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ABSTRACT

The Barrick–Weber equations describe the interaction of radar signals with the dynamic ocean surface,
and so provide a mathematical basis for oceanic remote sensing. This report considers the inversion of these
equations with several of the row-action methods commonly used to solve large linear systems with un-
structured sparsity. It is found that the performance of the methods in inverting both synthetic and mea-
sured Doppler spectral data is comparable, with the method of Chahine–Twomey–Wyatt offering a slight
advantage in the reliability of the recovery of the full directional wave spectrum and of parameters derived
from its integration. Some remarks and open questions on the ill-posedness of the inversion problem
conclude the paper.

1. Introduction

The Doppler spectrum of a high-frequency (HF) ra-
dar signal backscattered from the ocean’s surface con-
tains a wealth of information on the sea state, and so
naturally has attracted interest from the remote sensing
community. As was shown in Weber and Barrick (1977)
and Barrick and Weber (1977), the interaction of the
radar with the sea’s surface admits a perturbation
analysis on the Doppler spectrum �:

� � �1 � �2 � · · ·.

The first term of this analysis is found to be a linear
combination of Dirac delta functions �:

�1��, �� � 26�k0
4 �
m��1

S�	mk0���� 	 m�b�, �1�

where 
 is the angular frequency of the Doppler shift,
k0 is the wave vector of the incident radar signal with
wavenumber k0 and direction �, S is the ocean wave-
number spectrum, and 
b is the frequency of the Bragg-
matched waves,

�b � �2gk0,

where g is the acceleration due to gravity.
Equation (1) predicts impulses in the Doppler spec-

trum of the backscatter at shift frequencies �
b, fea-
tures that are evident in the measured spectrum, such as
is illustrated in Fig. 1.

The second order of the perturbation analysis leads
to the nonlinear integral equation

�2��, �� � 26�k0
4 �
m,m���1

�
R2

|�|2S�mk�S�m�k��

 ��� 	 m�gk 	 m��gk�� dp, �2�

where the wave vectors k and k� satisfy the Bragg reso-
nance condition k � k� � 	2k0, and are related to p,
the variable of integration, by

k � k0 � p, k� � k0 � 	p,

as illustrated in Fig. 2.
The kernel of (2) is determined by the coupling co-

efficient � � �(
, k, �, mm�) accounting for nonlinear
hydrodynamic and electromagnetic effects, and is de-
scribed in detail in the articles by Weber and Barrick
(1977), Barrick and Weber (1977), and Barrick and
Lipa (1986).

The Barrick–Weber equations are amenable to lin-
earization because the signal is dominated by the inter-
action between long and short ocean waves and the
latter can be approximated using wind-wave models
(see, e.g., Wyatt 1986; Lipa and Barrick 1986). In Green
(2003), it is observed that the linearized equation may
be viewed, locally, as a weighted projection transform.
This leads to a method for discretization of the linear-
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ized equations based on the techniques for that of the
general unweighted projection transform, that is, the
discretization of transmission tomography problems.
The discretization reduces the inversion of the linear-
ized Barrick–Weber equations to the solution of a lin-
ear system:

� � A�, �3�

where the vector � represents the normalized mea-
sured Doppler spectral values (typically from more
than one radar), � contains the coefficients of the nor-
malized ocean wave spectrum representation, and A is
the discretization matrix. The matrix A is large (in prac-
tice around 200 rows and 2000 columns) but possesses
an unstructured sparsity that can be exploited to obtain
rapid solutions to (3), and so to the problem of estimat-
ing the ocean wave directional spectrum from HF back-
scatter measurements.

In this paper we investigate the use of row-action
methods in the solution of the discretization (3). We
will compare synthetic wave spectra with those inverted
from the deduced backscatter, and compare several
ocean parameters as obtained from the inversion of
measured backscatter with those obtained from a col-
located buoy. In addition to comparing three row-
action inversion methods, we seek to optimize a num-

ber of parameters controlling these inversions, for the
purpose of calibration for forthcoming deployments.

2. Background

In this section we describe the inversion method used
for the linearized Barrick–Weber equations. We begin
with as full a summary of the functional representation
and discretization as is required to introduce our nota-
tion; a more detailed account can be found in Green
(2003).

a. Functional representation

Following Weber and Barrick (1977) and Barrick and
Weber (1977), we consider the normalized directional
wave spectrum Z � S/(2k0)4, and seek a representation
of Z as a linear combination of basis functions bi:

Z�y� � �
i

�ibi�y�, �4�

where y is the vector in the direction of k, but with a
magnitude y � �k/2k0 [a transformation chosen so
that a uniform discretization of y scales approximately
with the data; see Green (2003, section 3) for details].
For the basis functions bi, we take translates of a single
function �, radially symmetric with respect to the Eu-
clidean norm,

bi�y� � 	�y 	 yi� � 
��y 	 yi��. �5�

The function’s window, �, is the Lewitt–Kaiser–Bessel
function (see Lewitt 1990):


�r� � ��1 	 �r�a�2�m�2Im���1 	 �r�a�2��Im��� �r  a�

0 otherwise
, �6�

where Im is the modified Bessel function of order m, as
in Watson (1944). In (6), a is the radius of support of �,
� controls the localization of � about the origin, and m

determines the smoothness of � at r � a and the rate of
decay of its Fourier transform.

Functional representation in the form (5) was intro-

FIG. 1. An example of measured Doppler spectra.

FIG. 2. Geometry of the wave vectors at second order.
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duced by Lewitt (1990) in the context of transmission
tomography, that is, in the inversion of the x-ray trans-
form. Such a representation has a number of advan-
tages over the usual pixel-based representation. In par-
ticular,

• the smoothness of the basis function, and so of the
representation, can be controlled by the adjustment
of the parameter m, a fact that is important if the
inversion problem is ill-posed;

• the function � is computationally attractive since
most interesting quantities associated with it—the
Fourier transform, gradient, projection, or Abel trans-
form—can be calculated explicitly as a result of the
recurrence relations enjoyed by the Bessel function
(see Lewitt 1990); and

• the choice of parameters a, m, and � can be made so
as to give the representation beneficial approxima-
tion properties (Lewitt 1990; Green 2002).

In our implementation of the representation, the cen-
ters yi are placed on a uniform grid in the y domain, that
is, on the cylinder. Following the deliberations in Green
(2002) we initially choose m � 2, a/g � 1.78, and � �
9.2, where g is the grid spacing: the distance between
adjacent centers yi.

b. Discretization

The discretization of the linearized Barrick–Weber
equations with the Lewitt–Kaiser–Bessel representa-
tion (4) is straightforward. Each Doppler spectral da-
tum,

�j �
1

�� �
�j

�j�1

���� d�

(where �� is the sample width of the normalized Dopp-
ler shift � � 
/
b), corresponds to a strip integral over
the normalized directional spectrum Z � (2k0)4S, and
making a suitable approximation we find that

�j �
1

�� �
i

�iBi,j�i,

where � is an expression accounting for the kernel of
the Barrick–Weber equations, a linearization term and
Jacobians of domain transformations [see Green 2003,
Eq. (2.6)], �i � �(yi), and Bi,j is the jth strip integral
over the ith basis function. Thus, the elements, Ai,j, of
the matrix A in (3) are given by

Ai,j �
1

��
�iBi,j.

Note that the matrix B � [Bi,j] is sparse provided that
the supports of the basis functions are small, for then
each integration strip intersects only a few of them.
Naturally, the discretization matrix, A, inherits this
sparsity, as seen in Fig. 3.

In our implementation the number of basis functions
used is dependent on the wavenumber limits, which are
constrained by the radar frequency and noise level, and
the choice of the parameters controlling the functional
representation as mentioned above. For the examples
in this paper a typical discretization has 30 centers in
angle and 60–80 in wavenumber, so 1800–2400 basis
functions are used.

c. Inversion by the row-action method

Large sparse linear systems are common in many ap-
plications, and numerous techniques are available for
solving them. Systems, such as (3), having an (essen-
tially) unstructured sparsity are an important subclass
as they arise in the discretization of tomographic and
similar problems. A popular class of solution methods
are the row-action methods—iterative techniques,
where the next iterate �(k�1) is found using only the
data �(k), �, and the i(k)th row Ai(k) of the matrix A,
where the sequence [i(k)] cycles through the rows of A
in some fashion.

The obvious computational advantages of row-action
methods have prompted a substantial research effort
into their convergence properties, techniques that im-

FIG. 3. Sparsity of A; nonzero entries shown black.
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prove their speed and stability, and so on. We refer the
interested reader to Censor’s (1981) excellent review.

It is notable that the algorithm of Wyatt for the in-
version of the linearized Barrick–Weber equations
(Wyatt 1990) has many of the characteristics of a row-
action method. The success of Wyatt’s algorithm in
practical real-time oceanic remote sensing applications
(Wyatt et al. 2003) provided the motivation for the dis-
cretization described above, and one finds that the
natural reimplementation of the iterative step in
Wyatt’s algorithm produces an explicit row-action
method. In the remainder of this paper we investigate
and optimize this and two other row-action methods for
the solution of the linearized Barrick–Weber equations.

1) ALGEBRAIC RECONSTRUCTION TECHNIQUE

The algebraic reconstruction technique (ART) is the
oldest of the row-action methods, being proposed as a
solution method for the convex feasibility problem by
Kaczmarz in 1937. The algorithm was later rediscov-
ered by Gordon et al. (1970) and implemented in the
EMI computerized tomography scanner (Hounsfield
1973). For ART the iterative step is

�j
�k�1� � �j

�k� � �
�i�k� 	 Ai�k� · ��k�

��i�k��2
2 Ai�k�,j �j � 1, . . . , n�,

where 0 � � � 2 is the relaxation parameter. The ART
has an attractive geometric interpretation when � � 1,
for then the iterative step gives the orthogonal projec-
tion of �(k) onto the hyperplane defined by the i(k)th
row of the system (3).

A number of theoretical results are available for
ART, particularly in the underrelaxed (0 � � � 1) case.
For example, when applied to a consistent but under-
determined system, underrelaxed ART will converge to
the solution of the minimum norm (Censor 1981, sec-
tion 4.4). It has also been shown (Fleming 1990) that
the early termination of the ART iteration is equivalent
to Tikhonov regularization, an important consideration
when the problem to be discretized is ill-posed, as is the
case for the inversion of the x-ray transform.

2) MULTIPLICATIVE ART

The multiplicative algebraic reconstruction tech-
nique (MART) is the row-action method with the it-
erative step

�j
�k�1� � � �i�k�

Ai�k� · ��k���Ai�k�,j

�j
�k� �j � 1, . . . , n�.

It can be shown that, if the system � � A� is consistent,
then this iteration converges to the solution �, which
minimizes the entropy,

�
j

�j log�j,

provided that the elements of A satisfy 0 � Ai,j � 1. To
ensure that this condition is satisfied, Byrne (2000) rec-
ommends a rescaling of the system to obtain the itera-
tion

�j
�k�1� � � �i�k�

Ai�k� · ��k���Ai�k�,j�m

�j
�k� �j � 1, . . . , n�,

where mi � max {Ai,j : j � 1, . . . , n}. This rescaling is
included in our implementation of MART.

3) CHAHINE–TWOMEY–WYATT

Our final algorithm is a reimplementation of that
proposed by Wyatt (1990) specifically for the inversion
of the linearized Barrick–Weber equations. The origi-
nal specification of the algorithm included a discretiza-
tion that has been replaced by that described in section
2b. Wyatt’s iteration, a two-dimensional version of that
of Chahine (1968) later modified by Twomey (1996),
has the iterative step

�j
�k�1� � �1 � �

Ai�k�,j

�Ai�k���
� �i�k�

Ai�k� · ��k�
	 1���j

�k�

�j � 1, . . . , n�.

Here, ||Ai||� is the maximum value of the Ai,j for j � 0,
. . . , n and, again, 0 � � � 1 is the relaxation parameter.
The motivation for the form of the iteration is detailed
by Twomey (1996) who, interestingly, notes his impres-
sion that the iteration is particularly suited to the re-
covery of functions with a large dynamic range—a typi-
cal property of ocean wave directional spectra.

3. Synthetic spectra

To investigate the behavior of the iterative schemes
in the inversion of the wave spectrum, we have gener-
ated synthetic Doppler spectral test data. Note that
there is no question of an inverse crime (Colton and
Kress 1998, pp. 133, 304) being committed here: our
synthesis of Doppler spectra is by a direct discretization
of the nonlinear Eq. (2) along the contours defined by
the Dirac constraint therein; our inversion uses the ra-
dial basis discretization of the linearized equation de-
scribed in section 2b.

Synthetic Doppler spectra were produced assuming
directional ocean spectra with wind waves of the Pier-
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son–Moskowitz type, in some cases with added swell,
and using Barrick–Weber’s Eq. (2). Two such Doppler
spectra were then inverted using the various methods
and these were compared with the original model spec-
trum. The likeness of the various inversions was
broadly similar, but with a definite superiority in recov-
ery for CTW over ART, and for ART over MART.

A typical recovery for CTW with unit relaxation and
200 iterations is shown in Fig. 4, where we note that the
inversion has the gross features of the original wave
spectrum. However, as can be seen in Figs. 4a and 4b,

there is some “splitting” of the spectral peak of the
recovered spectrum at lower wave frequencies, and the
emergence of spurious modes (this splitting is more
pronounced for the ART and MART inversions; not
shown). We interpret this as indicating that the smooth-
ing imposed by the discretization alone is not sufficient
to regularize the inversion problem. Moreover, there is
a limit on how much smoothing can be imposed by our
discretization: the radial basis functions must have
small support if the approximations underpinning the
discretization are to remain valid.

FIG. 4. Wave spectra reconstruction.
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Further, the regularizing effects of taking a small re-
laxation parameter or of the use of a small number of
iterations are difficult to exploit here; such inversions
have problems recovering swell components of the di-
rectional wave spectrum, which typically need scores of
iterations to emerge. We would suggest that the under-
lying problem is that row-action methods not address
the anisotropy of the inversion problem.

Our solution is to apply a mild smoothing on candi-
date solutions between iterative steps, implemented
(for simplicity) in a three-point smoothing kernel ap-
plied to the representation coefficients in both the
wavenumber and direction. We find that good results
are obtained if less smoothing is applied to higher fre-
quencies than to lower ones, and so apply it with a
kernel of [0.1, 0.8, 0.1] for large wavenumbers decreas-
ing linearly to [0.2, 0.6, 0.2] for small wavenumbers.
This seems to provide sufficient regularization to pro-
duce inverted wave spectra without peak-splitting, as
shown in Fig. 4c. Moreover, this smoothed algorithm is
able to distinguish between the different modes in a
genuinely bimodal spectrum, as in Fig. 4d.

4. Wave buoy comparison

The European Radar Ocean Sensing (EuroROSE;
Wyatt et al. 2003) project was a European Union (EU)
funded initiative designed to demonstrate the use of
radar sensors for vessel traffic service applications. The
Wellen Radar (WERA) HF radar, developed by the
University of Hamburg (Gurgel et al. 1999), was de-
ployed in two experiments in 2000. One of these was at
the Norwegian coastal islands northwest of Bergen, the
site of the Vessel Traffic Service center guiding large oil
tankers into mainland ports. The radar was deployed
for a period of about 6 weeks providing measurements

of the wave and current fields from the coast to up to 40
km offshore with 1-km resolution every 10 min. A mi-
crowave X-band radar, a directional wave buoy, an
acoustic Doppler current profiler (ADCP), and wave
and current models were also used; and the radar and
model data were made available in near–real time to
the staff in the center.

Detailed comparisons between the wave-measuring
instruments and the model are presented in Wyatt et al.
(2003). These results confirm previous work (Wyatt et
al. 1999) showing an overestimation in HF-radar-
measured wave height and an underestimation in wave
period in high sea conditions. This is thought to be due
to limitations in the scattering model used by Weber
and Barrick (1977) and is the subject of current re-
search. For the assessment of the accuracy of the inver-
sion method discussed here we have therefore selected
a period of relatively low seas. Since the experiment
took place in the winter on an exposed North Atlantic
coast and was therefore dominated by storms, the pe-
riod selected is quite short: 17–21 February 2000, but
does include enough variation in wave height and pe-
riod (see Fig. 5) and also in direction to give us confi-
dence in the generality of our results as far as the nu-
merical methodology is concerned. The comparison
presented here is with a directional waverider buoy,
which is currently the accepted standard for wave mea-
surements. This buoy provides measurements of five
Fourier coefficients of the directional distribution: a0,
a1, a2, b1, and b2, which are all functions of wave fre-
quency (Tucker 1991). This is thus a more limited mea-
surement than can be obtained with the radar, which
provides the full directional spectrum, S(k). Here we
will focus on just three integrated parameters that are
commonly used to describe the wave field: significant
wave height, mean period, and mean direction. We re-

FIG. 5. Parameters for the test period: buoy solid, inversion circles.
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fer the reader to Tucker (1991) for the definitions of
and formulas for these quantities.

The data available for the comparison were recorded
at different times: inverted spectra every 10 min, buoy
data every 30. Consequently, we paired each buoy ob-
servation with the nearest inversion (with a maximum
difference of 10 min) yielding 334 such pairs in the test

period. Summary statistics on the differences between
the integrated parameters were then calculated for a
range of values of parameters affecting the row-action
inversion; the number of iterations and the relaxation
parameter � among them.

Sample results from the comparison for the number
of iterations (in the range 1–500) with unit relaxation

FIG. 6. Mean absolute error between inversion and buoy.
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are illustrated in Fig. 6. As can be seen, each row-action
method has rather similar behavior, with the mean dif-
ference between buoy and inversion decreasing to a
stable value with increasing iterations. The variance in
the difference behaves similarly, albeit with more itera-
tions needed to achieve stability, particularly for the
differences in mean direction (bottom row of Fig. 6).

Some differences between the row-action methods
are apparent from these comparisons: the MART
method seems to have a small negative bias in mean
period, an effect that is not so pronounced in ART and
CTW, and clearly ART outperforms both CTW and
MART in the number of inversions needed to achieve
convergence to the mean direction value.

The comparisons for various values of the relaxation
parameter � (not shown for reasons of space) for a
fixed number of iterations reveal a similar picture, with
the differences between buoy and inversion decreasing
to a stable value as � increases from a small value.
Indeed, the results suggest that the inversion behaves as
if a superposition were occurring: a row-action inver-
sion with n iterations and relaxation of � is very similar
to one with 2n iterations and relaxation of �/2.

We also mention that the comparisons seem rather
insensitive to variations in a number of other details of
the row-action method, and even the discretization.
There seems to be little effect on the buoy intercom-
parison when varying the amount of smoothing be-
tween iterations (in contrast to the results of section 3,
but perhaps not surprising given that we are comparing
integrated parameters). We also find that reordering
the rows in the discretization matrix prior to inversion
(a common strategy for improving the convergence of
row-action inversion of problems in transmission to-
mography) has little effect on the statistics. Finally, we
find that varying the number of basis functions used in
the discretization has little effect above a certain
threshold; this threshold is presumably determined by
the breakdown in validity of a number of approxima-
tions used in the derivation of the discretization.

5. Ill-posedness

Many problems of mathematical physics can be ex-
pressed in the form y � Ax, where A is an (possibly
nonlinear) operator between function spaces, y is some
measured data, and x is to be found. Haddamard con-
sidered such problems and declared well posed those
for which a solution x exists, is unique, and depends
continuously on the data y. Ill-posed problems, those
which are not well posed, are by no means unphysical;
the equation y � Ax is ill-posed whenever the operator
A acts to smooth its argument, as is the case for the

integral operators arising in the practical problems of
metrology, geophysics, and so on. Ill-posedness was, for
many years, thought to be mathematically intractable;
as late as 1961 Courant was to write, in Methods of
Mathematical Physics II:

So far, unfortunately, little mathematical progress has
been made in the important task of solving or even
identifying such problems which are not “properly
posed” but still are important and motivated by real-
istic situations.

The same decade was to see a revolution in the ap-
proach to ill-posedness, that of regularization: approxi-
mation of an ill-posed problem by a family of well-
posed problems, each, in a precise sense, near to the
original. A. N. Tikhonov, M. M. Lavrentiev, and V. A.
Morozov in the East and F. John and S. Twomey in the
West reduced the intractability to a problem of a care-
ful choice from the family of approximants.

As has been mentioned earlier in this paper, an ex-
pectation that the inversion of the Barrick–Weber
equations is ill-posed has been carried into the design of
the discretization and the choice of inversion methods,
although there are, as far as we know, no analytic re-
sults in this direction. In the remainder of this section
we present circumstantial evidence that the inversion is
ill-posed, albeit mildly so.

The ill-posedness of the problem y � Ax for linear A
is intimately related to the singular value expansion
(SVE) of the operator A, as discussed widely in the
literature (see, e.g., Hansen 1998, section 1.2.2, chapter
2.2, and Engl et al. 2000, section 2.2). For some prob-
lems, for example when A represents the Radon trans-
form, the SVE can be obtained exactly (Natterer and
Wübbeling 2001, theorem 2.9). Even when this is not
the case we can draw some conclusions from the singu-
lar value decomposition (SVD) of the discretization
matrix of the problem; the singular values of the opera-
tor approximate those of the matrix under mild condi-
tions (Hansen 1998, section 2.1). With this motivation
we have found the first 60 singular values of our dis-
cretization of the linearized Barrick–Weber equations
using the SVDPACK codes (Berry 1992), with the re-
sults shown in Fig. 7. A regression on these values gives
an estimate of �n � n	1.9 and repeating the calculations
for a range of 237 locations (and so discretization ge-
ometries) as would occur in practical inversion helps us
find a decay estimate of �n � n�, where � has a mean of
	1.88 and a standard deviation of 0.105.

This apparent subquadratic decay of the singular val-
ues would suggest that the inversion is, to use the in-
formal classification of Engl et al. (2000, section 2.2),
mildly ill-posed and so requires only moderate regular-
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ization to achieve stability. It is worth noting that the
problem limited-angle tomography (inversion of the
Radon transform when measured data are available in
a restricted set of directions) is found to have exponen-
tial decay of the singular values and, so, is severely
ill-posed (Natterer and Wübbeling 2001, section 6.2), in
marked contrast with the Barrick–Weber inversion (all
inversion presented here used exactly two Doppler
spectra and so there are four “directions”). A notable
difference between the two problems is the highly di-
rectional kernel |�|2 present in the Barrick–Weber
equations.

6. Conclusions

Our investigations of the Barrick–Weber problem
suggests that the smoothing imposed by our discretiza-
tion is not sufficient to fully stabilize the inversion by
the row-action method. However, the addition of a mild
smoothing between row-action iterations does provide
this regularization, giving reasonable results in invert-
ing both synthetic and real Doppler spectral data. Con-
sistent with the evidence of mild ill-posedness, we find
that all of the row-action methods give similar results
but with ART and CTW having a slight advantage over
MART in the speed and accuracy of the recovery of
integrated parameters. With the added smoothing and
unit relaxation, around 50–100 iterations seem suffi-
cient to achieve convergence.

Further research is under way to determine methods
whereby the smoothing in the inversion is incorporated
more closely into the discretization, so as to give a more
fine-grained control over the regularization.
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