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An analytical theory is presented to describe the combined motion of waves and currents in the vicinity 
of a rough bottom and the associated boundary shear stress. Characteristic shear velocities are defined for 
the respective wave and current boundary layer regions by using a combined wave-current friction factor, 
and turbulent closure is accomplished by employing a time invariant turbulent eddy viscosity model' 
which increases linearly with height above the seabed. The resulting linearized governing equations are 
solved for the wave and current kinematics both inside and outside the wave boundary layer region. For 
the current velocity profile above the wave boundary layer, the concept of an apparent bottom roughness 
is introduced, which depends on the physical bottom roughness as well as the wave characteristics. The 
net result is that the current above the wave boundary layer feels a larger resistance due to the presence of 
the wave. The wave-current friction factor and the apparent roughness are found as a function of the 
velocity of the current relative to the wave orbital velocity, the relative bottom roughness, and the angle 
between the currents and the waves. In the limiting case of a pure wave motion the predictions of the 
velocity profile and wave friction factor from the theory have been shown to give good agreement with 
experimental results. The reasonable nature of the concept of the apparent bottom roughness is demon- 
strated by comparison with field observations of very large bottom roughnesses by previous investigators. 
The implications of the behavior predicted by the model on sediment transport and shelf circulation 
moclels are discussed. 

INTRODUCTION 

The shallow coastal zone along the inner continental shelf is 
an extremely dynamic region where the fluid motions associ- 
ated with both surface waves and currents extend down to the 

sea floor and interact with the bottom sediments. The com- 

bined presence of surface waves and currents governs many 
physical processes of interest to oceanographers and engineers 
working in the coastal zone. The acquisition of the ability to 
model accurately the velocity distribution and bottom shear 
stress under combined waves and currents is essential to the 

study of sediment transport. Furthermore, understanding the 
interaction of combined wave and current flows with a rough 
bottom is critical to the study of the fluid dynamics and 
circulation on the inner continental shelf. 

Only in recent years has recognition been given to the areal 
extent to which combined surface waves and currents play a 
significant role in sediment transport on the continental shelf. 
The importance of combined surface waves and currents on 
nearshore sediment transport has long been recognized. Sur- 
prisingly, for many years, only mean flows were considered to 
be important in deeper waters of 50-200 m. Field observations 
by Komar et al. [1972], Butman et al. [1977], and others in- 
dicate sediment resuspension due to waves in depths out to 200 
m on the shelf. Such observations can be put on more quantita- 
tive grounds by studies of the initiation of sediment motion by 
Madsen and Grant [1975, 1976]. These studies point out the 
importance of accurate knowledge of the bottom shear stress 
in sediment transport under the action of waves and combined 
waves and currents. 
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It is worthwhile to consider briefly, from a qualitative view, 
the role of waves and currents in shelf sediment transport. 
Surface waves of 5-15 s start to feel the influence of the bottom 

in approximately 20-180 m of water, respectively. As these 
waves approach shallower water, the associated values of the 
near-bottom orbital velocities are of the same magnitude as 
those of the stronger coastal currents expected. However, the 
boundary shear stress associated with the wave motion may be 
an order of magnitude larger than the shear stress associated 
with a current of comparable magnitude. (Intuitively, this is 
easily pictured by considering the small scale of the wave 
boundary layer relative to that of the current boundary layer 
and comparing the respective vertical velocity gradients.) Thus 
waves are capable of entraining significant amounts of sedi- 
ment from the seabed when a current of comparable magni- 
tude may be too weak even to initiate sediment motion. On the 
other hand, waves are an inefficient transporting mechanism, 
and to the first order, no net transport is associated with the 
wave motion over a wave period. However, the simultaneous 
presence of even a weak current will cause a net transport. 

The simple picture presented above of waves acting as a 
stirring mechanism making sediment available for transport 
by a weak current is a convenient conceptualization of com- 
bined waves and currents but is clearly an oversimplification of 
the process. In the immediate vicinity of the seabed the wave 
and current motions cannot be treated separately and then 
superposed. Rather, there is a nonlinear interaction between 
the two flows as a result of the presence of the bottom bound- 
ary. The fluid dynamics of the respective wave and current 
motions are altered from that expected for a pure wave motion 
or pure current because of the combined presence of each. The 
situation is further complicated, since the seabed is generally 
movable, and the fluid sediment interaction at the seabed 
results in the generation of bed forms which act as roughness 
elements to the flow. The presence of the bed forms modifies 
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the flow in the vicinity of the bed, which in turn causes a 
modification of the bed forms. In most geophysical flows 
involving nonuniform, unsteady fluid motions, the process of 
bed form adjustment to the flow conditions is continually 
evolving. In addition, the resulting sediment transport can 
introduce flow stratification as well as cause an increased 

roughness. The process of fluid sediment interaction at the 
seabed provides an important link between the flow dynamics 
and sediment transport. 

Unfortunately, our knowledge of the detailed structure of 
turbulent boundary layers over rough beds is quite poor. Lab- 
oratory work along the lines investigated by Coleman et al. 
[1977] is sorely needed. Even then, the extension of such 
laboratory studies to oscillatory flow over movable beds is 
likely to be quite far off. Nevertheless, even without such 
detailed knowledge of turbulent boundary layers, it is quite 
reasonable to expect that the large shear stress at the bed 
associated with the unsteady oscillatory wave motion will gen- 
erate significant turbulence at the bed which can have a poten- 
tial effect on the current motion in the case of combined wave 
and current flows. 

The purpose of this paper is to present an analytical theory 
which treats the bottom friction under combined waves and 

currents in the presence of a rough bottom. The theory ac- 
counts for the nonlinear interaction between the two flows and 

gives the solutions for the wave and current kinematics both 
inside and outside the wave boundary layer as well as a solu- 
tion for the wave-current friction factor used to define the 
bottom shear stress. The influence of the wave on the current is 

clearly shown, and for large waves relative to the current this 
influence is seen to be significant. The theory is compared 
qualitatively with field observations. In the limiting case of a 
pure wave motion, it has been compared quantitatively with 
laboratory data and found to give reasonable results [Grant 
and Madsen, 1978; Grant, 1977, 1978] (these three papers will 
subsequently be referred to as G M). The implications of the 
combined wave and current behavior predicted by the theory 
on sediment transport and coastal circulation models are dis- 
cussed. Much of the formulation of the present work relies on 
the theoretical work of Kajiura [1964, 1968] and the experi- 
mental studies of Jonsson [1966] done on wave boundary 
layers. Surprisingly, the problem of combined waves and cur- 
rents has received little attention either experimentally or ana- 
lytically. 

A theory for the combined interaction between waves and 
currents which is conceptually similar to this work was devel- 
oped independently by Smith [ 1977] at the same time that the 
work presented here was being undertaken. However, signifi- 
cant differences exist between the two approaches. The present 
work treats the general problem of waves and currents at 
arbitrary angles, whereas Smith's [1977] work treats only the 
codirectional flow case. The treatments of the flow dynamics 
and the influence of the wave on the current differ between the 

two approaches. The definitions of the characteristic shear 
velocity used in the eddy viscosity models differ, and the 
present theory parameterizes the essential influence of the 
wave on the steady current above the wave boundary layer 
through an apparent increase in the roughness experienced by 
the current. In contrasting the two models, it is particularly 
important to keep in mind that the approach taken here in the 
development of a model for combined waves and currents 
tacitly assumes that the problem of interest is the interaction of 
waves and currents in a wave-dominated environment, 
whereas Smith's [1977] model approaches the problem from 

the opposite end. Thus together the two models cover a wide 
range of conditions of interest on the shelf. 

PHYSICAL MODEL 

The dominating physical feature that a model for combined 
waves and currents must deal with is the contrasting time 
scales associated with the fluid motions on the continental 

shelfi the slowly varying, essentially steady motion of the 
current, generally wind driven, tidal, or density driven and the 
unsteady oscillatory motion of the surface waves. Because of 
these contrasting time scales, the scales of two different bound- 
ary layer flows evolve. The current may be considered essen- 
tially as a fully developed flow with its associated boundary 
layer, i.e., the layer where the shear stress due to the current is 
considered to be significant, assumed to extend over most of 
the depth of flow in the absence of stratification. However, 
because of the short time scale of the wave the region in which 
the shear stress associated with the wave motion is significant, 
i.e., the oscillatory wave boundary layer, is confined to a 
relatively thin region close to the seabed. Thus in the immedi- 
ate vicinity of the seabed the shear stress and turbulent in- 
tensities are due to the combined effect of both the wave and 

the current, which are coupled in a nonlinear fashion. In other 
words, when waves and currents exist jointly in a region, the 
shear stresses identified with the wave and with the current are 

altered because of the nature of the turbulence generated by 
the wave-current interaction and will be different, as was pre- 
viously mentioned, from the shear stresses which would be 
experienced by either the wave or the current were they present 
by themselves. The end result is that the current in the region 
above the wave boundary layer, i.e., the potential flow region 
for the wave, experiences a shear stress which depends not only 
on the physical bottom roughness but also on the wave bound- 
ary layer characteristics. From the simple conceptualization 
above, it is evident that the flow kinematics and the flow 
dynamics are intricately related through the shear stress asso- 
ciated with the combined wave and current. 

THEORETICAL MODEL 

The equation governing the fluid motion associated with a 
combined wave and current both inside and outside the wave 

boundary layer, assuming convective accelerations as well as 
Coriolis accelerations to be negligible, is given by 

•9t 

where t is the time variable, •' is the vector operator 

p is the pressure 

(2) 

p = + (3) 

and u is the velocity vector 

u= Uw+U, (4) 

The subscripts w and c in (3) and (4) indicate the components 
due to the wave (unsteady component) and the current (steady 
component), respectively. Convective acceleration terms of the 
form u Ou/Ox have been considered to be small in the govern- 
ing equation; a simple scaling of (1) indicates that the analysis 
presented here is expected to be valid for values of the current 
of the same order of magnitude as the wave orbital speed. 
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To obtain an analytical solution to the system of equations 
(1)-(4), we relate the turbulent shear stress term to the flow 
kinematics through the use of a turbulent eddy viscosity e. For 
steady unidirectional flow the assumption is often made that, 
close to the boundary, the eddy viscosity varies linearly with 
distance from the sheared boundary, i.e., 

• = •u,z (5) 

where K is Von Karman's constant (K = 0.4 for clear water), z 
is the vertical coordinate measured positively upward from the 
boundary, and u, - (r/o)•/•' is a characteristic shear velocity 
representing the turbulence level in the flow. The concept of a 

where o is the fluid density, few is a friction factor associated 
with the combined wave and current flow, and u and v are the 
x and y components, respectively, of the horizontal velocity 
([u: + v•'] •/•' = [U•w [). Adopting the convention that the x axis 
is always in the direction of wave propagation, u and v may be 
expressed as 

u = (sin0 + (lul/lu01) cos0)lu01 =gxluol (9) 

and 

v = [(lul/lu01) sin c]lU01 

where [u•l is the magnitude of the steady current velocity 
linearly varying eddy viscosity is similar to the concept of vector at a height a above the bottom; 4•e is the angle made by 
Prandtl's mixing length hypothesis and results in the experi- 
mentally observed logarithmic velocity profile in the region 
adjacent to the sheared boundary. Clearly, when multiple 
length scales are involved, the mixing length hypothesis loses 
much of its meaning, and, for similar reasons, the same must 
be true of the eddy viscosity concept. However, judicious 
choice of the characteristic shear velocity for each length scale 
may be used to overcome this problem. It is also important to 
note that in steady unidirectional flow the velocity profile in 
the immediate vicinity of the bed shows little sensitivity to the 
choice of either a linearly varying eddy viscosity or a more 
physically pleasing form such as a parabolic distribution. Since 
the primary concern here is with the flow close to the bed, the 
simpler linearly varying form will be used. 

Using the eddy viscosity concept discussed above, the stress 
divergence in (1) may be expressed as a linear function of the 
velocity. Thus 

= e (6) 

Representing the stress divergence term by (6) and substituting 
(2), (3), and (4) into (1), the governing equation becomes 

C•Uw 1 V' c 1 c• C•Uw c• c•u• (7) p 
From (7), which is linear, two equations are obtained, one 
governing the steady current motion and the other governing 
the unsteady wave motion. 

The physical model discussed previously indicated that two 
distinct boundary layer regions existed for the combined wave 
and current flow. To be consistent with this physical model, 
the eddy viscosity used in (7) must reflect the characteristics of 
the flow in each region. Thus before proceeding with the 
theoretical model we must first address the problem of the 
appropriate scaling for the eddy viscosity in (7). To do this, we 
define the relationship between the flow dynamics (shear 
stress) and the flow kinematics (velocity field) in the immediate 
vicinity of the seabed. Such a definition is fundamental to a 
model of combined waves and currents. 

DEFINITIONS 

For turbulent flows associated with a pure wave motion as 
well as in unidirectional steady flow a quadratic drag law is 
generally adopted to model the bottom friction [e.g., Jonsson, 
1966; Kajiura, 1964]. Thus a reasonable definition relating the 
instantaneous boundary shear stress •0 to the combined wave 
and current velocity field U•w is taken as 

[ u v ß o: ofcw(U" + v") (u" + v") (u" ¾ v"V (8) 

u,, with the direction of wave propagation; l u01 is the maxi- 
mum near-bottom orbital velocity from linear wave theory, 
i.e., in the potential flow region above the wave boundary 
layer; and 0 is the phase angle (0 = cot) associated with a fluid 
particle undergoing simple harmonic motion of radian fre- 
quency c0. Since we will only be concerned with linear wave 
theory in the following developments, 4•e only needs to be 
defined from 0 ø to 90 ø. 

The current velocity ua used in the definition of the bottom 
shear stress under the combined wave motion and steady 
current is treated as an unknown in the model developed here. 
Since the bed shear stress will depend upon the relative magni- 
tudes of the steady and unsteady components of the flow as 
well as the bottom roughness, which are all related in a com- 
plex nonlinear fashion, it is not clear from a physical viewpoint 
what the appropriate current is for ua. Thus ua is left to float 
and is determined as part of the solution to the wave-current 
problem as a function of the relative wave and current flows (it 
should be remembered that these are modified because of their 

interaction) as well as the physical bottom roughness. 
The preceding definition of the shear stress has disregarded 

a possible phase shift between the maximum value of the 
reference velocity (u" + v") •/0' and the maximum shear stress. 
For the purpose of introduction here, this is not critical and 
will be treated subsequently. 

The above definition, given by (8), can now be used to define 
characteristic shear velocities associated with the fluid motions 

in the respective boundary layer regions. In the region above 
the wave boundary layer the shear stress is associated only 
with the steady current, since the wave motion is assumed to 
be described by potential theory. With the time dependent 
boundary shear stress given by (8) the steady current in this 
upper region is affected by the time average shear stress, the 
magnitude of which is defined as 

I,cl: &fcwluol -o, gxgy dO 

•' ,•+o• (gx' + gx gy 

_{_ (gy4 _{_ gx2gy2)l/2 (11) 

where direction has been taken into account in the time- 

averaging process, reflecting the concept that the current has a 
memory, and gx and gy are given in (9) and (10), respectively. 
The x component of the shear stress given by (8) is positive 
over the interval -0, to •r + 0, and negative over the interval •r 
+ 0, to 2;r - 0, with 

0, = sin [(lul/I u0 I) cos (12) 
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Fig. 1. Numerical solution to V: given by (14). Note that for ]u.]/ 
[u0[ > 1/cos 4•c, 0. - 

We note that the 0, has real solutions only when 

lul/luol-< 1/cos (lB) 

Denoting the terms in braces in (11) as 

= (gx 4 + gx2gy2)•/2dO 

f ,•-o. - (g• + 
+0, 

+ (gy' + g•:gy:)•/: (14) 

the magnitude of the shear velocity l u,• I based on the time- 
averaged shear stress can be found from (11) as 

= lu.l 

The integrals defined in (14) may be expressed in terms of 

+ (gx 4 gx:gy:) '/: dO 1 (17) 

and is thus seen to be explicitly related to the direction of the 
velocity vector u•. For small currents relative to the wave 
(lul/luol 0.2). (17) simplifies to 

tan $c =/} tan ½c (18) 

Figure 2 shows graphically the relationships expressed by (I7) 
and (18). 

Equation (8) represents the nonlinear interaction between 
an unsteady wave motion and a steady current motion, each of 
which acts to enhance the other. As a result the formulation in 

(8) is not equivalent to adding the shear stress due to a pure 
wave to the shear stress due to a pure current. Primarily, this 
nonlinear interaction is reflected through the wave-current 
friction factor. However, to treat the mathematical aspects of 
the problem, the shear stress is partitioned into two parts: one 
part associated with the steady component of the enhanced 
motion given by (15) and the other part associated with the 
enhanced unsteady motion which is treated below. Above the 
wave boundary layer the partitioning is straightforward, since 
only the current shear stress must be dealt with; in this region 
the driving force, current, and shear stress all act in the same 
direction. 

The process of partitioning is-not so simple inside the wave 
boundary layer, where the shear stress is associated with both 
the wave and the current motions. The average shear stress 
divergence must still balance the force driving the steady cur- 
rent within the wave boundary layer. As a result the nonlinear 
relationship given in (8) requires the current velocity u• to 
form a greater angle with the x axis. Physically, the turning of 
the reference current may be thought of as being caused by the 
dominating influence of the waves, a contention which is sup- 
ported by the behavior of ½• and $• as a function of I ul/lu0 I 
in Figure 2. 

The characteristic shear velocity associated with the com- 
bined wave and current motion inside the wave boundary layer 

pressed as 

½• = tan-• (gy'• + gx:gy:) 

If •.+o. gx:gy:) •/: ß (gx' + dO 
d -0, 

elliptical integrals, and the results of a numerical solution are 9o ' I ' given in Figure 1. A convenient approximation for V: for small .' - 
currents relative to the wave motion is 8o 

v: = - 3 sin: (16) 70 The direction associated with the mean stress vector whose 
magnitude is given by (15) will act at an angle q0, with the •o IoVll I. ß 9 - -• -... // -- 

direction of wave propagation such that the force driving the • •••' - 8-- . • ,•.. - 

'steady' current will be balanced. This direction is, of course, • 5o 7-• Q';x , 
the same as the direction of the steady current above the wave 
boundary layer. The direction of the mean stress is not in • 4o ,/ •//,•',/•(••.. - 
general the same as the direction of the steady current inside • •.• - 
the wave layer, ½.. The adoption of a nonlinear relationship, I'• 30- 
given by (8), between the bottom shear stress and the velocity _ 

causes the direction of the current vector u, to diverge from 2o•- +-SMALL CURRENT - the direction of the average shear stress. 
The angle (• associated with the mean stress may be ex- •o ' APPROXIMATION __ 

o •o 2o 30 4o 5o 6o 7o 8o 9o 

q•c (DEGREES) 

Fig_. 2. Relationship between reference angle qb, and current direc- 
tion 4•, outside the wave boundary layer (17) and for small I ul/I u01, 
(18). 
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must be defined next. The magnitude of the maximum bound- 
ary shear stress due to the combined wave and current is 
found, using (8), as 

]•b,max] = •fcwpOllUb] 9' (19) 

where 

ot = 1+ (lul/lu0l)- + 2(lul/lu0l) coso (20) 

We then define the characteristic turbulent intensity in the 
wave boundary layer region based on (19) as 

lu,l = (21) 

Note that ]u,•w] reflects the nonlinear aspects of the wave 
current interaction. 

Using the definitions of the characteristic turbulent in- 
tensities above the wave boundary layer and inside the wave 
boundary layer, given by the square root of (15) and by (21), 
respectively, it follows that the appropriate forms of the eddy 
viscosity in each region are 

= lu. lz z > fi• (22) 
and 

e• = •[u,•lz z < • (23) 

respectively, where • is tile wave boundary layer thickness. 
The form of the eddy viscosity given by (23) is time in- 

variant. At the seabed the turbulent intensities are expected to 
respond rapidly to the changing flow conditions so that the 
instantaneous value of the shear stress is required. Unfortu- 
nately, the use of a time-varying eddy viscosity results in a 
governing equation which cannot be solved analytically. The 
use of a time invariant eddy viscosity based on the maximum 
shear velocity will overestimate the eddy viscosity only during 
low-velocity parts of the flow cycle. Furthermore, in the model 
presented here, the form of the eddy viscosity given by (23) will 
be used only to solve for the kinematics of the problem, that is, 
to define the maximum velocity profile. The time variation will 
be included in the treatment of the dynamics. 

Experimental studies using laboratory waves discussed by 
Horikawa and Watanabe [ 1968] show that although the instan- 
taneous value of the eddy viscosity varied periodically as ex- 
pected, the mean value of the eddy viscosity is adequately 
represented by a continuous function of z. In the region close 
to the sheared boundary the function is reasonably approxi- 
mated by a linear variation in z. An extensive treatment of a 
pure wave motion using the assumption of an eddy viscosity of 
the form given by (23), i.e., with the characteristic shear veloc- 
ity based on the maximum value of the boundary shear stress, 
is given by GM. These results yield good predictions of the 
experimentally measured velocity profiles in Jonsson and Carl- 
sen's [1976] study of oscillatory boundary layers. 

By using the definitions given by (22) and (23), (7) can now 
be solved for the wave and current velocities in each boundary 
layer region. Before presenting and discussing the solutions it 
is important to emphasize that the definitions and concepts 
behind the theoretical model presented here are based upon 
analogies drawn wLth both unidirectional flows and unsteady 
oscillatory flow. The extension of these concepts to combin6d 
waves and currents is admittedly by conjecture. However, 
significant support for the approach is drawn from the reason- 
able nature of the results to be presented. Also, the successful 
use of the time independent •dy viscosity in an extensive 
treatment of the flow kinematics associated with a pure oscilla- 

tory motion by G M lends further support to the approach 
taken here. 

SOLUTION FOR THE WAVE MOTION 

Outside the wave boundary layer the wave motion is gov- 
erned by 

c•u•o 1 •,p•o+ c• ( c•u•o• z>b•o (24) 0t - . lu, clz 0z/ 
where (22) has been used to express the eddy viscosity term. 
Since l u,c I is much less than the wave phase speed, the inter- 
nal dissipation of wave energy represented by the gradient 
stress term on the right-hand side of (24) may be neglected, 
and (24) becomes 

•u• 1 
- • p• z > • (25) 

•t 

which is the familiar Euler equation. Appropriate linearization 
of the boundary conditions and application of the principle of 
conservation of mass along with the assumption of irrotational 
flow leads to the well-known solution for linear wave theory. 
This is given in any standard text [e.g., Ma&en, 1976] and will 
not be discussed further here. This solution describes the 
simple harmonic motion of a fluid particle which, at the wave 
boundary layer interface, oscillates in a path nearly parallel to 
the bed with a velocity u•. Introducing complex notation, 

u• = l uo l e '•t 

where i = (- 1)•/: and, in the usage here, the physical solution 
is given by the imaginary part. 

Inside the wave boundary layer, the wave motion is gov- 
erned by 

•u• l,p•+ • ( •u,• •t - - • • lu,lz z (26) 
where the influence of the current motion on the wave is 

clearly seen through the ]u.• I term. Since the vertical veloci- 
ties are negligible in the immediate vicinity of the bed, the 
pressure term in (26) may be expressed as 

•u•/•t = - • V p• (27) 

Introducing (27) into (26) and letting (u• - u•) = w = I wl e t•t, 
(26) becomes 

( _ • •lu,•l z - ilwl = 0 (28) • • Pz 

where only the imaginary part of the solution is retained. (The 
vector notation has been deleted on the wave velocity, since by 
definition it is always along the x axis.) The length scale I of the 
region where a significant deviation of the boundary layer 
velocity from the free stream velocity can be expected is identi- 
fied from (28) as 

Thus we see that the thickness of the wave boundary is limited 
by frequency. Using a change of variable, f = z/l, (29) be- 
comes 

(30) 
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The no-slip requirement at the bed is taken in an analogous 
form to that used in fully rough turbulent unidirectional flow 
as 

w•-u• at g' = g'0- ko/30t (31) 

where ko is the characteristic dimension of the physical bottom 
roughness. (More discussion of (31) is given below.) At the 
wave boundary layer interface the boundary layer velocity 
must approach the free stream velocity; hence we require as 
the second boundary condition 

w -• 0 as g- _• o• (32) 

The general solution to (30) [e.g., Hildebrand, 1965] may be 
conveniently written in terms of Kelvin functions of zeroth 
order as 

• = A(Ber 2t '•/: + i Bei 2t '•/:) + B(Ker 2• '•/: + i Kei 2t '•/:) 

(33) 

Since Ber and Bei become exponentially large as g' -• o• [Abra- 
mowitz and Stegun, 1972, Figure 9.10], (32) requires thatA = 0 
in (33). Invoking the boundary condition expressed by (31)in 
(33) and setting A = 0 yield for the second constant 

Ker 2i'?: + i Kei 2i'?: (34) 
The introduction of (34) in (33) gives the wave velocity within 
the wave boundary layer 

Uw= I1- Ker2t '•/:+iKei2t '•/:l Ker 2i'o •/: + i Kei 2-•i7o'//1 u• (35) 
From (35) the magnitude of the wave velocity inside the 

wave boundary layer can be found as well as the phase shift 
between uw and the free stream velocity u•. This is a straight- 
forward exercise and is treated by G M. Close to the boundary, 
(35) may be approximated by a logarithmic profile using the 
small argument approximations for Ker and Kei (GM). Thus 
for g' • 0, 

u•,=I1 + 0.5 

(Ker 2i'o •/: + i Kei 

(In t' + 1.154 + -•)1 u• (36) 
It is important to recall that the characteristic shear velocity 
I u,c•l is implicitly related to u• through the arguments of the 
Ker and Kei functions and carries with'it the influence of the 

to 4 or greater. No precise definition exists for the location of 
the upper boundary layer interface in terms of the boundary 
layer velocity as a fixed percentage of the free stream velocity 
(e.g., 98% as opposed to 99%), and to obtain the correct 
behavior in the limit of a pure wave, we may argue physically 
that 

•,o = 2l (38) 

This definition is discussed in considerable detail by GM. 
However, the assumption of • = 2l or 4l is not critical to the 
results of the model presented here. 

SOLUTION FOR THE STEADY CURRENT 

For the current motion outside the wave boundary layer, (7) 
and (22) yield the governing equation 

. 77 u.lz - 0 z > •w (39) 
and for the current inside the wave boundary layer, (7) and 
(23) give 

Since the scale of the wave boundary layer is small, the contri- 
bution of the pressure term in (40) may be disregarded. The 
region close to the boundary is assumed to be a region of 
constant stress, and (39) and (40) become 

0• 
lu,clz = z > •w (41) 

and 

Ou• 
lu,clzz = z < • (42) 

respectively. 
Inside the wave boundary layer the current motion is gov- 

erned by (42), which may be integrated to yield the velocity 
profile for this region. The integration constant is evaluated 
subject to the no-slip boundary condition at the bed 

u• = 0 at z = Zo = ko/30 (43) 

The choice of location of the theoretical bottom at z = ko/30 is 
based on experimental results for steady, unidirectional rough 
turbulent flow [e.g., Schlichting, 1968]. This choice is made 
since, for combined waves and currents, the seabed will gener- 

current. The influence of the boundary roughness is also re- ally be expected to exhibit bed forms which would make the 
flected in the solution given by (35) or (36) by the dependence flow fully rough. For conditions other than fully rough flow 
ofg'0 on the physical bottom roughness ko. This dependence is the result can be generalized to z0 = ko/N, where N is a 
seen through (31). More will be said about the influence of the 
bed roughness on u• in the discussion of the dynamics of the 
combined wave-current flow. 

The length scale l of the region over which the shear stress 
associated with the waves is expected to be important was 
identified in (29). The wave boundary layer thickness may be 
conveniently defined in terms of l. Physically, this means the 
region where the boundary layer velocity approaches the free 
stream velocity, or in terms of (35), 

K er 2i 'x/: + i Kei 2g 'x/: • 0 
Ker 2i'o •/: + i K ei 2i'o 

as g-• o• (37) 

where o• denotes the region of the 'free stream,' i.e., potential 
flow, velocity. Mathematically, this occurs for values of g' • 2 

function of the roughness Reynolds number. Thus z0 can vary 
with the roughness length scale as well as with the bed shear 
stress. In the case of a movable bed subjected to a uni- 
directional flow, Smith and McLean [1977] have found that 
intense bed load transport causes large values of z0. It is 
reasonable to expect that intense bed load transport may have 
an influence on z0 in unsteady oscillatory flow. However, the 
relationship between the roughness scale associated with the 
wave-formed ripples and the roughness scale associated with 
the bed load may be quite complex in oscillatory flow; the bed 
forms first grow and then decay to a flat bed as the bed shear 
stress increases, whereas the bed load transport continues to 
grow with bed shear stress. Our present understanding of the 
flow structure close to the bed in the presence of roughness 
elements and movable beds is not developed to the extent 
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where much will be gained from further speculation on the 
value of Zo in the simple model presented here. 

Returning to our model and applying (43), the magnitude of 
the steady current velocity inside the wave boundary layer 
becomes 

- lu.cl lu.cl in z </iw (44) 
The influence of the wave on the current is clearly seen through 
the term l U,cl/I U,c•ol. By definition this term is always less 
than 1, and the presence of the wave motion tends to retard the 
current velocity over that expected for a pure current. 

The solution for the current outside the wave boundary 
layer is obtained by integrating (41), which yields 

- lu.cl In z + Co (45) 
K 

where Co is an undetermined integration constant. In order to 
evaluate Co we use the no-slip boundary condition at the sea- 
bed, as in the previous case. We argued previously that the 
total resistance felt by the flow reflects the turbulent intensity 
in the flow which is directly related to the hydrodynamic 
roughness. Then in a form analogous to (43) the law of the 
wall becomes 

= 0 at z = ko•/30 (46) 

where the parameter ko• is introduced as an apparent rough- 
ness which reflects the turbulence level at the seabed associated 

with the wave boundary layer as well as that associated with 
the physical bottom roughness. More discussion on the appar- 
ent roughness is given below, after we present the solution to 
(41). Using (46), the velocity profile for the steady current 
above the wave boundary layer is found from (45) as 

lull = lu,l In 30z • • z > • (47) 
it is clear from (47) that the major influence of the wave on 

the current is reflected through the apparent roughness param- 
eter ko•. (From the definition given by (15) we note that some 
effect of the wave is also included in [u,• I.) 

A•AR•NW ROUa•N•SS 

The concept of the apparent roughness ko• is introduced in 
(47) by a direct analogy with fully developed rough turbulent 
unidirectional flow. For flow over a hydrodynamically rough 
bottom the separation around the individual roughness ele- 
ments results in spatially varying pressure gradients in the 
flow. The presence of the pressure gradients causes the flow to 
feel a greater resistance, known as form drag, than that associ- 
ated with the skin friction, i.e., that part of the resistance due 
to the Nikuradse roughness scale. in fact, what is happening in 
the case of form drag is that flow energy has been mechanically 
dissipated because of the generation of turbulent eddies in the 
separation process. In the same vein, for the coupled action of 
waves and currents the resulting larger boundary shear stress 
at the wall due to the presence of the wave creates a corre- 
sponding increase in the resistance felt by the steady flow 
above the wave boundary layer over that which is associated 
with the physical roughness ko. This increased resistance mani- 
fests itself in the larger apparent roughness ko• just as the 
increased shear stress due to form drag manifests itself in the 
physical bottom roughness ko. 

The physical bottom roughness and the apparent bottom 
roughness are explicitly related, since the steady current veloc- 

ity profile must be continuous across the wave boundary layer 
interface. Equating (44) and (47) at z = •i•o, we have 

l I In (30b•o/ko) 
- (48) l u,½ I In (30•/k•½) 

By definition the left-hand side of (48) is always greater than 1, 
and thus the apparent roughness ko• is always greater than ko, 
the physical bottom roughness. 

Rearranging (48) with the aid of (38) and noting that IAol 
= l uol/•o, the ratio of the apparent bottom roughness to the 
physical bottom roughness is found to be 

ko - 24 l uol ko (49) 
where 

The value of koc/ko can be determined from (49) for specified 
values of I Aol/ko and 4•c provided the wave current friction 
factor f•o and the corresponding value of the velocity ratio 
l I/lu01 are known. (The determination of these latter two 
parameters is treated in the following sections.) The variation 
of kodko with lu.I/lu01 for constant values of k0/IAol is 
shown in Figure 3 for the case of codirectional flow, i.e., 4• = 
0 ø. As 4• increases from 0 ø to 90 ø, the value of kodko will 
decrease for constant values of lu.I/lu01 and ko/IAol. Com- 
parison of the values of kodko for 4• = 90 ø, shown in Table 1 
with the corresponding values in Figure 3, provides some feel 
for the behavior of the apparent roughness with angle. Thus 
according to (49), some influence of the wave on the current 
will always be present, but, as is expected, this influence dimin- 
ishes as the current speed becomes large in relation to the wave 
orbital speed, i.e., l I/lu01 becomes large, and as the angle 
between the wave and current increases. For large values of the 
current relative to the wave lul/lu01 > a.o, the effect of the 
wave is significantly reduced for angles greater than 45 ø . 

it is important to note that for small values of l ua I/lu0 I, in 
the range less than 0.25, the apparent roughness is consid- 
erably larger than the physical bottom roughness. For many 
conditions of interest on the shelf this is an important range of 
relative wave and current magnitudes. We also point out that 
the ratio kodko is highly dependent on the order of magnitude 
of the relative roughness kdlAol. More discussion will be 
given to these observations in the concluding remarks. 

Recent studies of nearshore currents by Scott and Csanady 
[1976] and Forristall et al. [1977] lend strong qualitative sup- 
port to the concept of an apparent bottom roughness, as 
introduced here. Estimates by Scott and Csanady of bottom 
friction over a sand bed in water 32 m deep along the Long 
island coast yielded a drag coefficient of 8 x 10 -8. This drag 
coefficient was found by Scott and Csanady to correspond to a 
calculated value of ko equal to 69 cm based on the velocity at 
about 2 m above the bottom. The analysis of Scott and 
Csanady [1976] is based on current meter data that were aver- 
aged over tidal periods corresponding to wind stress events. 
Unfortunately, no direct wave measurements are available for 
those periods. However, on the basis of the wind stress events 
it is quite reasonable to state that significant wave motion was 
present for extended time periods during their study. This was 
confirmed by J. T. Scott (personal communication, 1977). 

Forristall et al. [1977] analyzed measurements of waves and 
current velocities at three heights in the water column made 
during tropical storm Delia in the Gulf of Mexico in water 
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Fig. 3. Ratio of aol•arent bottom roughness kbc to the physical bottom roughness kb for codirectional flow, (49). 

approximately 21 m deep. Maximum current speeds greater 
than 3 kn (1.5 m/s) at 2 m above the bottom along with wave 
heights up to 24 feet (7.3 m) were recorded. Using a simple 
logarithmic velocity profile model, Forristall et al. determined 
bottom roughnesses as high as 6 m over a mud bottom. Be- 
cause of the lack of detailed information about the wave 

conditions and boundary geometry it is not possible to give an 
exact comparison between the model presented here and the 
measurements of Scott and Csanady [ 1976] and Forristall et al. 
[1977]. It is tempting to make at least a qualitative com- 
parison. An order of magnitude estimate of the physical bot- 
tom roughness k0 may be made for the Scott and Csanady 
study, assuming that wave-formed ripples were present. Tak- 
ing the maximum ripple steepness, i.e., height to length ratio, 
as 0.15 and the length as 1.5 times the excursion amplitude 
]Ao] [Dingier, 1974], we can obtain a reasonable estimate of 
the relative roughness, ko/]Ao] -• 0.5, upon assuming that ko 
is approximately twice the ripple height [Grant, 1978]. In the 
case of the Forristall study, the presence of a mud bottom 
makes the estimate of ko somewhat more difficult, but consid- 
ering the high bed load transport rates, a reasonable value for 
ko would be of the order of 2 cm. 

Estimates of the wave conditions for each study are given in 
Table 2 (these estimates are based on personal communication 
with the investigators) along with other information necessary 
in order to use the theory presented here. The details of the 
calculation procedure are given in the discussion section be- 

TABLE 1. Values of k•c/k• for •b• = 90 ø 

lul/luol 

kdlA, I 0.025 0.1 0.6 1.0 1.2 

0.2 15.32 10.88 3.32 2.09 1.81 
0.0002 2206.00 717.00 26.29 7.28 2.91 

low. The results shown in Table 2 demonstrate that the rough- 
ness values predicted by the simple theory presented here are 
quite reasonable in light of the field measurement cited. Two 
different sets of values for the boundary shear stress and wave 
characteristics are presented for the Scott and Csanady case to 
illustrate that the roughness scale predicted is consistent with 
the likely range of wave and current conditions. In fact, exact 
agreement between the experimental value of the roughness 
and that predicted by the theory is possible by choosing the 
correct combination of wave height, period, and boundary 
shear stress. Clearly, such exact agreement would be for- 
tuitous, and only typical magnitudes are used here. 

It is interesting to note that even though Scott and Csanady 
[1976] and Forristall et al. [1977] use different analysis tech- 
niques, they arrive at similar observations of large bottom 
roughnesses. Both sets of investigators indicate that unsteady 
effects in the flow may possibly be the cause of their observa- 
tions but do not undertake any analysis of the influence of the 
wave motion. Finally, we note that the range of wave and 
current conditions covered by the two studies would be ex- 
pected to go from large waves and relatively small currents to 
waves and currents of similar magnitude as observed by G. Z. 
Forristall (personal communication, 1978) at the height of the 
storm. Thus these observations indicate the important influ- 
ence of waves on currents over the wide range of conditions to 
be expected in the coastal zone. 

DETERMINATION OF THE BOTTOM FRICTION 

In order to use the theory presented here, the remaining task 
of determining the wave-current friction factor must be ad- 
dressed. In a fashion analogous to the definition of the wave 
friction factor used by Jonsson [1966] we defined the wave 
current friction factor few by relating the maximum bottom 
shear stress to the maximum velocity due to the wave and 
current in (19). Thus 
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TABLE 2. Comparison With Field Observations 

kbc, 
Wave Wave Water ]U,c I •' kbc, Equation 

½c, deg Height, m Period, s Depth, m cm•'/s •' k0/lA0l Field, cm (49), cm 

Scott and Csanady 

0 2 7 32 1 0.5 69 47 
75 1 10 32 1 0.5 69 89 

Forristall et al. 
0 3.66 8 20 25 0.02 30 29 

The data of Forristall et al. refer to 0900 on September 4 [see Forristall et al., 1977, Figures 13 and 14]. 

I'b,maxl/P - lu.l •bwalUb] a (5O) 

Since the maximum bottom shear stress is due to both the 

steady component and the unsteady component of the total 
motion, the magnitude of the vector sum of the maximum 
shear stress due to the wave, 'w,max, and the current ,c is 
equated to (50), giving 

We emphasize that (50) represents the addition of a stress 
component associated with the unsteady motion and a stress 
component associated with the steady motion of the total 
enhanced motion due to the combined presence of a wave and 
a currefit which are coupled in a nonlinear fashion. These 
components result from the partitioning discussed previously; 
(50) does not-represent the addition of the boundary stress 
associated with a pure wave plus that associated with a pure 
current. 

In (51) the maximum shear stress associated with the wave 
can be expressed using the eddy viscosity as 

'w,max_ lu*•.m.•l U*w.max- •Iu*•Iz p Z--}O •-/ ma 

(52) 

where uw is given by (36) and I u.,l is given by (21). 
For a pure wave motion, the use of an eddy viscosity based 

on the maximum values of the shear velocity such as that used 

fcw 2 .O6 

.04 

.02 

.008 

.004 

10004 
.0002 

in (52) leads to a sine-squared variation in the shear stress with 
the free stream velocity (with a phase shift) (e.g., GM). This is 
in reasonable agreement with observations. 

Introducing (36) into (52) and taking the limit, the magni- 
tude of the maximum wave shear velocity squared at the bed is 

]U'•,m•] •-- •lu'•l ]ublg'? 

2•.o•/• (Ker • 2•.o•/• + Kei• 2•.o•/•) m (53) 
Rewriting the expression for •o given by (31) with the use of 

(21) and noting Igol •53• may be rewritten and 
substitued into (51) along with the expressions for ]u,• I a and 
I given by (15) and (50), respectively. After some alge- 
braic manipulation the resulting general equation for the wave 
current friction factor becomes 

0,097 I gbl + 2 <0.097 I gbl 

•/ cos• = 4 •/• (54) 
where the term in braces in (53) has been replaced by K, i.e., 

1 1 
g - (55) 

2•o •/• (Ker a 2•o x/a + Kei a 2•oX/a) x/a 

In carrying out the indicated vector addition in (51) the 
maximum wave shear stress is assumed to act in the direction 

of wave propagation, whereas the time-averaged current shear 
stress is assumed to act in the direction of the current, ½•, at 
the wave boundary layer interhce. The relationship between 
½• and $• was given in (17). 

An example of the behavior of the wave-current friction 
hctor governed by (54) is shown graphically in Figure 4 as a 
hnction of the parameters ko/IAo I and I I/I uo I and for 
values of ½• equal to 0 ø and 90 ø. For small values of I I/I uo I 
the value of f• is almost independent of the angle ½•; numeri- 
cal calculations show that for ½• < 60 ø the codirectional flow 
solution adequately determines f•. In the limiting case of a 
pure wave motion, (54) shows excellent agreement with deter- 
minations of the wave friction hctor based on Jonsson and 

Carlsen's [1976] experiments in an oscillatory wave boundary 
layer (e.g., GM). 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

Fig. 4. Wave-current friction factor for codircctional flow, •c = 0 ø 
(solid lines), and transdirectional flow, •c = 90 ø (dashed lines), (54). 
(For • < 60 ø, use solid linc; for • > 60 ø, interpolate.) 

DISCUSSION 

The theoretical model described in this paper is easily pro- 
gramed on a computer, and few iterations are required for 
solutions. The wave friction factor few and the apparent rough- 
ness kb• must be determined in order to find the ttow kinemat- 
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ics as well as the flow dynamics associated with the combined 
wave and current motion. In the preceding developments the 
behavior of these two parameters was given as a function of 
the relative roughness kb/[Ab[, the velocity ratio 
and the current angle •c. The latter two parameters are a priori 
unknown for reasons previously discussed and are found as 
part of the solution to the wave and current problem. 

The determination of the parameters lull/lull and ½c is 
straightforward. We must first define a set of characteristic 
wave and current parameters. The current is characterized by 
its magnitude [U•r [ at a specified height above the bottom, Zr, 
and by an angle •c to the wave direction. The wave character- 
istics are represented by the near-bottom orbital wave velocity 
l uol and excursion amplitude I Aol. In addition, an estimate 
of the physical bottom roughness kb is required to characterize 
the fluid-sediment interaction. Thus four parameters, given in 
dimensionless form as 

2r lucrl 
l u01 lab I •c (56) 

result. From these four quantities an iterative procedure is 
adopted to solve for the terms 4•c, l ul/I uol, few, and kbc/kb 
needed to calculate the bottom shear stress and velocity yield. 
The calculation procedure consists of first estimating a value 
of l ul/I along with a value of •bc. Using these two esti- 
mated values and the values of kb/I Abl and •, given by (56), 
few may be calculated from (54), and kbc/kb may then be found 
from (49). (Note that few and kb•/kb can also be found graph- 
ically from Figures 4 and 3, respectively.) However, the solu- 
tion is not yet closed. The specified magnitude of the current 
l Ucr I at a height Zr above the wave boundary layer is given by 
(47) with z = Zr, and hence the value of kbc/kb found from 
solving (47) must match the value calculated by using the 
assumed values of lull/luol and 4•c. An iterative procedure is 
required until the value of kbc/kb, calculated from (49) by 
using the assumed values of lul/I and 4•c, matches the 
value calculated by using (47). As an alternative to (56) the 
first two parameters may be replaced by the magnitude of the 
boundary shear velocity due to the steady current, written in 
dimensionless form as l u,cl/I ul, An iterative procedure is 
then adopted so that the calculated value of l u,c I from the 
square root of (15) matches the specified value. The complete 
details of the iterative procedure required for the stress and 
velocity calculations are too long to be presented here, and the 
reader is referred to GM for a thorough discussion. The theory 
may also be used for hand calculations. A plot of V• versus 
for discrete values of I ul/luo I is provided in Figure 1 for this 
purpose. 

For many cases of interest to sediment transport and circu- 
lation models on the inner continental shelf the ratio lull/ 
l uol is small. This is a convenient result, since for these condi- 
tions, i.e., l ul/luol < 0.25, the procedure to calculate the 
shear stress and velocity profiles is greatly simplified. Small 
current approximations for V: and •c given by (16) and (18), 
respectively, may then be used. 

The ability to carry out accurate calculations of the bottom 
shear stress under combined waves and currents is obviously 
important to sediment transport prediction. The transport of 
sediment as bed load is generally related to the skin friction 
component of the total shear stress at the bed. Procedures have 
been devised in unidirectional flow by Einstein [1950], Smith 
and McLean [1977], and others to find the skin friction com- 
ponent of the total stress. Madsen and Grant [ 1976, 1977] have 
shown that in the case of sediment transport under waves the 

skin friction component of a bed shear stress may be evaluated 
by using the sand grain diameter as the appropriate roughness 
in determining the wave friction factor in the shear stress 
equation. To calculate the skin friction for the case of com- 
bined waves and currents, it is reasonable to adopt an ap- 
proach similar to that used by Madsen and Grant for pure 
waves. However, the total shear stress given by (8) must first 
be evaluated by using the physical bottom roughness kb as the 
appropriate roughness; i.e., a value of lu.I must be found. 
Verification of such an approach for combined waves and 
currents awaits experimental evidence. When multiple rough- 
ness scales are present, assuming they are small enough that 
significant wave scattering does not occur, an approach similar 
to that suggested by Smith and McLean [ 1977] would also have 
to be considered. 

The influence of the wave motions on the bed can cause 

significant quantities of sediment to be suspended above the 
bed, where it is then transported with nearly the horizontal 
component of the current velocity. Accurate knowledge of the 
current velocity above the bed is clearly needed to calculate the 
suspended load transport. The theory presented here indicates 
that the current above the wave boundary layer will feel a 
greater resistance due to the presence of the wave. This in- 
creased resistance will result in a steepening of the velocity 
profile associated with the wave-influenced current over that of 
a current with no wave influence. Since the suspended concen- 
tration is greatest close to the bed where the current profile is 
reduced the most, it is obvious that the ability to account for 
the wave influence on the current velocity profile is critical to 
the successful modeling of suspended load transport. 

A more quantitative measure of the influence of the wave on 
the current is presented in Table 3. Values of the depth- 
averaged current calculated by including the influence of the 
wave, using the present theory and neglecting it, are given for 
the values of the reference parameters in (56) indicated in the 
table. Values of kb were estimated as described above. It is seen 
that for the conditions in the table, up to a 33% reduction in 
the depth-averaged velocity would occur by accounting for the 
influence of the wave. From the consideration of suspended 
sediment transport, accurate knowledge of the velocity near 
the bed is most important; neglecting the influence of the wave 
would result in overprediction of the current velocity half a 
meter above the bed by as much as a factor of 2 in the example 
cited. The implications of this very idealized calculation extend 
beyond considerations of only sediment transport and show 
the importance of the inclusion of wave influence in coastal 
circulation models. These results also point out the importance 
of monitoring storm events for the successful calibration of 
circulation models, since roughness values determined during 
periods of calm weather would be expected to be significantly 
smaller than those found during storm conditions. 

CONCLUDING REMARKS 

Clearly, the mean shear stress (mean in the Reynolds sense 
only) given by (8) never actually moves any sediment. In the 
case of a rough bed the individual sediment grains are reacting 
to the action of turbulent eddies which 'kick' them loose from 

the bed (we physically picture a momentary pressure differen- 
tial across the grain). The nature of these turbulent eddies is 
random, as is the stability of the individual sediment grains. 
However, from a deterministic viewpoint the empirical rela- 
tionship between the local mean shear stress and the local 
transport of sediment seems to be a valid indicator of the 
average transport conditions. More sophistication in this con- 
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TABLE 3. Comparison of Mean Velocities With and Without the Effect of Waves 

5 0.74 0.2 0 0.19 7.0 1.98 1.51 
5 0.45 0.2 0 0.085 9.5 1.33 0.96 
5 0.18 0.2 0 0.018 14.0 0.61 0.42 

Water depth is 32 m, T= 10 s, wave height is 2 m, 
In (11.04h/ko), and rl/ll - (lu,•l/luol)(1/•) In (11.04h/ko•). 

cept does not seem justifiable until quantitative knowledge of 
the structure of turbulent boundary layers over roughened 
beds in oscillatory flow is available. 

The use of an eddy viscosity in the model here is another 
direct consequence of our lack of detailed knowledge of the 
structure of turbulent boundary layers. In order to treat the 
problem of combined waves and currents interacting with a 
rough bottom in a mathematical form, a simple linearly vary- 
ing eddy viscosity model was used in the present theory. We 
pointed out that in many geophysical flows the simple mixing 
length arguments behind such models are not valid because of 
multiple length scales involved in the flow. However, close to 
the bed, where the proper length scale is the bed roughness, 
i.e., wave-formed ripples, the model is expected to be reason- 
able. The good agreement cited with laboratory experiments 
for pure waves and the reasonable nature of the results of the 
model for predictions of the apparent roughness are put forth 
as support for this claim. Higher in the flow, where other 
length scales may be involved, the appropriate value of the 
characteristic shear velocity should reflect this in much the 
same manner as the two boundary layer regions in this model 
reflect the scales of wave and current influence. From (22) and 
(23) it is clear that a discontinuity exists in the eddy viscosity 
profile across the wave boundary layer interface. This is of no 
consequence to the physics of the model presented here; in any 
case, it is easily treated. 

One major obstacle encountered in developing the theory 
presented here is the lack of data which can be used to test the 
theory's quantitative ability. The paucity of data is quite un- 
derstandable when one considers the difficulties involved in 

making the near-bottom velocity measurements required to 
obtain data on combined wave and current flows. Current 

meters are required which have accurate zero points, have 
rapid sampling ability, and are capable of responding accu- 
rately in reversing flows. The scale of the wave boundary layer, 
approximately 5-10 cm for typical wind-driven waves, requires 
the use of velocity-measuring devices with small sampling 
volumes. Knowledge of the bed geometry is also required. 
However, with our present state of knowledge it is unlikely 
that we can accurately specify the associated physical bottom 
roughness within more than a factor of 2 or 3. 

In the field, except under the most idealized conditions, the 
complications involved in making the physical measurement 
will be equally matched by the complications involved in inter- 
preting the data unless great care is taken in setting up the 
experiment and making the measurements. The problems of a 
movable bed, a random sea, and the background level of 
turbulence contained in the current due to vorticity in- 
troduced, for example, by larger-scale topography are not well 
understood at this time. The present theory is an attempt at 
providing a stepping stone to help plan and interpret such 
measurements. As more data become available, the assump- 
tions made in the model may be more carefully investigated, 
and the theory can be improved. 

In summary, the theory presented here identifies a set of 

physically meaningful parameters which may be used to quan- 
tify combined wave and current interaction with a rough bot- 
tom. The theory shows that when waves and currents exist 
jointly in a region, the shear stresses identified with the wave 
and the current are altered because of the nature of the turbu- 

lence generated by the wave-current interaction at the bed and 
are different from the stresses expected in the case of pure 
waves or currents. The net result is that the current in the 

region above the wave boundary layer feels a greater resistance 
than that associated with the physical bottom roughness. This 
greater resistance is introduced in the model through the con- 
cept of an apparent bottom roughness which reflects the char- 
acteristics of the wave boundary layer. The theory also gives 
solutions for the flow kinematics both inside and outside the 

wave boundary layer. The procedure for use of the model 
developed is briefly outlined, and the reader is referred to a 
more detailed discussion by GM. (The initial work presented 
by Grant [1977] and Grant and Madsen [1978] has been modi- 
fied as described by Grant [1978]. 
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