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[1] One of the main limitations to current wave data assimilation systems is the lack of an
accurate representation of the structure of the background errors. One method that may be
used to determine background errors is the observational method of Hollingsworth and
Lönnberg [1986]. This method considers correlations of the differences between
observations and the background. For the case of Significant Wave Height (SWH),
potential observations come from satellite altimeters. In this paper, correlations of the
differences between modeled SWH and bias-corrected ERS-2 data are calculated. The
irregular sampling pattern of the altimeter is accounted for by adjusting the correlation
length scales according to latitude and the calculated length scale. The results show that
the length scale of the background errors varies significantly over the globe, with the
largest scales at low latitudes and shortest scales at high latitudes. Very little seasonal
or year-to-year variability in the correlation length scales is detected. Conversely, the
magnitude of the background error variance is found to have considerable seasonal
and year-to-year variability. By separating the altimeter ground tracks into ascending and
descending tracks, it is possible to examine, to a limited extent, whether any anisotropy
exists in the background errors. INDEX TERMS: 4247 Oceanography: General: Marine

meteorology; 3337 Meteorology and Atmospheric Dynamics: Numerical modeling and data assimilation;

4560 Oceanography: Physical: Surface waves and tides (1255); KEYWORDS: waves, data assimilation,

background errors

Citation: Greenslade, D. J. M., and I. R. Young (2004), Background errors in a global wave model determined from altimeter data,

J. Geophys. Res., 109, C09007, doi:10.1029/2004JC002324.

1. Introduction

[2] Several operational Numerical Weather Prediction
(NWP) centers around the world run wave forecasting
systems that routinely assimilate satellite SWH data or,
more recently, directional wave spectra. There has been a
considerable amount of research into the development of
wave data assimilation systems in recent years. A major
limitation to current assimilation systems is the specification
of the model (or background) errors. This has not previously
been explored to any great extent for wave models.
[3] One method commonly used to investigate the back-

ground errors is the observational method of Hollingsworth
and Lönnberg [1986]. This method considers correlations of
the differences between observations from a dense, long-
term observational network and the background field. In
this work, global observations of SWH from the ERS-2
satellite altimeter are compared to SWH from a global wave
model to examine the structure of the background errors,
and how they vary in space and time.

[4] A brief review of previous wave data assimilation
research is given in section 2 with an emphasis on speci-
fication of the wave model background errors. The wave
model used in this work is a version of the WAM model
[WAMDI Group, 1988; Komen et al., 1994]. This is de-
scribed in section 3, and in section 4 the altimeter data are
described. The method used to compute the background
error correlations is presented in section 5. This includes the
derivation of an appropriate correction to account for the
irregular altimeter sampling pattern. Results for isotropic
and anisotropic correlations are presented and discussed in
section 6, and finally, section 7 contains a summary and
outlook.

2. Background

[5] Current operational wave data assimilation systems at,
for example, the European Centre for Medium-Range
Weather Forecasts (ECMWF), the Australian Bureau of
Meteorology (the Bureau), and Meteo-France use the
sequential method of Statistical Interpolation (SI) to com-
bine first-guess wave model fields with the observations to
obtain analyzed wave fields. Lionello et al. [1992] were the
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first authors to document SI as a method to construct
analyzed SWH fields, although it had been in use in
NWP previously [Lorenc, 1981]. The SI algorithm is
described here.
[6] At each model gridpoint, i, the analyzed (corrected)

SWH, Han
i , is expressed as a linear combination of the first-

guess predictions from the model, Hp
i, and the observations,

Hobs
j ,

Hi
an ¼ Hi

p þ sip
XNobs

j¼1

Wij

H
j
obs � Hj

p

sjp

" #
: ð1Þ

Nobs is the number of observations and sp is the model
prediction root-mean-square (rms) error, i.e.,

sip ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hi

p � Ti

� �2� �s
; ð2Þ

where T is the true SWH and h. . .i is the expected value.
The weights (Wij) are chosen to minimize the rms error of
the analysis. Assuming that the errors in the model are not
correlated with the measurement errors, the weights are
therefore given by

Wij ¼
XNobs

k¼1

PikM
�1
kj ; ð3Þ

where the matrix M is

Mkj ¼ Pkj þ Okj: ð4Þ

P and O are called the error correlation matrices of the
model prediction (or background) and observations, respec-
tively, and must be specified. They are symmetric Nobs �
Nobs matrices where the element (k, j) of matrix P is given
by

Pkj ¼
Hk

p � Tk
� �

Hj
p � Tj

� �D E
skps

j
p

: ð5Þ

In other words, the value of element (k, j) of matrix P is the
correlation between the model error at observation location
k and the model error at observation location j. Similarly
element (k, j) of matrix O is given by

Okj ¼
Hk

obs � Tk
� 

H
j
obs � Tj

� � �
skps

j
p

: ð6Þ

[7] If P and O are known precisely, then the weights are
optimal and Wij does indeed minimize the rms error of the
analysis. In that case, the technique is known as Optimal (or
Optimum) Interpolation. However, in practice, P and O are
not known exactly as they represent the difference between
the model (or observation) and the unknown truth. For this
reason, the term SI is used here.
[8] Most current operational wave data assimilation

schemes use observations from satellite altimeters. The
observational errors for altimeter SWH data are generally

assumed to be spatially uncorrelated, and therefore O
reduces to a diagonal matrix with values of

Okk ¼
Hk

obs � Tk
� 2D E

skpskp
¼ s2obs

s2p
ð7Þ

along the diagonal. Recent work [Janssen et al., 2003] has
shown that in fact there may be some correlation between
the errors of consecutive along-track altimeter observations.
The potential impact of this on the OI scheme would be to
increase the lower limit of the expected analysis error
[Daley, 1991]. In practice, this could be reduced by along-
track averaging of the altimeter data or by subsampling the
observations.
[9] Pkj, on the other hand, is known to be horizontally

correlated and is more difficult to specify. Lionello et al.
[1992] set Pkj to be isotropic and homogenous and to have
the form

Pkj ¼ exp �
xk � xj
�� ��

L

� �
; ð8Þ

where L is the decorrelation length scale and jxk � xjj is the
distance between the points k and j. Several values were
explored for L ranging from 1 to 10 model gridpoints, where
the model resolution was 3�. Model forecasts generally
improved as L increased, but tended to saturate for L > 15�.
Pkj for L = 15� at a latitude of 45�N is shown in Figure 1,
along with some Pkj s proposed by other authors (see
below).
[10] This method has been applied in several regional

studies. Mastenbroek et al. [1994] assimilated ERS-1 SWH
into the WAM model over the North and Norwegian Seas.
In this study, the shape of the background error correlations
was described with an auto-regressive function, as opposed
to the exponential function used by Lionello et al. [1992], so
that

Pkj ¼ 1þ
xk � xj
�� ��

L

� �
exp �

xk � xj
�� ��

L

� �
: ð9Þ

Figure 1. Some example functions used for the back-
ground error correlations at midlatitudes.

C09007 GREENSLADE AND YOUNG: BACKGROUND ERRORS IN A GLOBAL WAVE MODEL

2 of 24

C09007



L was set to be 1.8 model gridpoints, where the spatial
resolution of the model was approximately 75 km. Another
regional study based on this technique to update the wave
spectrum is described by Breivik and Reistad [1994], where
ERS-1 SWH was assimilated into a second-generation wave
model over the North, Norwegian, and Barents Seas. A
successive corrections method was used and the background
error correlations were defined as

Pkj ¼ exp � 1

2

xk � xj
�� ��2

L2

" #
: ð10Þ

Breivik and Reistad [1994] suggested that L would be of
similar scale to that of the wind fields in the atmospheric
model, so it was set to be 200 km, decreasing to 40 km over
five successive iterations. This background error correlation
function is shown (for the initial 200-km value) in Figure 1.
[11] Young and Glowacki [1996] applied an SI method to

assimilate GEOSAT data into a second-generation wave
model over the Tasman Sea. The background errors were
defined to be the same as in equation (10) with the length
scale set to 350 km. Bender and Glowacki [1996] applied
the method of Lionello et al. [1992] to a version of WAM.
Background errors were defined as in equation (8) with L =
350 km. Greenslade [2001] extended this work and per-
formed a similar experiment over the Australian region. Pkj

was defined as in equation (10). Values of 300 km, 500 km,
and 700 km were tested for L, and results were evaluated at
a number of buoys around the Australian coast. L = 300 km
provided the best results in this study and this structure for
Pkj is shown in Figure 1.
[12] A sequential method to assimilate directional wave

information is described by Hasselmann et al. [1997]. The
technique was applied to ERS-1 SAR data in the North
Atlantic. The length scale used was 200 km, to allow for the
smaller correlation scales of the intense low-pressure sys-
tems with which the authors were most concerned. Wind
field corrections obtained from the algorithm of Lionello et
al. [1992] were combined with the first-guess wind fields
via SI to produce analyzed wind fields. The correlation scale
for this step was reduced to 50 km and only applied to
neighboring gridpoints.
[13] Voorrips et al. [1997] adapted the method and assim-

ilated wave spectra from pitch-and-roll buoys into WAM
over the North Sea. The spatial correlation structure of the
background error for total wave energy (E = SWH2/16) was
estimated by considering differences between the model
forecast at 24 hours and the model analysis over a 2-month
period. The most appropriate correlation structure was found
to be

Pkj ¼ exp �
xk � xj
�� ��

L

� �3
2

" #
; ð11Þ

with L = 200 km. This is shown in Figure 1. Dunlap et al.
[1998] assimilated ERS-1 SAR wave spectra into WAM
over the northwest Atlantic. SI was not used, but the
observations were spread over a region-of-influence, R,
around the observation point with a weighting factor,

w ¼ e�R R ¼ 1ffiffiffi
2

p r

L
; ð12Þ

where r is the distance from the observation to the model
gridpoint and L is a length scale. It was argued that two
distinct length scales should be used: a shorter one
corresponding to wind-sea systems and a longer one for
swell. A compromise of L = 500 km was used.
[14] Breivik et al. [1998] performed a study assimilating

SAR spectra into a second-generation wave model over the
North and Norwegian Seas. The successive corrections
method of Breivik and Reistad [1994] was used. Since full
wave spectra were assimilated, the background error cor-
relation function was defined as a function of wave
frequency, f,

Pkj fð Þ ¼ exp � 1

2

xk � xj
�� ��2
L fð Þ2

" #
: ð13Þ

Breivik et al. [1998] determined L for SWH empirically by
considering colocated model and altimeter SWH estimates
over a 4-month period. The domain considered covered the
North, Norwegian, and Barents Seas and the west Atlantic.
The length scale for SWH was found to be 200–250 km. It
was then assumed that the spatial scale of errors in the energy
spectra was similar to that of the errors in SWH. In addition,
the length scale was defined so that long-wave information
from the observations influenced a larger area of the analyzed
field than shorter waves. L( f ) was thus defined to range
from 300 km for f = 0.04 Hz to 60 km for f = 0.24 Hz.
[15] In the studies described here a wide range of struc-

tures has been used to represent the background errors. Just
a few are shown in Figure 1. Some of these have been ad
hoc estimates, while others have provided some justification
for the choice of background error structure. Most of the
studies have assumed isotropy and homogeneity in the
background error structure. To date, there has been no
extensive effort made to determine the spatial scale of the
background errors in wave models on a global basis. A
major limitation to current implementations of SI systems
and indeed potential future systems is the lack of an
accurate representation of the model or background errors.
[16] The background error is, by definition, the difference

between the background and the truth. Of course, the truth
is not known, and so other methods to calculate background
error must be sought. There are several methods that have
commonly been used to estimate the background error
correlations in meteorology and oceanography. One of these
is the observational method of Hollingsworth and Lönnberg
[1986]. This method uses observations from a long-term,
dense, homogenous observational network and examines
the difference between the observations and the background
field. The total error can be partitioned into background
error and observational error by assuming that the observa-
tional errors are spatially uncorrelated. This method has
been used extensively in meteorology. In particular, many
studies have used the radiosonde networks that exist over the
continental land masses [e.g., Seaman, 1982; Hollingsworth
and Lönnberg, 1986; Lönnberg and Hollingsworth, 1986;
Thiébaux et al., 1986]. The observational method has the
merit of being a technique that calculates background errors
directly, and it can be used to determine both the background
error variance and its spatial structure.
[17] Highest quality wave observations generally come

from buoys or platforms which are fixed in space. However,
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the spatial distribution of buoys is extremely poor: For
practical reasons, they are generally located in coastal
regions and so it is difficult to obtain any information on
the spatial error correlation structure from buoy data. This
lack of a long-term observational network with reasonable
space-time sampling characteristics over the ocean means
that it has been difficult in the past to apply the observational
method within the fields of oceanography or marine mete-
orology. However, satellite altimeters now provide a com-
prehensive global long-term network of wave observations
which can potentially be used to determine the correlation
structure of the background errors in a wave model.
[18] One disadvantage of the observational method is that

it can only provide information on the spatial scales of the
observational network, and in many cases, only over limited
areas. This is not a major issue in this work because the
satellite altimeter estimates of SWH that are used are closely
spaced together in the along-track direction, compared to
the spatial scales that are of interest. The issue of the large
spacing between altimeter ground tracks and the limited
range of directions covered by the ground tracks has been
addressed by D. J. M. Greenslade and I. R. Young (The
impact of altimeter sampling patterns on estimates of
background errors in a global wave model, submitted to
Journal of Atmospheric and Oceanic Technology, 2004)
(hereinafter referred to as GY1). Results from GY1 will be
used in this paper.

3. Wave Model

[19] The wave model used in this work is AUSWAM
[National Meteorological Operations Centre (NMOC),
1999], a version of the WAM model. The WAM model is
a third-generation wave model which solves the wave
transport equation explicitly without assuming a form for
the evolving spectrum. The wave transport equation is

@F

@t
þr: cgF

� 
¼ Sin þ Snl þ Sd ; ð14Þ

where F(f, q) is the wave spectrum as a function of
frequency and direction, cg is the group velocity, and the
terms on the right-hand side represent the source terms: Sin
is the energy input due to wind forcing, Snl is the nonlinear
energy transfer between groups of resonant waves, and Sd is
the dissipation of energy due to whitecapping.
[20] In the most recent version of the WAM model

(Cycle 4, released in December 1991) the physics included
a dynamic coupling between wind and waves [Janssen,
1989, 1991]. Bender and Leslie [1994] and Bender [1996]
compared the original Cycle 3 [Snyder et al., 1981; Komen
et al., 1984] and Cycle 4 physics to independent buoy data
over a 1-month period (July 1992) and concluded that a
wave forecasting model for the Australian region should be
based on the Cycle 3 physics. Although this led to under-
prediction of wave heights, it was shown that by upgrading
the first-order propagation numerics to third-order and
increasing the magnitude of the dissipation term by approx-
imately 40%, a good match with the buoy observations
could be achieved. Therefore the present implementation of
the WAM model at the Bureau and the version used
throughout this work, uses the Cycle 3 physics with
increased dissipation and third-order upwinding numerics.

[21] Wave spectra are discretized into 12 directional bins,
centered at 15�, 45�, 75�, etc. This ‘‘staggering’’ of the
directional bins is to avoid having spectral energy propa-
gating directly along the axes of the north-south coordinate
system [Bidlot et al., 1997]. There are 25 frequency bins
ranging from 0.0418 Hz to 0.4114 Hz. Deep water physics
only are used. The propagation and source term time steps
are 20 min and 10 min, respectively. For the global version
of the model, the north-south extent of the domain is 78�N
to 78�S. Sea-ice is not explicitly included in the model. The
wave model is implemented at 0.5� spatial resolution
globally.
[22] Forcing fields for the global wave model are wind

velocities at 10 m above sea level. These are obtained from
the Bureau’s global atmospheric model: GASP [Seaman et
al., 1995]. Surface winds are obtained from the lowest level
of GASP via Monin-Obukhov theory with empirical stabil-
ity functions [Garratt, 1992]. The time period considered in
this work is a 4-year period from April 1998 to March 2002.
At the beginning of this time period, the 10-m wind fields
are instantaneous ‘‘snapshots’’ of the surface and are pro-
vided to the wave model at 12-hourly intervals and
2.5� spatial resolution. These are linearly interpolated in time
to 3-hourly intervals, and bilinearly interpolated in space to
the resolution of the wave model grid. On 9 December 1998,
there was a major upgrade to GASP [NMOC, 1998] in which
the spatial resolution was increased from T79 to T239. Note,
however, that the spatial resolution of the surface winds used
to force the wave model did not change at this time. On 9
April 2001, the frequency and spatial resolution of the wind
forcing was increased from 12-hourly to 3-hourly intervals
and from 2.5� to 1� spatial resolution. In addition, at this time,
the wind fields presented to the wave model changed from
being instantaneous ‘‘snapshots’’ of the surface fields to
being smoothed in time with a 6-hour window. These were
similarly interpolated to 1-hourly intervals and the resolution
of the wave model grid.
[23] Only wave model hindcasts are considered in this

work. These are modeled wave fields which have been forced
by surface winds obtained from the data assimilation cycle of
the atmospheric model. Ideally, information on short-range
forecasts is required. This issue will be discussed in detail in
section 6.1. No wave data assimilation is used in the con-
struction of the modeled wave fields. Fields of integrated
wave parameters (e.g., SWH) are archived every 6 hours.

4. ERS-2 Observations

[24] The satellite altimeter data used are ERS-2 Fast
Delivery (FD) observations of SWH. For this work there is
no objective quality control applied to the data. Greenslade
and Young [2004] performed a validation of the ERS-2 FD
data against buoy observations over the time period March
1997 to October 2001. The best-fit between the two data sets
was found to be

SWHb ¼ 0:1 SWHFD � 0:72;

SWHb ¼ 2:187 SWHFD � 1:582 0:72 < SWHFD < 1:375;

SWHb ¼ 1:153 SWHFD � 0:160 SWHFD > 1:375;

ð15Þ
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where SWHb is the buoy SWH and SWHFD is the ERS-2 FD
SWH. Adjusting the ERS-2 FD data according to
equation (15) will result in a data set which, when compared
to in situ buoy data has an rms error (i.e., goodness-of-fit) of
0.20 m and negligible overall bias. The ERS-2 errors are
therefore assumed to be unbiased. The impact of potential
spatial correlations in the ERS-2 errors will be discussed in
section 5.2. For the remainder of this work, ‘‘ERS-2’’ data
will refer to ERS-2 FD data corrected according to
equation (15). Note that the correction described by
equation (15) has a discontinuity in its first derivative. This
will therefore introduce a discontinuity in the probability
distribution of the corrected observations. While this is not
expected to be an issue when using the altimeter observa-
tions in a data assimilation system, it does mean that care is
required when using the corrected observations in validation
studies.
[25] GY1 examined the impact of irregular satellite

altimeter sampling patterns on estimates of SWH anomaly
correlations. A set of climatological anomaly correlations
was constructed from modeled SWH fields. These were
calculated over the globe at 10� intervals, within boxes of
side length 20� in latitude and longitude. The modeled wave
fields were then sampled at simulated GEOSAT observation
locations and the anomaly correlations were recalculated
from the simulated altimeter data. A method for which
correlations were calculated between observations that were
within 2 hours of each other was found to produce slightly
more realistic anomaly correlations than a method using
only along-track data pairs. This ‘‘2-hour’’ method allowed

the inclusion of prior or subsequent same-direction
GEOSAT ground-tracks which provided additional infor-
mation on the full model anomalies in the zonal direction.
[26] However, the GEOSAT satellite and the ERS-2

satellite have different orbit characteristics. The ERS-2
repeat period is 35 days, as opposed to GEOSAT’s
17-day repeat period. Thus the ERS-2 ground tracks are
angled more meridionally than the GEOSAT ground tracks.
This means that within a 20� box on the ocean surface, the
closest overpasses in time for ERS-2 are approximately
10 hours apart, not 2 hours as they are for the GEOSAT
altimeter. In order to be able to consider any extra ground
tracks within a 2-hour period, it would be necessary to
expand the box size to 30�. This increases the computa-
tional time substantially, but it was shown in GY1 that the
use of the prior and subsequent ground tracks provides
only a minor improvement to the results. Therefore, in this
work, only along-track data pairs within 20� boxes are
considered.

5. Method

[27] For all 20� boxes over the globe, and for each
3-month period (henceforth called a ‘‘season’’) within the
4 years considered here, the wave model output is first
interpolated to the altimeter observation locations. Figure 2a
shows a contoured scatter plot of the comparison between
modeled SWH and ERS-2 SWH for a 20� box in the Indian
Ocean during October–December 2000. This figure shows
that during this time in this region, the model tends to

Figure 2. (a) Comparison between model and ERS-2 SWH for the 20� box centered at (100�E, 40�S).
Contours are at intervals of 1000. (b, c, d) Three example overpasses during the 3-month time period
October–December 2000. The crosses are the individual ERS-2 observations and the solid line is the
bias-corrected model SWH.
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underestimate SWH. The average bias (model - ERS-2) is
�0.46 m. Figures 2b, 2c, and 2d show the SWH observations
from some typical altimeter ground tracks during this period
as a function of latitude along with the interpolated model
values. Note that the model SWH in Figures 2b, 2c, and 2d
has been corrected according to the calculated�0.46-m bias.
The model bias will be discussed further in the next section.
These figures show that there is considerable variability in
the structure of the model errors. The term ‘‘error’’ is used

here in its strictest sense, being the difference between the
model and the truth. Even though the true SWH is not
known, it is assumed that the ERS-2 data are unbiased. In
addition, if it is also assumed that subsets of the global
ERS-2 SWH data are unbiased, then the true SWH must lie
somewhere within the cloud of altimeter observations. In
Figure 2b, it can be seen that the model underestimates SWH
along the entire track, even after taking into account the fact
that the model SWH has already been bias-corrected. In

Figure 3. Maps of average modeled SWH minus ERS-2 SWH (m) for each season. Darker regions are
where the model SWH > ERS-2 SWH, and lighter regions are where the model SWH < ERS-2 SWH.
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Figure 2c, the peak SWH in the model is overestimated by
more than 2 m and in Figure 2d, the trend along the track is
good, but there appears to be some variability on spatial
scales of approximately 5� that is missed by the model.

5.1. Global Model Bias

[28] Figure 3 shows global maps of the average differ-
ence between the model SWH and the ERS-2 SWH, i.e.,
the model bias, for each season over the entire 4 years.

At the beginning of this time period, it can be seen that the
model generally underestimates SWH over the globe com-
pared to ERS-2. During December 1998, there was a major
upgrade to the resolution of the atmospheric model (see
section 3). After this upgrade, from 1999 to 2001, a fairly
consistent pattern emerges in which the model overesti-
mates SWH in the central Pacific, along the southernmost
latitudes and in the mid-Atlantic basins, but underestimates
SWH elsewhere. The largest bias is approximately �0.5 m

Figure 3. (continued)
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and occurs in a band at around 30�S to 40�S. An abrupt
change to the global distribution of bias occurs during April
2001. At this time, the magnitude of the difference between
the wave model SWH and the ERS-2 SWH increases by
approximately 0.5 m over the entire globe. This has the
result of reducing the region of positive bias to a small area
in the western equatorial Pacific, while over the rest of the
globe, the model SWH is severely underestimated. During
this latter time period, there are large regions in the
Southern Ocean where the model underestimates SWH by
over 1 m.
[29] This change in the characteristics of the wave model

bias again coincides with a change in the characteristics of
the wind forcing fields. During April 2001, the frequency
and spatial resolution of the operational global wind forcing
was increased and in addition, the winds were smoothed in
time (see section 3). These changes to the resolution of the
wind forcing cause a degradation in the overall model bias.
An increased frequency in the wind forcing means that
wind variability on shorter time scales is included in the
forcing. This should result in increased energy in the waves
[Komen et al., 1994], and thus reduce the (negative) bias
overall. However, the additional impact of the smoothing in
time of the wind fields removes the short timescale vari-
ability of the wind fields, and it is this factor which
contributes to the increased bias in the SWH fields. It will
be seen later, however, that the error variance of the model
SWH is improved substantially with this upgrading of the
winds.
[30] The largest biases in SWH during this 4-year time

period occur between 30�S to 50�S, and the largest biases
within this latitude band generally occur near or just off the
southwest coast of Australia. This area of the globe expe-
riences the highest average annual values of SWH [Young,
1999]. This suggests that the bias in modeled SWH may be
a constant ratio of the total observed SWH. The mean
observed SWH and the mean modeled SWH over the
4-year period are shown in Figures 4a and 4b, respectively.
The observed SWH demonstrates that the highest average
SWH during this time period actually occurs at around
50�S, to the southwest of the area of largest bias. Thus the
bias is not simply proportional to the SWH. This is
confirmed by Figure 4c, which shows the bias in the
modeled SWH as a percentage of the observed SWH. The
largest value of the bias as a percentage of the observed
SWH is still found around the Australian coastline and in
the 30�S to 40�S latitude band. If it is assumed that all the
errors in the wave model are due to errors in the wind
forcing, then this suggests that the main deficiencies in the
atmospheric model are in the westerly winds in the southern
latitudes, particularly in the Indian Ocean. This is likely to
be associated with the known large-scale, small-amplitude
negative bias in sea level pressure of the atmospheric model
at high southern latitudes [NMOC, 2003].
[31] The SI theory outlined in section 2 assumes that the

background fields are unbiased. Thus it is important to
quantify and, if possible, remove any known biases from the
modeled wave fields. In an operational environment, this is
often not possible. However, it is generally assumed, as it is
here, that the biases in the modeled wave fields arise from
biases in the surface wind fields. If the systematic errors in
the wind fields are known, then they can be removed before

being used to force the wave model [e.g., Tolman, 1998;
Kepert et al., 2004, in press].

5.2. Correlation Computations

[32] The background error correlation matrix in
equation (5) can be expressed as the spatial error correlation
between two points, j and k, i.e., [Daley, 1991]

Rjk ¼
Oj � Bj

� 
Ok � Bkð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Oj � Bj

� 2
Ok � Bkð Þ2

q ¼ r rð Þ; ð16Þ

where Oj is the ERS-2 SWH and Bj is the model SWH
interpolated to the location of the ERS-2 observation. The
overbar represents the time average over the number of time
levels that observations occur at both locations j and k
during a season (as opposed to the true expected value in
equation (5) denoted by the expectation operator: h. . .i).
This is therefore the number of altimeter overpasses at a
particular location within each 20� box during each season.
Here r(r) is the error correlation as a function of great circle
distance, r. Note that only isotropic correlations are
considered; that is, the angle between points j and k is not
taken into account. GY1 demonstrated that the satellite

Figure 4. (a) Mean observed (ERS-2) SWH (m) over
4 years. (b) Mean modeled SWH (m) over 4 years.
(c) Absolute value of the difference between mean observed
and modeled SWH as a percentage of mean observed SWH.
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altimeter sampling pattern does not provide enough
directional information to enable reliable computation of
anisotropic error correlations. However, examination of
correlations along ascending and descending ground tracks
separately can provide an indication of where anisotropy is
important. This will be examined in section 6.2. Before
calculation of the correlations, any existing bias must be
removed from the observations and the modeled fields. The
observations are assumed unbiased, and the seasonal global
model bias shown in Figure 3 is removed from the modeled
SWH fields for each season.
[33] Two example model error correlations are shown in

Figure 5 as a function of distance. Correlations are averaged
into 10-km bins, so that, for example, the value of the
correlation in the first (0 to 10 km) bin is the average value
of the correlation between all data pairs which are less than
10 km apart. Since ERS-2 observations are 6 to 7 km apart,
these data pairs will consist of all pairs of adjacent obser-
vations. Note that the values of the correlations at zero lag
are not equal to 1. This will be discussed in detail later.
[34] The two correlation functions shown in Figure 5 are

clearly different. The rate of decay of the function for the
50�S box is more rapid than that for the 10�S box, and at a
spatial lag of 1000 km, the value of the correlation for the
10�S box is around 0.3, while the value of the correlation in
the more southerly box has reached zero. This indicates that
the spatial scale of the model errors is larger in the 10�S
region than in the 50�S region.
[35] At long spatial lags, the correlations tend to be noisy

and do not necessarily equal zero. This is a reflection of the
fact that there are fewer data pairs with large distances
between them. The fact that the correlations do not always
equal zero at long lags can have an adverse effect on the
process of finding the best-fit analytic representation for the
functions. This could be overcome by several methods. One
option could be to weight the value in each bin according to
the variance within the bin or according to its spatial lag.
Another option could be to truncate the correlation function
at a particular lag before applying the curve-fitting proce-
dure. The disadvantage of this method is that in this case, it

is not obvious at what distance the function should be
truncated. Another way to address this issue could be to
expand the box size considered. However, the end points
would still be noisy, they would just be at longer distances.
Hence it is not clear that this would justify the increase in
computational time. A fourth method could be to consider a
time period longer than 3 months so that more satellite
overpasses are included in the correlation computations.
The disadvantage of this method is that it makes it difficult
to examine seasonal variability.
[36] In this work, the total time period that is being

examined is 4 years. It is possible to simulate a time period
longer than 3 months by averaging together correlations
from different seasons. It was found that four seasons were
sufficient to ensure that the correlations approach zero at
long lags. The seasons that are averaged together may be
sequential or they may be the same season in different years.
There is the issue, however, that averaging together corre-
lations from different seasons is not exactly the same as
considering a correlation over a longer time period. How-
ever, under stationary conditions, the variance Oj � Bj

� 2 will
remain constant (where the overbar is the average over the
number of times that observations occur at location j).
Examination of equation (16) shows that with this assump-
tion, correlations from different time periods may be aver-
aged together. It will be seen later however that the model
error variance Bj � Tj

� 2 is affected when the characteristics of
the wind forcing changed during April 2001, and so this
assumption is not strictly valid. In addition, both the model
and the observational error variances have some seasonal
variability. This should be borne in mind during the pre-
sentation of the results of the next section.

5.3. Error Variances

[37] As mentioned previously, an important feature of the
isotropic correlation functions shown in Figure 5 is that the
value of the correlation at zero lag is not equal to 1, and by
definition Rkk = 1. Note that this is not really zero lag because
there are no data pairs that are 0 km apart, but it can easily be
seen in Figure 5 that the zero-intercept of a fitted curve
should be very close to the value in the 0 to 10 km bin.
[38] Following Daley [1991], an analytic correlation

function, r(r), is defined to be the best-fit curve to any
particular correlation function. Then

R0 ¼ lim
r!0

r rð Þ: ð17Þ

The ERS-2 altimeter SWH errors are assumed to be
spatially uncorrelated, so their only contribution to r(r)
will be at r = 0. On the other hand, the model errors are
spatially correlated. R0 is a measure of the spatially
correlated component of the total error and is given by

R0 ¼
E2
B

E2
B þ E2

O

; ð18Þ

where the model error variance EB
2 and the observation error

variance EO
2 are given by

E2
B ¼ 1

K

XK
k¼1

Bk � Tkð Þ2 and E2
O ¼ 1

K

XK
k¼1

Ok � Tkð Þ2; ð19Þ

Figure 5. Two model error correlation functions during
the time period July–September 2001. These are for
20� boxes in the Eastern Pacific Ocean centered at
(120�W, 10�S) (crosses) and (120�W, 40�S) (triangles).
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where K is the number of locations at which multiple
observations occur. The spatially uncorrelated part of the
error (EO

2 ) is made up of the observation error plus the error
in spatial scales which are too small to be resolved by the
altimeter.
[39] It is possible to find solutions for EB

2 and EO
2 . If the

model errors and observation errors are not correlated with
each other, then the mean variance

1

K

XK
k¼1

Ok � Bkð Þ2 ¼ 1

K

XK
k¼1

Ok � Tkð Þ2 þ 1

K

XK
k¼1

Bk � Tkð Þ2

¼ E2
B þ E2

O: ð20Þ

Since R0 can be determined by finding appropriate analytic
curves to describe the correlation functions, and
1
K

PK
k¼1 Ok � Bkð Þ2 can easily be computed for each season,

then equations (18) and (20) can be solved for EB
2 and EO

2 .
[40] As mentioned previously, recent work has shown

that there may be some spatial correlation in the observa-
tions on scales of approximately 70 km [Janssen et al.,
2003]. This has not been taken into account in this work.
Spatial correlations in the observations would result in a
lower value of r(r) on these scales, and therefore a lower
value of R0. This in turn would result in a larger value of the
calculated observational error variance. In other words, it is
possible that by ignoring the spatial correlations in the
observations, the observational error has been underesti-
mated. It will be seen later that the spatial scales of the
model error are considerably larger than the spatial scales of
the observational error. This means that the neglect of any
spatial correlations in the observational error will not have a
significant impact on the determination of the spatial scales
of the model error.

5.4. Fitting to Analytic Functions

[41] The calculated anomaly correlations r(r) were fitted to
analytic functions. The specific functions tested were select-
ed in order to include all the functions that are currently used

operationally (see section 2). In addition, the functions
suggested by Julian and Thiébaux [1975] were tested. All
the tested functions were positive definite, a requirement of
the SI procedure. The ‘‘best’’ six curves are listed below.

Curve 1

r rð Þ ¼ a2 exp � 1

2

r

a1

� �� �
;

Curve 2

r rð Þ ¼ a2 exp � 1

2

r

a1

� �2
" #

;

Curve 3

r rð Þ ¼ a2 1þ r

a1

� �
exp � r

a1

� �
;

Curve 4

r rð Þ ¼ a2 1þ r

a1

� �
exp � 1

2

r

a1

� �� �
;

Curve 5

r rð Þ ¼ a2 1þ r

a1

� �2
 !�1

;

Curve 6

r rð Þ ¼ a2 1þ r

a1

� �2
 !�1

2

:

ð21Þ

To find the most appropriate functional form, the minimiza-
tion was performed on the correlations that are obtained
when all 16 seasons are averaged together. For each Curve 1
to 6 in equation (21), and for each 20� box, the parameters ai
that resulted in the lowest mean-square-error (mse) were
determined. Figure 6 shows examples of a correlation
function for two locations and the best-fit for Curves 1 and 3.
It can be seen from this figure that there is not an obvious

Figure 6. Model error correlation functions (crosses) averaged over 4 years for 20� boxes in the Indian
Ocean centered at (a) (100�E, 30�S) and (b) (80�E, 20�S). The dotted line in each panel is the best-fit
curve 1, and the dashed line is the best-fit curve 3.
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choice between either curve. The values of the mse for each
curve for (100�E, 30�S) are Curve 1: 0.003, Curve 3: 0.0016
and for (80�E, 20�S) are Curve 1: 0.0006, Curve 3: 0.0011.
Therefore, overall, Curve 3 represents the top correlation
better, but Curve 1 fits the bottom correlation better. Neither
curve matches the zero-intercept well for both locations and
this is an issue when determining EO

2 and EB
2. However, there

are ways to avoid this problem, and this is discussed in the
next section.
[42] The average mse over all 20� boxes (excluding

boxes with significant amounts of land) for each curve
was calculated. Curve 1 and Curve 3 resulted in the
lowest mse and performed equally well. It is possible that
one particular curve may be appropriate for some specific
geographic regions, while the other is suitable in other
areas. This possibility was examined; however, no distinct
regions were found where one curve was seen to be more
appropriate. Another avenue that was examined was to
determine which curve overall had the smallest error at
r = 0, where the error is defined as the difference
between the fitted value of r(0) and the value of the
correlation in the 0 to 10 km bin. Again, the two curves
performed equally well. Here, Curve 3, the auto-regres-
sive curve, is chosen as this will be consistent with the
results of GY1. The model error correlation length scale
calculated from ERS-2 altimeter data, L, is therefore
defined to be a1 in Curve 3. Figure 7 shows a contour
map of L for the case with all sixteen seasons averaged
together. Before discussing the global distribution of
model error correlation scales shown in Figure 7, it is
necessary to make some corrections to the length scales.
These corrections are necessary because of the irregular
sampling pattern of the satellite altimeter.

5.5. Adjustments to the ERS-2 Length Scales

[43] In GY1, it was shown that due to the sparse sampling
pattern of satellite altimeters, anomaly correlation length
scales obtained using simulated altimeter data were gener-
ally underestimated, particularly at low latitudes. In this
section, an appropriate correction to apply to the back-
ground error correlation length scales obtained from ERS-2
data is determined. A set of model anomaly correlations for
two 3-month time periods is constructed. These are obtained

by calculating equation (16) with Oi defined as the individ-
ual 6-hourly modeled SWH and Bi defined as the 3-month
mean modeled SWH, i.e.,

Bi ¼ Oi ¼
1

Nt

XNt

t¼1

Oi tð Þ; ð22Þ

where Nt is the number of 6-hourly model fields within the
3-month time period. The procedure is identical to that
followed in GY1, and further details of the calculations can
be found there. The resulting global isotropic anomaly
correlation length scales for the two 3-month periods are
shown in Figure 8.
[44] The modeled SWH fields were then sampled at

simulated ERS-2 observation locations and the model
anomalies were reconstructed from this simulated ERS-2
data. The resulting global distributions of L from simulated
ERS-2 data (Lers) for the two 3-month periods are shown in
Figure 9. The length scales from the simulated altimeter data
are generally shorter. However, some of the major features of
the full model anomaly correlations are evident. For exam-
ple, during July–September 1998, long length scales appear
in the eastern Pacific and along the southernmost latitude
band and there is an indication of longer length scales in the
northern Indian Ocean (associated with the monsoon). For
the second time period, ERS-2 has detected the longer scales
in the North Atlantic and in the Eastern Pacific.
[45] The difference, Ldiff, between the distribution of Lers

in Figure 9 and the ‘‘true’’ L in Figure 8 is shown in
Figure 10 for each time period. Ldiff is defined here as

Ldiff ¼ 100� L� Lers

L
: ð23Þ

It can be seen that the altimeter does indeed underestimate L
over most of the globe. The areas where L is underestimated
by the largest amount are at low latitudes. It is not clear why
this should be so. One possible reason could be that the
characteristics of the altimeter sampling pattern change with
latitude, and so this results in a different impact. Another
possibility is that the impact of the sampling pattern is
dependent upon the ‘‘true’’ length scale and this in turn
varies considerably with latitude.

Figure 7. Average model error correlation length scale over the 4-year period April 1998 to March 2002
(uncorrected).
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[46] These two relationships, i.e., the relationship
between Ldiff and Lers and the relationship between Ldiff
and latitude are examined here. These are shown as
scatterplots in Figure 11. It is assumed that the latitudinal
effect is due to the changing pattern of the altimeter
sampling with latitude. This is the same in the Northern
and Southern Hemispheres and so in this section, no
distinction is made between northern and southern lati-
tudes. It can be seen that there are quite strong relation-
ships between the amount by which the ERS-2 sampling
pattern underestimates L and both of these factors. The
value of the correlation between Ldiff and Lers is �0.52 and
between Ldiff and latitude is �0.40.
[47] The inverse correlation between Ldiff and Lers indi-

cates that the larger the estimated Lers, the smaller the
amount by which the true L is underestimated. The under-
estimation possibly even becomes negative, indicating that
in general, when the estimated Lers is very large, then the
true length scale has been overestimated.
[48] There is also a negative correlation between Ldiff and

latitude, indicating that the altimeter performs better at
higher latitudes than at lower latitudes. This is likely to be
due to the fact that at higher latitudes, the altimeter sampling
pattern covers a wider range of angles and so there is more
opportunity to detect both longer and shorter length scales.

At low latitudes, the ground tracks are constrained within a
small range of angles, and so the estimate of L is dependent
on the anisotropy of the true correlation function and how
the anisotropy is positioned relative to the satellite ground
tracks.
[49] Figure 12a shows a scatterplot of the comparison

between Lers and L. The statistics listed in the figure show
how the raw Lers compares to L. These indicate that on
average, Lers is 110.2 km shorter than L with a standard
deviation of 164.3 km. An appropriate adjustment to apply
to Lers is sought based on both latitude (f) and Lers. The
following simple relationship is assumed:

L ¼ a0 þ a1fþ a2Lers: ð24Þ

Linear regression analysis yields

Ladj ¼ 434:4� 4:59fþ 0:607Lers: ð25Þ

These adjusted length scales are compared to L in
Figure 12b. The comparison statistics in this figure show
that with this simple adjustment, the bias is eliminated and
the standard deviation is reduced to 129.5 km. Note,
however, that in general, high values of L tend to be
underestimated by the altimeter and low values of L tend to

Figure 8. (a) Isotropic anomaly correlation length scale (km) for modeled SWH over the globe for
20� boxes at 10� intervals for the time period July to September 1998. (b) Isotropic anomaly correlation
length scale (km) for modeled SWH over the globe for 20� boxes at 10� intervals for the time period
January to March 1999.
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be overestimated. This suggests that the relationship
between L and Lers is more complex than the linear
relationship assumed in equation (24). It may be possible to
reduce the standard deviation further by exploring nonlinear
dependencies. This is left for further work. Applying the
correction in equation (24) to Lers results in the global
distributions of the isotropic anomaly length scale shown in
Figure 13. These are considerably closer to the ‘‘true’’
distributions of the anomaly correlation length scale than
those shown in Figure 9.

6. Results

6.1. Isotropic Correlations

[50] Applying the correction found in the previous
section to the length scales of the model error shown
in Figure 7 provides the final result shown in Figure 14.
It can be seen from this figure that the scale of the model
errors does vary quite significantly over the globe, with a
strong latitudinal dependence, ranging from around
300 km at the highest latitudes to over 600 km at the
equator in the Indian and Atlantic Oceans and 750 km in
the Pacific.
[51] A general explanation of these results could be as

follows. Wind waves are generated in the high latitudes,
where the winds are generally stronger. The spatial extent of

the wave systems is relatively small when they are gener-
ated. As they propagate toward low latitudes and become
swell, they disperse and thus their spatial scale increases. If
these swell systems are incorrectly modeled in the genera-
tion region then the spatial scale of the errors will increase
toward low latitudes. Examples of incorrect generation of
swell could be that the wind speed is biased low and thus
the amplitude of the swell is underestimated, or the direction
of the winds is incorrect and thus the swell propagates in the
wrong direction. There could also be errors in the propaga-
tion of swell within the wave model, even if the forcing
winds are accurate.
[52] It should be noted here that although none of the

studies described in section 2 specifically incorporated
geographically varying background errors explicitly, some
of the studies [e.g., Lionello et al., 1992] defined the length
scale of the background error correlations as a function of
degrees of latitude and longitude, or model gridpoints,
rather than kilometers. This means that the model errors
are defined to have a larger zonal spatial scale at low
latitudes than at high latitudes, resulting in both anisotropy
and inhomogeneity. Interestingly, the results presented here
show that a background error correlation length scale
defined in degrees is likely to represent the global distribu-
tion of model errors more accurately than one for which L is
defined in kilometers.

Figure 9. (a) Isotropic length scale of the model anomaly using simulated ERS-2 data for July to
September 1998. (b) Isotropic length scale of the model anomaly using simulated ERS-2 data for January
to March 1999.
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Figure 10. (a) Ldiff for simulated ERS-2 data for July to September 1998. (b) Ldiff for simulated ERS-2
data for January to March 1999.

Figure 11. Ldiff as a function of latitude and Lers.
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Figure 12. (a) Scatter plot of Lers versus L, (b) Scatter plot of adjusted Lers versus L.

Figure 13. (a) Isotropic correlation length scale over the globe from simulated ERS-2 altimeter data
adjusted according to equation (25) for July to September 1998. (b) Isotropic correlation length scale over
the globe from simulated ERS-2 altimeter data adjusted according to equation (25) for January to March
1999.
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[53] It is interesting to compare these results with the
background error correlation matrix that is currently used
operationally at the Bureau. The current Bureau implemen-
tation is [Greenslade, 2001]

Pkj ¼ exp � 1

2

xk � xj
�� ��

L

� �2
" #

; ð26Þ

with L = 300 km. This value was chosen based on the
results of verification tests using three different values of L
(300 km, 500 km, and 700 km). This correlation function is
plotted as the dashed line in Figure 15. The proposed new
definition of Pkj is

Pkj ¼ 1þ
xk � xj
�� ��

L

� �
exp �

xk � xj
�� ��

L

� �
; ð27Þ

i.e., Curve 3 in equation (21) with L varying as shown
Figure 14. This new correlation function is also plotted in
Figure 15 for two different values of L: 200 km and 500 km.
It can be seen that the current operational implementation is
closest to the proposed new implementation for L = 200 km.
Examination of Figure 14, however, shows that model
errors on this small scale do not occur in any geographical
region. A more appropriate value for the length scale of the
model errors at midlatitudes is L = 500 km.
[54] It is not clear why the earlier assimilation study

found that a relatively small value of L provided the best
results (i.e., lowest rms error in SWH when compared to in
situ buoy observations.) One possible cause for the discrep-
ancy is that the model and observational error variances
used may have been inaccurately specified. Another is that
the verification sites used by Greenslade [2001] were
around the Australian coast and therefore in areas of
relatively small L. In addition, one of the time periods
examined in the earlier study was outside the 4-year time
period examined here. It is possible that the error character-
istics of the wave model during this alternative time period
were different than those found here.
[55] The SWH fields considered in this section are

hindcasts; that is, the wave model is forced with winds
from the data assimilation cycle of the atmospheric model,

but no wave data assimilation is included. Since no ongoing
corrections are being made to the wave fields, this means
that they are essentially forecasts, albeit forced with ana-
lyzed winds. In an operational data assimilation system, the
required error correlation length scales and error variances
are those which describe the background errors at the time
interval at which data are inserted into the model. For the
Bureau system, this is 3 hours. The distribution of the
background error correlation scales presented in Figure 14
describes errors occurring in longer-range forecasts. So the
results found using this method do not exactly represent
what is required in an assimilation system.
[56] However, no analysis is perfect: Even with data

assimilation, most areas of the ocean are not updated
every assimilation period. This is particularly true of
wave data assimilation systems that typically use sparse
satellite altimeter data. In addition, the length scales and
error variances defined in the assimilation system repre-
sent expected values and are unlikely to be correct at all
times. This means that there will always be some long-
term or remotely forced errors in the analysis and thus
also in the forecast. The results presented here can be
thought of as an upper bound to the error structure of the

Figure 14. Isotropic model error correlation length scale over the globe from ERS-2 altimeter data
adjusted according to equation (25).

Figure 15. Comparison between current operational
model error correlations and results found in this section.
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background errors. This issue will be addressed in future
work by considering the differences between SWH fore-
casts at different forecast ranges valid at the same time,
i.e., by looking at forecast divergence.
[57] There are grounds for expecting seasonal variability

in the model error correlations. In ocean models, for
example, it is often assumed that the spatial scale of the
model errors is similar to the signal or to the climatolog-
ical anomaly [Oke et al., 2002]. If the model error has the
same structure as the model signal, this suggests that in
areas where the SWH varies on small spatial scales, the
model error would also be expected to vary on small
scales. Therefore it might be expected that the region of
shortest correlation scales would vary seasonally, shifting
to the winter hemisphere where there are more small-scale
storms.
[58] The background error length scales for each season

are shown in Figure 16, where each panel represents the
average over the same season in each of the 4 years.
These length scales have been adjusted according to
equation (25). The most obvious feature of Figure 16 is
that the length scales in the equatorial Pacific are slightly
longer during October–December than during the other
seasons. However, examination of the length scales for
the individual seasons showed that this is due to one
particular season (October–December 2000) rather than
being a general trend. In general, there is very little
seasonal variation in the length scales. Seasonal variabil-
ity in the background errors of the atmospheric model
used to force these modeled wave fields has also been
examined. The background errors were investigated via
ensemble methods and showed no systematic seasonal

variability (R. Seaman, personal communication, 2003).
This reinforces the conclusion that there is little seasonal
variability in the spatial scale of the wave model errors.
[59] If the models errors are proportional to the climato-

logical anomaly, then one would expect to see similar
geographic and seasonal variability as in Figure 8. For
example, a signal that stands out strongly in the anomalies
is the long length scales in the Indian Ocean during July–
September but not January–March. This is associated with
the monsoon and is discussed in GY1. In Figure 16, there is
no indication of longer length scales in the northern Indian
Ocean in the July–September panel of Figure 16 than in
any of the other panels. This implies that these large spatial
signals occur in both the model and the observations and
therefore not the model error. This is further evidence that
setting the model error correlations to be proportional to the
model anomalies will not always result in accurate estimates
of the model errors. Overall, these results suggest that it is
not necessary to implement a model error correlation
function that varies seasonally.
[60] It is also interesting to examine how the background

error correlation length scales vary from year to year. This is
shown in Figure 17. One might expect a change in the
structure of the model errors when the wind forcing changes
characteristics in April 2001. For example, if the wind
forcing includes shorter scales, then the total wave model
error may include error on smaller scales also. However, as
can be seen from Figure 17, there is again very little
difference in the spatial scale of the model errors from year
to year. This suggests that the increased frequency and
resolution of the wind forcing does not have a significant
impact on the spatial scale of the errors in the wave model.

Figure 16. Average model error correlation length scale for each season. These length scales have been
adjusted according to equation (25).
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[61] The lack of seasonal and year-to-year variability in
the correlation length scales, however, may be associated
with the fact that the modeled wave fields examined in this
work are essentially wave forecasts. The modeled wave
fields are not corrected during the 4-year period, so it is
likely that there is always a degree of remotely forced and
large-scale error at all locations in the wave fields despite
the season. It may be that this large-scale swell error
dominates the results at all times.

6.2. Error Variances

[62] The magnitude of the model and observational errors
is now considered. In particular, the model error variance EB

2

and the observation error variance EO
2 are estimated. As

discussed in section 5.4, equations (18) and (20) can easily
be solved for EB

2 and EO
2 . However, recall that even the best-

fit function for Curve 3 often has a large error at the zero-
intercept (see, for example, Figure 6). This means that the
estimate of R0 will be inaccurate, resulting in inaccurate
estimates of the error variances. A better approximation for
R0 in equation (18), and the value used here, is the value of
the correlation in the 0 to 10 km bin for each case.
[63] For any particular time period of interest, the method

for determining the model and observation error variances is
as follows, with step numbers given in parentheses: (1) For
each 20� box, calculate the average correlation over the
desired number of seasons. (2) Determine R0, the value of
the average correlation in the 0 to 10 km bin. (3) Calculate
EB
2 + EO

2 according to equation (20). (4) Solve equations (18)
and (20) for EB

2 and EO
2 . The results for the model error

variance for the entire four-year time period are shown in
Figure 18. The model error variance ranges from less than

0.2 m2 at low latitudes to around 0.8 m2 in the Southern
Ocean with other peaks in the North Pacific and North
Atlantic of around 0.7 m2. Comparing this to the mean
SWH in Figure 4, it can be seen that the model error
variance has a similar global distribution to the SWH, as
would be expected. However, the maximum model error
variance occurs at the southernmost latitudes, rather than at
50�S, where SWH is highest. This is likely to be associated
with the fact that the ice edge is not included explicitly in
the wave model. Another explanation could be that the
altimeter data is of poor quality near the ice edge, but this
can be discounted because the observational error variance
has been taken into account. Alternatively, the quality of the
modeled winds at these southernmost latitudes may be
particularly poor.
[64] The error variance of the ERS-2 FD SWH over the

4-year period is shown in Figure 19. It is significantly lower
than the model error variance, being less than 0.2 m2

everywhere. Again, there is a latitudinal dependence, with
the maximum values of EO

2 occurring at the highest lati-
tudes. Recall that EO

2 may be underestimated due to possible
spatial correlations in the altimeter observations that have
not been taken into account. Further work would be
required to quantify this underestimation.
[65] As with the error correlation length scales, the

temporal variability of the error variances can be examined.
The seasonal variability of the model and ERS-2 error
variances are shown in Figures 20 and 21, respectively.
As one might expect, the error variance of the model varies
quite considerably on a seasonal basis. In general, the
pattern follows the pattern of SWH, so that during
the Northern Hemisphere winter months (October to March)

Figure 17. Average model error correlation length scale for each year. These length scales have been
adjusted according to equation (25).
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the highest error variance is found in the Northern Hemi-
sphere and during the Southern Hemisphere winter months
the pattern reverses, with the highest error variance occur-
ring in the Southern Ocean. A similar pattern occurs in the
seasonal variability of the ERS-2 error variance. In partic-
ular, note that areas where EO

2 > 0.2 m2 appear only in the
winter hemisphere.
[66] The year-to-year variabilities of the model and ERS-

2 error variances are shown in Figures 22 and 23, respec-
tively. Recall that the length scale of the model error
correlations was not found to vary significantly from year
to year, despite the change in the characteristics of the wind
forcing. Examination of Figure 22 shows that there is a
significant reduction in the magnitude of the model error
variance during the final year, April 2001 to March 2002.
During the first 3 years, the highest EB

2 in the North Pacific
is greater than 0.8 m2, but this is halved in the final year.
Similarly, EB

2 in the Southern Ocean is reduced from 0.8 m2

to 0.6 m2. It was seen in Figure 3 that the changes to the
wind forcing fields had a negative impact on the wave
model bias. This is probably due to the smoothing in time of
the wind fields. It can be seen here that these same changes
to the winds have a positive impact on the wave model error
variance and this is probably due to the increased frequency
and resolution of the wind forcing.

[67] There should not be any year-to-year variability in
the ERS-2 error variance, since the observation errors are
completely independent of any changes in the model
formulation. Figure 23 shows that in general, this is true.
In particular, note that the position of the 0.1 m2 contour
line in all ocean basins is consistent from year to year.

6.3. Anisotropic Correlations

[68] GY1 explored several methods for obtaining aniso-
tropic anomaly correlations from simulated altimeter data. It
was concluded that the altimeter ground tracks did not
provide enough zonal information to provide realistic aniso-
tropic anomaly correlations. However, it was shown that by
considering correlations along ascending and descending
ground tracks separately, some indication of the areas on
the globe that exhibit the most anisotropy can be obtained.
[69] For each 20� box and each season, the set of error

correlations as a function of distance is divided into two
groups: correlations along ascending ground tracks and
correlations along descending ground tracks. Correlations
from multiple seasons are then averaged together as in
section 5. The curve fitting procedure is applied to the
ascending and descending groups separately to determine
Lasc and Ldesc. Only Curve 3 in equation (21) is considered
here.

Figure 18. Average model error variance (m2) over the entire 4-year period.

Figure 19. Average ERS-2 error variance (m2) over the entire 4-year period.
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[70] The ascending (descending) angle is defined to be
the average angle between all data-pairs along ascending
(descending) ground tracks. Figure 24 shows an example of
the average correlations along ascending and descending

ground tracks for the four April to June seasons within a
20� box in the Indian Ocean. For this particular case, Lasc =
325 km and Ldesc = 190 km. This means that, for example, if
the modeled SWH differs from the ERS-2 SWH at a

Figure 20. Average model error variance (m2) for each season.

Figure 21. Average ERS-2 error variance (m2) for each season.
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particular point within this box, then the modeled SWH at
points lying in the direction of the ascending track is more
likely to differ from the ERS-2 SWH than points in the
direction of the descending track.

[71] An ellipse can easily be constructed given the two
length scales and two angles. The major axis of the ellipse
must be defined to lie in the direction of either the ascending
or descending ground track, which limits the potential

Figure 22. Average model error variance (m2) for each year.

Figure 23. Average ERS-2 error variance (m2) for each year.
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orientation of the ellipses. Figure 25 shows the ellipses that
describe the correlations for all 16 seasons averaged together.
Note that the axis length of each ellipse is defined in kilome-
ters and then plotted on the latitude/longitude grid. This
means that the differences in the size of the ellipses seen in
Figure 25 are real and not simply an artifact of the map
projection.
[72] Over most of the ocean, it can be seen that the

ellipses are close to circles. This can mean one of two
things: either the background errors are generally isotropic
or the background errors are anisotropic, but over the
4 years, there is no dominant direction for the longest
scales. (Or of course, there is anisotropy but it is aligned
in such a way that the altimeter is unable to detect it). To
provide a better idea of whether any persistent detectable
anisotropy exists in the model errors, the shaded areas in
Figure 26 show regions in which one of the length scales
(from Figure 25) is at least 25% larger than the other. It can
be seen that over a large portion of the North Atlantic Ocean
the model errors are somewhat anisotropic. The most
persistently anisotropic area occurs to the south of Australia.

This is likely to have an impact on data assimilation
schemes for the Australian region.

7. Summary

[73] In this work, background errors of a global wave
model have been examined by considering the difference
between modeled SWH fields and ERS-2 altimeter obser-
vations of SWH over a 4-year period. The ERS-2 observa-
tions have been corrected according to a relationship based
on colocation with buoy observations. Thus the ERS-2 data
can be assumed to be unbiased, and this provides an
opportunity to examine the bias in the modeled SWH on
a global scale. Changes in the distribution and magnitude of
wave model bias were found to coincide with changes in the
characteristics of the wind-forcing fields. In general, the
largest (negative) biases in SWH were found to occur within
a latitude band at 30�S to 40�S. These are associated with
known biases in the sea level pressure of the atmospheric
model in this region.
[74] Isotropic error correlations for 3-month time periods

were calculated over the globe within boxes of side length
20� in latitude and longitude. The correlations were fit to
auto-regressive curves to determine the length scale of the
background error. A correction to the length scales that
depended linearly on latitude and on the calculated length
scale was determined. It was found that the length scale of
the background error varies considerably over the globe,
with the longest scales at low latitudes and the shortest
scales at high latitudes. Very little seasonal or year-to-year
variability was detected in the background error length
scales.
[75] The magnitude of the model and observational error

variances can be estimated with the assumptions that the
ERS-2 observations are spatially uncorrelated, and that the
background and observational error variances are not cor-
related with each other. The latter is a reasonable assump-
tion as the ERS-2 data have not been assimilated into the
modeled wave fields. The former may contribute to an
underestimation of the observational error variance. The
average model error variance over the 4-year period was
found to range from 0.2 m2 at low latitudes to 0.8 m2 at high
latitudes. The error variance in ERS-2 SWH was less than

Figure 24. Average correlations along ascending and
descending ground tracks within the 20� box centered at
(70�E, 40�S) for the four April–June seasons.

Figure 25. Anisotropic error correlations constructed from ascending and descending ground tracks for
all 16 seasons averaged together.
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0.2 m2 globally. There was found to be considerable
seasonal variability in both the model and observational
error variances. In general, the error variances have similar
global distributions to that of SWH. There was found to be
little year-to-year variability in the observational error
variance, but the background error variance decreased
substantially with increased frequency and resolution of
the wind forcing fields.
[76] The length scales of the error correlations along

ascending and descending ERS-2 ground tracks were
examined separately. This indicated that anisotropy is likely
to be important for the region to the south of Australia and
in the North Atlantic Ocean.
[77] One issue that has been raised in this work is that

the modeled wave fields used are essentially model fore-
casts, albeit forced with ‘‘analyzed’’ winds. In an opera-
tional data assimilation system, the required description of
the background errors is that which describes the errors at
the time interval at which data is inserted into the model.
This means that the results found using this method do not
exactly represent what is required in an assimilation
system. However, even with data assimilation most areas
of the ocean are not updated every assimilation period.
This is particularly true of the sparse altimeter data that is
typically used in wave data assimilation systems. This
means that there will always be some long-term or
remotely forced errors in the analysis and thus also in
the forecast. The results presented here can be thought of
as an upper bound to the error structure of the background
errors and error variance.
[78] In future work, this issue will be addressed by

considering the differences between SWH forecasts at
different forecast ranges valid at the same time, i.e., by
looking at forecast divergence. This method may also
provide more information on the anisotropy of the model
errors. Other future work involves examining the impact of
the proposed new prediction error correlation matrix on the
forecast skill of a wave data assimilation system.
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