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Discretising Barrick’s equations

By J. J. Green

Dept. Applied Mathematics, University of Sheffield, UK

1. Introduction

The use of the Doppler spectrum of hf radar backscatter for the remote sensing of the
ocean’s surface is now well-established, with a large literature and numerous deployments
for commercial and scientific applications. Part of the attraction is the versatility of the
technology: ocean currents can be monitored over a large coastal area with relatively
inexpensive radars and small computational cost; the same signal can be used to estimate
high-frequency ocean waves, and so the strength and direction of prevailing winds. The
theoretical extraction of the full directional spectrum of ocean waves from hf backscatter,
first established by Barrick in the 1970s, has been slower to develop due to its need for
high quality measured backscatter and substantial computational resources, barriers that
have all but disappeared in recent years.

In this article we describe a general discretisation scheme for Barrick’s equations based
on the observation that the linearised equations can be viewed as a local weighted pro-
jection transform, and demonstrate that techniques from the global unweighted case, in
particular from transmission tomography, can be applied quite naturally. The generality
of the discretisation allows it to be applied to a number of inversion algorithms, and
we demonstrate implementation with the popular tomographic inversion algorithm art,
which we find able to perform real-time inversion of measured backscatter on modest
hardware.

2. Background

In this section we give a brief overview of Barrick’s equations modelling the Doppler
spectrum of hf (high frequency) radar echos from the sea’s surface. Readers seeking
the derivation of these are referred to the articles of Barrick (1972), Weber & Barrick
(1977), Barrick & Weber (1977), and to the more recent expositions of Holden & Wyatt
(1992) and Hisaki (1996).

In the interests of notational brevity we will treat the version of Barrick’s equations
for water of infinite depth — the extension to the shallow water case is straightforward.

Barrick’s equations

Barrick’s equations relate σ, the Doppler spectrum of the backscattered radar signal, to
S, the ocean wavenumber spectrum in the absence of current. The equations are derived
by a perturbation analysis leading to an expansion σ = σ1 + σ2 + · · · , whose first term
is given by

σ1(ω, φ) = 26πk4
0

∑

m=±1

S(−mk0)δ(ω −mωb), (2.1)

where ω is the angular frequency of the Doppler shift, k0 the wavevector of the incident hf

radar beam with wavenumber k0 and direction φ, S the ocean wavevector spectrum and



Discretising Barrick’s equations 2

Figure 1. An example of measured
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ωb the frequency of the Bragg matched waves, given by the linear dispersion relationship

ωb =
√

2gk0.

The distributional equation (2.1) defines impulses in the Doppler spectrum σ at ±ωb,
features which can clearly be identified in measured spectra, for example in Figure 1.

The second order term, σ2, derived in the series of papers by Barrick et al. mentioned
above, may be written

σ2(ω, φ) = 26πk4
0

∑

m, m′=±1

∫

R2

|Γ|2 S(mk)S(m′k′)δ(ω −m
√

gk −m′
√

gk′) dp. (2.2)

Here the wave vectors k and k′ satisfy the Bragg resonance condition k + k′ = −2k0,
and are related to the variable of integration p by

k + k0 = p, k′ + k0 = −p

as is illustrated in Figure 2.
The kernel |Γ|2 in (2.2) is determined by the coupling coefficient,

Γ = Γ(ω, k, θ,mm′),

which is the sum of contributions accounting for nonlinear hydrodynamic effects (direct
backscatter from second-order, Stokes, waves) and for nonlinear electromagnetic effects
(indirect backscatter from pairs of first-order waves). The reader is referred to Weber &
Barrick (1977), Barrick & Weber (1977) and Barrick & Lipa (1986) for details on the
kernel, as we will only need the fact that it is symmetric about the natural coordinate
axes of the integration variable p = (p, q) illustrated in Figure 2.

It is convenient to write Barrick’s equations in terms of the dimensionless variables
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Figure 3. Integration curves for the normalised second-order equation

η = ω/ωb, K = k/2k0, K′ = k′/2k0. The normalised directional spectrum Z = S/(2k0)
4

is then related to the normalised Doppler spectrum σ(η, φ) ≡ ωbσ(ω, φ) to first order by

σ1(η, φ) =
∑

m=±1

Z(−2mk̂0)δ(η −m) (2.3)

where k̂0 = k0/k0, and to second order by

σ2(η, φ) = 8π
∑

m, m′=±1

∫

R2

|Γ|2 Z(mK)Z(m′K′)δ(η −m
√
K −m′

√
K ′) dp. (2.4)

For each Doppler frequency |η| < 1, the Dirac constraint ensures that there are exactly
two nonzero summands in (2.4), integrals over a curves which are reflections in the q-axis.
On the other hand, for |η| > 1 there is only one nonzero summand in (2.4), and this is an
integral over a curve (or curves, for 1 < |η| <

√
2) symmetric about the q-axis. It follows

that we can write (2.4) as

σ2(η, φ) = 16π

∫

K<K′

|Γ|2 Z(mK)Z(m′K′)δ(|η| −m
√
K −m′

√
K ′) dp. (2.5)

where m and m′ depend on η,

m =

{

1 η > 0

−1 η < 0
, m′ =

{

1 |η| < 1

−1 |η| > 1
.

The curves of integration in (2.5) are illustrated in Figure 3.

Linearisation

The inversion of equation (2.5), i. e., finding the directional spectrum Z from Doppler
spectral data σ, is complicated by nonlinearity. Fortunately the inversion is particularly
amenable to linearisation in practice — for radars of suitable frequency the larger wave
vector K′ corresponds to higher frequency ocean waves which quickly align to prevailing
winds, and whose directional spectrum is well approximated by empirical models such
as Pierson & Moskowitz (1964). Indeed, it is practical to fit such a model to the ocean
spectral data provided by the inversion of the first-order equation (2.1), i. e., from the
Bragg peaks. See, for example, the discussion in Wyatt, Ledgard & Anderson (1997).
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Writing G = G(K) for the estimate of the directional spectrum obtained from such a
model, solving (2.5) for the Dirac constraint and making θ, the direction of K relative
to k0 (as in Figure 2), the variable of integration, we obtain the linear approximation

σ(η, φ) =

∫ π

−π

Λ(K, φ)Z(mK) dθ (2.6)

where the kernel Λ has absorbed that in (2.5), the model estimate of Z(m′K′), the
Jacobian of the change of integration variable and the integration constraint

Λ =

{

16π |Γ|2G(m′K′)∂|ω|
∂K K < K ′

0 otherwise
.

We henceforth consider only the linearised equation (2.6), but much of what is described
below could be extended to work with the fully nonlinear equation, albeit with additional
computational and notational complexity.

Availability of data

Although the equations (2.3) and (2.6) provide rather good agreement with measured
hf radar backscatter, there are a number of limitations on the measurement of Doppler
spectra which should be borne in mind when attempting the inversion of (2.6) with real
data.

In measured backscatter, e. g., Figure 1, the Bragg peaks, although evident, are smeared
in (Doppler) frequency. Such effects could be caused by variation in the ocean current in
the observed area, or by the measurement of the signal with (necessarily) band-limited
equipment. This leads to a problem, yet to be satisfactorily solved, in determining which
part of the signal is first-order, and which second. In practice this leads to a bound on
the quantity |η|− 1 for second order data σ, corresponding to a lower bound on K in the
directional spectrum Z.

The inevitable presence of noise in the measured signal is also apparent in Figure 1,
since for any physically reasonable exact data Z we would expect σ to be a smooth
function of η, barring ±1, decaying rapidly with increasing η and as η → ±1. Thus
measured data with reasonable signal to noise ratio is restricted to Doppler frequencies
for which ||η| − 1| is in some positive interval, and so restricts the wavenumbers K at
which we can reconstruct the directional spectrum Z.

Finally, radars capable of measuring second-order Doppler spectra to the accuracy
required for inversion are rather expensive. Two radars are needed to resolve left-right
ambiguities, but for purely economic reasons an inversion technique requiring more than
two would find limited application.

3. Discretisation for inversion

The problem of inverting Barrick’s equation (2.4) is that of recovering a function from
integrals over curves in its domain. In this respect the problem is one of integral geometry,
who’s most studied special case is the inversion of the x-ray and Radon transforms (which
are the same in two dimensions). See, for example, Helgason (1999). Such inversions
arise in a number of problems in image processing, electron microscopy, astronomy, and
in particular, medical and process tomography. The reader is referred to Natterer &
Wübbeling (2001) for an extensive overview of this field and its literature.

One popular method for inversion of the x-ray transform is to evaluate numerically the
inversion formula derived by Radon in 1937 (see §5.1 of Natterer & Wübbeling (2001)).
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This allows the expression of the problem in terms of the Fourier transform, allowing
solution by fast Fourier methods. Such techniques, however, depend rather delicately on
the geometry of the lines along which integrals are taken, and so would seem difficult to
extend to more general curves.

Another widely studied approach for these problems relies on the fact that they can be
sparsely discretised. If the unknown function is represented by a basis of functions with
small support (for example the characteristic functions of a grid of pixels), then each
line over the function’s domain will intersect only a few of the supports. The resultant
sparse discretisations can then be solved efficiently for the coefficients, often by iterative
row-action methods as described by Censor (1981). For a discretised problem y = Ax and
initial estimate x(0) one obtains iteratively improved estimates x(i+1) from the calculated
value of Ajx

(i) and yj , where Aj is the jth row of A and the index j cycles through the
row-indices of A.

The seminal example of a row-action method, discovered by Kaczmarz in 1917, is
the algebraic reconstruction technique (art), (see Gordon, Bender & Hermann (1970))
implemented by Hounsfield in the EMI computerised tomography scanner (see Hounsfield
(1973)). For the art, the iterative step is

xi+1 ← xi + λ
(yj −Ajx

(i))

‖Aj‖22
AT

j

where λ ∈ (0, 2) is the relaxation parameter. For λ = 1 each step of the art is the
projection of x(i) onto the hyperplane defined by jth row of the problem, Ajx = yj .

The art and its many variants are, of course, easy to implement in a manner which
exploits sparsity, and in tomographic applications surprisingly few iterations are needed,
typically 4–15 cycles through the rows of the matrix (Matej et al. (1994)). Indeed, it is
shown in Flemming (1980) that early termination of the art regularises (in the sense of
Tikhonov) the ill-posed nature of the problem that has been discretised.

In the remainder of this note we discuss the discretisation of Barrick’s equation for
inversion by such row-action methods.

Barrick’s equation

Suppose that the normalised directional spectrum Z in Barrick’s linearised second order
equation (2.6) is to be represented as a linear combination of basis functions bi,

Z(K) =
∑

i

ξibi(K). (3.1)

Seeking a sparse but general discretisation, we initially assume only that each bi has a
small support. Measured Doppler spectra are typically available as binned data,

σj =
1

ηj+1 − ηj

∫ ηj+1

ηj

σ(η) dη, (3.2)

where ∆η ≡ ηj+1 − ηj is henceforth assumed constant. Thus each inversion datum σj

corresponds to a strip integral in the wavevector domain of Z. Since these strips narrow
quadratically as ηj approaches ±1, the representation in (3.1) should scale similarly if it
seeks to discretise uniformly with respect to the measured data. This scaling is absorbed
into the problem by introducing the variable y, the vector of length

√
K in the direction

of K, so that (2.6) becomes

σ(η, φ) =

∫ π

−π

Λ(y, φ)Z(my) dθ (3.3)
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Figure 4. Integration curves for the normalised second-order equation. Points y = (y, θ)
above the dashed line correspond to normalised wave-vectors K with K > K′.

where

Λ =

{

16π |Γ|2G(m′K′)∂|ω|
∂K

∂K
∂y K < K ′

0 otherwise

has absorbed the Jacobian of the transformation. The integration curves in the y-θ do-
main are illustrated in Figure 4.

Combining the representations (3.1) and (3.2) with the formulation of Barrick’s equa-
tion in the y domain gives

σj =
∑

i

1

∆η
ξi

∫ ηj+1

ηj

∫ π

−π

Λ(y, ψ)bi(my) dθ dη. (3.4)

Taking yi to be some point in the support of bi, and supposing that this support is so
small that Λ is well approximated on it by Λi ≡ Λ(yi), we find that (3.4) reduces to the
linear system

σj =
1

∆η

∑

i

ΛiBi,jξi, (3.5)

where

Bi,j ≡
∫ ηj+1

ηj

∫ π

−π

bi(my) dθ dη (3.6)

is the jth strip integral over the ith basis function. Writing Cj for the strip

{y(η, θ) : ηj ≤ η ≤ ηj+1}
we have

Bi,j =

∫

Cj

bi(my)
∂η

∂y
(my) dy ≈ ∂η

∂y
(myi)

∫

Cj

bi(my) dy (3.7)

provided, again, that the support of bi is sufficiently small.
The final integral in (3.7) can be evaluated approximately by introducing orthogonal

coordinates (s, t), based at yi and with s in the direction of increasing η. Then by Taylor

η(s, t) ≈ η(yi) + |∇η(yi)| s (3.8)
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so that
∫

Cj

bi(my) dy ≈
∫ si,j+1

si,j

∫ ti

−ti

bi(my(s, t)) ds dt, (3.9)

where the ti are chosen so that all points (s, t) in the support of bi have −ti < t < ti and
where, from (3.8), the

si,j =
ηj − η(yi)

|∇η(yi)|
(3.10)

are the limits of integration of the projection of the basis function bi in the direction of the
coordinate t. The point of the approximation of a curved strip integral by a projection,
as illustrated in Figure 5, is that for a suitable choice of basis function bi, projections
can be calculated explicity.

Cj

si,j

si+1,j

supp bi

yi

s

t

Figure 5. Geometry of the strip
integral approximation

For completeness, we mention that the partial derivatives in (3.7) and (3.8), conveni-
ently written with the dual variable y′ in the direction of K′ and of length y′ =

√
K ′,

are

∂η

∂y
= mF (y,D) +m′ y(y

2 + cos θ)

(y′)3
F (y′, D),

∂η

∂θ
= −m′ y

2 sin θ

2(y′)3
F (y′, D) (3.11)

with the dependence on the normalised water depth D ≡ d/2k0 given by

F (y,D) = (1 + 2y2D cosech 2y2D)

√

tanh y2D

tanhD
,

which can taken as 1 in the deep water case.

Basis functions

The strip integral approximation (3.7) aims to treat the transformation defined by Bar-
rick’s equation (3.4) as being, locally, a weighted projection transform. This approach
makes available the store of techniques and results on projection transforms, provided
they are amenable to localisation. In this section we discuss the recent research of
Lewitt and co-workers on functional representation for projection transforms (Lewitt
(1990), Matej et al. (1994), Matej (1996)) and describe how these can be applied to
Barrick’s equation in a straightforward manner.

Lewitt has observed that, in a representation of a function by a linear combination of
basis functions, it is desirable that the basis be effectively band-limited, i. e., that the
Fourier transforms of the basis functions be localised around zero, since this imposes
constraints on the smoothness of the function so represented (Lewitt (1990)). For an
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Figure 6. Lewitt’s basis function Ψ for m = 2, α = 12 (left) and the absolute value of the
radial dependence of its Fourier transform (right)

inversion problem that is ill-posed (in the sense of Hadamard), such as the inversion of
the x-ray and Radon transforms (see Chapter 4 of Natterer & Wübbeling (2001)), such
a constraint act to regularise the iterative solution. In particular, for the smoothness
assumption suppresses the recovery in inversion of ghosts, functions in the null-space of
the corresponding finite-data transform (see Louis (1984)). Noting that the usual pixel
representation (i. e., with respect to a basis of characteristic functions of pixels) has a
slow decay in the Fourier transform of its basis, Lewitt proposes representation with
respect to a basis of translates of a single, radially symmetric, function

bi(y) = Ψ(y − yi) = ψ(‖y − yi‖),
whose window function, ψ, is a generalisation of the Kaiser-Bessel window used in signal
processing (and reduces to it for m = 0)

ψ(r) =

{

(1− (r/a)2)m/2Im(α
√

1− (r/a)2)/Im(α) (r < a)

0 otherwise
, (3.12)

where Im is the modified Bessel function of order m, as in Watson (1944).
In (3.12), the parameter a is the radius of the support of Ψ, α controls the localisation

of Ψ about zero, while m determines its smoothness of Ψ(y) for ‖y‖ = a. An example of
the basis function in dimension two is shown in Figure 6, and one can see the reason for
Lewitt’s choice of the nickname “blobs” for these functions.

Lewitt’s basis functions possess a number of attractive features, both theoretically and
computationally:
• The radial dependence of the Fourier transform Ψ̂(‖y‖) (calculated explicitly in

Lewitt (1990)) has asymptotic decay O(1/ ‖y‖m+1
), and thus the degree of localisation

of the Fourier transform about zero can be controlled by a single parameter;
• A number of interesting quantities associated with Ψ: its gradient, Fourier transform

and Laplacian, may be calculated explicitly. In particular the projection p of Ψ, i. e., the
integral over the line whose closest point to zero is a distance s from it, is

p(s) = 2

∫ ∞

o

ψm(
√

s2 + t2) dt = a
Im+1/2(α)

Im(α)

(

2π

α

)1/2

ψm+1/2(s) (3.13)

where the dependence of ψ on m is here indicated by its subscript;
• The freedom in the choice of the parameters may be used to ensure that the resulting

basis has desirable properties (a small error in representing constant functions, invertib-
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ility of the interpolation matrix [Ψ(yi − yj)] and so on). These matters are discussed in
Matej (1996) and Green (2001);
• The modified Bessel function Iν can be calculated simply and efficiently for ν a

half-integer, as is described in Thompson (1997).
A systematic evaluation of the application of Lewitt’s basis for a number of inversion

methods (including art) in positron emission tomography has found a clear advantage
over pixel (or voxel) based discretisations (see Matej et al. (1994)). It is our hope that
these benefits will transfer to the discretisation of Barrick’s equation.

Implementation for Barrick’s equation

The combination of Lewitt’s basis with the discretisation of Barrick’s equation (3.5) is
achieved simply by substituting the expression for the projection of Lewitt’s basis (3.13)
into that for the localised projection (3.9). Thus the coefficients Bi,j can be obtained by
the following procedure applied for each grid-node yi and for each chosen sideband (i. e.,
for each of the corresponding choices of m and m′):
• calculate ∂ξ

∂y (yi) and |∇ξ| (yi) using (3.11);

• calculate the integration limits si,j from (3.10);
• for each pair (si,j , si,j+1):
◦ calculate the strip-integral approximation (3.9) using the formula (3.13);
◦ evaluate Bi,j from (3.6).

The main computational cost in this procedure is the (numerical) integration of the pro-
jection p of the basis function, but this can be greatly reduced by creating an appropriate
approximation of the indefinite integral.

For practical discretisation a number of minor complications, ignored in the above for
the sake of brevity, must be incorporated in the calculations.

For Doppler spectra obtained from shallow-water observations, the formulae for the
kernel and integration contours need to be modified to account for the shallow-water
dispersion relation. Details on the required changes can be found in Holden & Wyatt
(1992).

Combining the discretisations for multiple radar systems may present a problem if the
radars are operating at different frequencies, for then the y variables from the discret-
isations are incommensurate. This is solved by a suitable scaling, but then one might as
well discretise in the k domains, and perform the normalisation as required (or use the
corresponding unnormalised formulae).

Finally, the y domain as described above is rather narrow (see Figure 4), so discretisa-
tion with a basis function whose support is a disc leads to undersampling in the y variable
(or oversampling in angle). Consequently, a scaling of the y variable (as mentioned in
Lewitt (1990)) is needed, forcing a few trivial modifications.

Review of discretisation methods

We here provide a brief overview of some of the discretisation schemes that have been
used in the inversion of Barrick’s equation.

The first inversion method, described in Lipa (1977), makes reductions in the com-
plexity of the inversion by assuming that the directional spectrum is separable, S(k) =
g(k)h(θ). Such an assumption, often reasonable, allows the separation of the discretisa-
tion and reduces the number of unknowns to such an extent that the resulting linear
system is overdetermined.

The discretisation adopted by Lipa & Barrick (1980), and later by Howell & Walsh
(1993), replaces separability by the less restrictive assumption that the direction spectrum
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is well approximated by a truncated Fourier series in angle

S(k) =
N

∑

n=1

(an(k) cosnθ + bn(k) sinnθ).

As with Lipa’s approach, this leads to a lightweight discretisation since only the 2N
one-dimensional functions an and bn need be determined, and satisfactory results are
reported for N = 2 or 3.

The inversion method of Wyatt (1990), a two-dimensional version of the iterative
scheme described in § 7.6 of Twomey (1977), is rather unusual in that the discretisation
of the directional spectrum is along the contours of integration defined by the Dirac
constraint (as in Figure 4). This approach has the advantage that the solution to the
forward problem (needed in each iteration) is rapid, albeit at the expense of finding
nearest-neighbours for each discretisation point, needed for the smoothing which stabil-
ises the inversion.

Finally we mention the more traditional grid-based discretisations associated with the
nonlinear inversion method of Hisaki (1996), and the Bayesian inversion of Hashimoto &
Tokuda (1999). These authors represent the directional spectrum as piecewise-constant
on pixels which are uniform in θ, but exponential in wavenumber.

4. Preliminary results

The discretisation described above has been implemented as part of an experimental
replacement inversion kernel for the Sheffield wave inversion toolset. The toolset imple-
ments the results of research into the inversion problem by L. R. Wyatt and co-workers
over 15 years (Holden & Wyatt (1992), Wyatt (1986), Wyatt (1990), Wyatt, Ledgard
& Anderson (1997)), and was recently deployed as part of the EuroROSE project de-
scribed in Wyatt et al..

An important design goal for the implementation was modularity, since we wish the
discretisation to be usable with any inversion method which can be recast as a row-
action method (in particular with Wyatt’s inversion method). The discretisation, generic
row-action method and art modules were implemented in around 20,000 lines of C,
chosen for reasons of efficiency and portability. The initial implementation was found
to have a performance close to that of the (highly optimised) Wyatt algorithm used in
the EuroROSE project, with an inversion performed in an amortised half-second on a
750MHz PIII, around four times as fast as was needed for real-time operation during
EuroROSE (where 200–350 inversions were performed every 10 minutes).

Figure 7 shows an example of inversion of data acquired during the EuroROSE Fedje
deployment. A pair of Doppler spectra (right, in grey) were inverted using the art, with
25 iterations and a relaxation parameter of 0.1. The discretisation for the inversion used
the radial Lewitt basis arranged on a regular 64× 30 cylindrical grid in the y-θ domain.
The directional spectrum (left) is dominated by low frequency waves at around 0.1 Hz
heading south eastward, typical for the exposed location. The estimate of the Doppler
spectra derived from the directional spectrum via Barrick’s second-order equation, which
drive the inversion, is shown superimposed (in black) on the measured Doppler spectra
(left).

A detailed comparison of row-action methods for use with our discretisation will be
reported elsewhere.
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