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This paper is a companion to an earlier one (Green & Naghdi 1986, Phil. Trans. R. 
Soc. Lond. A 320, 37-70 (1986)) and deals with certain aspects of a nonlinear water- 
wave theory and its applications to waters of infinite and finite depths. A new 
procedure is used to establish a 1-1 correspondence between the lagrangian and 
eulerian formulations of the integral balance laws of a general thermomechanical 
theory of directed fluid sheets, as well as their associated jump conditions in the 
presence of any number of directors. (Such a correspondence between lagrangian and 
eulerian formulations was previously possible in the special case of a single constrained 
director.) These results are valid for both compressible and incompressible (not 
necessarily inviscid) fluids. Applications are then made to special cases of the general 
theory (including the jump conditions) for incompressible inviscid fluids of infinite 
depth (with two directors) and of finite depth (with three directors) and the nature 
of the results are illustrated with particular reference to a wedge-like boat. 
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1. INTRODUCTION 

This paper is concerned with further developments in a nonlinear theory of water waves for 
finite and infinite depths, which are a continuation of previous work (Green & Naghdi I986). 
The present developments are dealt with via a direct approach on the basis of a model - called 
directed or Cosserat surfaces f4 - comprising a material surface 4 with K directors dl, d, ..., 
dK. The earlier basic formulation of such theories, with particular reference to fluid media, was 
carried out in lagrangian form (Green & Naghdi 1976, 1977, 1979 b), including that involving 
thermal effects (1979a), and subsequently for special applications the (local) basic equations 
(in the presence of a single constrained director) were recast in eulerian form. A separate basic 

general formulation in eulerian form in the context of the purely mechanical theory, which is 
more convenient for most applications in fluid dynamics, has been effected more recently 
(Green & Naghdi I984, I986). In the latter general eulerian formulations, the basic conser- 
vation laws are expressed in terms of integrals over a fixed surface area and its boundary. 

For clarity's sake and by way of additional background, we recall from Green & Naghdi 
(1984, ? 1) that in the earlier basic formulation of the theories of fluid sheets (or shell-like bodies) 
the conservation laws were stated by using material surfaces and material erivatives from a 

lagrangian viewpoint, i.e. time differentiation holding the material point on the surface a of 

K fixed. The conversion of the resulting local equations to an eulerian form, in general, posed 
some difficulty except in the special case of a directed surface with a single constrained director 
mentioned in the preceeding paragraph. Because of this, a new procedure was effected (Green 
& Naghdi I984, appendix), which provided a basis for stating the general conservation laws 
(in the presence of any number of directors) in an alternative eulerian form. 

To describe the contents of this paper, we first note that in an appendix placed at the end, 
we extend the procedure for conversion from lagrangian to eulerian forms and discuss a method 
which provides some new ingredients for establishing a 1-1 correspondence between the general 
integral balance laws in lagrangian form with the corresponding general balance laws in 
eulerian forms stated earlier (Green & Naghdi I984, 1986). 

With the new procedure of the appendix, we begin the developments of this paper in ?2 by 
stating the general conservation laws (with K directors) for directed sheets in both eulerian and 

lagrangian forms. This brings the entire general formulation of directed sheets (or Cosserat 

surfaces) to the same level of common formulation as in the exact three-dimensional theory 
in which the conversion from lagrangian to eulerian formulations (or vice versa) is straight- 
forward. 

The conservation laws in ?2 include also those associated with thermal effects, namely the 
balances of energy and of entropy in both lagrangian and eulerian forms; however, we do not 
include here the thermodynamical restrictions which arise from considerations of the second law 
of thermodynamics. Next, with the use of a fixed system of rectangular cartesian coordinates, 
in ?3 we specialize the general theory of ?2 to a compressible fluid (not necessarily inviscid), 
but still retain the general thermodynamical aspects of the developments of ?2. General jump 
conditions with K directors, which accompany the basic equations of ?2, are discussed in ?4 
mainly in eulerian form, but with the limitation to steady flow and with the use of the 

rectangular cartesian coordinates introduced in ?3. Section 4 contains also a detailed discussion 
and comparison of the jump conditions in both the eulerian and lagrangian forms when the 

special theory used involves a single director (K = 1) which is constrained to be always parallel 
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NONLINEAR WATER WAVES 49 

to a fixed direction. This latter comparison sheds some light on the nature of the jump conditions 
especially since most of the existing applications (in the presence of a single constrained director) 
have used lagrangian forms of the jump conditions. 

The remainder of the paper is concerned with applications of the developments of ??2-4 to 
special cases in which only two or three directors are present. Incompressible inviscid fluids of 
infinite depth (with two directors) and of finite depths (with three directors) are discussed, 
respectively, in ?? 5 and 7, and their main features are illustrated with reference to a wedge-like 
boat in ??6 and 8. 

2. DIRECTED SHEETS 

The theory of directed sheets, or Cosserat surfaces WK, comprising a material surface d with 
K directors dl, d2,...,dK is summarized here in a way that gives a direct link between the 

lagrangian and eulerian points of view instead of the separate treatments given in previous 
papers. Thermal equations are also included. 

Let 4, the surface of 4 in the present configuration at time t, be defined by its position vector 
r relative to a fixed origin, and let &6(a = 1, 2) be convected (lagrangian) coordinates defining 
points of the surface. Further, let the K directors be denoted by dM(M = 1, 2, ..., K). Then a 
motion of the Cosserat surface ,K is specified by 

d= r r(6, t), dM= dM(, t). (2.1) 

Base vectors, unit normal and metric tensors on this surface are denoted by a,, ax, a3, a,8, axf 
and are defined in (A 5) of the appendix. The velocity and director velocities are defined by 

?v=w0o=, WM = M, (2.2) 

where a superposed dot denotes material time differentiation holding 06 fixed. 

Again, let J be a fixed surface in space specified by a position vector r which is a function 
of two curvilinear coordinates (ax = 1, 2) on this surface. Base vectors, unit normal and metric 
tensors on this surface are denoted by a, a, a3, da , afl. The surface o of 'K in its present 
configuration at time t, coincides with the fixed surface v and the velocity of points of the 

moving surfaces 4 at this time is denoted by 0 = v({, t). Also, in the present configuration at 
time t when o coincides with J, the director velocities are denoted by WM = WfM(t, t) with 
W7 = v(g, t) and the directors assume the values 

dM = dM (c ) (M = 1, 2, ..., K), do = F(2, 2). (2.3) 

Throughout the paper, we use standard vector and tensor notations with lower case Latin 
indices (subscripts or superscripts) taking the values 1, 2, 3 and Greek indices the value 1, 2 

together with the usual convention for summation over repeated indices (one subscript and one 

superscript). Here it is necessary to retain the notation of an overbar for quantities related to 
the surface J, in contrast with previous papers. 

Consider an arbitrary part Y of the surface 4 which coincides with a fixed part ? of the 
surface J at time t and designate the boundary of 9Z by Oa whose outward unit normal in the 
surface is 

v = . a= -Pa'. (2.4) 
7-2 
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Guided by developments in the appendix we postulate both lagrangian and eulerian forms of 
the conservation laws for mass, momentum, director momenta and moment of momentum for 

WK as follows: 

I PYMNd? = | PyMNd?JI PVMN 'Vd-I P(MN+ CNM) d' = 0 (2.5) t at 0a 

for M, N= 0, 1, 2,...,K, 

| P ymOMmdo,= a -I PY YMO M + Mv ovds=F pd/fda+ nd, 
d t J M-O t .1 M-O M-O 0 

(2.6) 

d- p s YNWM = a d Y MN Mdt+ 
J ' WMNid- p K VN d 

Qt w M-O J M-O #0 M-O M0 

=f (IN-kN) dCa+ m ds, (2.7) 

for N= 1,2,..., K and 

df P z YNMdN X wM do = P E z NM dN X ,WM da 
Q^^ N -0^-0 M-0 NT-O M-O 

r K K 
+J PS SdX MVMNvds 

a8. NJ-O M-O 

= f p Sa dNx INd + Z dNx mNds, (2.8) 
N-0 N-0 

where de = a3d&, the inertia coefficients YMN) YMN are defined by (A 18), and the velocity 
fields VMN may be expressed in terms of the director velocities with the help of (A 6). Also, 
n = mo is the force vector, mN are the director force vectors at the curve a,f = 10 is the assigned 
force vector, IN are the assigned director force vectors both per unit mass and kN are the internal 
director forces per unit area. The assigned fieldfmay be regarded as representing the combined 
effect of (i) the stress vector on the major surfaces of the body denoted byfe and (ii) an integrated 
contribution arising from the three-dimensional body forces acting on the body denoted by 

fb. A parallel statement holds for the assigned fields Is. We therefore write 

f=fc+fb, 1N =Nc + Nb- 

Balances of entropy and energy for every part 9 of the material surface i which coincides 
with the fixed surface 9 at time t are 

d PYNd = dt P y YMMNMdY 

a J P YMN M d+P M+ |M vMNV dS P S 
7M lMVNM da 

t , dM- M-0 (0 M- M0 

= P(SN+N)d<r- kds (N=0,l,2, ... ) (2.9) J^ Ja 
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and 

d (e+2 YMN WM WN)PdW = dr YMN(eMN+2WM'WN) pdc 
J M-O N-O M- ON-O 

a K K K K 

j z S YMN(6MN + 2WM'N)PfidC+ J S (MN + 2'M W N) VMN' V ds 
JM-O N=O Je M-O N-O 

f E (rN + N)pdA + (m N* W-h) (2.10) 
O N=o aO N-0 

In these equations tN, YN(, t) = YN(y , t) are the entropy densities, kN are the entropy fluxes, 
hy are the heat fluxes, SN are the external rates of supply of entropy, rN are the external 
rates of supply of heat, e, eMN(6, t) = eMN(C, t) are internal energy densities. If ON(N = 0, 1, 
2, ..., K) represent the effects of temperature then 

rN =ONSN, hN = ONkN (N= 0,1,2,...,K; N not summed). (2.11) 

The field equations corresponding to (2.5) are 

p+pdiv,v = 0, pal = function of O only, (2.12a) 
Yoo = i, YMN = function of ( only,J 

or 05 (PYMN)+ a-c(PgN' aa)-- (MN +ONM) a 3 = , (2.12 b) 

where ( )a = a( )/aC. Similarly, making use of (2.12b) the local field equations corresponding 
to (2.6) to (2.8) are 

p z y ya = p { m + (f)m .e)M + 17V v MNa P X YMNWM =P/SMyMN 
at 

N'l)M 

N-0 

A vertical line denotes covariant differentiation with respect to the surface J. Also 

n=NaVa, mN=MVN . (2.15) 

Again, from (2.12) and (2.13), the field equations corresponding to (2.9) and (2.10) are 

P4N=MP Z MNM = P YMN + (VMN aa) = M .M VMNa}.1 M-O M-O 

= P(SN + N)- div,PN 

kN PNV', a2div,PN= (a4PN.ta),. (2.16) 
K K 

Pt= P Z YMN MN 
M-O N-O 

-= p 29 9O MN + ( .aMN) CMN + MN(oVMN+ + ) *.a 
M-0 N- Oac 

K 

= Z (6N SN -PN gN-ON div,pN) + P, (2.17) 
N-O 
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K 

where P= (kN'W7N+M WN.), ko=) 
N-O k =0 (2.18) 

g= grad N = fNea 

and external body forces are eliminated with the help of (2.13). After elimination of external 
rates of supply of heat by (2.16), (2.17) becomes 

K.\ K K 

P ~ + E ?N N =P S Z YMN (YMN + YrM N) 
N -0 M-O N-O 

= pL24jY {DMN 7?YaR M aTJ) 

K K K 

where = - E O = N E E (MN -ONM) (2. N-O M-O N-0 (2.20) 

ItMN = MN 2(M ON+ N OM). 

After constitutive equations have been chosen for the response functions 

*r(or V,MN) MN), 'IN (or TN, N)., ON, N,PN,N k, M,, (2.21) 

then (2.19) is regarded as an identity for all thermomechanical processes. 
To complete the theory we need to examine restrictions arising from interpretations of the 

second law of thermodynamics, but we omit this. 

3. INVISCID FLUIDS 

The general theory of ?2 is applied to the special case of a compressible inviscid fluid before 
further specialization to particular geometries. We consider a compressible fluid of density p"* 
and choose a fixed system of rectangular cartesian coordinates C' = x(i = 1, 2, 3) with cor- 
responding orthonormal base vectors et. The fixed surface J is a plane surface g = x3 constant. 
Then we may set 

X=x a,=a =e,, a3=e3, =a fl= =a. (3.1) 

The moving surface -c coincides with the fixed surface J at time t so that, after operations such 
as material time derivatives have been carried out, we may set 

a, = a = e, .YMN = YMN, etc. (3.2) 

For guidance we briefly examine the problem of inviscid fluids in the usual three dimensional 
context. The thermodynamic identity which results from eliminating external body forces and 
external rate of supply of heat from the energy equation is 

p*(vr* +y *o*) = -O* -p* .g* + T.D, (3.3) 

where p*, yd, 4*,p*, T, are respectively the Helmholtz function, entropy density, internal rate 
of production of entropy, entropy flux vector and stress tensor. Also D is the rate of deformation, 
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* ( > 0) is a measure of temperature and g* = grad* 9*. For an inviscid (compressible) fluid 
we assume that we assume that 

*, *p*, T, 0* (3.4) 

are functions of p*, T* and grad T7, where T* is an empirical temperature. Use of (3.3) as 
an identity then shows that* =0*(7T) (35) 

independent of p* and grad* T* so that, with the additional restriction 80*/a T* > 0, we may 
use 0* > 0 as an absolute temperature for this class of fluid, instead of T*, the empirical 
temperature. Then = ** 

T= -P*I,* P= p*28*/ep*, (3.6) p* =p*(p*,*, grad 6*) 
=-k(p*, ,g *g*) g*. 

In deriving the last form for p* use has been made of invariance conditions under superposed 
rigid body motions. 

Returning to the theory of?2 with choice (3.1) for the fixed reference surface we assume that 
p*, T* are represented by K K 

P= PNAN(XM), T* = X TN AN(x). (3.7) 
N-O N-O 

For inviscid fluids the constitutive functions (2.21) are assumed to depend on 

PN, TN,grad TN=e, TN,a, (3.8) 

where TN are measures of empirical temperatures. Then, by using (2.19) as an identity for all 
thermomechanical processes, in which external body forces and external rates of supply of 

entropy are chosen to balance the equations of motion and entropy balance equations, it follows 
that 

that ON = ON(TM) (3.9) 

for M, N = 0, 1,..., K. With suitable restrictions we may express TM as functions of 0N and 

replace TM by ON in the constitutive equations. Also #f(or rMN, VMN) depend only on PN' ON. 
In further application of (2.19) it is convenient to use the lagrangian form of the equation 
involving the first group of terms on the left-hand side. Also, corresponding to the assumptions 
for fr, the Helmholtz function l* has the form in (3.6) and, from a result analagous to (A 23) , 

p = * p* + t.* dz 

= - X p*$2. (wM. e,AM + W e ) A dz++ * Mdz. (3.10) 

Then P YMNM = N = p*vdz = -P , (3.11) 
M-O NJ N 

M = --e fp*2 *tAN dz, kN= -eafP*2k Ai,"ds. (3.12) a 
z p a N - 

ap- 
N 
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One case of special interest is that of an ideal gas of constant specific heat c, for which 

= PR* Inp* +cQ,(9* -0* lg*), R = RIM = c,(Qy-1), (3.13) 

where M is molecular mass and R, y are constants. Then 

P X YMN %M = PY]N = (R np*- c, lg*) p*ANdz, (3.14) 
M-O Z1 

-1K 

MN =-e Rlp*OR*ANdz = -elaR z PYMN M, 
Z1 M-O 

(3.15) 

kN =-e3f RP*6*A dz = eNR K PYJMN OM 
ZJ ^ -e, IM-O 

where PYN = P*AMAdZ. (3.16) 
21 

If the entropy y* is everywhere constant, then /N are constants, 

e* = exp (*l/cv) p*(t-l) (3.17) 

and MN =-Ae, p*YANdz, k =-AeS p*AY ANdz, (3.18) 
Z1 Zl21 

where A is a constant. On the other hand, if temperature 6* is constant everywhere; then 0 is 

constant, N = 0(N = 1,2,..., K) and 

MN = -Be p *ANdz = -BeapyoN, 

(3.19) 

kN = -Be P*N dz = -Be3 PyO,N 

where B is a constant. 
We next suppose that the fluid is incompressible with p* constant everywhere and incom- 

pressibility conditions of the form 
K 

(aMN M,a' e +bMN wM eS) = 0 (3.20) 
M-O 

for N = 0, 1, 2,..., K. These conditions induce constraint responses in the functions AM, kN of 
the form 

K K 

MN =-e, 3 aNMPM, kN = -e bMPM, (3.21) 
M-O M-O 

where PM are arbitrary functions of xa, t which have also absorbed the contributions from 

(3.19). The entropies are still given by (3.14) and, from (3.7)1, P0 is constant and pM = 
0(M= 1,2,..., K). 
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If, in addition, the temperature is constant everywhere then 00 is constant, N = 0(N = 1, 
2,..., K) and= con N=0 SN=, =0 (3.22) N t- =onst., ==0, N=-0, s=0, =0. e3. 

In applications, constraints other than the constraint of incompressibility, are introduced 
into the theory but these are best considered for each special case. 

4. JUMP CONDITIONS FOR STEADY FLOW 

The field equations obtained in ?2 are valid only in regions where there are no discontinuities. 
In obtaining the solutions to certain problems, however, it may be necessary to consider 
boundaries at which there are discontinuities in both the kinematic and kinetic variables and 
this requires considerations of jump conditions across such boundaries. Previously, the jump 
conditions have been obtained with various degrees of generality by Green & Naghdi (1976, 
I977), Caulk (I976) and Naghdi & Rubin (1981, 1987) for a theory with one director from 
the lagrangian form of the integral balance equations. Here, we return to the integral balance 

equations (2.5)-(2.10) and derive the appropriate jump conditions for K directors from the 
eulerian forms of these equations. In the interest of simplicity, we restrict our attention only to 

jump conditions for steady two-dimensional flow in planes perpendicular to the x2-direction 
using the special rectangular cartesian coordinate system introduced in ?3. Thus, we set 

WM = WM = WM e, wo = v = , MN = VMN e, 

N =INI e,, kN = kN e, mN = mN e, n=mo=n,e,, ( 

where M2 = 0, uMN2 = 0 (4.2) 

We suppose that there is a discontinuity at x1 = x0 and apply the eulerian forms of (2.5)- 
(2.10) to a strip bounded by x, = x0 - and x, = x + and then take the limit as a - 0. 
Because the motion is steady, there is no contribution to the jump condition from the time 
derivative a/at of the surface integrals. The contributions from the line integrals is immediately 
of the form (4.8) listed below, but there may also be contributions from the remaining surface 

integrals because their integrands may contain singularities in the region (xo -8, xo + 6). In the 
limit as - 0, it follows from (2.5)-(2.7) that 

mPVMN1]- lim (vMNa + vNMS) dx = 0, (4.3) 
a0 o J Xe-& 

P SWMVMOI= [n] +limJ pfdx, (4.4) 
M-0 O0 J Xo- 

[[ K m Cx0+8 K c+ 

LoP W W M-D /imJ p S WMVNm dx = [m + lim (pIN-kN) dx. (4.5) 
M 0 a b#0 xo-8 M-0 8O+0 X0-8 

From the entropy balances (2.9) and energy equation (2.10) the jump conditions are 

- K - x0+8 K +S+8 LP Ml VMN1im P MVNM 
- [kN+ lim i (SN + N) dx, (4.6) 

M-O 8-:0 Xo-8 M-0 J0 Xo- 
8 Vol. 324. A 
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and 

11 2t (wM N WN+PtMN) VMN1 
M-0 N-O 

= [ (m WN- 
- 

hN) +lim I (rN + N VN) p dx, (4.7) 
LLN-O a 8-0 xJo-8 N-O 

where in the above formulae 

t] = flxx+ -flz-xo (4.8) 

Before further consideration of the jump conditions in the context of particular applications 
in ??5-8, it is useful to examine the nature of the differential equations of motion and the jump 
conditions in the special case of a single constrained director for applications to problems of 
fluid flow over a small constant depth. As noted earlier in this section, previously both the field 

equations and the jump conditions were derived in lagrangian form, with the derivation of the 
latter being limited to that for steady flows confined to planes perpendicular to the x2-direction. 
The field equations were also obtained from the eulerian formulation of the conservation laws 
in Green & Naghdi (I986) and it was noted that these were equivalent to the field equations 
in the lagrangian form. 

We now proceed to obtain the field equations in the case of a single constrained director 

(mentioned in the preceeding paragraph) by specialization of the general results of?2 and then 
deduce also the corresponding jump conditions from the present eulerian forms. Thus, with 
reference to a fixed system of rectangular cartesian coordinate axes introduced in ?3, consider 
a fluid sheet that is bounded below by the plane x3 = 0 and above by a surface x3 = S(xl, x2, t) 
which represents the waveheight. The fluid is of constant mass density p"* and, in the absence 
of surface tension, flows under the constant gravitational acceleration -ge3. Also, we denote 
the pressure at the bottom surface by = fi(xl, x2, t) and at the top surface by fi = f(x1, x2, t). 
From the general theory of ?2, we select the special case of a single director and choose the 
weighting function A,1() = = x3. Then, the velocity vector v and the director velocity 
wl(= w) when referred to the base vector es can be expressed as 

v = vae, w = we,. (4.9) 

Because the fluid is now assumed to be incompressible, from (3.20) we have 

vua +w=0, (4.10) 

where we have also set w3 = w. In addition, because the director is constrained, we have 

w=O0. (4.11) 

As explained in Green & Naghdi (1986, ?8), the constraint conditions (4.10) and (4.11) give 
rise to constraint responses of the forms 

Mo = Na =-pee, k =-peg+rpep, M = rpep, (4.12) 

where p, ra,, raf are arbitrary functions of xa, t. Values for the inertia coefficients oo0,o gi, 1, the 
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velocity components pUoo,pl0,,opvU1 and the assigned fieldsf= o, 1 were also listed in (8.7) of 
that paper (Green & Naghdi 1986). The relevant field equations may now be deduced from 
(2.12b) and (2.13) and are given by 

q/latt+ (ova),a = 0, 

p*Oi (kvl/at+ av,aV/Xf8) = - ap/?ax+f 
ip * 2 (law/at + V _"/aXl+ W2) = p*gq _fi +'f, 
p*qs (awlat+ v,aw/ax, + w2) = p_fip*gqS q. 

(4.13) 

We do not record here the equations involving the response functions r, and rfl because they 
will not be needed in our subsequent developments. The system of equations (4.13) are 

equivalent to those utilized in a number of previous papers from a lagrangian formulation of 
the theory for an incompressible inviscid fluid. 

Consider again an incompressible inviscid fluid but suppose that the two-dimensional flow 

(confined to the vertical x,,x3-plane) is steady. Then, it follows from (4.10) and (4.13)f 
that 

vl = u = k/, w = k'/'l,2 (4.14) 

where u is the horizontal component of the velocity, k is a constant flow rate and a prime 
denotes differentiation with respect to xj'= x. Now suppose that there is a discontinuity in S 
or q' at the place x, = x = x0 (say). Then, recalling the notation (4.8), from (4.3) to (4.7) we 
have the jump conditions 

[k = O, (4.15) 

[p*ku] = -[P1+ F1, 

lp *kow] = Fs, 

[-Ip*kq2w].limJ p*oq3wdx = L- ) 
8-40 Jz,-6 

where 

(4.16) 

(4.17) 

(4.18) 

lip*k{u + 1oSw2 +gq}] = [-pu] - ) 

F,=lim hi'dx, F3=-lim dx 
19-0 ?1 z,- 8-+O z0-$ 

L'=-lim J fqdx, 8-+O x x -8 

(4.19) 

(4.20) 

and P is the rate of energy dissipation which may arise, for example, from spray formation at 
the leading edge of a boat or from local viscous effects at the jump. 

It is of interest to provide a direct comparison between the jump conditions (4.15)-(4.19) 
and the corresponding jump conditions obtained in a number of previous papers (mentioned 
earlier in this section) from the lagrangian formulation of the theory. For example, apart from 
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a slight change in notation, the jump conditions utilized in the papers of Naghdi & Rubin 

(I98I, I986) in a similar context can be written as 

[k] = , [p*ku+p]= F1, [p*kSw] =F3, 

[p*kw=L3. -= limJ (f +pi)dx, (4.21) 
-_O J x0 - 

-p*k{U2 + (qW)2 +g} +pu] =- 

and it should be noted that w in the papers cited earlier (e.g. Naghdi & Rubin 1986) is replaced 
by qSw due to a difference in notation from that used here. 

The jump conditions (4.15), (4.16), (4.17) and (4.19) are the same as the corresponding 
conditions in (4.21), but the condition (4.18) is different. This is because the physical in- 
terpretation of the quantity L3 in (4.18) is not the same at that of L3 (or a combination of L3 
and F3) in (4.21). If we examine the manner in which the inertia coefficients and the assigned 
fields f and 41 have been identified (or interpreted) in both the lagrangian and eulerian 
formulations, then due to the use of different coordinates and weighting functions we should, 
in general, expect different values for those quantities to emerge. In the special case in which 
S is continuous at x = x0, but not q', then (4.18) reduces to 

{p*k2[j'] = L (4.22) 

and this is equivalent to a combination of equations (4.21)2,3. The same is true iff is bounded 
in the interval (x0 -, x0 + 6). In other applications it may happen that the equations yielding 
either the value L or Lg are of no interest so that differences in the two formulations are of no 

consequences. 

5. FLUIDS OF INFINITE DEPTH 

Here we consider an inviscid incompressible fluid of constant density p* and infinite depth 
using the theory of ?2 and the special reference frame of ?3. The fluid is subject to constant 
gravity -ge3 and is bounded above bythe surface 

= x3 = f(x, x, Xt) (5.1) 

at which there is a pressure -= fi(x, x2, t) and a constant surface tension T. The fluid occupies 
the region -h < C < f with h-* co. From ?2 we select the theory with two directors corre- 
sponding to weighting functions A1(() = eaC, A2(() = , where a is a parameter. In addition 

do = xe+de, d = O, d2 = e (5.2) 
where the scalar d is a constant. The velocity v is constrained always to be constant in a direction 
parallel to the plane 3, the velocity w2 is constrained to be zero, and the fluid is incompressible 
so that 

v=c,e, w = O, wl= we,, (5.3) 
w a+aw3O = 0,(5 

where c, are constants. In view of (3.21) and the extra constraints in (5.2) other than 

incompressibility, the constraint response functions are 

Na = re,, k =-pae, M = -pe, (5.4) 

M = f,e,, k= r,e,, J 
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where p, r,,, 7,, r are arbitrary functions of xI, x2, t. The response functions (5.2) satisfy the 
moment equation (2.14) if (55) 

r3' = r,, r~p = rp= . (5.5) 

The mechanical field equations (2.12) and (2.13) given previously in Green & Naghdi (1986) 
are 

+a (c +wc ewfl) w e ea = 0, (5.6) 

P eat eal 2a + X * e2a w3 ^ = (- q) (5.7) 

e2a e at Ca e+ e = 
ap-4+-* 

e ax( (f- q) e afl (5.8) 

p* 28 t Q p O2w aws 2a a. 59 -- 
e 

*p 
+ (iePDBc*fl +e {e2Pw+ ~* eew3 w . =ap-(p)ga (5.7) 

Equations involving the response functions r2, 3, are not required in subsequent analysis and 
are omitted. Also 

q _1 + (fl,1)2} ,622- 2f, fl,2f, 12+{1 + (fl2)2} 11 (5.10) 

T 1+(fl)2 +(f 2)2}l 

We consider steady waves on a stream moving with constant speed c in the x1-direction, with 

the temperature everywhere constant. Then, c1 = c, w2 = 0 and f, w1, W3,p, rk are functions of 

x1. With zero surface tension, (5.3)4 and (5.6) to (5.9) reduce to 

l+aw3 = 0, (c+w, ea)fl- eaf= (5.11) 

p*c e2aflws/(2a) = -p' +f eafli, (5.12) 

aC .e2 c + wp* ex x 'a 
P2 ew+ '*(W, (w w+aw) = ap- (p*g/a) eaf-- ea, (5.13) 

2a 3a 
p*e aflwl/a = r', +fi, (5.14) 

where a prime denotes differentiation with respect to x1. Equations (5.11) may be integrated 
to yield w= (A-al) e-a 3 = C(l+A-afl) e-afl, (5.15) 

where A is a constant.. 

Suppose that there is a discontinuity in , or ff or both at the place x = x0 which induces 

discontinuities in the dynamical variables. Then, from (4.3) to (4.8) and the equations of the 

present section we have the following jump conditions 

[cafl+ w e al = McA] = 0, (5.16) 

[(p*/a) (c eafl+w e- 2af) wJ = [r1J+ F1, (5.17) 

[(p*/a) (ce eal+ w e2af)c+ (p*/a) (c e e2afl+ w, eaf) wJ 

-lim p* (lC e2af + wi e3af) 3, dx =-[ + L1, (5.18) 
t-O Jxo-8 

Czo+8 

[(p*/a) (c e 2a+fl+w e ag) w3]-lim J lp* e3a dx 

=-L3+lim J (ap- (p*g/a) eaf dx, (5.19) 
-. O J Xz-8 
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[(p*/a) (c ea,+ 2wl e2a) cwl+ (p*/2a) (2c e2+ 3wi e?a) (w2 + 2)] 

= [cr,, -pw,]- c -lim (p*/a) g eafw3 dx, (5.20) 
8-+O xo xO 

where cP is a dissipation of energy which may arise, for example, from spray formation at the 

leading edge of the boat or from local viscous effects at the jump and 

F = lim ffl'dx, L = lim A eaff'dx, L= -lim J eadx. (5.21) 
8?+O x j 4--?0 d_0 Xf0 d-a 

6. WEDGE-LIKE BOAT 

Problems of steady two-dimensional planing on water of large depth have been considered 

by Wagner (1932), Squire (1957) and Cumberbatch (I958) using the linearized three- 
dimensional equations of an incompressible inviscid fluid and small planing angles. On the 
other hand the nonlinear steady-state solution to the problem of gliding of a wedge like boat 
or plate on a fluid of large depth has been given by Green & Naghdi ( 986) based on equations 
of the form given in ?5 of this paper. Here we complete the discussion of this problem by 
examining the transition to planing of a wedge-like boat, using the theory of ?5 in which use 
is also made of the jump conditions. The method of solution is similar to that used by Naghdi 
& Rubin (198I, I986) for the transition to planing on fluids of small depth, and may be 
extended in the case of water of infinite depth to apply to boats of a general shape. 

We consider the equivalent problem of steady motion of a fluid in the x= x,-direction past 
a wedge-shaped boat (see figure 1). Far ahead of the boat the fluid is assumed to flow as a 

c 'I. ft 

I I I I 

MAYA N AW/Y j /w/ j /^MW UWU WM% 

" I ? >- II f ? < III 

FIGURE 1. A sketch of the planing of a wedge-like boat showing different regions referred to in the text 
(see ?6). 

uniform stream with speed c until it meets the leading edge of the boat at x=x,. The motion 
is two-dimensional in the (xl, x3) plane. It is convenient to divide the fluid into three regions: 

region I: - oo < x < x; region II: x, < x < x,, and region III: xII < x < oo. The fluid height 
in region I is f = 0. In region II the wetted length of the wedge is I and the fluid height at the 

trailing edge x= xS is f2 =- sin where a is the inclination of the boat bottom to the 
horizontal. The fluid is assumed to leave the trailing edge of the boat smoothly and forms a 

wavey system in region III. The pressure at the fluid surface in regions I, III is constant and 
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equal to p0 and fi is the varying surface pressure at the boat in region II which has to be found. 
Under these conditions the equations of motion (5.12) to (5.14) may be integrated to yield: 

region I, f= 0, w = =0, p=poa+p*g/a2; (6.1) 

region II, wl = c(A2-a ) ea , w = c(l+A2-af8) e-aft, (6.2a) 

p/p* = (c2/2a) {2 + A2 + (1 +A2) af-a2f2} eafl- (g/a2) a e (6.2b) (.2 b) 
+ (c2/6a) {(4 + 3A2) af- 3a2fl2/2} eag tan2 a + E2 efl, 

/p* = (c2/2) {2 + A2 + (1 + A2) af-a2 2}- (g/a) (1 + a)# 
(6.2 c) 

+ (C2/6) {4 + 3A2 + (1 + 3A2) af- 3a2fl2/2) tan2 a + aE2; YTTr 
region n11, 

wl= c(A3-af) e-"a, w3 = c(1+A3-a/~) e-aff', (6.3a) 

r(B')2(1 A- af')2(3 + 2As - 2afB) = Ir{(l +A3) (2 + A3) af 

-i (3 + 243) a2f2 + a3f3}-(1 + A3) afl +a2f - D3 (A - a) ea + E3, (6.3 b) 

p/p* = (pO/p*a) eaf+ (c2/2a) (2 + A-afl) ea+ gD3/a2, 

where r = c2a/g and A, A3, D3, E2, E3 are constants. 
At the leading edge x =xi between regions I, II there is a jump in the values 

ft is continuous. We apply the jump conditions (5.16) to (5.20) so that 

A2=0, [r,,]+F =0, [p]=L1, 

P*c2 p*ta 
,4= 2a tana, [cr]-c 4a 

tan a, L 

E2=p +- P + ( -r-'r tan2 c). 
p pa a 

(6.3 c) 

of ft' whereas 

(6.4) 

(6.5) 

At this edge the plate is acted on by an isolated force with horizontal and vertical components 
9R, 5R respectively, where 

2 p*c 
9R=-F= tan a+A Y-L= tan a. (6.6) 4a 2a (.6 

At the trailing edge x = x1,ft = -b tan a where b = I cos a, we assume that the flow is 
smooth with if = -tana, and conditions (5.16) to (5.20) give 

A = 0, [p1 = 0 

so that, with the help of (6.2b), (6.3b) and (6.3c) we have 

(6.7) 

Ds eab tan = (E2 - ) + ab(1-) tana-F(ra2b2 tan2a +ab tan a + a2b2 tan4a), 

E3 = (Ds ab tan a) ea*btan_ ab tan a-}a2b2 tan2 a+ r(ab tan a 
F 

+ tan ab tan+x t a) + (1 +ab tana)(3 + 2ab tan a) tan . (6.8) 

Hence 
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By (6.5), (6.8) reduces to 

a20 
eabtna = +1 + (1-r) ab tana 

-F{l(1 +ab2) tan2 o + ab tan3 a + ab2 tan4 a} 

^^~a3b tan< , ? ,r^^ g,2.ab 2FraSb 
E3 = ab ta (2 a2 tan+2 a_a^ (3 + a2^2) tan a- 2 tan4 a 

p 12 3 

F 
-WFa3b3 tan5 a+ 12 ( +ab tan a)2(3+2ab tan a) tan2 a. (6.9) 

With the help of (6.5) the pressure at the bottom of the boat, given by (6.2c), becomes 

(/-P?)a=_ a2- 1(2 F) Fa2fl2+ (5+2a - t3a2f2)tan2 a. (6.10) 
p*g * -p*2g 2R R 12 

The total force, per unit width, normal to the boat bottom due to this pressure difference 
is (f-p) dfl 

-b tana sin a 

p*C2 {2-Fa22 tan =abl seca+ a -- 4 

+ [ab(5-_a2b)-a2b2 tan a-a3b tan3a] tan3a}. (6.11) 

Wave motion in region III is governed by (6.3b) in which A3 = 0 and D, E3 are given by 
(6.9). Such motion will only be possible if r < 2. To complete the problem it is necessary to 

specify the values of F(or of a) and 0. Guided by the pressure problem studied by Green & 

Naghdi (1986) we choose 
r= , a=g/c2. (6.12) 

If a Froude number F for the flow is defined in terms of the wetted length of the boat, i.e. 
F2 = c2/(gl) then, from (6.12), the normal force (6.11), and the components of the isolated 
force (6.6), become 

0 p*g12 tana lr F2 cos2a . sin a, 
+ COS Oa+ ^~~ ^cos<x~5F"C2 

a 
-sina tanx F 4 1 32 cos2 tan , 

(6.13) 

tR l = *gp*g2F4 tan . . 

Following the discussion of Naghdi & Rubin (I986) for the boat problem on water of small 

depth, we choose 0 so that the resultant of all the forces in (6.13) is normal to the plate. 
Then 

0 = p*gl2F4 tan2 a, R= }p*g12F4 tan2 a (6.14) 

and the total resultant force normal to the plate is 

LT = L+ QR sin a + fR cos a 

p*g12 tanf a- coa + COS2 a sin ] (6.15) - cosa+2F4 seca+ [2F F2 -sina- tan. (6.15) ?4 3 F2 F*2 cos a 

In a similar way the moment of the fluid forces on the plate, about any suitable point, may be 
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computed. Then a discussion of the motion of the boat under suitable external forces may be 
carried out in a manner similar to that given by Naghdi & Rubin (1986) for water of small 

depth, but we omit details. 
If the angle of inclination a of the bottom plane of the boat is small then the wave elevation 

in region III, given by (6.3b), (6.9) and (6.14), can be expressed as a series of tan o, the major 
term being 

f = -{al sin a(x- xi,) + cos a cosa(x- x1)} tana, (6.16) 

where a' = F21. 

7. FLUIDS OF FINITE DEPTH 

We continue to use the cartesian coordinate system introduced in ?3 and we consider a fluid 
of constant density p* bounded below by the fixed plane x3 =- h, where h is a constant, and 
with the surface of the stream given by 

= X3 = f(x1, 2,t) 

at which there is a pressure i f (xl, x2, t) and a constant surface tension T. The pressure at the 
bottom surface is f(xl, x2, t). From ?2 we select the theory with three directors corresponding 
to weighting functions A,(g) = cosha((+h), A2(h ) = sinh a((+h), A3() = w, with a being 
constant and we choose 

do = x,e+de3, = d2 - , 3= e3, (7.1) 

where d is a constant. The velocity v is constrained always to be constant in a direction parallel 
to the plane J, the velocity wf3 is constrained to be zero, and the fluid is incompressible so 
that 

v = cce,, ' 3 = O, wl = wlew, w2 = w2~e,} (7.2) 

wl + aw23 = 0, w,aw + a w1= O, 

where c, are constants. We also impose the additional constraint 

w2a =0 (7.3) 

on the second director. In view of (3.21) and the extra constraints other than incompressibility, 
the response functions are 

N, = r, e,, k1 =-pl ae3, k2 = q 
- 

e -pae, 
MAl =-pee, M2, =-qfae-p e., M = s, e,, k3 = s,, (7.4 

where r,,,q, qaf,P,P1', s,, s, are functions of x, t. In view of (7.1) the response functions (7.4) 
satisfy the moment equations (2.14) if 

r3' = S, ra = %. (7.5) 

The mechanical field equations (2.12) and (2.13) given previously in Green & Naghdi (1986) 
are 

+{C +wwa cosh (a)} --w2 sinh (a) = 0, (7.6) 

awl _w 
sin ) sinh (a) sinh (+[sinh (aS) cosh (a) + a]w} l 
Ia at a {a 

~~~~~~a ~t~~~~~~~~~~~~~~~~~~a 

+ {p*{sinh (ao) cosh (ao) - a)} W2. Wl + (f-) a (7.7) 

g~~9~~~ Vol. 324. A 9 Vol. 324. A 
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p* aSw, p * 
2{sinh (ao) cosh (ao) + a}-) + -{c[sinh (an) cosh (ao)+ a] + [3 sinh3 (ab) 

+sinh (a0)]3 w}al+3P* sinh3 (aP) tu3, ^ =- + (fi-q) cosh (ao) (7.8) 

- {sinh (a)S) cosh (a)-aS } - aO 

+2 {2cf[sinh (a{) cosh (ad) - a)] + [ sinh3 (a) w,} 3 

+ sinh (a) w3 = ap-(f-q) sinh (aS)--p*(g/a) {cosh (a) - 1). (7.9) 

Equations involving the constraint response functions P1, r3a, q,, qas, s1 are omitted because 
the values of these constraint response functions are not required in the further development 
of the theory. Also q = f+h and q is given by (5.10). 

We consider steady motion on a stream moving with constant speed c in the x1-direction with 
the temperature everywhere constant and zero surface tension. Equations (7.2) and (7.6) to 

(7.9) reduce to 
WI,(7.) r e to = c(A-a,f)/sinh (a), (7.10) 

w23 = c{ (A - af) cosh (aO) + sinh (aq)}) '/sinh2 (aO), 

(p*/a) (c sinh (aq) +afwll) w1 = r1+ +f', (7.11) 

(p*/2a) {c[(sinh (aS) cosh (aS) +aO] +2w1 sinh (a))}w'= -p' +i cosh (aQ) ', (7.12) 

(p*/a) {Ic[sinh (aO) cosh (aO) -aO] + k sinh3 (a))wl} w'23 

+jp* sinh3 (aO) w3 = ap-p sinh (a) -p*(g/a) {cosh (aO)- 1}, (7.13) 

where A is a constant and a prime denotes differentiation with respect to x,. 
Suppose that there is a discontinuity in ft or ,f' or both at the place x = xo which induces 

discontinuities in the dynamical variables. Then, from (4.3) to (4.8) and the equations of the 
present section we have the following jump conditions: 

[caO+w11 sinh (a4)] = [c(A+ah)] = [cA] = 0, (7.14) 

[(p*/a){c sinh (aq) +f[sinh (aO) cosh (aS) + aq] w}11 w] = [rlll+ F, (7.15) 

[(p*/a){c sinh (aqi) + [sinh (aO) cosh (aO) + aO] w} c 

+ (p*/a) {{c[sinh (aq) cosh (a) + aO] + [- sinh3 (a) + sinh (ad)] w1} wl] 
fo+6 

-lim { 2p* [sinh (aO) cosh a-aO] c+kp* sinh3 (ao) w,}w23dx= -[+p +L, (7.16) 

[(p*/a){-c[sinh (aO) cosh (aO) -aO] + sinh3 (aa)w1} W23] 

-lim ' p* sinh3 (aS) w23dx =3-lim -lim P* sinha3(aim ap+(p*g/a) [cosh(aa)-1]} dx, (7.17) 
8--0 d xo-8 8--0 fxo- 
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[(p*/a) {c sinh (ao) + [sinh (aq) cosh (aq) + a] w1U} cwl 

+ (p*/2a) {c[sinh (aq) cosh (ao) + aq] + [ inh (aqS) + sinh (aq)] w1} w 2 

+ (p*/2a) {{c[sinh (aI) cosh (aq) -aq] + sinh3 (aq) w11} W23 

? f+8 
= [cr --Pw1] - c-lim J (p*/a) g{cosh (aq)-1} w2d dx, (7.18) 

where c7 is a dissipation of energy, F1 is given by (5.21)1 and 

L = lim p ' cosh (a) dx, t = -lim fi sinh (a) dx. (7.19) 
8-+0 J 2,-b t 8-,0 0O-8 

8. WEDGE-LIKE BOAT FOR FINITE DEPTH 

The problem of the transition to planing for boats, including wedge-like boats, has been 
solved by Naghdi & Rubin (1981, I986) using a theory appropriate for a fluid of small depth. 
The corresponding problem for a fluid of large depth is discussed in ?6. Here we consider the 
same problem by using the slightly more complex theory of ? 7 which is appropriate for fluids 
of any depth, including as limiting cases the two previous problems. 

As in ?6, we consider the steady flow of the fluid in the x = x,-direction past a wedge-shaped 
boat as depicted in figure 1, but bounded below by a horizontal plane. We again divide the 
fluid into three regions as described in ?6 so that in each region we have: 

region I, 
fi = 0, ^ = 1h, w-t = w O0, p = (pO/a) sinh (ah)+ (p*g/a2) [cosh (aq) -1]; (8.1) 

region II, 
wl = c(A2-a/)/sinh (aq), w23 = c{(A2-af) cosh (aq) +sinh (aS)}q/sinh2 (aO)) (8.2a) = --tana, I 

P *g sinh (aq) - {aq sinh (a) -cosh (aq) +1}-2a h ( a sinh () 3 cosnh (a) 

a2(A sinh (an _ ha(a)3 cosh (af) 
+~ a (A2-a) 4 sinh (a5) 2 4 

a202 sinh (a csh(o)) a,, . ,,a^ a 

a 2 4 

a+ sinh (a) 
a cosh 

a) G(0q) sinh (aS) tan a, (8.2 b) 

p*gB2 p*ga p*c2(A2-afl) 
a a 2sinh2(as) 

+^P*c{(Anafl)[- 
a a .3 3cosh 

(a() 
4 sinh (a) 2 4sinh (a)] 

a2+ 2 a cosh (4) d.Gc + aG -+ asinh (ah) +{ da + ) tantan, (8.2c) 
4 4sinh((aq) do 
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d_G = cosh (aq) {[2c cosh (aq) + w coshsh2 (a) + 1)] [c(3a -3 sinh (aS) cosh (aQ) dS 6a3 sinh4 (aS) 

-2w,, sinh3 (aq)] +2 sinh3 (aq) [c+w11 cosh (aq)]2}; (8.2d) 

region III, 
wl =c(A3- afl)/sinh (a5), w23 = c{(A3-,al) cosh (aS) +sinh (aS)q'/sinh3 (aS), (8.3a) 

F(0,/)2 {(A3 -fl) cosh (aS) + sinh (av)}2 
sinh2 (aI) 

x {3 sinh (aq) cosh (aQ) -3a+ + 2(A3-afl) sinh2 (aq)} 

(Aa3-af) {B3+ 1- cosh (aqS)) +(A3-afl)2 
sinh (aq) 23 4 sinh2 (a) 

3(A3-afl)2 cosh (a) _(A _ afl) (A-afl) }+E3 (8.3b) 
4 sinh (aq) 

p*gB3 p"c 
a2 -a {sinh (aS) cosh (aq) + a + 2 (A3-afl)) w} 

+ {(A3-afl) cosh (aS) + sinh (aS)}+- sinh (aS), (8.3c) a a 
where F = c2a/g. 

At the leading edge x= x, between regions I and II there is a jump in the value of ?' whereas 
qS is continuous. Applying the jump conditions (7.14) to (7.19) when 0 = h yields the following 
relations: 

A2=O, [rll]+Fi=O, [p]=L1, 

a = 2 sin h (ah) ) tan a, L = F, cosh (ah), (8.4) 
2a 4sinh (ah) (8.4)sin () 

Tcr- = p*c csinh (ah) cosh (ah) -ah tan a [crl]--CP = 4a sinh2 (ah) 
tan a. 

Hence [sinh (a) cosh-(a a tan a (8.5) cosh (ah) 4a { sinh2 (ah) } (8. 

and, with the help of (8.1) and (8.2b), it follows that 

(B2 -Ptanh (ah) = a) tanh (h2 tanh (ah){a tanh ( ah} 

r sinh (ah) cosh (ah) - ah } a a20 
n ( sinh2 (ah) I- tan2 a- -F(h) tanh (ah) tan2 a- (8.6) 

4if sinh2 (ah) J P*g 

At this leading edge, the boat is acted on by an isolated force with horizontal and vertical 
components 9R, IqR respectively, where 

~a = -F1 = +P*c {2sinh (ah) cosh (ah) - ah 2 a, 
_f =-RnF, (+ 4a { sinh2 (ah) J ' 

Y L3 , pc sinh (ah)cosh (ah)-ah (8.7) 
R = sinh (ah) 2a sinh (ah) tan Ja. 
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At the trailing edge x = X11, f = - b tan a = - sin a, we assume that the flow separates 
smoothly with -' = q' =-tan a, and conditions (7.14) to (7.19) give 

A3= 0, [P = 0 (8.8) 

so that, with the help of (8.2b), (8.3b) and (8.3c), we have 

B3 = cosh (ah) -1 - rsinh (ah) - coth (a) + O(tan2 a), 
p*g 

E= Ia3b cosh (ah) tan a[1 ab cosh (ah) tan a~] 2b [1 rFah + sinh (ah) cosh (ah)]tan2 
p*g sinh2 (a h) a 24 sinh (a 

+[sinh (ah) cosh (ah) - ah] tan2 a 
+ 4 sinh2 (ah) + O(tan a). (8.9) 

The constants have only been calculated explicitly to the order stated since, in the rest of the 
calculations we shall assume that the angle a is small. 

With the help of (8.6) and (8.2c) the total force per unit width, normal to the boat bottom 
due to the pressure difference f-p0 is 

L ( r f-p) dfl_ -Qr cosh (ah) 

b tana sin a F2sinh (ah) 

+ p 12 
[1 rsinh (ah) cosh (ah) +ah] sina+O(tan2a), (8.10) 

2 2 sinh2 (ah) 
where F2 = c2/(gl). 

Wave motion in region III is governed by (8.3b) in which A3 = 0 and B3 and E. are given 
by (8.9). Such motion will only be possible if 

2 sinh2 (ah) 
< sinh (ah) cosh (ah) + ah (8.11) 

To complete the problem it is necessary to specify the value of r (or of a) and 0. Guided by 
the pressure problem studied by Green & Naghdi (1986), we choose 

c2a/g = F= tanh (ah). (8.12) 

Again, following Naghdi & Rubin (I986), for the boat problem on water of small depth, we 
choose 0 so that the resultant of all the forces in (8.7) is normal to the plate. Then, we 
have 

p*gl2F' sinh (ah) cosh (ah) - ah ta2 

and 2 rsinh2 (ah) tan,(8.14) 

p =2gEF {sinh (ah) cosh (ah) - ah} tan 
2 rsinh (ah) 

(8.14) 

= 2 .l~ F sinh2 (ah) 

Given (8.12) and (8.13) the lift L in (8.10) normal to the boat becomes 

L p*g2 [sinh (ah) cosh (ah)-ah] sin+ (tan2 (8.15) 
4 sinh (ah) cosh (ah) 
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The total resultant lift normal to the boat bottom is 

LT= L + QL sin a + .R cos a 

p*g12[sinh (ah) cosh (ah) -ah] [1 + 2(F4/) sec a] sin a 
4 sinh (ah) cosh (ah) 

) 

When the angle is small the wave motion in region III is given approximately by 

0 -h=fl=-{a-l sin a(x-xI) + cosacosa(x-x,))}tana, (8.17) 

where a is determined by (8.12). 
Two limiting cases of the foregoing analysis are of interest. When the depth of fluid is very 

large then h - oo, F- 1 and the results (8.14) reduce to (6.14)2 and (6.13)3 whilst (8.16) 
reduces to the major term in (6.15). On the other hand when the depth is small, h is small, and 

(8.14) and (8.15) become 

_ *"c2h 2 p*c2h p*gF - sin2.2 gR p3 tan2' tana, R = p L sin. (8.18) 

The work of one of us (P.M. N.) was supported by the U.S. Office of Naval Research under 
Contract N00014-86-K-0057, Work Unit 4322 534 with the University of California, Berkeley. 

APPENDIX 

Consider a finite three-dimensional body embedded in a euclidean three-space and identify 
each material point of the body by a convected system of coordinates 6', (i = 1,2,3). Let r* be 
the position vector, from a fixed origin, of a typical particle in the present configuration of the 
body at time t. Then, 

r*=r* (0, t), g,= r*1/0a, g' g = a,f 
g,=g, g,, ge=g,.g,, g= [glg2g3], 

where g , g' are covariant and contravariant base vectors, respectively, gj and ge are covariant 
and contravariant metric tensors, respectively, and & is the Kronecker delta. The velocity 
vector of a typical particle bf the body denoted by v* is defined by 

v* = r*, (A2) 

where a superposed dot stands for the material time derivative holding 91 fixed. For convenience 
we adopt the notation 03 = z. We assume that the body is bounded by the surfaces 

z =2(1, 02), z =l(1,02), Zl < Z (A 3) 
which are smooth and non-interesting and that, in this region, the position vector r* is 
represented by K 

r*= E A.N(Z)dN, Ao= 1, do=r 
dN=NdN(9a) r,}0 (A 4) 

r = r(, t), dN = dN(, t). 

The position vector r may be regarded as representing points on a two-dimensional surface 
whose base vectors and metric tensors are 

aa=aa(O,t) = r/la&, a' a= t, a.3a 1 x, 
^a,=a, a^~, aOB=a"?a ,~ a= [a ], J(A 

) 
a, = a. afl, a=8 = a~. aS, at = [a, a. a], 
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where Greek indices have the values 1,2. The particle velocity in the three-dimensional theory 
is then given by K 

v* = S A,(z) w,, v = w,o 
N-O No (A 6) 

v = v(, t) = t, WN = wN(, t) = N. 

Now let (i = 1,2, 3) be a system of fixed curvilinear coordinates in the same euclidean 

three-space and let points in this space be specified by a position vector F* = 1*(C), with 

corresponding base vectors and metric tensors 

gi= /, ggk = gfk = gi'gk( 

gk = tgg, = [eg g3],. 
We select a fixed reference surface in this space which, with its corresponding base vectors and 
metric tensors, is specified by 

r= r(), a,=a r/8C, aa, = 8, a = a,x2a (A 8) 
atfp = ,' a aaf, d- = a, = [ ]. (8 

Let P be the two-dimensional region of an arbitrary fixed surface bounded by a closed curve 
8P on the fixed surface (A 8), whose unit outward normal in the surface is 

v = da' = a,. (A 9) 

In terms of the fixed coordinates ', the velocity of a particle at time t may be represented 
by K 

v* = o*(g, t) = f*'g = Z N() N) 
N-0 (A 10) 

Cg = g3, X0 = (, = V(g, t) = Wo, W, = WN(g t). 

The surfaces (A 3) which bound the body are now specified as 

g= Ci(CI,02,t), C= g2({,),t). (A 11) 

These surfaces are material surfaces and move with the body so that 

aC/at = v-f*S-*a/aU (= g), (A12) 
a?/-at= vrs-u*-a/C/a7 (g = 2). 

Any function F* associated with the body may be expressed in terms of G", t or Y', t. Thus, 

F*((, t) =F*(, t) (A 13) 

and, in particular, for the mass density we write 

p* (0', t) = p* (, t). (A 14) 
We note that 

/* + p* div v* = ap*/lt div (pv*'*) 

(A 15) 
p*F* +p*F* divv* = (Oa/t) (*F*) + div (p*F*v*) 

(a/at) (p*F*) +g(gip*F*v),, 

where (),0 = ( )/0'. 
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We now choose the convected coordinates ' such that at time t, the '-curves coincide with 
the fixed g-curves, i.e. 08 = C + bI where bI are constants. Also, the moving surface represented 
by the vector r in (A 4) coincides with the fixed reference surface (A 8) at time t. With this 
choice of '0, 1 i 

g, = g =g, gi =, aa = , a = = =d etc. 

,N(Z) = AN(()' 
From (A 15) we have 

(P +p* divv*) AN(z) AM(z) (PANAM) + N ), NAM+ N ) *3, 

or 

p'*g ANA = (gpAN Ax) + (g*, Af A 
*'),t-*,(A A + A,AM) V ,3 

where a prime denotes differentiation with respect to C. Hence, 

d f0 
dt g p*lAN AMdz IJg2p*A- N AM dC 

a+y?,z| Jp*J A ~* d {- | cp*(A";AM+ANA,) v*sdC, 

where use is made of the surface conditions (A 12), and this may be put into the form 

*aPYb0N = a (PPJ(oMN) ) + ONM a ) 'aP) (A 17) a2PYMN = 2- (afMa' 

2 C1 

where a2pYMN = PNM aPyMN= P*NM wray = gip*AN AM dz, jAPYMN = gp*XN XM dt, 

(A 18) 

a2pvMN = aa g2p*AMANv* dC 3 + g*' g* X N dC. 

Similarly, after multiplying (A 15)2 by AN and using the surface conditions (A12)1, we 

obtain 
*_ K K \K \ K 

a1pFN = ap E YMNfM a= YMNfM) + a 'P fM VMN a) af -- fM VMN '3, 

M-O M-O M M-0 (A 19) 

where F* = f /M , =F S = X X, apF=gipF*AN dz. (A 20) 
M-O M-O J 

Let Y be an arbitrary part of the moving surface r = r(Oa, t) which coincides with the part 
P of the fixed surface at time t, where P is an arbitrary part of the fixed surface (A 8). Then, 
in view of (A 19), 

d- pFNdo =- P z YMNfMdo- dt ?4p{ Y M + dtJ g dJ2M-O 

P N P fMMN p fM f)NM d^, (A 21) at MO0 aP M-O P MO 
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where dr = 4a dr. The results (A 19) and (A 21) are applied to particular cases in the main 
text: 

'~text: ( =(i) F* = v*, F*=v, 

where v*, * have the representations (A 6) and (A 10) and 
K K 

(ii) F* = = A= = M AM, 
M -O M-O 

where y* is entropy density. In connection with entropy we record one other representation 
defined by 

a' P?N p= =p*vANdz 
= 

ap S yMNlM. (A 22) 
ZJ M-0 

Similarly, a further form is needed for the internal energy, namely 

, 2 K K 
Ig I 

aper g p*e* dz S a pyMN eMN 
z1 M-0 N-0 

(A 23) 
K K K K 

e* = C eMNAM AN, * = MN AM AN, 
M-O N-O M-O N-O 

so that 
K K / K K ) / K K 

a'pe = ap X Y YMNeMN =,P X + Y f MN MN + aCM J. 

M-O N0 \ -OO N \ M-O N-O / 
(A 24) 

The foregoing analysis gives a direct connection between integral balances in lagrangian and 
eulerian forms, and hence direct connections between lagrangian and eulerian forms of field 

equations. These latter forms may be obtained by a more direct method. Using (A 13) we 
have 

p'(F*, ) =P * (+ t" ) (A 25) 

If we multiply each side by AN(z) = AN(C) and use (A 20) we have 

K K 

P*AN(z) AM(z)fM = X P *N() AM(C) at 
M-O M-O 

K K 

+ pAN (C) AM(C) P 4, () AN(C) g*fM. (A 26) 
M-O C M-O 

We integrate (A 26) with respect to z between the limits ZI, Z2 or with respect to C between the 
limits C1 and C2 to obtain 

P z YMNfM P YMN at + (OMN a) ag+fuM V0MN'3 (A 27) 
M-O M-0OL 

where we have also used (A 18). 
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