374 1.93 0.100 PL GR
1:35 0.15 | 0.1122 1.50 0.177 PL GR
1:35 0.20 | 0.0972 1.36 0.252 PL GR
1:35 0.25 | 0.0869 1.34 0.300 PL GR
1:164 0.40 | 0.0147 0.967 0.617 SP PR
1:106 035 | 0.0242 1.015 0.544 SP PR
1:80 0.20 | 0.0429 1.073 0.368 PL PR
1:80 0.30 | 0.0350 1.086 0.467 PL PR
1:80 0.40 | 0.0303 1.071 0.532 PL PR
1:63 0.25 | 0.0481 1.102 0.395 PL PR
1:52 0.20 | 0.0654 1,222 0312 PL PR
1:161 040 | 0.0149 0.840 0.630 SP SK
1:133 0.20 | 0.0256 0910 0420 SP SK
1:52 0.20 | 0.0654 1.240 0.300 PL SK

*CS: Camfield and Street (1969); GR: Grilli et al. (1994); PR: Papa-
nicolaou and Raichlen (1987); SK: Skjelbreia (1987).
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FIG. 11. Combination of Breaking Criterion, Breaking Depth,
and Indices for Incident Waves M. on a Slope s, with (—)
Curve Fits to Computations: (a) Eq. (5); (b) Egs. (6) and (7);
(----) Curve Fits to Experiments [Numerical Data In Table 1 Rep-
resented by (o) SP-PL and (¢ ) SU; Experimental Data in Table 2
Represented by (a) () PL and (A) SP; (b) (e) SP-PL]

the same curves in Fig. 11(b). No other representation is ca-
pable of this. Note, however, that 4, is measured as the un-
disturbed depth under the wave crest (see Fig. 1) and as this
depth becomes very small when we approach large values of
S,, results obviously become similarly uncertain.

The breaking index relationship, (5), is compared in Fig.
12(a) to CS’s experimental criterion, (4). It is immediately
seen that, because CS’s (dashed) expression uses s rather than
S,, it cannot account for the influence of wave height on a
given slope (in fact, (4) was obtained by averaging experi-
mental results for all wave heights on a given slope and thus
lost wave height information], which is rather significant for
average to steep slopes (curves a—h). It is noticed, however
that for very gentle slopes (1:100 or less; S, very small) both
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criteria (5) and (4) predict breaker indices close to the constant
depth limit of H,/h, = 0.80, with no noticeable influence of
slope or wave height. Now, considering that CS’s average cri-
terion falls in the middle of the values predicted by criterion
(5) for wave heights ranging between H, = 0.05 and 0.78, the
agreement between both criteria is, hence, fairly reasonable.
Fig. 12(b), finally, summarizes the present findings for both
breaking indices and breaking types as a function of (H,, 1/
5), in a form that allows for easy prediction for given incident
solitary wave height and slope.

Wave Celerity at Breaking

The crest celerity c; at breaking is given in Table 1 for the
computations in Figs. 2—5, along with the ratio ¢;,/c;, in which
the numerator denotes the celerity predicted by NSW equa-
tions (note that the breaker height obtained in the FNPM was
used in the NSW celerity equation; this is acceptable since
NSW equations are known to predict wave elevations better
than kinematics, but still represents an approximation), c;, =

H} + h}, which is often used in surf-zone models to esti-
mate wave celerity at breaking. Computations show that (1)
on the two milder slopes, wave celerity decreases during
shoaling up to a point close to the BP and then increases up
to the BP; and (2) on the two steeper slopes, celerity increases
during shoaling up to the BP. In all cases, celerity rapidly
decreases beyond the BP.

At the BP, results in Table 1 for ¢, show that, on the two
milder slopes, the NSW equations mostly overpredict crest ce-
lerity (by up to 59%), the overprediction being larger for the
smaller waves on the milder slope. The comparison of results
of FNBM and FNPM results by Wei et al. (1995), for a range
of slopes 1:100 to 1:8, showed that wave celerity is quite well
predicted in the FNBM, except right at the BP, where the
FNBM slightly underpredicts celerity. Since the FNBM has
fully nonlinear terms, as do NSW equations, the larger dis-
crepancies observed here with the NSW equations are thus

likely due to a lack of dispersive effects in these equations
[such observations were already made by Grilli et al. (1994)
on the basis of two computations]. This is well supported by
the larger discrepancies observed in Table 1 for the smaller
waves shoaling over the milder slopes, for which the longer
distances of propagation are likely to make dispersive effects
increase. On the two steeper slopes, overprediction of celerity
is less, with a maximum of 10%, but celerity is underpredicted
in most cases (by up to 43%). These results, again, show the
inadequacy of the NSW equations to describe wave kinematics
close to the BP, where vertical accelerations (i.e., dispersive
effects) and, hence, nonhydrostatic pressure increase.

An empirical expression was derived for ¢; based on results
in Table 1. It was found that the only significant factor ex-
plaining the variation of ¢; was H), with very little effect of
slope. The expression thus reads

¢, = 0.466 + 2.58H, — 1.82H 8)
with a correlation coefficient, R = 0.991.
CONCLUSIONS

Summarizing the results, we make the following conclu-
sions.

No wave that can propagate stably on a constant depth
breaks on slopes steeper than 12° (>1:4.7). With S, = sL,/h,,
waves break on a given slope (1) as surging breakers (SU)
when 0.30 < S, < 0.37 (with 5.8 < H,/h, < 9.1); (2) as plunging
breakers (PL) when 0.025 < S, < 0.30 (with 1.0 < H,/h, <
5.8); and (3) as spilling breakers (SP) when S, < 0.025 (with
H,/h, < 1.0). For s < 1:4.7, waves do not break when S, >
0.37. These results are supported by both computations and
experiments. The NSW equations fail to predict which waves
break and which do not.

The most important parameter deciding the shape of break-
ing waves is the slope, the initial wave height being of sec-
ondary importance. Thus, breaker shapes are fairly self-similar
on a given slope. On the milder slopes, however, breakers are
more peaky and deformed for the smaller incident waves.
Sizes of plunging jets for SP and PL increase significantly with
the slope. SP and PL waves propagate for 1 to 34, beyond the
BP, before their breaker jet hits the free surface.

Shoaling rates for mild slopes (s < 1:20) increase monoto-
nously towards breaking and may even increase faster than
k™!, the rate predicted by Boussinesq theory for solitary waves.
Shoaling rates decrease dramatically with increasing slope
steepness and, on steeper slopes (>1:15), the rates are much
lower than predicted by Green’s law and can even be negative
(i.e., wave height decreases towards the BP). Beyond the BP,
wave height initially decreases with H « A“~¥. This (nondis-
sipative) decrease, also observed in experiments, is associated
with a transformation of potential energy into kinetic energy
in the wave, at an increased rate beyond the BP due to larger
velocities in plunging jets. After touchdown of the jet, the
FNPM is not applicable and experiments show that wave
height decreases at a higher rate due to dissipations in the flow.

For all slopes investigated here, the breaking index H,/h, is
well above the limit of approximately 0.80 of the steepest sta-
ble wave on constant depth. This is also supported by exper-
iments. For moderately steep slopes or very small waves (i.e.,
large S, < 0.37), waves may break very close to the shoreline
and the breaking index becomes very large (with a maximum
of about 9 for h, measured under the wave crest). On a given
slope, the breaking index increases with the decreasing wave
height.

Empirical expressions (5)—(7) for the breaking index and
the breaking depth, developed by curve fitting of the numerical
results, agree well with experimental results and can be used
to predict wave characteristics at breaking. Results for break-
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ing criterion, breaker-type, and indices are summarized in Fig.
12(b).

Wave crest celerity decreases when waves propagate beyond
the BP. At breaking, wave celerity is significantly over- or
underpredicted by the NSW equations (by up to 59%), for mild
or steep slopes, respectively. The empirical expression (8) can
be used to predict wave celerity at breaking.
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APPENDIX 1. REVIEW OF FNPM GOVERNING
EQUATIONS

Equations and numerical methods for the FNPM are briefly
reviewed here. Details can be found in Grilli et al. (1989),
Grilli (1993), and Grilli and Subramanya (1994, 1996). The
velocity potential ¢(x, 7) is used to represent inviscid irrota-
tional 2D flows in the vertical plane (x, z) and the velocity is
defined by u = Vo = (4, w) (Fig. 1). Continuity equation in
the fluid domain €)(r) with boundary I'(¢) is a Laplace's equa-
tion for the potential

Vi¢=0 in Qw &)

— x;|, and Green’s second identity, (9) transforms into the
boundary integral equation (BIE)
[a«b AG(x, X))

o x)G(x, x) — $(x) T] dI'(x)

Usini free space Green’s function, G(x, x;) = —(1/2m)log|x

ax)d(x) = f

r'x)

(10)

where x = (x, z) and x; = (x,, z;) are position vectors for points
on the boundary; n = the unit outward normal vector; and a(x;)
= a geometric coefficient.

Eq. (10) is solved by a boundary element method (BEM;
Brebbia and Walker 1978) using a set of collocation nodes on
the boundary and higher-order elements to interpolate in be-
tween the collocation nodes. Integrals in (10) are numerically
evaluated, and the resulting algebraic system of equations is
assembled and solved for the equivalent discretized problem.

Along the stationary bottom I',, a no-flow condition is pre-
scribed by

%=0 onl, (11
on

Solitary waves are generated in the model, over a region of
constant depth &,, by simulating a piston wavemaker motion
on the ‘‘open sea’’ boundary of the computational domain,
I',,(#) (as in laboratory experiments), or by specifying the po-
tential ¢ normal velocity d¢/on and the elevation m at initial
time ¢, for the incident wave directly on the free surface [as
in Tanaka (1986)].

On the free surface I'/(#), ¢ satisfies the kinematic and dy-
namic boundary conditions

D a

—D-l;.=(a+u-V)r=u=V¢ on T,(») (12)
D _ o v log.ve — Pe

D = gz+2V¢ Vo . on I, 13)

respectively, where r = the position vector on the free surface;
g = gravitational acceleration; z = the vertical coordinate; p,

= pressure at the free surface, assumed zero in the applications;
and p = fluid density.

At a given time, computations in the model proceed forward
in time by integrating the fully nonlinear free-surface bound-
ary conditions (12) and (13), using third-order accurate explicit
Taylor series expansions for ¢ and r, expressed in terms of a
time step At and of the Lagrangian time derivative D/Dt.
Terms in both series expansions are calculated by solving two
BIEs of the type (10) for ¢ and 04/3¢, in sequence at each
time step, the solution of the first BIE providing boundary
conditions for the second BIE. Trajectories of individual free
surface particles—identical to nodes of the BEM discretiza-
tion—are thus calculated as a function of time.

The time step in the model is adaptively selected based on
a constant mesh Courant number (optimal value =0.35-0.5)
to ensure optimal accuracy and stability of computations. Time
step is thus reduced when the distance between free surface
nodes decreases.
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APPENDIX Ill. NOTATION

The following symbols are used in this paper:

¢, = breaking wave celerity (FNPM);
cys = breaking wave celerity (NSW);
g = gravitational acceleration;
H = local solitary wave height;
H, = solitary wave height at breaking;
H,/h, = breaking index;
H, = incident solitary wave height;
h = local water depth;
h, = water depth at breaking measured under wave crest;
h, = constant reference water depth;
S, = slope parameter;
s = beach slope;
t = time;
x = horizontal coordinate;
x, = location of breaking point;
z = vertical coordinate; and
7 = local wave amplitude.
Superscript
- = dimensionless variables according to long wave theory:
lengths are divided by h,, times by +/h,/g, and velocities
and celerities by /gh,,.
Subscripts
b = quantities at breaking point; and
o = quantities for incident wave.
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