
J. Fluid Mech. (2013), vol. 722, pp. 5–50. c© Cambridge University Press 2013 5
doi:10.1017/jfm.2013.88

Growth and dissipation of wind-forced,
deep-water waves

Laurent Grare1,‡,†, William L. Peirson2, Hubert Branger1,
James W. Walker2,§, Jean-Paul Giovanangeli1 and Vladimir Makin3

1Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS UMR 6594,
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The input of energy by wind to water waves is compared with the observed growth
of the waves using a suite of microphysical measurement techniques in the laboratory.
These include measured tangential stresses in the water and air immediately adjacent
to the interface with corresponding form drag measurements above wind-forced
freely propagating waves. The drag data sets are consistent but the comparison has
highlighted important issues in relation to the measurement of fluctuating pressures
above freely propagating waves. Derived normalized wind input values show good
collapse as a function of mean wave steepness and are significantly in excess of
the assembly of net wave growth measurements by Peirson & Garcia (J. Fluid
Mech., vol. 608, 2008, pp. 243–274) at low steepness. Sheltering coefficients in the
form of Jeffreys (Proc. R. Soc. Lond. Ser. A, vol. 107, 1925, pp. 189–206) are
derived that are consistent with values previously obtained by Donelan & Pierson (J.
Geophys. Res., vol. 92, 1987, pp. 4971–5029), Donelan (Wind-over-Wave Couplings:
Perspectives and Prospects, Clarendon, 1999, pp. 183–194) and Donelan et al. (J.
Phys. Oceanogr., vol. 36, 2006, pp. 1672–1689). The sheltering coefficients exhibit
substantial scatter. By carefully measuring the associated growth of the surface wave
fields, systematic energy budgets for the interaction between wind and waves are
obtained. For non-breaking waves, there is a significant and systematic misclose
in the radiative transfer equation if wave–turbulence interactions are not included.
Significantly higher levels of turbulent wave attenuation are found in comparison with
the theoretical estimates by Teixeira & Belcher (J. Fluid Mech., vol. 458, 2002, pp.
229–267) and Ardhuin & Jenkins (J. Phys. Oceanogr., vol. 36, 2006, pp. 551–557).
Suitable normalizations of attenuation for wind-forced wave fields exhibit consistent
behaviour in the presence and absence of wave breaking. Closure of the surface energy
flux budget is obtained by comparing the normalized energy loss rates due to breaking
with the values previously determined by Banner & Peirson (J. Fluid Mech., vol. 585,
2007, pp. 93–115) and Drazen et al.(J. Fluid Mech., vol. 611, 2008, pp. 307–332)
when expressed as a function of mean wave steepness. Their normalized energy loss
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rates obtained for non-wind forced breaking wave groups are remarkably consistent
with the levels found during this present study when breaking waves are subject to
wind forcing.

Key words: surface gravity waves, wave breaking, wind–wave interactions

1. Introduction
Although energy budgets lie at the heart of many air–sea interaction phenomena,

a fundamental quantitative understanding of the exchange of energy between wind,
waves, dissipation and surface currents has remained elusive (Sullivan & McWilliams
2010, p. 23). The development of wave fields is understood in terms of a
differencing of wind input and losses due to breaking with the balance mediated
by nonlinear transfers between waves of different frequency or wavenumber (Phillips
1985). Distinguishing the precise relative significance of the input, loss and transfer
components is complicated because of their (presumed) similarities in magnitude
(Phillips 1985).

This absence of a fundamental understanding has not prevented the development of
sophisticated representations of numerical sea states (e.g. Janssen 2004; Tolman 2009),
near-surface current structure (Craig & Banner 1994; Mellor & Blumberg 2004) and
elementary models of air–sea constituent exchanges (Wanninkhof et al. 2009). In spite
of the essential coupling amongst wave field development, surface ocean currents and
constituent exchanges, there has been little progress in reconciling different approaches
because of ongoing fundamental knowledge gaps relating to the coupling of winds and
waves.

Peirson & Garcia (2008) recently assembled a suite of laboratory measurements
of net wave growth under the action of wind and found a systematic collapse of
the data as a function of wave steepness: behaviour not predicted by conventional
linear theories. Further, they found that the longstanding differences between measured
and theoretically (or numerically) predicted growth may potentially be reconciled in
terms of wave coherent tangential stresses, most importantly at low wave steepnesses.
They also observed that there were few direct measurements of wind-energy input
and any existing measurements have remained unreconciled with observations of net
wave growth since the pioneering studies by Shemdin & Hsu (1967) and Bole & Hsu
(1969).

The purpose of this present contribution is to report detailed studies to measure
levels of wind-energy input to freely propagating wave fields, consequent growth
in the laboratory with estimates of wave dissipation rates. Specifically, a series of
experiments were conducted using a new mobile profiling instrument platform to
measure tangential stress and form drag at the sea surface in a large wind–wave tank.
The tangential stress was obtained from a novel kingfisher diving device (Grare 2009)
using hot-wire anemometer technology. Complementary form drag measurements were
obtained from the same platform operating as an interfacial wave follower fitted with
a static pressure probe. The tangential stress measurements obtained using this new
technique are reconciled against the measurements by Walker (2009) (see Peirson,
Walker & Banner 2012).

In the remainder of this section, we review present theoretical understanding and
a summary of the results of previous measurement campaigns. This is followed
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by a description of the experimental facilities and methods used during the present
investigation. The study results are then presented and discussed followed by a concise
summary of the principal study conclusions and recommendations. A large appendix at
the end of this article contains a derivation of the momentum flux equations written in
the frame of a wave follower.

1.1. Spectral decomposition
Using similar notation to Komen et al. (1994, § I.2.5, p. 25ff ), the local total mean
energy density 〈E〉 of a spectrum of surface gravity waves propagating past a point can
be evaluated as

〈E〉 = ρwg
〈
η2
〉= ρwg

∫∫
E (ω, θ) dω dθ (1.1)

where ρw is the density of water, g is gravitational acceleration, E is the spectral
energy density as a function of wave direction θ and wave angular frequency ω = 2πf
and

E (ω, θ)= 1
2 a(ω, θ)2 (1.2)

where a is the linear wave amplitude.
The development of the wave field is determined by microphysical energy fluxes

mediated by corresponding momentum fluxes which must be carefully partitioned to
determine the relative contributions of the waves and the currents (Peirson & Garcia
2008, p. 246ff )

Wu, Hsu & Street (1977, 1979) reported spectral decomposition within very small
frequency bands but previous analysis (Peirson & Belcher 2005) could not reconcile
their findings with other studies. This present investigation shows that microphysical
measurement accuracies are only capable of quantifying input to a band of waves in
the vicinity of the spectral peak.

The development of the wave field is usually described by the wave energy balance
equation (Komen et al. 1994, pages 33 and 47) which is modified to recognize the
spatial gradients in wave properties to yield

dE

dt

∣∣∣∣
1ω

= S|1ω (1.3)

where S are wave field energy fluxes and wave properties will be assumed to apply at
a mean angular frequency ωp within a spectral band of width 1ω. Wave properties in
this study will be ascribed to this angular frequency.

The wave field energy fluxes are conventionally recognized to be as follows:

S= Sin + Snl + Sdiss (1.4)

where Sin is energy input by the wind, Snl are transfer of energy due to nonlinear
wave–wave interactions and Sdiss (a negative quantity) is the loss of energy from the
wave field.

A variety of nonlinear interactions associated with the development of wind waves
are recognized in the literature (Phillips 1977, §§ 2.8, 3.8, 3.9 and 4.4; Rapp &
Melville 1990, figure 1). Many of these interactions are yet to be quantified by
physical experiments in the laboratory or the field. For experiments undertaken with
wave frequency imposed by an initiating mechanical wave generator, the primary
nonlinear interactions are the development of Benjamin & Feir (1967) instabilities
which are readily observed and monitored within the measured wave spectra. For
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developing fields of pure wind waves, the situation is more complicated due to the
spectral downshifts which can be observed with fetch. Our approach here is to capture
the dominant nonlinear interaction fluxes within a fixed bandwidth. This approach was
vindicated by subsequent analysis of the gathered data. The spatial rate of change of
the total energy density at frequencies above and below the selected bandwidth were
found to be less than 1 % of those within the fixed bandwidth. Therefore, the Snl flux
from the selected bandwidth to lower frequencies was negligible in comparison with
any other components within the bandwidth selected for analysis. The remaining two
terms on the right-hand side (RHS) of (1.4) are now discussed in detail.

1.2. Wind input

1.2.1. Theory
The action of wind induces both momentum and energy fluxes to open water

surfaces. The total momentum flux or the wind stress τ is the sum of the tangential
stress

(
τtang

)
and the form drag

(
τform

)
:

τ = τtang + τform =
〈
τvisc/

√
1+ (∂η/∂x)2

〉
+
〈

ps
∂η

∂x

〉
(1.5)

where τvisc is the local interfacial viscous surface tangential shear stress and ps is the
pressure at the interface, ∂η/∂x is the local interface slope and the angle brackets
denote temporal or spatial averaging.

There is wind-induced energy flux to both the waves and the surface currents.
Assuming linear spectral decomposition of the wave field, the source term in (1.5)
becomes

Sin = 〈τviscus.wc〉 +
〈

ps
∂η

∂x

〉
c (1.6)

where us.wc is the surface velocity coherent with frequency component ω, ∂η/∂x =
ak sin (kx− ωt) and c = g/ω is the wave speed. When normalized by wave speed,
the first term of (1.6) is termed the wave–coherent tangential stress τwc (see Longuet-
Higgins 1969) and (1.6) becomes

Sin =
(
τwc + τform

)
c= τwavec. (1.7)

Consequently, the momentum flux leading to wave growth τwave has two components,
the entire form drag and the wave coherent tangential stress.

There are two conventional characterizations of wind input that have been developed
from theoretical considerations. The more widely appreciated is due to Miles (1957)
and takes the form

Sin

ωE
= β ρa

ρw

(
ua
∗

c

)2

(1.8)

where Sin is the energy input from the wind, β is a normalized growth coefficient, ρa

is the density of air and ua
∗ =
√
τ/ρa is the friction velocity.

The second was developed by Jeffreys (1925)

Sin = 1
2
ρasz(ak)2c3

∣∣∣∣Uz

c
− 1

∣∣∣∣ (Uz

c
− 1
)

(1.9)
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where Uz and sz are the wind speed and sheltering coefficient referenced at an
elevation z above the mean surface, conventionally z = π/k = λ/2, where k is the
wavenumber and λ is the wavelength.

1.2.2. Measurement
Equation (1.7) encapsulates the key quantities required to evaluate the wind-energy

input to the waves. Measuring the wave–coherent tangential stress is an intricate
process involving both surface shear and surface current. Given a prevailing belief
that tangential stresses at the air–sea interface are small, fundamental research has
primarily focused on developing reliable methods of measuring the surface pressures
and correlating these with the surface slope.

A pioneering development was undertaken by Shemdin & Hsu (1967) who used
a disc-shaped pressure sensor and transducer mounted on a moving platform which
remained approximately 6 mm above the oscillating wave surface. They found good
agreement with the theoretical predictions of wind input obtained by Miles (1959).
Bole & Hsu (1969) found subsequently that the observed wave growth under the same
conditions was an average of three times larger than the Miles (1959) values. That
the net wave growth could be larger than the wind input in the absence of nonlinear
transfers is implausible yet no direct comparisons incorporating direct appropriate
measurements have been made to date.

A detailed field study reported by Snyder et al. (1981) completed an investigation
incorporating near-surface pressure sensors in both fixed and wave-following modes.
For wave ages

(
c/ua
∗ ∼ 10

)
, they found values of β ∼ 32 (Plant 1982) but highlighted

the strong influence of the spectral tail
(
c/ua
∗ < 0.3

)
in determining the wave-

supported stress which they were unable to resolve. To the best of the authors’
knowledge, their recommendation of further field investigation of the spectral tail
has never been pursued.

Wu et al. (1977, 1979) completed further investigations in the same facility as
Shemdin & Hsu (1967) with spectral decomposition of the input rates. These were
found to be comparable with the original measurements of Shemdin & Hsu (1967).

Donelan (1999) used a surface-following pressure probe traversing waves generated
with a JONSWAP spectral distribution by a paddle in a laboratory tank. Experiments
were undertaken with the wind aligned and opposed to the direction of wave
propagation. Donelan determined Jeffreys sheltering coefficients of sλ/2 of 0.28 and
0.11 for the aligned and opposed directions, respectively.

Donelan et al. (2006) completed a field experiment in a lake using a wave follower
in both fixed and following modes and achieved proximity to the surface of 2.1 cm.
They concluded that air flow separation was an important feature of the wind input
source function, reviewed a number of input parameterizations and concluded that a
value of sλ/2 of 0.17 best characterized their data.

In this present contribution, pressure–slope measurements are undertaken with the
objective of reconciling them against corresponding measurements of the tangential
stress.

Microscopic particle image velocimetry (PIV) using 20 µm particles and 7 µm
image resolution was developed by Peirson (1997) for capturing the tangential stress
and surface velocity at a moving air–water interface. This approach was applied by
Banner & Peirson (1998) to quantify tangential stresses under a range of wind wave
conditions. They concluded that the tangential stress remains a significant proportion
of the total stress at moderate wind speeds but the wave–coherent tangential stress
remained small. Further work by Peirson & Banner (2003) quantified the intensities of
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vorticity associated with a range of surface features and explored the implications for
low-solubility gas exchange. Recently, Peirson et al. (2012) at 4 µm image resolution
re-applied the Peirson (1997) technique to developed waves, finding significant levels
of tangential stress but very small wave–coherent stresses.

PIV techniques were developed using 10 µm water particles and 70 µm image
resolution were applied on the air side of the interface by Veron, Saxena & Misra
(2007). They found similar surface tangential stress distributions (their figure 2) to
those captured by Banner & Peirson (1998, figure 5) and a strong relationship between
surface velocity and the tangential stress. Wave–coherent tangential stresses were not
presented.

1.3. Losses from the wave field
Four potential terms are recognized as contributing to Sdiss as follows:

Sdiss = Sbed + Svisc + Sattn = Sbed + Svisc + Sbreak + Sturb. (1.10)

The term Sbed is the loss due to bottom friction. In deep water, negligible
interactions with the bed occur, and Sbed is zero.

The term Svisc represents losses due to viscous effects near the free surface.
These were carefully reviewed by Peirson et al. (2013), who found reasonable
agreement with the following expression for waves of low steepness, assuming linear
decomposition of the wave field:

Svisc =−2µwa2k2g−
√

2ρaµaωa2kg− 2a2kgcg

bt

(ρwµw

2ω

)1/2
(1.11)

where ρa and µa are the density and the dynamic viscosity of the air, ρw and µw are
the density and the dynamic viscosity of the water, (a, k, ω, cg) are the amplitude, the
wavenumber, the pulsation and the group velocity of the dominant waves, respectively,
and bt is the tank width. The terms on the RHS of (1.11) are wave attenuation due to
viscosity in, respectively, the surface aqueous layer, the surface air-side layer and the
tank walls.

However, they observed a systematic increase of approximately 44 % in viscous loss
for non-breaking waves with an increase in wave steepness from 0.1 to 0.15. In the
absence of reliable parameterizations that incorporate steepness effects, in this study
equation (1.11) is assumed to hold. This approach will be critically reviewed in the
results and discussion section.

As recently discussed by Peirson et al. (2013), there has been a divergence in
approaches to the surface non-viscous energy losses (Duncan 1983; Drazen, Melville
& Lenain 2008; Tian, Perlin & Choi 2010) and so we preserve the quantity Sattn in
(1.10) to represent these. Two potential contributions are conventionally recognized:
Sbreak, representing energy losses due to surface breaking; and Sturb, energy losses
due to Reynolds stress interactions between waves and subsurface turbulence. (We
note in passing, that Ardhuin, Chapron & Collard (2009) have recently identified and
quantified wave–turbulent interactions in the air for open ocean swell but these are
insignificant in the context of the present study.)

The term Sbreak characterizes energy losses associated with breaking. The most
widely used expression was developed by Phillips (1985) from the scaling argument of
the energy dissipation introduced by Duncan (1981):

Sbreak(c)

Λ(c)
= εL = bρwc5

g
(1.12)
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where εL is the breaking energy loss rate per unit length of the breaking fronts and
Λ(c) is the length per unit area of breaking fronts moving at speed c. The coefficient
b is a measure of breaking strength. Although it has been assumed that cbreak is
equivalent to c of the underlying wave form, there is a growing body of evidence
(Rapp & Melville 1990; Banner & Peirson 2007) that cbreak is less than c. Small
differences can be significant in view of the large exponent in (1.12).

The quantity Sturb is the loss due to Reynolds stress interactions between waves
and subsurface turbulence. This term is more controversial. Many investigators have
assumed that Sturb = 0. Cheung & Street (1988) observed strong interactions between
waves and near surface aqueous turbulence. Belcher, Harris & Street (1994) and
Teixeira & Belcher (2002) have suggested that there is a significant reduction in
wave growth rates arising from interactions between waves and turbulence: perhaps
equivalent to 30 % of the total wind-energy input. Ardhuin & Jenkins (2006) critically
reviewed the findings of Teixeira and Belcher and concluded that the interaction was
much weaker, recommending a value approximate 20 % of the Teixeira and Belcher
value. Peirson et al. (2013) have recently investigated wave attenuation by rainfall
and found very strong wave attenuation when normalized by the subsurface turbulence
while acknowledging the strong disruption of the interface by the rain itself.

2. Experimental facilities and methods
2.1. Laboratory tanks

2.1.1. Large air–sea interaction facility at IRPHE
One set of the experiments were conducted in the large wind–wave tank at the

Institut de Recherche sur les Phénomènes Hors Équilibre (IRPHE) at Marseille. The
tank’s overall working section is 40 m long. It is 3.2 m wide with an air cavity
1.6 m high. Water depth was kept at 1 m. The tank is equipped with a controlled
recirculating wind tunnel which can generate wind speeds between 2 and 14 m s−1. A
computer-controlled wave-maker can generate regular or random waves in a frequency
range from 0.9 to 2.2 Hz. It is entirely submerged under the upstream beach to avoid
any perturbation of the air flow which could be induced by its displacement.

The test section was placed at a fetch of 28 m. The upwind end of the tank
is specially profiled to ensure minimum disturbance to either the generation of
mechanical waves or the turbulent boundary layer in the airflow above the waves.
The tunnel roof is carefully profiled to create an airflow boundary layer of zero
pressure gradient along the test section. At the downwind end of the tank a permeable
absorbing beach was installed to minimize wave reflection. A complete description of
the tank can be found in Coantic et al. (1981).

In order to control the fetch in selected tests, a floating plastic sheet was positioned
on the water surface, fastened at the upwind end of the tank. The floating plastic sheet
remains flat when wind blows over it. Plastic sheet has often been used in the past to
change the effective tank fetch while avoiding wind wave formation (Reul et al. 1999;
Peirson, Garcia & Pells 2003; Plant et al. 2004).

The complete set of test conditions and the following key values are summarized
in table 1: the fetch (column A), the wind speed at mid-depth of the air section Um

(column B), the frequency of applied monochromatic waves fm (column C) and the
observed peak spectral wave frequency fp (column D). Also contained in table 1 are
two measurements (runs 35 and BA) obtained by Mastenbroek et al. (1996) previously
captured in the same IRPHE laboratory large tank, which have been retained in this
study to provide a historical comparison with the present measurements. For these two
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runs, values of the form drag were computed by extrapolation of the measured out-
of-phase pressure component and the tangential stress was derived from the difference
between the total stress and the form drag. Present measurements undertaken in the
large IRPHE facility are labelled, in table 1 and in the captions of the figures, as Grare
(2009).

2.1.2. Small wind–wave tank at the Water Research Laboratory
The wind–wave tank used for the smaller-scale experiments of this study is linear,

with an overall length of 8.95 m, width of 0.245 m and a total cavity height
of 0.610 m. An electromechanical flexible cantilever paddle was used to generate
monochromatic waves when necessary. Wind was generated by a fan fitted to one
end of the tank. Guide vanes downwind of the fan ensured a uniform air flow across
the width of the tank and provided a smooth transition from the inlet to the water
surface. The tank is housed within a constant temperature room and was maintained at
a temperature of 21.5± 0.5 ◦C throughout the presently reported experiments.

During all tests the total water depth was maintained at 247 ± 1 mm. The roof of
the wind–wave tank is provided to achieve a zero pressure gradient along the length
of the test section. A dissipative beach was installed at the downwind end of the fetch
length to minimize wave reflections. All observations were taken at a fetch of 2.4 m.
Measurements undertaken in the small Water Research Laboratory (WRL) facility are
labelled, in table 1 and the captions of the figures, as Peirson et al. (2012).

2.2. Wave measurement
In both test facilities, conventional capacitance wave probes were used to capture
the wave characteristics at high temporal resolution (200 Hz to capture a significant
portion of the high-frequency tail). In each case, the probes were equipped with
fine insulated wire elements (<0.3 mm diameter) and carefully calibrated, exhibiting
linearity and gain stability better than 2 %.

2.2.1. Measurement of wave speed
The presence of any wind drift current can cause a Doppler distortion in any fixed

measurements of wave characteristics. Assuming linear dispersion yields a relationship
between intrinsic frequency and wavelength (Phillips 1977, p. 38):

ω =
√

gk + Tk3 (2.1)

where T is the water surface tension. The presence of a drift current, udrift, in the same
direction as the waves causes the Doppler shift:

ωp = ωc+ udrift

c
(2.2)

where ωp is the observed angular frequency. The magnitude and influence of the drift
current will depend of the scale of the wave.

There are three methods typically used in an attempt to remove Doppler distortion
and estimate the magnitude of the wind current:

(i) record the wavelength of the waves photographically and compare the observed
and intrinsic linear wave frequencies;

(ii) if the waves are monochromatic, the intrinsic and observed wave frequencies can
be compared;
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(iii) measure the actual speed of travel between two fixed points and use the intrinsic
relationship between wavenumber, frequency and speed to close (2.1) and (2.2):

c= ω
k
. (2.3)

These approaches were pioneered at the IRPHE laboratory in the large-scale facility
(Ramamonjiarisoa & Coantic 1976; Coantic et al. 1981). During these present studies,
the second method was used in the small WRL facility and the third method was used
in the large IRPHE facility, the actual speed of travel being determined from the phase
lag obtained by cross-correlating wave records between two probes with a spacing of
22 mm.

The following wave field key values are summarized in table 1: the frequency
of applied monochromatic waves fm (column C), the observed peak spectral wave
frequency fp (column D), the intrinsic linear wave speed cintrinsic (column F), the
computed wind drift velocity transporting the waves udrift (column G) and the mean
wave steepness ak (column H). The value of udrift is listed as zero when it is computed
to be less than 0.01 m s−1.

2.2.2. Measurement of wave field development
Under conditions of steady wind (∂/∂t = 0), the development of the wave field is

determined by the local spatial gradient of wind–wave energy:

dE

dt

∣∣∣∣
1ω

= (cg + udrift

) ∂E

∂x

∣∣∣∣
1ω

(2.4)

where 1ω is the bandwidth centred around the spectral peak. Conventionally (Wilson
et al. 1973; Mitsuyasu & Honda 1982; Peirson & Garcia 2008), this is undertaken by
fitting the model

E(x)= E0e∆·(x−x0) (2.5)

to measurements of local energy density E at fetches x close to the point of interest
(located at x0) where ∆ is a spatial dimensional growth rate. Then,

∂E

∂x
=∆ · E. (2.6)

For the small WRL tank experiments, the wind–wave conditions were purposefully
established to minimize any changes in the surface wave field with fetch. By carefully
balancing the wind input to the mechanical waves with the total energy losses of
the waves, the conditions of approximately constant energy density can be established
yielding ∂E/∂x= 0.

In the large IRPHE tank, wave spectra were measured at three points over a total
fetch of 5.3 m encompassing the measurement point. For the mechanically generated
non-breaking waves at the lower wind speeds, the wave growth was weak and the
local measurements were reconciled with measurements along the entire fetch of the
facility.

For all wave cases 1ω was set to span the frequency range from ωp/
√

2 to
√

2ωp

with ωp = 2πfp. These frequency ranges were found to encapsulate over 92 % of
the total spectral energy of the dominant waves. Two representative examples of the
spectral distribution of the wave energy are reported in the figure 1. In the pure wind
wave case U7F0 (Um = 7 m s−1), about 93 % of the total spectral energy is supported
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FIGURE 1. Spectra of the water surface elevation signal. (a) Pure wind-wave case (Um =
7 m s−1). (b) Mechanically generated case (fm = 1.4 Hz, and Um = 7 m s−1). The vertical
dotted lines represent the bounds of the frequency range ωp/

√
2 < ω <

√
2ωp where

ωp = 2πfp is the spectral peak frequency of the dominant waves. This frequency range was
found to encapsulate over 92 % of the total spectral energy of the surface elevation for all of
the cases studied.

in this frequency range. In the mechanically generated waves case U7F14 (fm = 1.4 Hz,
Um = 7 m s−1), more than 94 % of the total energy is encapsulated in this bandwidth.
For the pure wind-wave case, it is important to reiterate that the spatial rate of change
of wave energy outside of the selected frequency band for any experimental case was
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less than 1 % of that measured within the selected band. This demonstrates that no
significant nonlinear energy flux occurred from the selected band to waves of lower
frequency, thereby validating our approach to determining Sdiss.

Wave breaking is known to enhance significantly both momentum and energy fluxes
from the air to the water (Banner & Melville 1976; Banner 1990; Melville, Veron
& White 2002; Makin et al. 2007). Therefore, local measurements of the probability
of wave breaking were made for this present study. For each measurement case,
these probabilities were determined by averaging ensembles of counts of the relative
numbers of breaking and non-breaking dominant waves within a given sample time
period visually observed to cross the designated measurement point. The probability
of observed wave breaking pb is reported in the table 1, column E. The presence of
breaking was determined according to whether the crest was observed to be spilling
evidenced by a sharp discontinuity in the forward face slope and ripples radiating
rearward from the spilling toe.

2.3. Measurement of the total stress
The bulk wind forcing applied in each case is shown in table 1, column B. However,
the actual momentum flux that is applied to the surface depends also strongly on the
characteristic wave condition (Donelan 1990; Jones & Toba 2001; Makin et al. 2007)).

There are two conventional methods of determining total stress, and therefore
corresponding wind friction velocity and the air roughness length (Kawamura et al.
1981). In the large IRPHE facility, turbulent stress profiles (measured at a series
of fixed elevations above the surface) were determined using cross correlations of
the horizontal and vertical velocity fluctuations obtained from a hot X-wire probe.
Between two sets of needle-shaped prongs, wires of 5 µm diameter and 1.2 mm length
were suspended orthogonally at a 45◦ angle in a vertical plane aligned with the mean
wind direction. The wires were connected to two DISA model 55 constant-temperature
anemometers. The same calibration method described by Mastenbroek et al. (1996)
was used except that the calibrations were performed inside the large tank to match
the characteristic humidity and temperature values encountered during the present
experiments.

The measured turbulent stress profiles demonstrated the existence of a constant
flux layer above the water surface within an approximate thickness of 10–20 cm.
The values of the total stress were derived from the mean values of the turbulent
stress in this layer. The hot X-wire probe was also used to measure the mean wind
speed profile in the constant flux layer yielding a logarithmic distribution of the wind
speed U(z) (Coantic et al. 1981), The air-sided roughness length za

0 was derived from
the logarithmic law U(z) = (ua

∗/κ) ln
(
z/za

0

)
using the friction velocity ua

∗ =
√
τ/ρa

calculated from the total stress previously determined by cross correlations. The Von
Kármán constant κ was set to 0.41.

In the smaller WRL facility, the logarithmic layer was thin making X-wire probe
measurements vulnerable to impact of waves on the probe elements. Consequently,
the wind stress and air-sided roughness length za

0 were derived from the logarithmic
portions of mean air velocity profiles measured using a 2 mm diameter Pitot tube that
could be referenced to the mean water level within ±0.2 mm.

The total stress τ and the air-side roughness length za
0 values obtained by these

methods are shown in columns I and J of table 1. From these values, the wind speed
Uλ/2 at z = λ/2 and the wind speed U10 at z = 10 m were derived and are reported in
columns K and L of table 1.
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kingfisher device

Wave wire
filaments

Hot wire tip

Side view Front view

FIGURE 2. A sketch of the physical arrangement of the kingfisher device in the large IRPHE
facility. Behind the kingfisher are the two wire probes used to determine wave phase and wave
speed. Cross-tank spacing between the kingfisher tip and the upwind wave probe is 5 mm.

2.4. Measurement of the viscous stress
Measurements of the interfacial viscous stress are undertaken by measuring the
velocity shear within the linear viscous sublayer on the water side or on the air
side of the interface. The aqueous sublayer is of physically larger dimension with
smaller shear and therefore the surface velocity and, consequently, the wave–coherent
tangential stress can also be measured (Banner & Peirson 1998; Peirson & Banner
2003). For the measurements in the small WRL facility, the PIV techniques developed
and described in detail by Peirson (1997) were used.

For the measurements in the large IRPHE facility, a new technique using a hot-wire
technology coupled with a high-speed linear actuator (Copley Corp., Model XTB
3810; maximum velocity and acceleration are 2.8 m s−1 and 300 m s−2, respectively)
was developed. A detailed description is available in Grare (2009) and a brief
summary is contained here.

The complete device, termed a kingfisher (shown in figure 2) due to its
characteristic motion, undertakes a rapid vertical profile downwards from an initial
position approximately 120 mm above the mean water surface. Moving with a velocity
of 1 m s−1, the kingfisher carries a single 5 µm diameter horizontal hot wire. This
hot wire is held transversely relative to the approach flow by a probe mounted at 45◦

below the horizontal. The probe traverses downwards and through the water surface
to a depth of 80 mm. Then the probe is returned to its initial position in the air.
The probe is rapidly agitated by the actuator to shake any entrained water from its
surfaces and then holds its position in the air for a duration of 10 s to evaporate
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any remaining moisture before repeating the cycle. The 10 s delay also ensures that
any flow disturbance generated in the air and the water by the kingfisher as it passes
through the surface is dissipated prior to any subsequent measurements. The kingfisher
was operated in conjunction with the wave probes during the measurements. The width
profile of the kingfisher device is small and therefore the air-flow implications for the
wave probes were inconsequential. Ring waves are only generated once the kingfisher
pierces the surface and it was ensured that the wave probe slope measurements were
not contaminated by the ring waves.

A primary challenge associated with this method was to maintain accurate
measurements of the velocity in the air without damaging the wire when it impacted
the water surface. To avoid physical damage to the wire, the hot-wire overheat ratio
was set to 1.2. Nonetheless, the characteristics of the wire slowly changed each time
the probe was immersed, leading to a systematic drift in the King coefficients:

E2 = A+ B
√

U (2.7)

where E is the potential difference across the wire, U is the measured velocity and
A, B are the King coefficients. About 100 dives were performed for each wind–wave
condition studied, thus it was not possible to calibrate the wires after each individual
dive. Successive calibrations were undertaken, before and after each n measurement
ensemble to obtain initial (A1,B1) and final (An, Bn) King coefficients. Between each
calibration, for an individual ith measurement (1 < i < n), the Bi coefficient was
linearly interpolated via

Bi= B1 + (i− 1)
(n− 1)

(Bn − B1) . (2.8)

The value of the Ai coefficient was then adjusted using the mean value of the
voltage before each dive Eh

i (after sufficient time had elapsed for the wire to dry) in
order to match with the mean value Eh

1 before the first dive, where the superscript h
denotes the altitude of the upper position of the kingfisher (about 120 mm above the
mean surface):

Ai = Eh
i

2 + Bi

B1

(
Eh

1
2 − A1

)
. (2.9)

With these adjustments, the absolute error of the measured velocity remained less
than 0.2 m s−1. During a dive, the minimum velocity measured by the sensor is the
vertical speed of diving (=1 m s−1). Thus, the maximum relative error of the measured
velocity was 20 %. Neither the recorded velocities in the viscous sublayer nor the
computed tangential stresses showed systematic mean shifts in time.

The exact instant (Ti) when the hot wire impacted the water surface was indicated
by an abrupt increase of the voltage across the wire. Therefore,

z(Ti)= zi = η(Ti)⇒ ξn(Ti)= ξ i
n = 0 (2.10)

where z is the absolute altitude and ξn is the normal (perpendicular to the water
slope) distance of the probe from the surface. Immediately prior to contact with the
surface, a distinctly linear velocity distribution was clearly visible in each velocity
profile, indicative of the linear sublayer in the air. Figure 3 shows a single realization
of the normalized vertical wind speed profile measured with the kingfisher device,
U+(z)= U(z)/ua

∗ as a function of z+ = z · ua
∗/νa, where ua

∗ is the friction velocity of the
air, and νa is the kinematic viscosity of the air. The profile is linear in the very close



20 L. Grare, W. L. Peirson, H. Branger, J. W. Walker, J.-P. Giovanangeli and V. Makin

U7F0

10

20

30

40

50

2 4 6 80 10

FIGURE 3. Representative wall-normalized velocity profile obtained in large IRPHE facility
from the kingfisher and shows a near-instantaneous determination of the tangential stress.

vicinity of the water surface. z+ = 8 is equivalent to a distance of about 0.5 mm for
this example.

The constant speed of diving ws = 1 m s−1 permitted relating the time to the height
of the probe relative to the interface. The surface viscous stress was determined from

τvisc = µa
∂Ut

∂ξn

∣∣∣∣
ξn=0

(2.11)

where µa is the dynamic viscosity of the air and Ut is the tangential velocity in a
wave-following frame of reference. The tangential velocity Ut is computed from the
vectorial equation:

U = Utt + Unn+ wsz (2.12)

where (t,n) are the local tangential and normal vectors of the surface when the probe
impacts the surface. The tangential velocity Ut is the positive root of the quadratic
equation:

U2
t + 2Utws sin θ + w2

s + U2
n + 2wsUn cos θ − U2 = 0 (2.13)

where θ = −arctan (∂η/∂x) and Un was assumed to be equal to (∂η/∂t) cos θ . The
kingfisher instrument sampling frequency was 20 kHz, which provided a time step of
50 µs, yielding to a vertical resolution of 50 µm. With the wave probe pair mounted
adjacent to the kingfisher with a cross-tank separation of 5 mm, the contact of the
probe with the water surface was related to the phase of the propagating wave forms.
For each test case, about 100 individual kingfisher dives were completed. The nature
of the operation of the kingfisher was that these dives were randomized in terms of
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FIGURE 4. A sketch of the physical arrangement of the hot-wire/pressure probe mounted on
the wave-follower in the large IRPHE facility. The hot X-wire is mounted between the Elliott
pressure disc and the two wave gauges. The inset figure is a sketch of the pressure probe. The
pressure sensor is located 25 mm downwind from the centre of the Elliott disc. Cross-tank
spacing between each instrument is 5 mm.

wave phase and therefore continuous distributions along representative waves could be
determined (see figure 8.1 in Grare (2009)).

The mean tangential stress measurements for each test case are shown in table 1,
column M.

2.5. Direct measurement of form drag
2.5.1. Measurement of static pressure

Static pressure measurements were undertaken, in the large IRPHE facility, using
the pressure probe disc developed by Elliott (1970, 1972a,b) and a piezo-resistive
pressure transducer sensor. The primary improvement in the present probe is that the
pressure sensor was placed as close as possible to the sensing ports (within 25 mm;
see figure 4).

The disc probe was fabricated with a mix of epoxy resin and micro hollow glass
balls under vacuum using a shaped mould. The disc is 4 cm diameter, its thickness
is between 1.85 and 2.1 mm and the diameter of its sensing ports is 0.5 mm. The
pressure port routing tube has a 0.5 mm internal diameter. The piezo-resistive sensor
is the model 8507C-1 from the Endevco Corporation, 2.3 mm in diameter and 12 mm
long. Its sensitivity is 30 mV kPa−1 for an operating range of 7 kPa. Its small size
allows the sensor to be placed inside the tube supporting the disc. The air volume
contained between the sensing probe holes and the pressure sensor is then reduced to
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less than 50 mm3. The natural resonant frequency of this sensor is 55 kHz, yielding a
variation of sensitivity in the transducer of less than 4 % up to 10 kHz. In the present
case, this alleviates the need for frequency calibration (Donelan et al. 2005), required
by larger-scale pressure transducers.

Apparent static pressure perturbations can be created by oblique velocities that
induce dynamic pressures or by the vertical motion of the wave-follower. Using the
Elliott disc ensured that static pressure error relative to the dynamic pressure remained
less than 5 % for a yaw angle less than 10◦ (Elliott 1970, 1972a,b). For wind waves
generated for a centreline wind speed of 8 m s−1, measurements located 5 cm above
the mean water level using a hot X-wire probe showed that the angle of attack of the
flow remains within 10◦ for greater than 95 % of the time.

Perturbations induced by the movement of the probe could potentially contaminate
the static pressure measurements. The precautions taken to minimize their impact are
as follows.

(a) Inertial effect of the air contained in the connecting tubes; the pressure sensor was
placed less than 25 mm away from the pressure probe ports. The inertial effect
of the accelerated air contained in the tube was negligible in comparison with the
static pressure variations recorded (about 1 Pa). Furthermore, the reference pressure
port of the transducer was sealed to reduce the volume of air on the reference
side of the transducer to less than 10 mm3. Although the corresponding correction
of the accelerated air–volume was negligible, the sealing of the reference pressure
port implies that the low-frequency atmospheric fluctuations were recorded. These
fluctuations were removed by high-pass filtering (0.3 Hz) of the raw pressure
signal.

(b) Acceleration of the transducer diaphragm; the diaphragm of the transducer was
mounted in a vertical plane making it not sensitive to the vertical acceleration of
the probe.

(c) Displacement within the vertical atmospheric pressure gradient. Fluctuations of
the static pressure are induced by vertical displacements of the probe within
the vertical gradient of the atmospheric pressure due to the variations of the
hydrostatic pressure. In principle, this pressure term is out of phase with the
surface elevation and therefore does not contribute to the pressure–slope correlation.
Detailed analysis showed that for the real data, the values of the pressure–slope
correlations increase by less than 2 % if the hydrostatic pressure displacement
correction is applied.

The frequency response of the assembled ‘Elliott disc/transducer unit’ was compared
with a pressure transducer without the Elliott disc. A sound generator was activated at
one end of a closed cylinder with the two probes inside. The speaker was stimulated
by a signal generator with a sinusoidal waveform for frequencies varying from 0.1 Hz
to 10 Hz. The phase lag of the assembled instrument remained less than 0.5◦ with an
attenuation less than 4 %.

As observed by others (Latif 1974; Papadimitrakis, Hsu & Street 1984; Banner
1990), the driving mechanism and the displacement of the wavemaker induce large
acoustic pressure fluctuations inside the wave tank. For this investigation, this issue
was avoided by recording the wavemaker displacements and analysing the acquired
data only when the wavemaker was turned off (see Mastenbroek et al. 1996).
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2.5.2. Positioning of the pressure sensor
The complete static pressure probe was mounted on the linear actuator used for

the kingfisher. The pressure probe was located adjacent to the X-wire with a cross-
channel spacing of 5 mm (figure 4). The actuator was operated in two different modes:
static and wave-following. In static mode, a constant voltage ensured that the probe
remained within 18 µm of a specified constant position above the mean water level.

In the wave-following mode, the wave gauge output signal was connected to the
actuator command via a signal conditioning which controlled the gain, sensitivity,
speed and acceleration of the following device. The sensitivity of the system was
adjusted to match optimally the wave gauge sensitivity resulting in an accurate
response of the actuator to the elevation of the surface.

However, the part of the wave gauge signal generated by the high-frequency
waves introduced an error response of the actuator leading to potential vibrations
of the structure supporting the wave follower. These vibrations generated errors in
the vertical position of the probe and noise perturbations that were recorded by the
pressure probe. To avoid this problem, the parameters of the actuator feedback loop
were adjusted to filter out these high-frequency components. A linear displacement
sensor monitored the actual actuator displacements with a precision better than
±50 µm. The final tracking error was less than 10 % in amplitude and less than
7◦ lag in phase for frequencies up to 3 Hz. The performances of the wave-follower
system, with all of the technical details are described in Grare (2009).

2.6. Indirect measurement of static pressure
Deardorff (1967) developed equations of the momentum flux from the air to water
between a moving surface and a constant height above the mean water level. However,
his formulation cannot be applied to wave-follower measurements. These equations
have been developed further to express the momentum fluxes in the wave-follower
frame (see Appendix for the detailed derivation).

The components of the velocity and pressure are decomposed into mean, wave-
induced and turbulent parts. The mean part of a time-dependent function q(t) is
defined by (Mastenbroek et al. 1996)

q= 1
T

∫ T

0
q(t) dt. (2.14)

Assuming that a part of q is induced by N waves of period τ , the wave induced part
of q is defined by

q̃(t)= 1
N

N∑
n=1

q (t + nτ)− q. (2.15)

The remaining fluctuating part of q is the turbulent part defined by

q′′(t)= q(t)− q− q̃(t). (2.16)

Assuming that the transverse velocity of the air flow is negligible and the wave
field is two-dimensional, the total stress τ is defined by the sum of three components
(pressure–slope correlation, a term due to wave-follower motion and a viscous term)
expressed at the constant wave-following height ξ = h (see Appendix):

τ = τ h
p + τ h

a + τ h
ν (2.17)
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where
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τ h
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Equation (2.17) can also be transformed into

τ h
p = τ − τ h

a − τ h
ν . (2.21)

Assuming that viscous effects are insignificant at elevation h above the surface,
the RHS of (2.21) only depends on the total stress, the local velocities and the
surface elevation. By extrapolation of τ h

p to the surface, this provides an alternative
indirect method of determining form drag without relying on direct static pressure
measurements which are vulnerable to signal contamination as described previously.
In general, velocity measurements are more straightforward and reliable than static
pressure measurements.

3. Results and discussion
3.1. Stress partition

Figure 5 shows the form drag normalized by the total wind stress for all measurements
presented in table 1. The values obtained from measurements of the viscous stress
are computed using (1.5). Several observations can be made. The two sets of
tangential stress measurements show reasonable consistency and systematic behaviour
as a function of wave steepness. This consistency, their ability to capture linear
behaviour adjacent to the surface and the simplicity of the measurement provide clear
evidence of their reliability in determining the surface tangential stress. The form drag
measurements are in reasonable agreement with the tangential stress measurements
although some cases exhibit implausibly large form drag values. This issue can be
explained by the fact that the form drag is estimated by extrapolation at the surface of
the pressure–slope correlations.

The upper panels of figures 6 and 7 provide two examples of the three potential
methods of measuring the form drag. Far from the surface, both the fixed and the
following measurements are in reasonable agreement, although fixed measurements do
produce absolute wave–coherent pressure fluctuations that are systematically smaller
than those determined when the wave-follower data are used. Further, the indirect
calculation of the static pressure does appear to yield higher wave–coherent pressure
variations than obtained by the static pressure probe itself. The near surface vertical
pressure gradients are substantial and show that the use of a single static pressure
measurement is not appropriate. As indicated by the fits in figures 6 and 7 (upper
panels), for the fixed probe measurements, the pressure/wave slope correlation varies
linearly rather than exponentially away from the surface.
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FIGURE 5. Comparison of form drags as normalized proportions of the total wind stress
obtained during this study as a function of wave steepness. Tangential stress measurements
have been transformed to normalized form drags using (1.5): plus signs, obtained from
viscous measurements using PIV techniques in the small WRL facility (Peirson et al.
2012); solid circles, obtained from viscous measurements using the kingfisher in the large
IRPHE facility (Grare 2009); hollow squares, Mastenbroek et al. (1996); solid grey squares,
linear extrapolations to mean water level of fixed static pressure data (Grare 2009); solid
grey diamonds, linear extrapolations to moving water surface of wave follower-measured
static pressure data (Grare 2009); hollow diamonds, linear extrapolations to moving water
surface of wave follower indirectly derived static pressure data (Grare 2009); solid curve,
approximate mean curve estimates obtained from net measurements of wave growth by
Peirson & Garcia (2008).

However, the key feature causing this systematic overestimate of the surface
pressure is shown in the wave-following measurements in the lower panels of figures 6
and 7. In the vicinity of a distance kξ ∼ 0.5 (ξ ∼ λ/12.5) there is a distinct change
in the near-surface pressure field such that the wave–coherent pressure fluctuations
decrease rather than increase in proximity to the surface. We do not believe that
this behaviour has been observed previously although the numerical model results
of Mastenbroek et al. (1996, figure 11) with higher-order closure anticipate such
behaviour with distance above the mean surface. Banner & Peirson (1998) and
Reul, Branger & Giovanangeli (2008) show strong separation in the wakes of
these wind-forced waves on a vertical scale of twice the wave amplitude which is
approximately kξ = 0.5 for these conditions. It may be that strong spatial gradients
in the vertical velocity have a significant impact on the vertical pressure gradients.
Further investigation is warranted to resolve these issues.

In spite of the obvious differences between the local values of wave–coherent
surface pressure between the direct and indirect methods, the simplicity of the indirect
method and its promising performance warrants further investigation, particularly for
potential application in open ocean conditions.
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FIGURE 6. Vertical profiles of normalized pressure/wave slope correlation, and
extrapolations of the normalized form drag at the water surface for the case U9F0. (a)
Comparison of fixed, direct follower and indirect methods of determining form drag.
(b) Lower panel shows the change in the pressure–slope correlation at height h that
occurs at approximately kξ = 0.5: solid line with upward triangle, fixed static pressure
measurements; solid thin line, linear extrapolation of the fixed static pressure measurements
to the mean water level; dashed line with solid circle, wave-following direct static pressure
measurements; dashed thin line, linear extrapolation of the wave-following direct static
pressure measurements to the surface; dash-dotted line with downward solid triangle, wave-
following indirect static pressure estimates; dash-dotted thin line, linear extrapolation of the
wave-following indirect static pressure estimates to the surface.
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FIGURE 7. Vertical profiles of normalized pressure/wave slope correlation, and
extrapolations of the normalized form drag at the water surface for the case U7F14.
(a) Comparison of fixed, direct follower and indirect methods of determining form drag.
(b) The change in the pressure–slope correlation at height h that occurs at approximately
kξ = 0.5: solid line with upward triangle, fixed static pressure measurements; solid thin
line, linear extrapolation of the fixed static pressure measurements to the mean water level;
dashed line with solid circle, wave-following direct static pressure measurements; dashed
thin line, linear extrapolation of the wave-following direct static pressure measurements to
the surface; dash-dotted line with downward solid triangle, wave-following indirect static
pressure estimates; dash-dotted thin line, linear extrapolation of the wave-following indirect
static pressure estimates to the surface.
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FIGURE 8. Comparison of tangential stresses with Banner & Peirson (1998): upward
pointing triangles, C10; downward pointing triangles, C10,tang; solid thin grey line indicates
representative mature sea total drag coefficients; dashed heavy grey line indicates tangential
drag coefficients determined by Banner & Peirson (1998).

We now explore the implications of the previous results in determining wind input,
wave growth and losses from the wind-forced wave fields. We start by comparing the
present results with the measurements of Banner & Peirson (1998). This is shown in
figure 8 where the two grey lines indicate the total and tangential drag coefficients
determined by Banner & Peirson (1998).

C10 = τ

ρaU2
10

and C10,tang = τtang

ρaU2
10

. (3.1)

Their laboratory total drag data lie slightly below the solid thin heavy grey line in
figure 8, approaching it as the fetch increases (see the upper panel of figure 12 in
Banner & Peirson (1998)).

Banner & Peirson (1998) tangential drag results at their longer fetches lie in the
vicinity of the dashed heavy grey line shown in figure 8, differing from the present
results by approximately a factor of two. To the best of the authors’ knowledge,
Banner & Peirson (1998) and this present study are the only two systematic
investigations of tangential drag coefficients. Consequently, there is no other direct
independent evidence available to explain this difference but we offer the following
potential explanation.

The measurement techniques used in the small WRL facility for this present study
and those of Banner & Peirson (1998) are identical. Yet the tangential drag coefficients
yielded by the present are a factor of two smaller than Banner & Peirson (1998).
The form drags as normalized proportions of the total wind stress obtained from this
study are very similar to those measured by Banner (1990) for well-developed waves.
Consequently, the relatively high level of wave development of the present study
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FIGURE 9. Normalized wind-energy input rate expressed as function of mean wave
steepness. Hollow squares are data from Mastenbroek et al. (1996), solid circles are obtained
from viscous measurements using the kingfisher in the large IRPHE facility (Grare 2009) and
the crosses are values measured using PIV techniques in the small WRL facility (Peirson et al.
2012). The dashed line indicated the theoretical limit β = 2/ (ak)2 and the solid line indicates
the mean values of net wave growth determined by Peirson & Garcia (2008). The dash-dotted
line indicates the best power fit of the data: β = 2.56(ak)−1.65±0.11.

relative to those investigated by Banner & Peirson (1998) who observed a systematic
decrease in tangential stress with very short fetch may be a plausible explanation.
For much more developed waves (mechanically generated or at fetches seven times
greater than the maximum considered by Banner & Peirson (1998)), the tangential
stress may continue to fall to the levels observed during the present experiments.
A new exciting possibility is the potential application of the kingfisher under field
conditions. Nonetheless, a primary conclusion of Banner & Peirson (1998) remains
robust: significant levels of tangential stress persist in the presence of well-developed
waves under moderate wind forcing.

3.2. Wind input
Surface velocities of wind forced waves can be composed as the sum of the wave
orbital component and a surface drift of approximately 0.3 ua

∗, with a surface
rupture at the toes of spilling regions (Banner & Phillips 1974; Wu 1975; Peirson
& Banner 2003; Peirson et al. 2012). For friction velocities at moderate wind speeds,
the surface velocities are typically less than 10 % of the wind velocities just a few
millimetres above the surface. When these factors are coupled with the microscopic
thickness of the rapidly moving air-side viscous sublayer, the present investigations
found that robust determination of water surface velocities from air velocity at
the surface as measured from the kingfisher technique was presently unattainable.
Therefore, this present analysis has had to progress on the assumption that the
corresponding wave–coherent tangential stresses in the large IRPHE tank make a
negligible contribution to the wind input. For the data gathered in the small WRL tank,
the computed wave–coherent tangential stress contribution was found to be negligible
(Peirson et al. 2012).

The corresponding wave drag values (equation (1.7)) can be normalized as a wind
input rate β (equation (1.8)) to yield the distribution shown in figure 9. The collapse
of the data with the steepness is remarkable, particularly in view of the scatter in
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FIGURE 10. Normalized wind-energy input rate expressed as function of wave age. Hollow
squares are data from Mastenbroek et al. (1996), solid circles are obtained from viscous
measurements using the kingfisher in the large IRPHE facility (Grare 2009) and the crosses
are values measured using PIV techniques in the small WRL facility (Peirson et al. 2012).
The solid line indicates the conventional mean value of Plant (1982).

conventional presentations of such data (e.g. Plant 1982, figure 2) and the raw
viscous-derived form drags expressed as normalized proportions of the total wind
stress (figure 5).

These results show a strong finite amplitude effect that has not been anticipated
by previous investigators except for Peirson & Garcia (2008). The mean curve of
the wind input data lies above the mean curve obtained by Peirson & Garcia (2008)
but bounded above by the theoretical limit β = 2/(ak)2 that assumes that the form
drag cannot exceed the total stress. The levels are stronger than anticipated by most
other investigators and lie within the limits determined by Plant (1982) above a mean
steepness of ak = 0.17. From (1.1), (1.2) and (1.8), Sin can be expressed as follows:

Sin = 1
2

√
ga2k3/2βρa

(
ua
∗
)2
. (3.2)

From figure 9, the best fit is β = 2.56(ak)−1.65±0.11 where the uncertainty in the
exponent of ak was determined at 90 % confidence. Substituting the fitted result into
(3.2) yields

Sin = 1.28
√

ga0.35±0.11k−0.15±0.11ρaua
∗

2 (3.3)

with a correlation coefficient over 0.97 and where the ordering of the errors in the
exponents must be correlated to maintain non-dimensionality. It is noted that this
expression spans conditions 4.3 < U10 < 13.9 m s−1 and therefore representative of
moderate wind conditions. Owing to non-dimensionalizing interactions between wave
steepness and wave properties defined by linear theory, a myriad of alternative non-
dimensional forms of (3.3) can be developed that include (1.8) and (1.9). Equation
(3.3) maintains non-dimensionality with reference to as few wave properties as
possible.

Figure 10 shows the present data β in the more conventional form as a function
of wave age c/u∗a. No systematic collapse of the data can be observed indicating
the overriding importance of wave steepness in determining the wind input even
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FIGURE 11. Normalized wind-energy input rate, expressed as Jeffreys sheltering coefficients
(equation (1.9)), as a function of mean wave steepness. Hollow squares are data from
Mastenbroek et al. (1996), solid circles are obtained from viscous measurements using the
kingfisher in the large IRPHE facility (Grare 2009) and the crosses are values measured using
PIV techniques in the small WRL facility (Peirson et al. 2012). The grey line indicates the
approximate mean values determined by Peirson & Garcia (2008) based on measurements of
net wave growth. Solid lines at ordinate axis indicate sheltering coefficients determined by
Donelan & Pierson (1987), Donelan (1999) and Donelan et al. (2006).

though the wave speeds approach 40 % of Uλ/2 (wind speed at altitude z = λ/2). The
present data are not sufficiently extensive to determine the influences of wave age on
normalized wind input.

We investigated other possible non-dimensional presentations of the form drags
as normalized proportions of the total wind stress and the normalized wind input
term as functions of the wave Reynolds number aUλ/2/νa, the roughness Reynolds
number za

0Uλ/2/νa or the non-dimensional fetch Xg/U2
λ/2, but the data did not collapse

systematically as a function of these non-dimensional variables.
In view of the comments of Phillips (1985, foot of p. 510), some might find

such strong normalized levels of wind input at low steepness objectionable with the
Plant (1982) normalization of β = 32 ± 16, independent of mean wave steepness.
As will be shown subsequently, these results are consistent with several other
studies. Specifically, Jeffreys sheltering coefficients as determined by Donelan and
his collaborators (Donelan 1999; Donelan & Pierson 1987; Donelan et al. 2006) are
shown in comparison with the present data in figure 11.

Remembering that, in each case, the Donelan values reflect mean sheltering
coefficients without consideration of the possible role of wave steepness, the strength
of wind input determined during this present investigation is similar in magnitude
to those determined independently on the basis of pressure measurements in the air.
Given that the wave age and wind forcing conditions of the Donelan investigations
are not very different from this present study, the consistency between these studies is
reassuring. Nonetheless, the collapse of the data in figure 9 is much more systematic
than that found in figure 11. We investigated the presentation of the normalized wind-
energy input rate, expressed as Jeffreys sheltering coefficients as a function of the
wave age c/u∗, but the data did not collapse systematically showing that no apparent
functionality is found between these two variables.
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FIGURE 12. Energy budget for wind waves in the large IRPHE facility at 7 m s−1 wind
speed as a function of fetch: squares, dE/dt; upward pointing triangles, Sin (from viscous
measurements using the kingfisher); circles, Svisc; downward pointing triangles, Sattn. Also
shown are the corresponding wave-breaking probabilities Pb indicated by the right-hand scale
as diamonds.

3.3. Wave field development and wave attenuation
Summaries of the total wind-energy input Sin in comparison with the other terms in
(1.3), (1.4) and (1.10) measured in the large IRPHE wind–wave facility are presented
in figures 12, 13 and 14 where Sattn = (dE/dt)|1ω − Sin − Svisc. It can be observed that
all quantities form a systematic pattern as a function of fetch, wind forcing and, to a
lesser extent, to the wave characteristics. Figures 12–14 also show the probability of
breaking for each experimental case.

There are systematic and large differences between the wind input and consequent
net wave growth (or attenuation) implying a significant energy loss from the wave
field even for conditions in which none of the dominant waves were observed to break.
Specifically, for the cases of non-breaking mechanically generated waves, there is a
substantial Sattn term which is significantly larger than the (near-)negligible viscous
losses. As discussed earlier, there is some uncertainty regarding the precise magnitude
of the viscous losses but they are inconsequential to the quantitative conclusions of
this investigation. At short fetch, when the dominant wave components are in the
range of 5–20 cm, energy wave transfer to parasitic capillaries (which then dissipate
rapidly) may be larger than the direct viscous dissipation by the dominant waves
(Longuet-Higgins 1992; Zhang 2002). This may explain some wave dissipation for
non-breaking cases. In our study, six cases present dominant wavelengths smaller than
20 cm. Five of them exhibit a breaking probability greater than 42 %. For these cases,
the dissipation rate by generation of capillaries is expected to be small compared with
the dissipation rate by breaking. Hence, only one case presents non-breaking waves of
wavelengths smaller than 20 cm, and in this case, a significant part of the dissipation
could be due to parasitic capillaries riding on lee face of short gravity waves.
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FIGURE 13. Energy budget for wind waves in the large IRPHE facility at 28 m fetch as
a function of wind speed: squares, dE/dt; upward pointing triangles, Sin (from viscous
measurements using the kingfisher); circles, Svisc; downward pointing triangles, Sattn. Also
shown are the corresponding wave-breaking probabilities Pb indicated by the right-hand scale
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3.3.1. Wave–turbulence interactions
Normalized wave attenuation rates βattn can be computed in a form of (1.8):

Sattn

ωE
=−βattn

ρa

ρw

(
ua
∗

c

)2

. (3.4)

The βattn values are shown as a function of wave steepness in figure 15. Breaking
and non-breaking wave cases are distinguished in this figure by the respective symbols.
The degree of collapse is remarkable in this normalization. However, there are three
data points which do not fit the overall pattern and deserve special comment.

The first is a non-breaking case exhibiting negative normalized attenuation (U4F10,
ak = 0.125, βattn =−19.4). As shown in figure 14, for this experimental case, the wind
input is weak and comparable in magnitude with other constituent quantities. Reliable
determination of βattn is compromised by the small magnitude of the measured
quantities relative to the inherent measurement errors. This conclusion is supported
by the behaviour of corresponding cases of higher wind forcing (U7F10 and U10F10).
Although in these cases, breaking of the dominant waves was also not observed, the
corresponding determinations of βattn sit naturally amongst the other data.

There are two other cases which exhibit very high normalized attenuation rates
(U4F14, ak = 0.204, βattn = 285 and U7F14, ak = 0.256, βattn = 61). In these specific
tests, the overall breaking behaviour differed from all other experimental cases: there
was no breaking of the monochromatic waves along the tank as they developed under
the influence of wind. However, immediately upwind of the point of measurement, the
monochromatic waves in these two cases began to break, releasing the accumulated
wind input acquired during their passage along the tank. This wind-forced behaviour
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FIGURE 15. Normalized energy loss as a function of wave steepness. Hollow circles are
non-breaking waves and solid circles are breaking wave cases. Corresponding estimates
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βattn = 2.62(ak)−1.43±0.21.
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is similar to that observed in the highest steepness cases measured by Mitsuyasu
& Honda (1982) and shown in their figure 9. For non-wind-forced conditions, this
pattern is similar to group behaviour observed by Rapp & Melville (1990), Drazen
et al. (2008) and Tian et al. (2010) and, in which there is a sustained, spatially
localized convergence of energy within the wave field leading to subsequent breaking
and energy dissipation (Banner & Peirson 2007). Note that the measurement itself, of
course, does not contribute to the breaking. The wave probes are constructed with very
fine elements. While small ring waves can occasionally been observed radiating from
the frame supports, these are tiny and insufficient to trigger the large-scale breaking
that was observed.

These results indicate potential characteristic gravity-scale breaking behaviours in
the open ocean. Some wave scales can be maintained in a near-saturated state, in
which the waves remain in a quasi-equilibrium between the wind input, subsurface
dissipation and development. Other, lower-frequency scales can steadily accumulate
input energy without breaking to a critical point when rapid, local release of energy
occurs.

An unanticipated outcome of these present results is the normalized intensity of the
wave attenuation. Although Belcher et al. (1994, p. 148) determined that turbulent
attenuation of wind-forced waves could be so strong that waves might not grow,
we did not anticipate such strong attenuation in our data. Nonetheless as shown in
figure 15, the levels of normalized attenuation are found to be systematically high,
particularly at low steepnesses. The levels anticipated by Teixeira & Belcher (2002)
and Ardhuin & Jenkins (2006) are also shown. Obvious care needs to be taken when
extrapolating these results to field conditions and the premises assumed by Ardhuin &
Jenkins (2006) are different from the present study. Reconciliation of these findings at
different scales is anticipated to yield new insights into air–sea interaction behaviour.

The data also provide understanding of the production of turbulent kinetic energy
(TKE) in the upper ocean. Craig & Banner (1994) developed a boundary layer model
for the upper ocean that incorporated both shear production of turbulence as well as
injection of TKE from the wave field. These present data yield estimates of the TKE
sourced from the wave field. From figure 15 (excluding the two data points showing
high attenuation rates as discussed previously), the best fit is βattn = 2.62(ak)−1.43±0.21

(uncertainty, again, determined at 90 % confidence) which yields the expression:

Sattn =−1.31
√

ga0.57±0.21k0.07±0.21ρaua2

∗ (3.5)

with a correlation coefficient of 0.93 and where the ordering of the errors in the
exponents must be correlated to maintain non-dimensionality. Craig & Banner (1994)
report an expression equivalent to

Sattn =−100ρwuw3

∗ ∼ Sattn =−3.5ua
∗ρaua2

∗ . (3.6)

Assuming equal air-sided and aqueous total stress and representative values for
these present experiments of ua

∗ = 0.3 m s−1, a = 0.015 m and k = 15 m−1, yields
coefficients for Sattn of −0.45 and −1.05 in (3.5) and (3.6), respectively, thus
reconciling the two expressions (equations (3.5) and (3.6)) almost within a factor
of two.

Obtaining directly comparable values from the studies of Cheung & Street (1988)
and Thais & Magnaudet (1996) was difficult. Using the data presented in figure 12 of
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FIGURE 16. Eddy viscosity during active breaking as defined in (3.8).

Cheung & Street (1988), we attempted to obtain Sturb via

Sturb =
∫ 0

−λ/2
ρũw̃

∂Uw

∂z
dz (3.7)

where the tilde overbars indicate wave-induced water-side velocities and Uw indicates
the mean horizontal water current. Cheung & Street (1988) show that this quantity
declines monotonically with depth. Computing the integral of (3.7) at wind speeds of
4.1 and 6.2 m s−1 using an appropriate extrapolation of their data up to the mean water
level yielded very large values of wave attenuation that could not be reconciled with
this or any other investigation.

Re-examination of the findings of Cheung & Street (1988) and Thais & Magnaudet
(1996) would be appropriate in light of the present study. Peirson et al. (2003)
observed very strong rates of wave attenuation in the presence of opposing wind.
Based on these present results, turbulent attenuation rates acting in concert with form
drag of an opposing wind action on the wave would be anticipated to yield wave
attenuation rates comparable with those observed by Peirson et al. (2003).

3.3.2. Eddy viscosity approaches
Tian et al. (2010) recently found that an eddy viscosity νE = 10−3 m2 s−1 provided

remarkable collapse to systematic measurements of wave breaking energy loss over
carefully measured swept distances of wave breaking. For these present experiments,
the eddy viscosity is defined as

νE = Sattn

4k2pbE
(3.8)

with pb is the probability of observed breaking at a fixed point (table 1, column E).
The equivalent eddy viscosities have been computed for the present measurements and
are summarized in figure 16. As shown these do not yield a systematic collapse of the
assembled measurements and the computed eddy viscosity values are approximately a
factor of five smaller than values found by Tian et al. (2010).

It is noted that Drazen & Melville (2009) also computed eddy viscosities which
collapse systematically as a function of breaking durations and span the range 10−4
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to 8× 10−3 m2 s−1. We believe that while eddy viscosity concepts are attractive due to
their simplicity, such approaches are unlikely to yield robust representations of highly
non-stationary processes such as breaking.

3.3.3. Duncan (1981) breaker model
The present measurements permit examination of a key quantity in models of wind-

forced development of sea state: the dissipation of wave energy due to breaking
encapsulated in (1.12). In terms of the observations available here, we are converting
the mean flux Sattn to a process that is localized at a point of breaking. In general,
measuring localized breaking is a difficult process (Jessup & Phadnis 2005; Melville
& Matusov 2002). During this present study, it was only possible to undertake point
observations of breaking and define these as a probability of breaking of the dominant
observable waves at a point.

A probability of observed breaking at a fixed point pb (table 1, column E) implies a
mean duration between breaking events Tb. Over the time duration Tb, the approximate
mean length of wave surface that has propagated past the fixed point (ignoring surface
dilation effects) is (Peirson & Banner 2001)

(c+ udrift)Tb = 2π(c+ udrift)

ωpb
. (3.9)

Transforming the mean energy flux to energy dissipation per unit length of the
breaking front:

εL =−2πSattn

(
c+ udrift

)
ωpb

. (3.10)

Equating (1.12) and (3.10), yields an expression for the breaking strength b:

b=− 2πSattn

ρw

(
c+ udrift

)3
pb

(3.11)

where it has been assumed that the breaker speed is the same as the effective speed of
waves at the spectral peak.

The b values computed are shown in figure 17 expressed as a function of wave
steepness ak following the approach of Drazen et al. (2008). In figure 17, it can be
observed that the present measurements sit appropriately between the determinations
of Banner & Peirson (2007) and Drazen et al. (2008). This is a remarkable result
which indicates overall robustness and closure to the present analysis. The curve fit
recently developed by Romero, Melville & Kleiss (2012) is also shown in this figure.

As noted in the introduction, there is a growing body of evidence that the breaker
speed cbreak is less than the linear value of c by some 10 to 20 %. For present analysis,
we have used the intrinsic wave speed c to match the analysis of Drazen et al. (2008)
as closely as possible. Unfortunately, there was insufficient time to measure breaker
speeds in detail. However, we note that any decrease in the breaker speeds below the
intrinsic speed will cause the determined b values to sit correspondingly higher in
figure 17.

The differences between the sets of measurements shown in figure 17 should
be emphasized. The experiments of Banner & Peirson (2007) and Drazen et al.
(2008) were conducted in the absence of wind when the only turbulence present
was the turbulence generated by breaking events themselves. In contrast, the present
investigations incorporate breaking events associated with waves propagating through
turbulent water in which wind-induced shear is a strong feature.
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FIGURE 17. Breaking strength b expressed as a function of steepness ak. Data obtained
from the present study is shown as solid circles, grey diamonds are data from Banner &
Peirson (2007) and grey squares are data from Drazen et al. (2008). The equivalent non-
breaking normalized dissipation rates are shown as hollow circles. The solid line is the fit
b= 0.4 (ak − 0.08)5/2 from Romero et al. (2012).

Given the similarity in normalized attenuation rates between breaking and non-
breaking waves shown in figure 15, does this mean that the Phillips representation is
inappropriate and that (1.12) is merely a restatement of a dissipation form of (1.8)?
To answer this question, we have added to figure 17 the b values characteristic of the
non-breaking waves if their subsurface dissipation rates were attributed to a line source
coinciding with the wave crests. As shown, these values are approximately a factor of
10 smaller than the breaking data cluster. This shows that:

(i) if wave attenuation is expressed in terms of wave parameters alone, the
attenuation rates are approximately an order of magnitude higher in the presence
of breaking;

(ii) these high attenuation rates are generated to match the higher wind-induced
stresses induced by the breaking process itself (Banner 1990; Makin et al. 2007);
and

(iii) if a partition between the wave attenuation contributions of localized surface
breaking and spatially distributed wave–turbulent interactions is to be developed,
the present results show that the surface breaking is the dominant contributor to
the total attenuation of the wind-forced wave field.

4. Conclusions and recommendations
This present study has compared the input of energy by the wind to the waves

with the observed growth response of the waves themselves. Achieving this goal has
involved a suite of microphysical investigation techniques. The agreement of measured
tangential stresses in the water and air immediately adjacent to the interface show
consistency across a range of wave scales and in different experimental facilities.
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The measured levels of viscous stress are approximately 50 % of those measured
by Banner & Peirson (1998). This difference may reflect the higher levels of wave
development for the waves investigated during this present study in contrast with
Banner & Peirson (1998) who investigated the tangential stress during the initial
phases of wave development at short fetch. Nonetheless, both studies show that
substantial levels of viscous stress persist at moderate wind speeds.

The comparison between the tangential stresses measured in the air with
corresponding form drag measurements show considerable consistency but it has
highlighted some significant issues in relation to the measurement of fluctuating
pressures above freely propagating waves. The extrapolations of form drag to a freely
moving surface can result in a substantial overestimation of the form drag values.
This overestimation occurs because of a significant change in the vertical gradient of
p∂η/∂x that occurs at a normalized distance kξ = 0.5 above the surface. Presumably
this observed behaviour is related to air flow separation above the wave forms. The
measurement of static pressure in an air flow above freely propagating waves requires
specialist instruments that are subject to ambient pressure effects, including noise. The
Deardorff (1967) equations have been extended to a wave-follower frame of reference.
By measuring the total stress and fluctuating velocities in close proximity to the
surface, the quantity p∂η/∂x can be obtained indirectly but with comparable accuracy
to that of direct measurement. Such an approach may provide a more robust basis for
measurements of wind input to waves under field conditions.

The normalized wind input values of the present study show good collapse as a
function of wave steepness consistent with but at significantly higher levels than those
obtained by Peirson & Garcia (2008) at moderate steepness.

The sheltering coefficients in the form of Jeffreys (1925) which have been derived
from the present data are consistent in level with values previously obtained by
Donelan & Pierson (1987), Donelan (1999) and Donelan et al. (2006). However, this
normalization exhibits significant scatter within the assembled data. The normalized
wind input does not show a good degree of collapse as a function of wave age.
The instrumentation used to measure much of the data during this study should be
sufficiently robust to capture the wave age dependency in the laboratory and, possibly,
in the field.

For non-breaking waves, there is a significant misclose in the radiative transfer
equation if wave–turbulence interactions are not included. These results support the
conclusions of Cheung & Street (1988) of a momentum flux from the wave field to
the aqueous layers below. Although not measured directly, energy budget estimates
indicate a systematic wave–turbulence coupling as a function of wave steepness and at
significantly higher levels than found theoretically by Teixeira & Belcher (2002) and
Ardhuin & Jenkins (2006). Direct measurements of the turbulence in the water side are
recommended to quantify these interactions.

The comparison of the wave energy budgets of the non-breaking and breaking
cases shows that the normalized wave attenuation losses collapsed as a function of
steepness ak except in a few specific and explicable cases. This finding indicates that
in wind-forced wave fields containing regular breaking waves, the breaking events
represent the augmentation necessary to maintain a balance between the wind input,
turbulent attenuation and the development of the wave field. The energy loss rates
due to breaking obtained during this present study are remarkably consistent with the
values determined by Banner & Peirson (2007) and Drazen et al. (2008) for breaking
waves when expressed as a function of mean wave steepness. Finally, a quantitative
assessment is made of the finding by Tian et al. (2010) that the breaking process
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can be represented by a constant eddy viscosity. Eddy viscosities computed from the
data do not collapse systematically nor compare favourably with the Tian et al. (2010)
value.
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les Phénomènes Hors Équilibre, Marseille for W.L.P. during this study is appreciated.
During the revision and final preparation of this paper the senior author (L.G.)
was supported at Scripps Institution of Oceanography by grants from the Office of
Naval Research (Physical Oceanography) and the National Science Foundation (Ocean
Sciences) to W.K. Melville. Conducting such difficult laboratory investigations would
be impossible without the skill and diligence of technical support staff. The authors
thank Messrs B. Zucchini and A. Laurence for their helpful technical assistance
during the IRPHE experimental investigations. The late Mr J. Hart made an enormous
contribution to the manufacture and installation of the specialist precise equipment
used at the Water Research Laboratory. Mrs W. Thomason-Harper assisted with the
typesetting of the equations and Mrs A. Blacka drafted the technical diagrams. The
willing assistance of the support staff at both laboratories is gratefully appreciated.

Appendix. Momentum fluxes written in the frame of the wave follower
Transforming from the Cartesian frame x∗i = (x, y, z, t) to the curvilinear wave-

following frame xi = (x, y, ξ, t), with ξ = z − η (figure 18), requires the following
identities:

(x, y, z, t)→ (x, y, ξ, t) : ∂
∂x∗i
= ∂

∂xi
− ∂η

∂xi

∂

∂ξ
(A 1a)

∂

∂t
= ∂

∂x

∂x

∂t
+ ∂

∂y

∂y

∂t
+ ∂

∂ξ

∂ξ

∂t
+ ∂

∂t

∂t

∂t
=− ∂

∂ξ

∂η

∂t
+ ∂

∂t
.

(A 1b)

In the curvilinear frame, the Navier–Stokes equations become

∂ui

∂t
+ ∂uiuj

∂xj
+ 1
ρ
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∂xi
− ν ∂

2ui

∂x2
j

= ∂η
∂t

∂ui
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∂uiuj
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+ 1
ρ

∂η

∂xi

∂p
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+ ν
(
∂η

∂xj

)2
∂2ui

∂ξ 2
− ν ∂

2η

∂x2
j

∂ui

∂ξ
− 2ν

∂η

∂xj

∂2ui

∂ξ∂xj
+ ν ∂

2η

∂x2
i

∂ui

∂ξ
. (A 2)

A.1. x-component
Equations (A 2) projected along the unit normal in the x-direction x become

∂u

∂t
+ ∂

∂x

(
u2 + p

ρ
− ν ∂u

∂x

)
+ ∂

∂y

(
uv − ν ∂u

∂y

)
+ ∂

∂ξ

(
uw− ν ∂u

∂ξ

)
= ∂η
∂t

∂u

∂ξ
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ρ
+ ν ∂η
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. (A 3)
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FIGURE 18. Cartesian and curvilinear wave-following frames.

Integrating between ξ = 0 and ξ = h, we have∫ h

0
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∂t
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which can be simplified as
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Using the kinematic condition at the surface w0 = ∂η/∂t + u0(∂η/∂x) + v0(∂η/∂y),
equation (A 5) can be simplified as
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Applying the time-averaging operator to equation (A 6) yields
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Assuming steady flow and mean integrated horizontal gradients much smaller than
their vertical counterparts:∫ h
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one obtains
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yielding
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xτ
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a = Terms due to wave-follower motion
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xτ
h
p = Pressure–slope correlations at height h

= ph
∂η

∂x
(A 10c)
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xτ
h
ν = Viscous stress at height h
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Decomposing the velocity and pressure components into mean (indicated by
overbars) and fluctuating (indicated by primes) components, equations (A 10b)–(A 10f )
become
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Further decomposing the fluctuations components into wave-induced (tilde overbars)
and turbulent (double primes) components, equations (A 11a)–(A 11e) become
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xτ
h
a =−ρ ũw̃

∣∣∣
h
− ρ u′′w′′

∣∣
h
+ ρũh

∂η

∂t
+ ρũ2

h

∂η

∂x
+ ρu′′2h

∂η

∂x
+ 2ρuhũh

∂η

∂x

+ ρ(ũṽ)h
∂η

∂y
+ ρ(u′′v′′)h

∂η

∂y
+ ρuṽ

∂η

∂y
+ ρvũ

∂η

∂y
(A 12b)

xτ
h
p = p̃h

∂η

∂x
(A 12c)

xτ
0
ν = µ

∂u

∂ξ

∣∣∣∣
0

+ µ
(
∂η

∂x

)2
∂ ũ

∂ξ

∣∣∣∣∣
0

+ µ
(
∂η

∂x

)2
∂u′′

∂ξ

∣∣∣∣∣
0

+ µ
(
∂η

∂x

)2
∂u

∂ξ

∣∣∣∣∣
0

− 2µ

(
∂η

∂x

∂ ũ

∂x

∣∣∣∣∣
0

+ ∂η

∂y

∂ ũ

∂y

∣∣∣∣∣
0

)
− 2µ

(
∂η

∂x

∂u′′

∂x

∣∣∣∣
0

+ ∂η

∂y

∂u′′

∂y

∣∣∣∣
0

)
−µ1ηũ0 − µ1ηu′′0 − µ1ηu0 (A 12d)

xτ
0
p = p̃0

∂η

∂x
. (A 12e)

A.2. y-component

We now write the momentum flux in the transverse direction (y). Equations (A 2)
projected along y become

∂v

∂t
+ ∂

∂x

(
uv − ν ∂v

∂x

)
+ ∂

∂y

(
v2 + p

ρ
− ν ∂v

∂y

)
+ ∂

∂ξ

(
vw− ν ∂v

∂ξ

)
= ∂η
∂t

∂v

∂ξ
+ ∂η
∂x

∂

∂ξ

(
uv + ν ∂η

∂x

∂v

∂ξ
− 2ν

∂v

∂x

)
+ ∂η
∂y

∂

∂ξ

(
v2 + p

ρ
+ ν ∂η

∂y

∂v

∂ξ
− 2ν

∂v

∂y

)
− ν

(
∂2η

∂x2
+ ∂

2η

∂y2

)
∂v

∂ξ
. (A 13)

Integrating between ξ = 0 and ξ = h:∫ h

0

∂v

∂t
dξ +

∫ h

0

∂

∂x

(
uv − ν ∂v

∂x

)
dξ +

∫ h

0

∂

∂y

(
v2 + p

ρ
− ν ∂v

∂y

)
dξ

+
∫ h

0

∂

∂ξ

(
vw− ν ∂v

∂ξ

)
dξ

=
∫ h

0

∂η

∂t

∂v

∂ξ
dξ +

∫ h

0

∂η

∂x

∂

∂ξ

(
uv + ν ∂η

∂x

∂v

∂ξ
− 2ν

∂v

∂x

)
dξ

+
∫ h

0

∂η

∂y

∂

∂ξ

(
v2 + p

ρ
+ ν ∂η

∂y

∂v

∂ξ
− 2ν

∂v

∂y

)
dξ

− ν
∫ h

0

(
∂2η

∂x2
+ ∂

2η

∂y2

)
∂v

∂ξ
dξ (A 14)

yielding

yτ
h = yτ

h
ν + yτ

h
a + yτ

h
p = yτ

h
ν + yτ

h
p (A 15a)
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and

yτ
h
ν = µ

∂v

∂ξ

∣∣∣∣
h

+ µ
(
∂η

∂x

)2
∂v

∂ξ

∣∣∣∣∣
h

− 2µ
(
∂η

∂x

∂v

∂x

∣∣∣∣
h

+ ∂η

∂y

∂v

∂y

∣∣∣∣
h

)
− µ1ηvh (A 15b)

yτ
h
a =−ρ vw|h + ρvh

∂η

∂t
+ ρ(uv)h

∂η

∂x
+ ρv2

h

∂η

∂y
(A 15c)

yτ
h
p = ph

∂η

∂y
(A 15d)

yτ
0
ν = µ

∂v

∂ξ

∣∣∣∣
0

+ µ
(
∂η

∂x

)2
∂v

∂ξ

∣∣∣∣∣
0

− 2µ
(
∂η

∂x

∂v

∂x

∣∣∣∣
0

+ ∂η

∂y

∂v

∂y

∣∣∣∣
0

)
− µ1ηv0 (A 15e)

yτ
0
p = p0

∂η

∂y
. (A 15f )

Decomposing the velocity and pressure components into mean (indicated by
overbars) and fluctuating (indicated by primes) components, equations (A 15b)–(A 15f )
become

yτ
h
ν = µ

∂v

∂ξ

∣∣∣∣
h

+ µ
(
∂η

∂x

)2
∂v′

∂ξ

∣∣∣∣∣
h

+ µ
(
∂η

∂x

)2
∂v

∂ξ

∣∣∣∣∣
h

− 2µ
(
∂η

∂x

∂v′

∂x

∣∣∣∣
h

+ ∂η

∂y

∂v′

∂y

∣∣∣∣
h

)
− µ1ηv′h − µ1ηvh (A 16a)

yτ
h
a =−ρ v′w′

∣∣
h
+ ρv′h

∂η

∂t
+ ρv′2h

∂η

∂y
+ 2ρvhv

′
h

∂η

∂y

+ ρ(u′v′)h
∂η

∂x
+ ρuhv

′
h

∂η

∂x
+ ρvhu′h

∂η

∂x
(A 16b)

yτ
h
p = p′h

∂η

∂y
(A 16c)

yτ
0
ν = µ

∂v

∂ξ

∣∣∣∣
0

+ µ
(
∂η

∂x

)2
∂v′

∂ξ

∣∣∣∣∣
0

+ µ
(
∂η

∂x

)2
∂v

∂ξ

∣∣∣∣∣
0

− 2µ
(
∂η

∂x

∂v′

∂x

∣∣∣∣
0

+ ∂η

∂y

∂v′

∂y

∣∣∣∣
0

)
− µ1ηv′0 − µ1ηv0 (A 16d)

yτ
0
p = p′0

∂η

∂y
. (A 16e)

Further decomposing the fluctuations components into wave-induced (tilde overbars)
and turbulent (double primes) components, equations (A 16a)–(A 16e) become

yτ
h
ν = µ

∂v

∂ξ

∣∣∣∣
h

+ µ
(
∂η

∂x

)2
∂ṽ

∂ξ

∣∣∣∣∣
h

+ µ
(
∂η

∂x

)2
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h

+ µ
(
∂η

∂x

)2
∂v
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h

− 2µ

(
∂η

∂x

∂ṽ

∂x

∣∣∣∣∣
h

+ ∂η

∂y

∂ṽ

∂y

∣∣∣∣∣
h

)
− 2µ

(
∂η

∂x
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∂x
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h

+ ∂η

∂y

∂v′′

∂y
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h

)
−µ1ηṽh − µ1ηv′′h − µ1ηvh (A 17a)



46 L. Grare, W. L. Peirson, H. Branger, J. W. Walker, J.-P. Giovanangeli and V. Makin

yτ
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a =−ρ ṽw̃
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+ ρṽ2

h

∂η

∂y
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∂x
+ ρ(u′′v′′)h

∂η
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∂η
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∂η
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(A 17b)

yτ
h
p = p̃h

∂η

∂y
(A 17c)
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∂ṽ
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(
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(
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+ ∂η

∂y

∂ṽ

∂y
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0
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− 2µ

(
∂η

∂x

∂v′′

∂x

∣∣∣∣
0

+ ∂η

∂y

∂v′′

∂y

∣∣∣∣
0

)
−µ1ηṽ0 − µ1ηv′′0 − µ1ηv0 (A 17d)

yτ
0
p = p̃0

∂η

∂y
. (A 17e)

The total momentum flux is a vector and the total stress becomes

τ = xτx+ yτy (A 18a)

with

xτ = xτ
0
p + xτ

0
ν = xτ

h
a + xτ

h
p + xτ

h
ν (A 18b)

and

yτ = yτ
0
p + yτ

0
ν = yτ

h
a + yτ

h
p + yτ

h
ν . (A 18c)

If we now suppose the flow and waves are two-dimensional and the gradients of the
turbulent quantities are small relative to the gradients of the wave-induced quantities,
the transversal stress yτ is null, and the total stress is only supported by xτ :

τ = xτ = xτ
0
p + xτ

0
ν = xτ

h
a + xτ

h
p + xτ

h
ν . (A 19)

The different stresses are simplified as

xτ
h
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∂u

∂ξ

∣∣∣∣
h

+ µ
(
∂η
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)2
∂ ũ
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h

− 2µ
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h
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2η

∂x2
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2η
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∂2η

∂x2
uh (A 20a)
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h
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+ 2ρuhũh

∂η

∂x
(A 20b)

xτ
h
p = p̃h

∂η

∂x
(A 20c)

xτ
0
ν = µ

∂u
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∣∣∣∣
0

+ µ
(
∂η

∂x

)2
∂ ũ
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∣∣∣∣∣
0

+ µ
(
∂η

∂x

)2
∂u
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∣∣∣∣∣
0

− 2µ
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∂ ũ
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− µ∂
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∂x2
ũ0 − µ∂
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u0 (A 20d)
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xτ
0
p = p̃0

∂η

∂x
. (A 20e)

Under these conditions, equation (A 19) links stresses expressed at the surface and
stresses expressed at the altitude ξ = h:

xτ
h = xτ

h
a + xτ

h
p + xτ

h
ν = xτ

0
p + xτ

0
ν = τ (A 21)

where τ is total stress from wind towards waves. Thus, the pressure–slope term xτ
h
p

expressed at ξ = h can be expressed as follows:

xτ
h
p = τ − xτ

h
a − xτ

h
ν (A 22)

where the RHS terms of equation (A 22) only depend on the velocity components.
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