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Fully Nonlinear Properties of Periodic Waves
Shoaling over Slopes1

Stéphan T. Grilli 2, M. ASCE, and Juan Horrillo3

ABSTRACT : Shoaling of finite amplitude periodic waves over a sloping bottom is
calculated in a numerical wave tank which combines : (i) a Boundary Element Model
to solve Fully Nonlinear Potential Flow (FNPF) equations; (ii) an exact generation
of zero-mass-flux Streamfunction Waves at the deeper water extremity; and (iii) an
Absorbing Beach (AB) at the far end of the tank, which features both free surface
absorption (through applying an external pressure) and lateral active absorption (using
a piston-like condition). A feedback mechanism adaptively calibrates the beach
absorption coefficient, as a function of time, to absorb the period-averaged energy of
incident waves.

Shoaling of periodic waves of various heights and periods is modeled over 1:35, 1:50,
and 1:70 slopes (both plane and natural), up to very close to the breaking point. Due to
the low reflection from both the slope and the AB, a quasi-steady state is soon reached
in the tank for which local and integral properties of shoaling waves are calculated
(Ks, c, H�h, kH , �m, Sxx,...). Comparisons are made with classical wave theories
and observed differences are discussed. Parameters providing an almost one-to-one
relationship with relative depth kh in the shoaling region are identified. These could
be used to solve the so-called depth-inversion problem.

INTRODUCTION

In the coastal region, incident ocean waves propagating towards the shore (in direc-
tion x; Fig. 1) increasingly feel the effects of the reducing depth h�x�, due to the
sloping ocean bottom. These effects induce significant changes in wave shape, height
H , length L, and phase celerity c, while the wave period T stays closely constant.
Predicting such changes (usually referred to as wave shoaling) up to the point waves
become unstable and break (breaking point; BP) is one of the important tasks of coastal
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engineering. Characteristics of waves at the BP indeed are used to design coastal struc-
tures and predict littoral sediment transport; detailed wave kinematics at the BP is also
needed for surfzone models which are increasingly used in coastal engineering re-
search and design. In the more specific problem referred to as depth inversion, one
seeks to predict the nearshore bottom topography based on observed characteristics of
shoaling waves (e.g., through remote sensing). Hence, simple relationships between
these and h�x� are sought after.

In most wave transformation models used so far, shoaling of deep water waves
is calculated based on linear or weakly nonlinear theories (e.g., modified Boussinesq
eqs.) and using semi-empirical breaking criteria to locate the BP. Such theories,
however, despite their satisfactory predictions in deep and intermediate water, may not
be sufficiently accurate close to the BP where wave height reaches a significant fraction
of the depth. Highly nonlinear waves have been modeled using a higher-order Fourier
steady-wave theory (FSWT), e.g., by Sobey and Bando 4 (1991). In the latter work, up
to three conservation equations for mass, momentum, and energy flux, are expressed
to propagate incident waves over a mildly sloping bottom. In such an approach,
however, the bottom slope is replaced by a cascade of horizontal steps and, hence,
wave profiles do not take the characteristic skewed shape observed in experiments
before breaking occurs. As a result, wave kinematics and dynamics cannot be well
represented close to the BP5. Finally, in this approach, breaking corresponds to the
highest wave which is stable over constant depth. This is quite unrealistic since, as
we will see, skewness and unsteadiness allow waves to reach a larger height before
they break.

To accurately predict wave properties close to the BP, we will show that, in
addition to full nonlinearity, even for mild slopes, the influence of bottom topography
on wave shape must be included in shoaling models. Time dependent models based
on fully nonlinear potential flow (FNPF) theory have this capability, provided proper
wave generation and absorption methods are implemented (e.g., 2D : Klopman, 1988;
Grilli et al., 1989; Cointe, 1990, Cooker, 1990; Ohyama and Nadaoka, 1991; 3D
: Romate, 1989; Broeze, 1993). Hence, with such models, a “numerically exact”
solution can be obtained for waves shoaling over an arbitrary bottom geometry, for
which no approximation other than potential flow theory is made.

NUMERICAL MODEL

The two-dimensional FNPF model by Grilli, et al. (1989, 1990, 1996) will be used to
compute characteristics of periodic waves shoaling over both plane and natural slopes,
up to a very high fraction of the breaking height (Fig. 1). FNPF computations can

4Also see their detailed review of other similar works. Note, Johnson and Arneborg (1995) followed
a similar approach using a fourth-order perturbation method.

5The authors nevertheless assume that integral properties should be insensitive to such details and
are thus well predicted by a FSWT. The latter assumption is quite questionable, since radiation stresses,
for instance, are strongly influenced by wave skewness.
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Figure 1: Sketch for FNPF computations of a periodic wave shoaling over a plane
slope s, in a “numerical wave tank”.

model overturning waves but, by nature, are limited to prior to the time touch-down of
a breaker jet first occurs. This does not pose problems when solitary waves are used in
the analysis, as it has often been the case in the past 6. For periodic or irregular waves,
however, an absorbing beach (AB) must be used to absorb the energy of incident
waves, hence eliminating reflection and preventing these from breaking at the top of
the slope.

Grilli and Horrillo (1996) implemented such an AB in the model over a shallower
region located in the upper part of the slope whose geometry was specified somewhat
similar to natural bars on beaches7 (Fig. 1). Energy absorption combined both free
surface and lateral absorption with an adaptive calibration of the absorption coefficient
: (i) an exterior counteracting pressure is specified on the AB free surface, proportional
to the normal particle velocity (Cointe, 1990; Cao et al., 1993), to create a negative
work against incident waves; this is shown to absorb high frequency wave energy
well; (ii) a piston-like (active) absorbing boundary condition is specified at the tank
extremity �r2 (“absorbing piston”, AP), which is shown to absorb low frequency
wave energy well (Clément, 1996); (iii) the AB’s absorption coefficient is adaptively
calibrated in time to absorb the period-averaged energy of incident waves entering
the beach at x � xl. Grilli and Horrillo developed and tested this AB and showed
that wave reflection could be reduced to a few percent only. Hence, in a “numerical
wave tank” such as sketched in Fig. 1, computations for periodic waves can reach
a quasi-steady state for which properties of shoaling waves can be calculated, up to
very close to the BP, and compared to results of other shoaling methods (theory or
models), which usually assume there is no reflection from the slope or beach. [In the
present method, reflection from the slope still occurs as it does in nature.]

Incident waves can be arbitrary in the model but, for sake of comparison with
other wave theories, permanent form wave solutions of the FNPF problem are gener-
ated on the leftward boundary (�r1, Fig. 1). These are so-called streamfunction waves

6In such cases, FNPF calculations can predict characteristics of breaking solitary waves within 2%
of experimental measurements (Grilli et al., 1994, 1997)

7In this case, gradual deshoaling of waves occurs in the AB which helps absorbing wave energy.



(SFW; Dalrymple 1974; Dean and Dalrymple 1984) which, unlike finite amplitude
waves produced by a wavemaker, do not exhibit the generation of higher harmonics
and the beat phenomenon observed in wave tanks as they propagate over constant
depth (e.g., Chapalain et al., 1996). Since SFW’s have a non-zero mass flux, they
are generated in the model together with a mean current, equal and opposite to their
period-averaged mass transport velocity (Grilli and Horrillo, 1996). Hence, volume
stays constant within the “numerical wave tank” as it would on a beach for which the
undertow current balances the incident mass flux at some distance from the shore.

Details of model equations, numerical methods and validation applications can
be found in the above-referenced papers. It will just be mentioned that Laplace’s
equation is solved in the model, over domain �, based on a higher-order Boundary
Element Method (BEM) derived from Green’s 2nd identity. Boundaries are discretized
usingN nodes andM higher-order elements are specified to interpolate in between the
nodes. Quadratic isoparametric elements are used on lateral and bottom boundaries
(�r1, �r2, �b) and cubic elements ensuring continuity of the slope are used on the
free surface boundary �f (Grilli and Subramanya 1996). The nonlinear free surface
kinematic and dynamic boundary conditions are time integrated using second-order
Taylor series expansions expressed in terms of a time step �t and of the Lagrangian
time derivative. Numerical errors are kept to a very small value by adaptively selecting
the time step based on a mesh Courant number Co�t� (Grilli and Svendsen, 1990; Grilli
and Subramanya 1996). In shoaling computations, as waves become increasingly steep
towards the top of the slope, discretization nodes may get quite close to each other and
create quasi-singular values for the BEM integrals, leading to poor accuracy. Hence,
the adaptive regridding method developed by Grilli and Subramanya (1996) is used
to automatically regrid nodes three by three when the distance between two nodes is
either more than 4 times or less than 0.25 times the distance between the previous
two nodes. In the following applications, a minimum of 20 nodes per wavelength is
maintained throughout shoaling.

APPLICATIONS

Figure 1 illustrates a typical set-up for shoaling computations : (i) incident zero-
mass-flux SFW’s are generated on �r1 (in depth ho, with height Ho and period T ;
o-indices denote deep water values); (ii) waves propagate up the sloping bottom
and are absorbed in the AB/AP; (iii) since reflection is very small from both the
sloping bottom and the beach, computations soon reach a quasi-steady state for which
successive waves undertake similar transformations (see Grilli and Horrillo, 1996,
for a detailed discussion of numerical parameters and results); (iv) model parameters
are tuned-up to let incident waves shoal up to impending overturning before they are
absorbed in the AB. Numerical “wave gages” are specified at several fixed locations,
x � xg, over the slope where wave characteristics are calculated, both on the free
surface (e.g., elevation ��xg� t�) and as a function of depth z (e.g., velocity u�xg� z� t�,
dynamic pressure pD�xg� z� t�).
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Figure 2: (a) shoaling coefficient Ks � H�Ho; (b) celerity c; and (c) left/right
asymmetry s2�s1, for periodic waves shoaling over a 1:50 slope, with H �

o � Ho�ho �

(- - - -) 0.04, (— - —) 0.06, and (——) 0.08, and T � � T
q
g�ho � 5�5 : (n) FNPF

results; (s) Sobey and Bando’s (1991) FSWT results; (– – –) LWT results; (c) CWT
results. co � gT��2�� is the (linear) deep water celerity.



Local wave properties

After quasi-steady state is reached, successive incident waves are identified and tracked
in the results : (i) envelopes of crest and trough elevations are calculated, from which
wave height H�x� and shoaling coefficient Ks�x� � H�Ho are obtained; (ii) phase
velocity c�x� is calculated from the time derivative of crest trajectories; (iii) to quantify
wave skewness, forward and backward normalized wave slopes are calculated as,
s2�x� � H2��soL2� and, s1�x� � H1��soL1�, respectively, in which �L1� L2� and
�H1�H2� denote horizontal and vertical distances from a crest to the previous and next
troughs, respectively, and so � 2Ho�Lo � koHo��. Results show that these quantities
are quite well reproduced as a function of x, for successive incident waves (Grilli and
Horrillo, 1996); in the applications, however, to eliminate small variations, ensemble
averages of these quantities for each x are calculated over at least 4 successive waves.

In the model, waves are found to shoal up the slope, qualitatively, as expected
from linear wave theory (Fig. 1) : (i) both wavelength L and celerity c � L�T
continuously decrease; (ii) deshoaling first occurs, with a reduction in wave height,
followed by shoaling and an increase in wave height up to the top of the slope where
waves almost reach overturning before entering the AB and decaying.

More specifically, in Fig. 2, Ks, c, and s2�s1 have been plotted as a function
of normalized depth koh, for a bottom slope s �1:50 and three incident waves of
normalized incident heightH �

o � Ho�ho � 0.04, 0.06, and 0.08, and normalized period

T � � T
q
g�ho � 5�5 (ko � �2��2��gT 2� is the (linear) deep water wavenumber).

Results of linear (LWT) and cubic (CWT) Stokes wave theories are also indicated.
For koh � 0�5, significant differences are observed between FNPF results and the
wave theories; this also corresponds to kh � 2�h�L � 0�77 (or H�h � 0�10; see
Fig. 4b). For diminishing depths, due to increased nonlinearity, both Ks and c
become significantly larger than predicted by LWT (Figs. 2a and 2b) and, as could be
expected, increasingly so with the incident wave height. CWT predicts celerity better
for shallower depths but diverges in very shallow water. The more accurate FSWT
performs reasonably well for predicting celerities (Fig. 2b) but does quite poorly
for wave heights (Fig. 2a). This is likely due to the lack of skewness in modeled
waves whereas FNPF results for s2�s1 (Fig. 2c) show that waves are significantly
skewed—i.e., forward tilted, left/right asymmetric—for very shallow water (see also
Fig. 1 for spatial wave profiles).

The significant differences observed in Fig. 2 between FSWT and FNPF results
show that, even for a very mild slope, the influence of actual bottom shape on local
wave properties is important. Fig. 3 now investigates how this influence varies with
bottom slope. An incident wave with H �

o � 0�06 and T � � 5�5 is shoaled up three
plane beaches of slopes s � 1:35, 1:50, and 1:70, and a “natural beach” geometry with
an average slope of 1:50. The natural beach has a depth variation defined according
to Dean’s equilibrium beach profile, h � A�x� � x�2�3, with x� denoting a constant,
function of the location of the toe of the slope in depth ho, and A depending on the
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Figure 3: FNPF results for : (a) shoaling coefficient; (b) celerity; and (c) left/right
asymmetry, for periodic waves with H �

o � 0�06 and T � � 5�5, on : 1:35 (curve a);
1:50 (curve b); 1:70 (curve c), plane (——) or natural (- - - - -) beaches. (– – –) LWT
results; (— - —) CWT results.



specified average slope. This “natural beach”, hence, has a milder slope in deeper
water and a steeper slope in shallower water. For the wave height and celerity, Figs.
3a and 3b show fairly small differences between results calculated for the same depth
on various slopes, for most of the shoaling region. The wave left/right asymmetry—
s2�s1, shown in Fig. 3c—seems to be more sensitive to bottom slope, becoming larger
for the shallower parts of the (steeper) 1:35 slope and the “natural beach”. Overall,
however, no major differences are observed provided wave properties are compared
for the same normalized depth.

Results in Fig. 3 imply that, for a given depth, local wave properties vary
little for the same wave propagating over a range of mild slopes from 1:35 to 1:70.
Hence, a broader parametric study will be carried out on a 1:50 slopes only, for 9
waves combining heights, H �

o �0.04, 0.06, and 0.08 and period, T � �5.5, 6.5, and 7.5.
Results for each wave are given in Fig. 4 as a function, this time (due to the varying
wave period), of the relative local depth kh. First, in Fig. 4a, we see that, for the phase
celerity normalized by the linear wave celerity, cl � co tanh kh, the larger the incident
wave height and the smaller the period (or similarly the larger koHo) then, for a given
kh, the larger the celerity increase with respect to cl. Such results illustrate the well
known amplitude dispersion effects due to increasing wave steepness 8 kH which, for
the studied cases in shallow water (kh � ��10), lead to a 40 to 85% maximum increase
in celerity with respect to linear wave theory. In Fig. 4b, we see that, in all cases,
the wave height to depth ratios H�h reach O�1� values in the shallow water region,
confirming the very strong nonlinearities. A similar analysis of shoaling coefficients
would show that linear wave theory significantly underpredicts wave height for depths
corresponding to H�h � 0�2 (which also corresponds to the region where celerity is
significantly underpredicted in Fig. 4a); for the studied cases this underprediction
of Ks is up to 55%. With regard to these results, it is anticipated that the quantity,
kH��koHo� � Ks��c�co�, i.e., the local wave steepness normalized by the deep
water steepness, should exhibit somewhat less variations (i.e., overprediction) with
respect to linear wave results, since underprediction of wave height and celerity should
compensate each other to some extent. This is confirmed in Fig. 4c where we see, first
of all, that all FNPF results follow quite a similar increase as a function of kh, up to
maximum steepness, and that results of LWT (i.e., Ks� tanh kh) are a better predictor
of normalized wave steepness, with a maximum underprediction of only 11%, than
for the other wave properties discussed above. Considering the many differences in
wave shape, height and length, and kinematics, observed between FNPF and LWT
results, the latter result is somewhat unexpected.

Integral wave properties

These are the mean water level �m, the mean undertow current Um, the energy flux
Ef , and the radiation stress Sxx. In the model, integral properties are computed at

8Such effects are predicted at third-order by Stokes theory (CWT).
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“numerical gages” located at x � xg above the sloping bottom using classical equa-
tions, i.e., through depth integrations and wave period-averaging involving, ��xg� t�,
u�xg� z� t� and pD�xg� z� t�. To account for the non-zero mean Eulerian velocity in
the model (resulting from specifying zero-mass-flux incident waves at boundary � r1),
and for the set-down �m, expressions of integral properties are corrected following
Klopman (1990) and Jonsson and Arneborg (1995). In the model, time averaging is
performed at time t, for the results calculated from time t � T to t. Time series of
integral properties are thus obtained for each gage location xg. When computations
reach a quasi-steady state, integral properties stabilize to fairly constant values in
time for each gage location. To eliminate small time fluctuations and oscillations of
integral properties with respect to these constant values, averages are calculated over
3T , before results are analyzed.

In all cases, the energy flux is found to be very close to constant at the gages lo-
cated in the region where wave height increases (e.g., over the shoaling parts of curves
in Figs. 2a and 3a). This indicates that reflection is small from both the sloping bottom
and from the AB. As depth decreases, the mean undertow current increases roughly
proportionally to 1�h, as expected from the period-averaged continuity equation, and
then decreases when wave height starts decreasing.

Mean water level and radiation stress results are given in Fig. 5, for the same
three waves as in Fig. 2, shoaling over a 1:50 slope. As expected, the normalized
�m in Fig. 5a follows a trend opposite to Sxx in Fig. 5b, first setting-down over the
slope and then stabilizing towards the top of the slope and increasing in the AB due
to wave height reduction. In shallow water, the set-down becomes relatively larger,
the smaller the incident wave, as a result of the steeper drop in radiation stresses for
the larger waves. Results obtained from a first-order nonlinear perturbation of LWT



(FNLT; Dean and Dalrymple, 1984) and adjusted to match the initial FNPF set-down
in depth ho, show reasonable agreement with FNPF results. In the shallower region
at the top of the slope, however, FNLT results do not capture the leveling-up of �m.
Radiation stresses in Fig. 5b gradually increase while wave height increases and
depth decreases, following the expected pattern from FNLT, which predicts results
quite well in the deeper water region. At some stage, however, FNPF results become
smaller than FNLT results, and more so, for a given depth, the larger the incident wave
height. A more detailed analysis of these results would show that this decrease in Sxx

is strongly correlated with the increase in “skewness index” s2�s1, shown earlier in
Fig. 2c for koh � 0�45; this confirms that radiation stresses are quite sensitive to wave
shape.

Fourier analysis

Another way of analyzing how wave shape changes during shoaling is to calculate
Fourier transforms of wave surface elevations ��xg� t� obtained at fixed gages at
x � xg. Harmonic amplitudes can then be plotted as a function of xg. This was
done in Fig. 6 which shows normalized amplitudes of the first three harmonics a i
(i � 1,2,3), for the same three waves as in Fig. 2 shoaling over a 1:50 slope. In
all cases, in the shoaling region where wave height increases (Fig. 2a), after a slight
initial increase, a1 decreases while a2 and a3 continuously increase. This indicates
that, in shoaling periodic waves, energy is being continuously transferred to higher-
order harmonics, as a result of nonlinear interactions. As could be expected, for a
given depth, this nonlinear energy exchange is stronger, the larger the incident wave
height, and the energy transfer to the higher-order harmonics thus starts occurring in
deeper water. Not surprisingly, variations of the “skewness index” s2�s1 in Fig. 2c
are strongly correlated with variations of a2 and (particularly) of a3 in Fig. 6.

Conclusions

A numerical wave tank was used to model finite amplitude periodic waves shoaling
over a sloping bottom. Periodic waves of various heights and periods, covering the
range koHo = [0.028 ,0.105], were modeled over 1:35, 1:50, and 1:70 slopes (both
plane and natural), up to very close to the breaking point. Due to the low reflection
from the slope and the AB, a quasi-steady state was soon reached in the tank for which
both local and integral properties of fully nonlinear shoaling waves were calculated
(Ks, c, s2�s1 (left/right asymmetry) , H�h, kH , �m, Sxx).

For a shallow enough normalized depth (koh � 0�5 or kh � 0�77), significant
differences are observed between FNPF results and 1st (LWT), 3rd (CWT), and higher-
order steady wave (FSWT) theories. For the first two theories, low-order nonlinearity
is clearly the main reason for the observed differences in a region whereH�h � O�1�;
in the latter theory, the lack of wave skewness and the representation of the bottom by
horizontal steps likely explain the observed differences.



Despite the significant effects of actual bottom shape on the results, for the range
of tested mild slopes, FNPF results are found fairly similar for the same wave taken at
the same normalized depth (koh or kh). This, hence, allows us to use kh as the unique
parameter describing a mild bottom variation and to compute additional results on a
unique mild slope (1:50). In these results, for the range of tested waves, the normalized
wave steepness, kH�koHo, shows an almost one-to-one relationship with kh in the
shoaling region. Steepness thus could be used to solve the so-called depth-inversion
problem. Quite surprisingly, due to a partial compensation of nonlinear effects for
the wave height and celerity, LWT is found quite a good predictor of this parameter
(maximum difference is 11%), whereas discrepancies for H and c reach 55 and 85%,
respectively.

For the tested waves, set-down is quite well predicted by the first-order pertur-
bation of LWT, except in the shallower region, where it is smaller, following the steep
drop in radiation stresses. [This could also be partly due to the mean undertow current.
More work remains to be done about this.]. Radiation stresses are overpredicted by the
first-order theory in the region where wave left/right asymmetry s 2�s1 (i.e., skewness)
becomes large, confirming the sensitivity of this parameter to wave shape. Otherwise,
agreement with the theory is quite good. A Fourier analysis of surface profiles ��xg� t�
calculated for gages located at x � xg shows a continuous transfer of energy from the
fundamental to higher-order harmonics in the shoaling region, illustrating nonlinear
interactions in the shoaling wave field. The 3rd-harmonic amplitude a3 is strongly
correlated with s2�s1.
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