NUMERICAL GENERATION AND ABSORPTION OF FULLY NONLINEAR
PERIODIC WAVES

By Stéphan T. Grilli,' Member, ASCE, and Juan Horrillo®

ABSTRACT: Permanent form periodic waves with zero-average mass flux are generated in a two-dimensional
numerical wave tank solving fully nonlinear potential flow equations. An absorbing beach is modeled at the end
of the tank in which (1) an external free-surface pressure absorbs energy from high frequency waves; and (2)
a pistonlike condition absorbs energy from low-frequency waves. A feedback mechanism adaptively calibrates
the beach parameters to absorb the period-averaged energy of incident waves. Wave generation and absorption
are validated over constant depth, for tanks and beaches of various lengths, and optimal parameter values are
identified for which reflection from the beach is reduced to a few percent. Shoaling of periodic waves is then
modeled over a 1:50 slope, up to very close to the breaking point. A quasi-steady state is reached in the tank
for which (not previously calculated) characteristics of fully nonlinear shoaling waves are obtained.

INTRODUCTION
Nonlinear Wave Modeling

Over the past 20 years, considerable efforts were devoted
to developing increasingly accurate and efficient models for
fully nonlinear surface waves. Most successful models so far
were based on potential flow theory with fully nonlinear free-
surface boundary conditions [i.e., a fully nonlinear potential
flow (FNPF)]. Such models were successfully applied to pe-
riodic wave propagation and overturning in deep water and to
solitary wave shoaling, up to breaking over slopes, with a sur-
prising degree of accuracy (Dommermuth et al. 1988; Grilli
et al. 1994).

In most FNPF models to date, the governing (Laplace’s)
equation has been solved with a higher-order boundary ele-
ment method (BEM) (Brebbia 1978), either based on Green's
identity or on Cauchy integral theorem formulations, and on
time-integrating the free-surface boundary conditions (ex-
pressed in a mixed Eulerian-Lagrangian formulation) either
using a time-marching predictor-corrector (Longuett-Higgins
and Cokelet 1976, LC) or a Taylor series expansion, method
(Dold and Peregrine 1986, DP). Early computations following
this approach were restricted to space-periodic waves over
constant depth (LH; DP; New et al. 1985; Vinje and Brevig
1981) but more recent models can accommodate both arbitrary
incident waves and complex bottom topography [e.g., Klop-
man (1988); Grilli et al. (1989) (GSS); Cointe (1990); Cooker
(1990); Ohyama and Nadaoka (1991)]. Most recent models
also directly work in a physical space region, that is, a nu-
merical wave tank (NWT), in which incident waves are gen-
erated at one extremity and reflected, absorbed, or radiated at
the other extremity.

GSS’s FNPF model is used in the present study. Many val-
idations (both analytical and experimental) of this model and
of its later improved versions were carried out, mostly for
solitary waves [e.g., Grilli and Svendsen (1990) (GS); Svend-
sen and Grilli (1990); Grilli et al. (1994, 1997)].

Wave Generation

Numerical wavemakers (WMs) were used by many authors
to generate waves in FNPF models (e.g., Lin et al. (1984);
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Dommermuth et al. (1988); GSS; Cointe (1990)]. [Note, Bror-
sen and Larsen (1987) proposed a different approach, using
internal sources for generating waves, which was also used by
Ohyama and Nadaoka (1994).] In this case, there is a corner
at the intersection between the WM and the free surface, where
a singularity of the solution may occur during a so-called cold
start. To eliminate such singularities, GS, Otta et al. (1992),
and Grilli and Subramanya (1996) (GSU) introduced (1) an
initial tapering of the WM motion, ensuring that the acceler-
ation remains small during the first few time steps of the com-
putations; (2) a double-node representation of the corner, with
continuity and compatibility relationships for the potential and
the velocity at both nodes; and (3) an exponentially decaying
initial free-surface elevation satisfying linearized boundary
conditions at the first time step. These methods are used in the
present calculations.

Assuming no singularity occurs at the corner, it is well
known that steadily progressing finite-amplitude waves cannot
be generated in finite depth with a WM, whether in laboratory
tanks or in nonlinear wave models [see, €.g., Mei (1989, p.
578); Chapalain et al. (1992)]: resonant nonlinear interactions
will occur and create higher-order harmonics modulating the
shape of the wave. [This mechanism occurs right at the start
of wave generation and is different from the so-called side-
band instability affecting large finite-amplitude waves after
long distances of propagation, see, for example, Mei (1989, p.
620). Also note that second-order corrections to the WM mo-
tion have been proposed, e.g., by Schiffer (1996).] To over-
come this difficulty, Klopman (1988) generated exact periodic
waves in his model, that is, stream-function waves (SFWs)
[e.g., Dean and Dalrymple (1984, p. 305)], by specifying their
horizontal velocity along a vertical wavemaking boundary
(WB). Unlike linear waves, SFWs have a nonzero horizontal
mass flux and, hence, there is a net mean flow through the
WB that gradually increases the volume of the computational
domain. In Klopman'’s study, this did not pose a problem since
his wave-breaking computations only lasted a short time. In
shoaling computations over gentle slopes, for a larger number
of wave periods, however, this will result in a significant in-
crease in the mean water level, which affects wave shape in a
nonphysical manner. For the corresponding coastal problem,
one would indeed expect an undertow current to occur and
cancel the incoming wave mass flux at some distance from
the shore, thereby ensuring constant water volume in the near-
shore region. Hence, in the present paper, a method is pro-
posed for achieving zero-average-mass flux in the generation
of SFWs.

Wave Absorption

Various radiation or absorption boundary conditions
(RABCs) were proposed to dissipate incident wave energy in



NWTs. These were mostly based on the RABCs by Sommer-
feld (1949), Le Mehauté (1972), Orlanski (1976), Engquist
and Majda (1977), and Israeli and Orszag (1981) [see review
by Romate (1992)]. Although some of these conditions are
exact for linear waves or weakly nonlinear long waves, no
general method has yet been proposed for the radiation of fully
nonlinear transient waves. Rather heuristic boundary condi-
tions have been used instead [see, ¢.g., Clément (1996) for
further discussions]. Lin et al. (1984), for instance, matched
exterior linear solutions to the nonlinear interior solution at
finite distance. GSS developed an implicit iterative radiation
condition, based on Sommerfeld’s condition. Otta et al. (1992)
proposed a more accurate explicit approach based on a Som-
merfeld/Orlanski condition. Based on Le Mehauté’s work,
Larsen and Dancy (1983) introduced the idea of an ‘‘absorbing
beach’ (AB), in which an external counteracting pressure is
specified over the free surface to create a negative work
against incident waves. They only implemented the method in
a (weakly nonlinear) Boussinesq model, but the same method
was later used in FNPF models by Cointe (1990), Cao et al.
(1993), Ohyama and Nadaoka (1994), Subramanya and Grilli
(1994), and Clément (1996).

Observing that radiation type methods perform well for low-
frequency waves, whereas ABs do so for high-frequency
waves, some authors successfully combined both approaches
[e.g., Ohyama and Nadaoka (1991, 1994)]. Along this line,
Clément (1996) proposed to combine an AB with a new, pis-
tonlike, absorbing boundary condition at the tank extremity,
and showed that the method performed well for unsteady fi-
nite-amplitude waves. In the present paper, an improved for-
mulation of Clément’s method is proposed, in which the AB
coefficient is adaptively calibrated in time to absorb the pe-
riod-averaged energy of incident waves entering the beach.

MATHEMATICAL AND NUMERICAL MODELS

Governing Equations and Numerical Algorithms for
FNPF Model

Equations for GSS/GS’s two-dimensional FNPF wave
model are briefly presented in the following. The velocity po-
tential $(x, #) is used to describe inviscid irrotational flows in
the vertical plane (x, z) and the velocity is defined by, u = V¢
= (u, w). The continuity equation in the fluid domain ((r) with
boundary I'(¢) is a Laplace’s equation for the potential (Fig.
D

Vid=0 in Q@ )
On the free surface I',(f), ¢ satisfies the kinematic and dy-
namic boundary conditions

z/h

Dr 9
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respectively, where r = position vector on the free surface; g
= gravitational acceleration; z = vertical coordinate; p, = pres-
sure at the free surface; and p = fluid density. Along the sta-
tionary bottom I, the no-flow condition is prescribed as

—=0 on T, @)

where the overbar denotes specified values. Boundary condi-
tions for wave generation and absorption are presented in the
next sections.

Eq. (1) is transformed into a boundary integral equation
(BIE), using Green’s second identity, and solved by a BEM.
The BIE is thus evaluated at N discretization nodes on the
boundary, and M higher-order elements are defined to inter-
polate in between discretization nodes. In the present appli-
cations, quadratic isoparametric elements are used on lateral
and bottom boundaries, and cubic elements ensuring conti-
nuity of the boundary slope are used on the free surface. In
these elements, referred to as mixed cubic interpolation (MCI})
elements, geometry is modeled by cubic splines, and field var-
iables are interpolated between each pair of nodes, using the
midsection of a four-node ‘‘sliding’’ isoparametric element.
Expressions of BEM integrals (regular, singular, quasi-singu-
lar) are given in GSS, GS, and Grilli and Subramanya (1994,
1996), for isoparametric and MCI elements.

Free-surface boundary conditions (2) and (3) are time-in-
tegrated based on two second-order Taylor series expansions
expressed in terms of a time step At and of the Lagrangian
time derivative, D/Dt, for ¢ and r. First-order coefficients in
the series correspond to free-surface conditions (2) and (3), in
which ¢ and 9¢/dn are obtained from the solution of the BIE
for (¢, dd/dn) at time r. Second-order coefficients are ex-
pressed as D/Dt of (2) and (3), and are calculated using the
solution of a second BIE for (dd/dt, 9°¢p/8tan), for which
boundary conditions are obtained from the solution of the first
problem. Detailed expressions for the Taylor series are given
in GSS.

At each time step, global accuracy of computations is ver-
ified by computing errors in total volume and energy for the
generated wave train. GS showed that these errors are a func-
tion of both the size (i.e., distance between nodes) and the
degree (i.e., quadratic, cubic, . ..) of boundary elements used
in the spatial discretization, and of the size of the selected time
step. They thus proposed a method for adaptively selecting the
optimal time step, based on a mesh Courant number C,(¢). For
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FIG. 1. Computational Domain for Periodic Wave Shoaling over Gentle Slope s [an AB of Length /() and Maximum Depth h,, Is Spec-
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FIG. 2. Sketch and Definitions for Flap WM Motion Specified on Boundary I',, of Computationat Domain

the MCI elements, GSU showed that the optimum value of C,
is around 0.40. This value is used in the present applications.

Periodic Wave Generation in Model

Flap Wavemaker

For a flap WM on boundary I',,(#), continuity of normal
velocity yields the following boundary conditions (Fig. 2):
[ L 3 _ 3¢
—_ = . = Yy + 6 —_— = T
on oo S r,& + & l:rg Py s on I,
(5a,b)

where r, and a(f) = distance to the center of rotation, x, = (0,
—h,), and the angle of rotation of the WM, respectively. Time
derivatives of a (upper dots) can be expressed as a function
of WM stroke x,,(#) and of its time derivatives.

Using (5), a periodic wave of frequency w can, for instance,
be generated in the model (keeping in mind that higher-order
harmonics will also occur) by specifying the stroke as, x,,(f) =
S[1 — cos wt]/2, in which the maximum stroke S can be es-
timated as a function of wave height H and frequency based
on a WM theory [e.g., Dean and Dalrymple (1984)]. To avoid
initial singularity problems, x,(f) is multiplied by a tapering
function varying from O to 1 over a specified time.

Exact Wave Generation

SFW theory calculates ‘‘numerically exact’’ periodic solu-
tions of the FNPF problem in depth A,. In a coordinate system
moving with the wave celerity ¢ = L/T, the stream function is
modeled as

WO, 2) = D, X(jsinh jk(h, + 2)cos j6 — (U = )z (6)
J=1

where 6 = k(x — ct) is the phase; U = a uniform current; and
X(j) = a set of n numerical coefficients calculated, together
with wavelength L = 2w/k, to satisfy free-surface boundary
conditions (2) and (3), and specified wave height and period
(H, T). Horizontal velocity is obtained from (6) in the original
coordinate system as

u®, 2= —X 1 o= =S (RX(j)cosh jk(h, + 2)cos 6 + U

9z =
@
and, noting that 36/dt = —ck, local horizontal acceleration is
obtained as
du . i N2ury s . -
—_= - +
o c 1-21 (jk)°X(j)cosh jk(h, + z)sin jO (8)
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Egs. (7) and (8) are used to specify the kinematics of an
incident SFW over a vertical wavemaking boundary (WB),
T',.(»), at x = x,, (Fig. 1).

Free-surface discretization nodes represent fluid particles
which, for nonlinear waves, gradually drift away in the direc-
tion of the mean mass transport, eventually leading to a poor
resolution close to the WB. This drift is cancelled by horizon-
tally moving the WB with the Lagrangian motion, x,,(f) = x,(?),
of the first node/particle on the free surface.

As for the flap wavemaker, the initial velocity field is mul-
tiplied by a (‘‘tanh-like’’) tapering function D(f), smoothly
varying from O to 1 over a specified number of wave periods.
Boundary conditions on the WB thus read

b
f = —u(8, D) on T,(1) = (x = x,(8); z € {—h,, nlxAO]})
(9a)
Fo oy — 94
T = ~u®, 2D@) — — 6, DO (9b)

where 0(¢) = k[x,(t) — ct] — 8, (with 6, a phase shift to the
point of zero up-crossing); x,() = x1{#), nlx.(¢)] = 2,(t); and u
and du/dt are calculated with (7) and (8), using both the co-
efficients X(j) and the wave characteristics obtained from the
SFW solution, (6).

Zero-Mass Flux Condition for Exact Waves

The mean wave mass transport M, and mass transport ve-
locity U, are defined as (Dalrymple 1976)

M LT ( f)dz|dt and U, M, 10)
o =P u(xy 2, o =
P T ), ~h, ¢ ¢ ph,

where m(x,, t) denotes the instantaneous free-surface elevation
at an arbitrary location x,.

To eliminate unwanted volume increase in the computa-
tional domain due to mean flow through the WB, incident
SFWs are simultaneously generated with a uniform current
U, equal and opposite to U,. Such waves are referred to as
zero-mass-flux SFWs. Since a current slightly modifies wave
characteristics due to Doppler effect, U must be iteratively
calculated, for specified wave height H, and period T, together
with wavelength L and streamfunction coefficients X( ), to sat-
isfy a zero-mass-flux condition. Moreover, in this calculation,
one must also account for the motion of the WB, following
the first free-surface particle x, = x,(¢). This implies that the
Lagrangian wave period T, must be used for the time integral
in (10), and, hence, the zero-mass-flux condition in the SFW
generation reads
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where M,(t) = n[x. (] and u, (&) = ulx.(t), n.(1)] are the ele-
vation and the horizontal velocity of the first free surface node/
particle, respectively, and

Ty
TL=T<1 +%) with Axw=f @ dt (12
0

where Ax, = horizontal displacement of the WB over time T}
(same as first free-surface particle). Eq. (11) expresses a vol-
ume balance over time T: the first term is the volume change
due to net WB motion; the second term is the volume change
due to horizontal velocity of the first free surface particle; and
the third term is the total wave Lagrangian mass transport.
Egs. (11) and (12) are iteratively used to calculate U and [L,
X(j)] for a SFW of given characteristics. Incident waves are
then generated by specifying the SFW’s kinematics in (9). Fig.
3 shows U as a function of dimensionless wave characteristics
(H,, T'). [In dimensionless (prime) variables, lengths are di-
vided by h, and times by \/h,/g.] As expected, results show
mcreasmg effects of nonlmeamy on U’ (ie., |U’'| increases
for increasing H, and decreasing T"').

Finally, since the horizontal particle velocity is larger at the
free surface than on the bottom, despite the correction by the
depth-averaged mean current U, the WB still has a small av-
erage net forward motion as a function of time. This is illus-
trated in the applications.

Wave Energy Absorption in Model

Absorbing Beach

An external counteracting pressure p, = P is specified in the
dynamic free surface condition (3) (with z = 1) to create a
negative work, and thus absorb wave energy over a given sec-
tion T', of the free surface. To create additional wave reduction
through deshoaling in the AB, the bottom geometry is speci-
fied somewhat similar to a natural bar (Fig. 1).

In most ABs proposed carlier, P was specified as propor-
tional to the free-surface potential ¢. Cao et al. (1993), how-
ever, showed that this could create a positive work in some
cases and suggested instead to define the external pressure as
proportional to the normal particle velocity. This method is
used in the present computations. The modified dynamic free-
surface condition in the AB thus reads

2?—1‘74) V¢+gn+—-0 on Ty 13)
Dt P
with
d
P, m, 1) =v(x, 1) —6'13 & 0] (14)

where v, the beach absorption function, is smoothly varied
along the AB as
"
"’) (1s)

v(x, ) = v,()pVah (x N
2 to 3; v, = a nondimensional beach absorption
= maximum depth in the AB.

where p =
coefficient; and A,

Absorbing Piston

Clément (1996) showed that ABs only absorb high-fre-
quency waves well. To absorb low-frequency waves, he pro-
posed use of a pistonlike boundary condition at the tank ex-
tremity, x, = x, + I(#) [absorbing piston (AP); Fig. 1].
Developing Clément’s AP condition for boundary I'..(f), we
obtain, for the piston velocity
()

u[x, (0] = o \/— f Polxy(8), 2] dz (16)
where p, = dynamic pressure; and the integral represents the
horizontal hydrodynamic force F, p, acting on the piston at time
t. To avoid drift of the piston with time, the dynamic pressure
is linearized to p, = —pdd/dr. In the numerical model, the AP
boundary condition (16) is implemented as follows:

1
= |———m=F + 17
u,(t + Ar) l:phx VE;’T (1) u,,(t)] / 2 (17a)

2
x(t + At = x(8) + w,(HAr + DD”" 0 (Azt) (175)
%% Dot + ANl = u,(r + Ar) (17¢)
2¢ _e
on [x,(¢ + A = @+ Ap
82
= u,(t + At) > (t+ Ar) on T,(0 (7d)

where the moving average in the first equation is introduced
to avoid numerical oscillations, and Du,/Dt is calculated as a
second-order finite difference approximation.

Adaptive Calibration of Absorption Coefficient

The AB coefficient v, is usually specified as a constant [e.g.,
Cointe (1990)]. Wave energy absorption, however, can be op-
timized by adaptively calculating v, for the AB to absorb the
period-averaged energy entering the beach at x = x, over time
step Az, that is, E(f)Ar, minus that leaving the beach at the
AP, with E; the period-averaged wave energy flux calculated
as

i n(x,7)
= P ad L]
E(t)=__f [‘f _('xyst)
4 T T =h(x) ot ‘

Energy absorption along the AB free surface and along the
AP corresponds to the work of the external and hydrodynamic
pressures, respectively. Over Ay, in average, this work is equal
to E,(H)At, with

(xu T dz] dr (18)
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the instantaneous period-averaged energy flux absorbed in the
AB/AP. The instantaneous value of the beach coefficient v,
can thus be found by simply balancing energy input and en-
ergy absorption: E; = E,, which by (14)—(19) leads to

_ 1 [
E(n) — T f Fp(Pu(t) dr
i-T

! 2 m
[p\/ghl lT f ( f {% [n(x, ‘r)]} (Lﬂ) d1‘> d-r]
7 \Jrm LOR I

In computations, integrations along vertical lines at a fixed x
[as, e.g., in (18)] are based both on the solution calculated at
several internal points, for known boundary values at time ¢’,
and on interpolated values of the solution on the free surface
and on the bottom, at the location x. Large variations of v,
from time step to time step are prevented by using a moving
average over 20 time steps of v,(¢f) values calculated with (20).
Upper and lower bounds are also specified for v, to avoid both
very large initial values, corresponding to small total energy
in the beach, and small values, later, when the beach reaches
a quasi-steady state and unwanted reflection could artificially
decrease the incident energy flux (see details in the applica-
tions).

(20

vo(f) =

APPLICATIONS
Test and Validation of Periodic Wave Generation

A deepwater SFW of height H, = 0.1 and period T' =
3.5515 is first generated (i.e., cases 1, 2, and 4 in Table 1).
Without an opposite current, this wave would have a mass
transport M, = M,T/(ph2) = 7.36107* (with U = 2.022 107°).
After 11 iterations on the zero-mass-flux condition, (11) and
(12), wave characteristics converge to L' = 2.0324, T, =
3.6254, U' = —2.189 107* (Fig. 3), for a mass transport less
than 107", (This wave is significantly nonlinear, with a steep-
ness H,/L equal to about a third of the maximum steepness in
deep water.) The computational domain is rectangular with
length I, = 8h, (case 1), 16k, (case 2), or 24h, [case 4; Fig.
4(a)]. Discretization parameters are given in Table 1. For case
4, for instance, the boundary is discretized with N = 308 nodes
and M = 272 elements. There are N; = 241 nodes on the free
surface, with equal spacing Ax; = 0.10 = L'/20, and 240 MCI
elements; 32 quadratic elements are specified on the remaining
part of the boundary. According to the Courant condition, C,

= 0.4, the initial time step is set to A¢’ = 0.04. The tapering
function D(¢) is specified over the first three periods of com-
putations, that is, up to ¢ = 10.65. An AB of length [’ = 12
= 6L’ is used in these calculations (see next section for details
concerning the AB).

Numerical errors for case 4 are plotted in Fig. 5(a), for the
volume balance equation [(11)] €,, and the total energy bal-
ance in the tank €, (calculated using a similar equation). Both
errors oscillate in time but, on average, €y = 0.002% and &
= 0.006%, relative to the initial volume and potential energy
of the computational domain, respectively. Such low average
values confirm the accuracy of the generation of zero-mass-
flux SFW in the model. {For the energy, larger errors occur
during the first three periods of computations, for which the
tapering function D(r) is applied to the WB conditions, (9),
thus (slightly) violating the FNPF governing equations.] Fig.
5(b) shows the trajectory of the first free-surface node/particle
[x,(), m,(D]. As mentioned before, the WB follows the hori-
zontal motion of this node and, due to differences between
free-surface and depth-averaged horizontal velocities, the WB
has a small net forward motion as a function of time. The
initial transient front resulting from the tapering function is
quite apparent in the figure, with both reduced wave elevation
and particle motion [see also Fig. 4(b)]. For later times, the
first node trajectory almost reaches a steady pattern. In the next
section, we will see that reflection from the AB is very small
[Fig. 4(c), curve a]. Hence, the small modulation of maximum
surface elevation in Fig. 5(b) is due to differences in horizontal
motion of the boundary over the Lagrangian and Eulerian pe-
riods, and not to reflection.

A wave with identical characteristics as in case 4 was gen-
erated using the flap WM, and a wave of height H, = 0.15
was also generated, both as a SFW (case 5) and using the WM.
Figs. 6(a and b) show time series of normalized surface ele-
vations 1'/H, at x' = 4. For the SFWs, after the transient front
has passed by, the wave shape reaches a nearly permanent
form. WM-generated waves, however, exhibit temporal fluc-
tuations. For H, = 0.10, these fluctuations are small but, for
H; = 0.15, differences are larger, indicating the generation of
higher-order harmonics. This is confirmed by results in Figs.
6(c and d): SFW harmonics do not fluctuate but, for WM-
generated waves, the larger the wave height the larger the har-
monics fluctuations. These results justify the need for the gen-
eration of SFWs in the model.

Test and Validation of Periodic Wave Absorption over
Constant Depth

Adaptive energy absorption is validated by propagating
SFWs of heights H, = [0.1, 0.15, 0.20, 0.3] and length L' =
[2, 6, 10], in tanks of constant depth A, and lengths I, with

TABLE 1. Wave and Computational Data for 11 Cases of Zero-Mass-Flux SFWs Propagating over Constant Depth

Number H, T T, L (x10% Ip I N M N,
(1) 3 (3) @ ) ) ®) ®) (10 a1
1 0.10 3.5515 3.6254 2.0324 —2.189 8.0 1.97 116 98 81
2 0.10 3.5515 3.6254 2.0324 —2.189 16.0 1.97 212 184 161
3 0.15 3.5515 3.7 2.0712 —4.791 16.0 1.93 212 184 161
4 0.10 3.5515 3.6254 2.0324 —2.189 240 591 308 272 241
5 0.15 3.5515 3.7177 2.0712 —4.791 24.0 5.80 308 272 241
6 0.10 10.622 10.630 10.033 —1.322 80.0 1.99 340 248 161
7 0.10 10.622 10.630 10.033 -1.322 80.0 3.99 340 248 161
8 0.30 10.622 10.708 10.261 —10.99 80.0 1.95 340 248 161
9 0.10 10.622 10.630 10.033 —1.322 120.0 5.98 500 368 241
10 0.30 10.622 10.708 10.261 -10.99 120.0 5.60 500 368 241
11 0.20 6.9490 7.0061 6.0388 ~5.709 60.0 3.97 340 268 201

Note: Initial free-surface node spacing is Ax, = Ip/(N, — 1) = L'/20, and initial time step is Ars; = 0.44x,; the upper bound for the AB coefficient is

™ = 1.0 and the lower bound is v = 0.7 — 0.1'/L'.
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an AB of length I’ = [2, 4, 6]L’ at their extremity (see Table
1 for parameter values and computational data). Energy ab-
sorption is achieved, either with an AB, or with an AB and
an AP in combination. In each case, the (linear) reflection co-
efficient R(f) is computed, using the three-gauge method by
Mansard and Funke (1980), close to the AB entrance at x] =
x; — 1, for t' = ¢'™, which represents the time for which
computations reach a quasi-steady state. Computations are
pursued up to time ¢'™ for which at least one reflection has
occurred on each end of the numerical tank before the wave
is recorded at x/. Table 2 gives average, minimum, and max-
imum reflection coefficients.

Detailed results are first analyzed for the short wave of case
4 [Figs. 4(a—c)], with an AB of length I’ = 12 (i.e., about six
times the incident-wave length) for x' > x/ = 12 [Fig. (4a)],
and no AP. An initial transient/dispersive front can be seen in
Fig. 4(b), before wave height stabilizes at H. (t' = 65), in-
dicating low reflection from the AB. [Fig. 6(a) gives wave
elevation at x" = 4 for the same wave and, as expected from
wave theories, the dispersive front gradually spreads out be-
tween x” = 4 and 11.] Fig. 4(a) shows the free-surface profile
after 43.9 periods of the wave propagation, that is, well after
the transient front has been absorbed in the AB. A gradual
amplitude decrease occurs within the AB but wave shape is
very regular outside of the AB, indicating that a quasi-steady
state has been reached for which reflection is small. This is
confirmed in Fig. 4(c), where maximum reflection is less than
3% for both this case, and the larger wave of case 5 (see also
Table 2). Other cases in Table 1 are discussed later in this
section. (Similar computations, shown earlier in Fig. 6, indi-
cated that the more irregular WM-generated waves were also
well absorbed in the AB.)

Energy parameters for case 4 are given in Fig. 7. Fig. 7(a)
shows both the instantaneous and period-averaged energy in-
put in the AB over A¢, and the instantaneous energy absorbed
in the AB. The denominator of (20), the AB adaptive energy
balance, is denoted by E,, /v, and both its instantaneous and
period-averaged values are plotted. For ¢/ < 65, the latter is
smaller than the average energy input and, hence, v, = v™ =
1 and both E,, /v, and E,,, are identical. For ¢’ > 65, however,
the energy balance (20) is activated and the beach coefficient
adjusts its value within 0.1 < v,(¢) < 1. Fig. 7(b) shows the
total, potential, and kinetic energy in the domain and the cu-
mulative absorbed energy in the AB. The first three of these
reach fairly constant average values for ' > 100—indicating
that a quasi-steady state has been reached—while the latter
keeps increasing. In fact, for ¢ > 97, v, = v™ = 0.1 and the
energy in the domain first stabilizes and then slowly decreases
since there is slightly too much absorption in the AB [E,, >
E,At in Fig. 7(a)]. This also results in a progressive reduction
of E,,./v,, the “‘absorbable’’ energy in the AB, and will even-
tually make v, stabilize to =™, (If no lower bound is set, v,
keeps decreasing and waves build up in the AB, leading to
increased reflection and to a further decrease in energy input;
this rapidly makes the energy absorption procedure unstable.)
Finally, for ¢’ > 110, the total energy in the AB (with respect
to its MWL) reaches an almost constant average value. These
results validate the adaptive energy absorption procedure in
the model.

Other cases in Tables 1 and 2 are discussed in the following.
For cases 1-5, representing the shorter waves with h,/L = 0.5
(the linear deepwater limit), reflection from the AB is small
(a few percent or less for both the average and maximum
values), independent of wave height (case 5, in fact, is a very
nonlinear wave with a steepness more than 50% the maxi-
mum), beach length, and duration of computations. As could
be expected, no significant reduction in reflection occurs when
using an AP in combination with the AB. Cases 6—11 repre-




TABLE 2. Reflection Coefficient at AB Entrance for 11 Cases Listed in Table 1

ﬁ len Rw
(%) (%) (%)

Number tmT r™IT AB AB & AP AB AB & AP AB AB & AP
@) 2 3 “ (6) 6 @ ® ©
1 6.14 13.0 1.32 1.22 0.85 0.62 2.52 241
2 14.5 259 1.64 1.63 0.29 0.30 2.57 2.50
3 134 214 2.44 2.24 0.88 0.85 4.87 3.66
4 15.8 439 1.32 1.30 0.82 0.82 1.82 1.85
5 15.9 34.1 242 225 1.60 1.40 3.02 2.62
6 9.55 264 18.8 2.81 1.71 1.15 38.5 3.98
7 9.52 264 6.86 2.05 1.70 0.38 19.0 3.65
8 9.55 264 21.7 3.95 175 0.85 40.0 5.80
9 12.3 35.8 4.57 1.86 1.31 1.21 9.52 3.15
10 12.0 38.1 4.89 324 1.46 1.25 9.91 5.15
11 10.7 33.1 542 1.85 1.54 0.25 103 2.85

Note: R, R™, and R™ denote average, minimum, and maximum values, respectively [computed with the method by Mansard and Funke (1980) for
gauges located at (x; — 1.2, x/ = x/ ~ 1, x; — 0.7)], after computations have reached a quasi-steady state, i.e., for time, '™ < ' < ¢t'™*; AB and AB
& AP denote absorbing beach alone and AB with the absorbing piston specified at the beach extremity, respectively.
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sent longer (intermediate depth) waves, with h,/L = 0.097 —
0.17. In cases 6 and 8, reflection becomes very large when
using an AB of length only twice the wavelength (and no AP),
increasing from a few percent at ' = 130 (first reflection) to
about 40% for t' > 230 (second reflection). In case 7, maxi-
mum reflection is reduced by a factor of two and average
reflection is down to 7% (despite V™" being also reduced),
when using an AB of length four times the wavelength (and
no AP), for the same wave as in case 6. In cases 9 and 10,
further reductions of the maximum reflection (by a factor of
two to less than 10%) and of the average reflection (to less
than 5%) are achieved when using an AB of length six times
the wavelength. In case 11, finally, reflection varies between
1.5 and 10% for average values of both the wave and AB
parameters.

For the longer waves (cases 6—11), low reflection can be
achieved with a short AB, only when using an AP at the ex-
tremity; in this case, both the average and maximum reflection
become a few percent or less (Table 2). Detailed results are

given in Figs. 4(d—f) for such a case (case 10, a fairly non-
linear wave), with an AB of length six times the wavelength
and an AP. Fig. 4(e) shows wave elevation at x’ = 55; for this
fairly long wave, dispersion is quite small after the first three
tapered waves have passed by. The wave profile thus quickly
reaches a quasi-steady state, indicative of small reflection. Fig.
4(d) shows the free-surface profile after 15.6 periods, when
computations are quasi-steady; waves clearly gradually de-
crease in the AB. Fig. 4(f), finally, shows the reflection coef-
ficients for both H, = 0.1 (case 9) and 0.30 (this case). Max-
imum reflection is less than 5% for both waves.

For all cases, high absorption is thus achieved in the tank
when using an AB of length about three to four times the
incident-wave length, in combination with an AP at the tank
extremity. This setup is used in the following shoaling com-
putations.

Periodic Wave Shoaling over Plane Slope

Shoaling of a zero-mass-flux SFW of height H; = 0.06 and
period 7' = 5.5 (U’ = —0.00576 and L, = 4.321) is calculated
over a 1:50 slope, in the domain sketched in Fig. 1, with an
AB of initial length !’ = 10, for x; = 50, and an AP at the
tank extremity. The water depth at x; is 0.10h, and is gradually
increased in the AB to h, = 0.5h,, following a ‘‘tanh-like’’
bottomn variation. Due to shoaling, wavelength reduces to L’
= 2.12 at x' = 50 [Fig. 8(a)}; accordingly, the AB length is
about four times the wavelength. (Note, h/L < 0.05 at the AB
entrance, which is in the shallow water region for the incident
wave.) The initial computational domain is discretized with N
= 578 nodes and M = 476 boundary elements. There are N, =
385 nodes on the free surface, with equal initial spacing Ax,
= 0.155 (i.e., 36 nodes per incident-wave length), defining 384
MCI elements; 92 quadratic elements are used on the remain-
ing part of the boundary. With these data, the CPU time is 67
s per time step on a Sparc ULTRA 1 workstation (SPECft =
350). The initial time step is At' = 0.06, and 4,500 (varying)
time steps are calculated for this case.

As waves become steep toward the top of the slope, dis-
cretization nodes may get quite close to each other and create
almost singular values for the BEM integrals, leading to poor
accuracy. In such situations, the adaptive regridding method
by Grilli and Subramanya (1996) is used to automatically re-
grid nodes three by three when the distance between two nodes
is either more than four times or less than 0.25 times the dis-
tance between the previous two nodes.

Ten ‘‘numerical’’ gauges are specified over the slope to cal-
culate shoaling wave characteristics. Figs. 8(b—e) show wave
elevations calculated at the last four gauges, referred to as gl
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FIG. 8. Shoaling of Zero-Mass-Flux SFW over 1:50 Slope, with
H, = 0.06 and T’ = 5.5: (a) Free-Surface Elevation at t' = 79.6
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45, and 47.5, Respectively; (b)-(e) Surface Elevations at
Gauges g1-g4, Respectively (Time Set to Zero When Largest
Wave Crest in Initial Front Crosses gt)

to g4 in Fig. 8(a). Wave height and asymmetry gradually in-
crease toward the top of the slope, as water shallowness more
significantly affects wave shape. The spreading out of the dis-
persive front is also clear on the figures; after the front has
passed by the gauges, results reach a fairly steady pattern,
indicating small reflection [except for some small high-fre-
quency oscillations in Fig. 8(e)].

Wave height H'(x") and (crest) celerity ¢’ (x') = ¢/V gh, were
calculated for successive incident waves shoaling over the slope
(see seventh to 10th waves in Fig. 9). The good agreement of
results for successive waves indicates that absorption in the AB/
AP is effective and that the model has reached a quasi-steady
state, for which shoaling wave properties can be calculated. Sig-
nificant differences can be seen in Fig. 9 between FNPF results
and linear theory, for x’ > 40, which corresponds to h/L < 0.106
(H/h > 0.22, H/L > 0.023). For smaller depth, due to increased
nonlinearity, both wave height and celerity become larger than
predicted by linear wave theory (by up to 31% and 19%, re-
spectively, at x' = x/). Third-order Stokes theory quite well pre-
dicts celerity up to x' = 45 (H/h = 0.37, h/L = 0.081), but
diverges for shallower water.

At the AB entrance, x’' = x/ (h/L = 0.047), wave-averaged
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FNPF results (Fig. 9) give H/h = 0.93 and H/L = 0.052 (linear
theory would give H/h = 0.64 and H/L = 0.045). Linear wave
theory combined to an empirical breaking criterion (Dean and
Dalrymple 1984) would predict breaking wave characteristics
as H,/h, = 090 and H/L = 0.048. Hence, FNPF results cor-
respond to a slightly steeper wave, which should thus be quite
close to breaking. Computations for a larger incident wave
with H, = 0.08, indeed, would show that the largest wave in
the transient front overturns and breaks at the AB entrance.

Other similar shoaling computations over gentle slopes were
performed by Grilli and Horrillo (1997), and both local and
integral wave properties were calculated and analyzed. Differ-
ences with linear and weakly nonlinear wave theories were
discussed. The reader is invited to consult this paper for further
details.

CONCLUSIONS

New methods for generating and absorbing zero-mass-flux
SFWs were implemented and validated in a FNPF NWT. The
NWT was then used to calculate wave shoaling over a gentle
slope.

It was found that waves could propagate without change of
form in the NWT, while closely achieving constant water vol-
ume. Waves of similar characteristics generated by a flap
wavemaker exhibited both spatial and temporal modulations,
indicative of higher harmonics generation.

For short waves propagating over constant depth, energy
absorption in the AB was high (greater than 97%), even with
a beach length only two times the wavelength; absorption was
good for both SFWs and flap-generated, that is, slightly irreg-
ular, waves. For longer waves, high absorption values were
only achieved when using an AB, with a length two to four
times the wavelength, in combination with an AP at the tank
extremity. (Even higher absorption values could be achieved
using longer ABs but the computational cost would be in-
creased.) Such results are due to the nature of energy absorp-
tion in the AB (i.e., the counteracting pressure), which essen-
tially affects wave kinematics close to the free surface and thus
better absorbs the energy of short waves for which horizontal
velocity is larger close to the free surface. For longer waves,

~



horizontal velocity is more uniform over depth, and energy is
better absorbed by the AP condition.

For shoaling waves, absorption was also good when using
an AB/AP and gradually increasing the depth in the AB (hence
causing deshoaling). Thus, shoaling of periodic waves was
modeled over a gentle slope, up to very close to the breaking
point, and a quasi-steady state was reached in the NWT for
which fully nonlinear wave properties were obtained (i.e.,
wave profiles, height, and celerity variations).

Finally, since adaptive absorption in the AB/AP, defined by
(13)-(20), does not require period T to be constant, irregular
incident waves could likely be absorbed in this NWT. For each
incident wave, the period would have to be calculated, for
example, using a zero up-crossing method. Such irregular
waves could be generated, for instance, using the second-order
method proposed by Schiiffer (1996). This, however, is beyond
the scope of the present paper and is left for further studies.
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