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We investigate phase-averaged equations describing the spectral evolution of dispersive
water waves subject to weakly nonlinear quartet interactions. In contrast to
Hasselmann’s kinetic equation, we include the effects of near-resonant quartet
interaction, leading to spectral evolution on the ‘fast’ O(ε−2) time scale, where ε

is the wave steepness. Such a phase-averaged equation was proposed by Annenkov &
Shrira (J. Fluid Mech., vol. 561, 2006b, pp. 181–207). In this paper we rederive
their equation taking some additional higher-order effects related to the Stokes
correction of the frequencies into account. We also derive invariants of motion for
the phase-averaged equation. A numerical solver for the phase-averaged equation is
developed and successfully tested with respect to convergence and conservation of
invariants. Numerical simulations of one- and two-dimensional spectral evolution are
performed. It is shown that the phase-averaged equation describes the ‘fast’ evolution
of a spectrum on the O(ε−2) time scale well, in good agreement with Monte-Carlo
simulations using the Zakharov equation and in qualitative agreement with known
features of one- and two-dimensional spectral evolution. We suggest that the phase-
averaged equation may be a suitable replacement for the kinetic equation during
the initial part of the evolution of a wave field, and in situations where ‘fast’ field
evolution takes place.
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1. Introduction
The dominance of quartet interactions in the weakly nonlinear evolution of surface

gravity waves was first established by Phillips (1960). The quartet interaction serves as
a building brick in almost any model dealing with spectral evolution. The present work
is based on Zakharov’s equation (Zakharov 1968) for the temporal evolution of the
complex amplitude spectrum b(k, t), where k is the wavenumber vector and t is time.
Zakharov’s equation is deterministic, i.e. no stochastic assumptions were made in the
course of its derivation, and it is phase resolving, i.e. it describes the evolution of the
phases of the waves.

Earlier Hasselmann (1962) derived an equation for the nonlinear evolution of
the wave-action spectrum C(k, t) = 〈|b(k, t)|2〉, where 〈·〉 denotes the statistical
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average (expectation). Equations of this type, describing the evolution of certain
statistical properties of a random wave field appear in many different fields of physics
where weakly nonlinear dispersive waves are present. In the context of water waves
this equation is often referred to as the Hasselmann equation or the kinetic equation.
Here we will use the latter term. The kinetic equation serves as the main mathematical
model for describing the statistical evolution of random waves due to weakly nonlinear
quartet interactions. It is the theoretical framework for the theory of wave turbulence,
see Zakharov, L’vov & Falkovich (1992) and references therein, which has established
important concepts about the energy transfer within the wave spectrum. The kinetic
equation is also the core part of operational wave forecasting models.

In the derivation of the kinetic equation certain assumptions about the stochastic
properties of the system are necessary. These include: (i) the assumption that the wave
process is nearly Gaussian; (ii) the assumption that the phases of the waves were
uncorrelated at some instant t0; and (iii) that this instant occurred sufficiently long time
ago (formally t − t0 →∞) to enable a certain time scale separation. Details about
application of these concepts to the Zakharov equation in order to derive from it the
kinetic equation can be found in e.g. Zakharov et al. (1992) and Janssen (2004). See
also the Appendix. The kinetic equation does not include information about modal
phases and is in this sense a phase-averaged equation. The nonlinear energy transfer in
the kinetic equation occurs at a rather slow time scale so that the rate of change of the
action density C is proportional to C3. Hence,

1
C

∂C

∂t
= O(ε4ω0), (1.1)

where ε is the wave steepness and ω0 is a typical frequency of the wave field.
Thus, the evolution takes place on an O(ε−4) time scale. An important point is
that assumption (iii) above, which is made in the derivation of the kinetic equation,
averages out the contribution from the near-resonance quartets and maintains only
quartets in exact resonance. It is worth noting that that since there are no exact
resonance quartets for waves in one horizontal dimension (Dyachenko & Zakharov
1994), the kinetic equation predicts no change of a one-dimensional spectrum.

Although the kinetic equation is unable to describe evolution on faster time scales, it
is clear that in nature faster evolution may occur for various reasons. It is quite well
known that a wave field which is initially far from an equilibrium state will evolve
on the O(ε−2) time scale during initial stages of the evolution. This is for example
seen in numerical Monte-Carlo simulations of deterministic equations, where phases
are chosen randomly at t = 0 (Dysthe et al. 2003; Stiassnie & Shemer 2005; Annenkov
& Shrira 2006a). Moreover, Annenkov & Shrira (2009) showed by direct numerical
simulations of the Zakharov equation that fast spectral evolution is expected to occur
as a result of any strong perturbation of the wave field, for example as a result of
an abrupt change of forcing due to wind. This is also supported by field observations
and experiments showing fast nonlinear evolution of wave fields as a result of rapid
changes in wind speed or direction (van Vledder & Holthuijsen 1993; Waseda, Toba
& Tulin 2001). It is clear that the kinetic equation is inadequate for describing such
situations where the nonlinear energy transfer takes place on the fast O(ε−2) time
scale.

The importance of near-resonant quartet interactions in nonlinear evolution, was
also noted by Janssen (2003), who suggested a modification to the kinetic equation
which includes effects of non-resonant interactions. By comparison with Monte-Carlo
simulation of the nonlinear Schrödinger equation and the Zakharov equation he found
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good agreement with his modified kinetic equation for evolution of one-dimensional
spectra. Later, Annenkov & Shrira (2006b) proposed a more general phase-averaged
equation, which describes the spectral evolution on the O(ε−2) time scale. To our
knowledge no real applications of such a modified kinetic equation have been
presented. This is however the main purpose of the present paper.

The derivation of the modified kinetic equation, which in the following we will
refer to as the phase-averaged equation (PAE), is given in § 2. The equation is derived
starting from the Zakharov equation and follows roughly the same procedure as in the
derivation given by Annenkov & Shrira (2006b). However, compared to Annenkov &
Shrira (2006b) we include some additional higher-order contributions in the statistical
closure. The derivation shares many of the same concepts as the derivation of the
kinetic equation, but uses more relaxed stochastic properties. More specifically we
assume: (i) a nearly Gaussian and weakly nonlinear process; and (ii) that the modal
phases are uncorrelated at t = 0. The PAE has certain invariants of motion, which are
derived in § 3.

The rest of the paper presents results from numerical simulations with the PAE.
The numerical method and simulation setup used to solve the PAE numerically is
outlined in § 4. To test and build some confidence in the numerical solver, some
validation tests are presented in § 5. We have shown convergence of the numerical
solutions with decreasing integration time step as well as checked the accuracy of
the invariants derived in § 3. In § 6 we consider the evolution of one-dimensional
spectra. We have compared the results from the PAE with results obtained from
Monte–Carlo simulations using the Zakharov equation directly. The results show in
general a good agreement between the PAE and direct simulations with the Zakharov
equation, and confirm the importance of evolution on the O(ε−2) time scale, which
is in sharp contrast to the standard kinetic equation which predicts no change of a
one-dimensional spectrum.

Spectral evolution of more realistic two-dimensional spectra are considered in § 7.
Also here our results clearly show the importance of the fast initial evolution of a
spectrum. Good agreement is found between the spectral evolution obtained from the
PAE and from Monte-Carlo simulations with the Zakharov equation.

In § 8 we discuss how mixing of the phases at certain chosen times during the
evolution of a wave field affects the spectral evolution. This might be relevant if there
exists some physical process that mixes phases with certain intervals. It is suggested
that strong wave breaking might have such an effect (Babanin et al. 2007, 2010).
Finally, discussion and conclusions are given in § 9.

2. Derivation of phase-averaged equations
Our starting point is the Zakharov equation (Zakharov 1968) for the generalized

complex amplitude spectrum b(k, t)

i
∂b(k)
∂t
= ω(k)b(k)+

∫
T(k, k1, k2, k3)b

∗(k1)b(k2)b(k3)

× δ(k+ k1 − k2 − k3) dk1 dk2 dk3. (2.1)

Here t is time, k is the wavenumber vector and ω(k) = √g|k| tanh(|k|h) is the
frequency, g is the acceleration due to gravity, h is the water depth and asterisk
denotes complex conjugation. Details about the kernel function T(k, k1, k2, k3) can be
found in e.g. Krasitskii (1994) and Mei, Stiassnie & Yue (2005).
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If assuming a discrete spectrum

b(k, t)=
∑

n

bn(t)δ(k− kn), (2.2)

the Zakharov equation is replaced by the system

dbn

dt
=−iωnbn − i

∑
p,q,r

Tnpqrb
∗
pbqbrδ

qr
np, (2.3)

where Tnpqr = T(kn, kp, kq, kr), ωn = ω(kn) and δqr
np is the Kronecker delta

δqr
np =

{
1 when kn + kp = kq + kr,

0 otherwise.
(2.4)

One should note that (2.3) is based on a naive discretization of the Zakharov equation.
A more sophisticated discretization is proposed in Gramstad, Agnon & Stiassnie
(2011), but its stochastic counterpart is expected to be very cumbersome.

We now assume that bj are stochastic processes and let 〈·〉 denote the statistical
average (the expectation). Multiplying (2.3) by b∗n, adding the result to its complex
conjugate and averaging gives the equation

dCn

dt
=−i

∑
p,q,r

Tnpqr

(〈b∗nb∗pbqbr〉 − 〈b∗r b∗qbpbn〉
)
δqr

np = 2Im
∑
p,q,r

Tnpqr〈b∗nb∗pbqbr〉δqr
np, (2.5)

where Cn = 〈|bn|2〉 is the wave action. To obtain an equation for the fourth-order
moment we differentiate the product b∗nb∗pbqbr with respect to time and substitute from
(2.3). This gives

d
dt
〈b∗nb∗pbqbr〉 = i∆qr

np〈b∗nb∗pbqbr〉
+ i
∑
u,v,w

Tnuvw〈b∗pb∗vb
∗
wbqbrbu〉δvw

nu + i
∑
u,v,w

Tpuvw〈b∗nb∗vb
∗
wbqbrbu〉δvw

pu

− i
∑
u,v,w

Tquvw〈b∗nb∗pb∗ubrbvbw〉δvw
qu − i

∑
u,v,w

Truvw〈b∗nb∗pb∗ubqbvbw〉δvw
ru , (2.6)

where

∆qr
np = ωn + ωp − ωq − ωr. (2.7)

We now invoke the usual assumptions of statistical homogeneity and weak non-
Gaussianity. One can express the averages in the following forms (see e.g. Lvov,
Binder & Newell 1998):

〈b∗nbp〉 = Cnδ
p
n, (2.8a)

〈b∗nb∗pbqbr〉 = CnCp(δ
q
nδ

r
p + δr

nδ
q
p)+ knpqr, (2.8b)

〈b∗nb∗pb∗qbrbubv〉 = CnCpCq

(
δr

nδ
u
pδ
v
q + δr

nδ
v
pδ

u
q + δu

nδ
r
pδ
v
q + δu

nδ
v
pδ

r
q + δvnδr

pδ
u
q + δvnδu

pδ
r
q

)
+Cn

(
kpquvδ

r
nδ

uv
pq + kpqrvδ

u
nδ

rv
pq + kpqruδ

v
nδ

ru
pq

)
+Cp

(
knquvδ

r
pδ

uv
nq + knqrvδ

u
pδ

rv
nq + knqruδ

v
pδ

ru
nq

)
+Cq

(
knpuvδ

r
qδ

uv
np + knprvδ

u
qδ

rv
np + knpruδ

v
qδ

ru
np

)+ knpqruv. (2.8c)
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Here,

δp
n =

{
1 when kn = kp,

0 otherwise,
(2.9)

and knpqr and knpqruv are the fourth- and sixth-order joint cumulants, respectively, which
are assumed to be small under the assumption of weak non-Gaussianity. Substituting
(2.8b) into (2.5) gives

dCn

dt
=−i

∑
p,q,r

Tnpqr

(
knpqr − krqpn

)
δqr

np = 2Im
∑
p,q,r

Tnpqrknpqrδ
qr
np. (2.10)

Similarly, (2.8b) into (2.6) gives

d
dt

knpqr = i∆qr
npknpqr − d

dt
CnCp(δ

q
nδ

r
p + δr

nδ
q
p)

+ i
∑
u,v,w

Tnuvw〈b∗pb∗vb
∗
wbqbrbu〉δvw

nu + i
∑
u,v,w

Tpuvw〈b∗nb∗vb
∗
wbqbrbu〉δvw

pu

− i
∑
u,v,w

Tquvw〈b∗nb∗pb∗ubrbvbw〉δvw
qu − i

∑
u,v,w

Truvw〈b∗nb∗pb∗ubqbvbw〉δvw
ru . (2.11)

Closure of the system (2.10)–(2.11) relies on the assumptions that the wave field is
weakly nonlinear and obeys weakly non-Gaussian statistics. The assumption of weak
non-Gaussianity has the consequence that the fourth- and sixth-order cumulants are
smaller than terms of the same nonlinear order involving Cn. These assumptions may
lead to the following ordering:

Cn = O(ε2), knpqr = o(ε4), knpqruv = o(ε6), (2.12)

where ε � 1 is the wave steepness. Below we discuss the closure of (2.10)–(2.11) to
different orders of ε. First, we note that ignoring terms of o(ε4) in (2.10)–(2.11) leads
to the trivial result dCn/ dt = 0, which shows that to leading order only the phases of
the wave field change. To next order, including terms of o(ε4) but ignoring terms of
o(ε6), only the first line in (2.8c) is significant. In this case one can show that (2.11)
takes the form

d
dt

knpqr = i[αnpqr +∆qr
npknpqr], (2.13)

where

αnpqr = 2Tnpqrδ
qr
np[CqCr(Cn + Cp)− CnCp(Cq + Cr)]. (2.14)

If we further also include the terms in (2.8c) that involve the fourth-order cumulants,
(2.11) has an additional contribution and takes the form

d
dt

knpqr = i[αnpqr + (∆qr
np + βnpqr)knpqr], (2.15)

where

βnpqr = 2
∑

u

Cu(Tnunu + Tpupu − Tququ − Truru). (2.16)

Note that (2.15) is strictly mathematically consistent only if one assumes that the
sixth-order cumulant is smaller than products of Cn and fourth-order cumulants. Note
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further that to this order, effects from quintet interactions described by modifications
to the Zakharov equation (Stiassnie & Shemer 1984; Krasitskii 1994) may also be
significant. Since we here start out from the standard (four-wave) Zakharov equation,
effects from quintet interactions are not included in our derivation.

From (2.16) one sees that βnpqr incorporates the nonlinear Stokes corrections of
the frequencies, which actually cause resonating wave quartets to lose the resonance
property during their evolution in time. We wish to include this effect in order to
see to what extent this affects the spectral evolution. Note that while phase-averaged
equations including the effect of βnpqr to our knowledge have not been discussed
within the field of water waves, similar equations have been presented in other fields
of physics (see e.g. Lvov et al. 1998).

The general solution of (2.13) and (2.15) can be written

knpqr(t)=
[

knpqr(0)+ i
∫ t

0
αnpqr(τ )e−iθnpqr(τ ) dτ

]
eiθnpqr(t), (2.17)

where

θnpqr(t)=∆qr
npt, (2.18a)

or

θnpqr(t)=∆qr
npt +

∫ t

0
βnpqr(ξ) dξ, (2.18b)

to O(ε5) and O(ε7) respectively.
Assuming a Gaussian initial condition such that knpqr(0) = 0, (2.17) and (2.14)

substituted into (2.10) gives the equation

dCn

dt
= 4Re

∑
p,q,r

T2
npqrδ

qr
npeiθnpqr(t)

∫ t

0
fnpqr(τ )e−iθnpqr(τ ) dτ, (2.19a)

where

fnpqr = CqCr(Cn + Cp)− CnCp(Cq + Cr). (2.19b)

Equation (2.19a), which we will refer to as the PAE, is proposed as a possible
alternative to the standard kinetic equation for water waves (Hasselmann 1962). The
main advantage of the PAE compared to the standard kinetic equation is its ability
to describe spectral evolution on the relatively fast O(ε−2) time scale. The PAE with
βnpqr = 0 has previously been presented by Annenkov & Shrira (2006b).

3. Invariants
In the following we show that the PAE (2.19a) conserves the following three

quantities:

Ñ =
∑

n

Cn, (3.1a)

P̃ =
∑

n

knCn, (3.1b)

H̃ =
∑

n

ΩnCn −
∑

n,p,q,r

T2
npqrIm

(
eiθnpqr(t)

∫ t

0
fnpqr(τ )e−iθnpqr(τ ) dτ

)
δqr

np, (3.1c)
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where Ωn = ωn if θnpqr is given by (2.18a) and Ωn = ωn +
∑

uTnunuCu if θnpqr is given
by (2.18b). One can show that (3.1) are the statistically averaged versions of the
invariants for the Zakharov equation: the wave action, momentum and Hamiltonian,
respectively.

In order to show that (3.1) are conserved by the PAE, it is convenient to write the
PAE (2.19a) in the form

dCn

dt
=
∑
p,q,r

Mnpqrδ
qr
np, (3.2a)

where

Mnpqr = 4T2
npqrRe

(
eiθnpqr(t)

∫ t

0
fnpqr(τ )e−iθnpqr(τ ) dτ

)
. (3.2b)

One can show that Mnpqr =Mpnqr =Mnprq = −Mqrnp. By straightforward manipulations
with the dummy summation indexes one then finds

dÑ

dt
=
∑

n,p,q,r

Mnpqrδ
qr
np =

1
2

∑
n,p,q,r

(Mnpqr +Mqrnp)δ
qr
np = 0, (3.3a)

dP̃
dt
=
∑

n,p,q,r

knMnpqrδ
qr
np =

1
4

∑
n,p,q,r

(knMnpqr + kpMpnqr + kqMqrnp + krMrqpn)δ
qr
np

= 1
4

∑
n,p,q,r

(kn + kp − kq − kr)Mnpqrδ
qr
np = 0, (3.3b)

which implies that (3.1a) and (3.1b) are conserved by (2.19a). In the same way one
sees that

d
dt

∑
n

ΩnCn =
∑

n

(
dΩn

dt
Cn +Ωn

dCn

dt

)
= 1

4

∑
n,p,q,r

θ ′npqr(t)Mnpqrδ
qr
np

= d
dt

∑
n,p,q,r

T2
npqrIm

(
eiθnpqr(t)

∫ t

0
fnpqr(τ )e−iθnpqr(τ ) dτ

)
δqr

np, (3.4)

which shows that also (3.1c) is an invariant for (2.19a). Here and in the following,
prime denotes derivative with respect to time.

4. Numerical setup and implementation
In the following numerical simulation with the PAE we have used a numerical

scheme based on the Taylor expansion

Cn(t +1t)= Cn(t)+1tC′n(t)+
1t2

2
C′′n(t)+

1t3

6
C′′′n (t)+ O

(
1t4
)
. (4.1)

Using that

C′n(t)= 4Re
∑
p,q,r

T2
npqrδ

qr
npeiθnpqr(t)I(t), (4.2a)

C′′n(t)= 4Re
∑
p,q,r

T2
npqrδ

qr
np

[
fnpqr(t)+ iθ ′npqr(t)e

iθnpqr(t)I(t)
]
, (4.2b)
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C′′′n (t)= 4Re
∑
p,q,r

T2
npqrδ

qr
np

[
f ′npqr(t)+

(
iθ ′′npqr(t)− θ ′npqr (t)

2
)

eiθnpqr(t)I(t)
]
, (4.2c)

leads to the following explicit scheme with local truncation error of O(1t4):

Cn(t +1t)= Cn(t)+ 41t Re
∑
p,q,r

T2
npqrδ

qr
np

[
1t

2
fnpqr(t)+ 1t2

6
f ′npqr(t)

+
(

1+ i1t

2
θ ′npqr(t)+

1t2

6

(
iθ ′′npqr(t)− θ ′npqr (t)

2
))

I(t)eiθnpqr(t)

]
+O

(
1t4
)
, (4.3)

where we have defined

I(t)=
∫ t

0
fnpqr(τ )e−iθnpqr(τ ) dτ. (4.4)

The integral I(t) can be calculated iteratively, i.e.

I(t)= I(t −1t)+
∫ t

t−1t
fnpqr(τ )e−iθnpqr(τ ) dτ

= I(t −1t)+ 1t

2

[
fnpqr(t −1t)e−iθnpqr(t−1t) + fnpqr(t)e−iθnpqr(t)

]+ O
(
1t3
)
. (4.5)

Similarly,

θnpqr(t)= θnpqr(t −1t)+∆qr
np1t +

∫ t

t−1t
βnpqr(ξ) dξ

= θnpqr(t −1t)+∆qr
np1t + 1t

2

[
βnpqr(t −1t)+ βnpqr(t)

]+ O
(
1t3
)
. (4.6)

In addition we use that for t >1t

θ ′′npqr(t)= β ′npqr(t)=
βnpqr(t)− βnpqr(t −1t)

1t
+ O (1t) , (4.7a)

f ′npqr(t)=
fnpqr(t)− fnpqr(t −1t)

1t
+ O (1t) , (4.7b)

while for t = 0, β ′npqr(0) = f ′npqr(0) = 0. Note that the relatively simple expressions for
the derivatives (4.2) as well as the simple way to handle the integral I(t) make the
above higher-order one-step explicit scheme convenient. Such higher-order schemes
based on Taylor expansions have previously been employed successfully on other
problems related to wave propagation (Dold & Peregrine 1986; Cooker et al. 1990).

As initial condition for the numerical solver the initial spectral density Cn(t = 0)
is needed. One may choose Cn(t = 0) according to a desired energy spectrum S(k)
so that Sn = Cnωn/g = S(kn)1kn, where 1kn is the area of the ‘bin’ in the wave-
vector plane containing the discrete mode kn. For example, in the case of regularly
spaced discrete modes separated by 1kx and 1ky, 1kn =1kx1ky. We define the wave
steepness as ε = kp

√
2
∑

nSn, where kp is the spectral peak wavenumber.
For all the numerical simulations in this paper we have chosen S(k) as JONSWAP

spectra, i.e.

S(k)= α

2k3
exp

[− 5
4 (k/kp)

−2
]
γ

exp[− (
√

k/kp−1)
2
/(2σ2

A)]D(θ), (4.8a)
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FIGURE 1. (a) Emax as a function of the time step 1t (crosses: one-dimensional (1-D), circles:
two-dimensional (2-D)). (b) Maximum relative deviation of invariants: averaged wave action
and momentum in 1-D and 2-D (pluses) and averaged Hamiltonian (crosses: 1-D, circles:
2-D).

where k= k(cos θ, sin θ) and where

D(θ)= 1
k
√
π

0(N/2+ 1)
0(N/2+ 1/2)

cosNθ (4.8b)

in two horizontal dimensions and D(θ)= 1 in one horizontal dimension. Here, 0 is the
Gamma function. The parameter σA has the standard values 0.07 for k 6 kp and 0.09
for k > kp. The parameters α, kp, γ and N are chosen in each case in order to get a
desired spectral shape. Note that although the PAE in principle is valid also for finite
water depth h, all the numerical results presented in this paper are obtained for infinite
depth h→∞.

5. Numerical validation
In the following we present some testing of the numerical method with respect

to the choice of discretization and integration time step. For this testing we have
used JONSWAP spectra (4.8) with γ = 3.3 and α = 0.0238, corresponding to a wave
steepness ε = 0.12. In the two-dimensional case N = 16 is used. The integration in
time is performed up to tmax = 1000Tp, where Tp is the period corresponding to the
peak wavenumber kp. First, we consider the effect of the integration time step 1t by
running some simulations with different values of 1t. To check the convergence of the
numerical method we define a measure for the difference between two solutions Cn(t)
and C(R)

n (t):

Emax = max
06t61000Tp

(
1
ε2

∑
n

|Cn(t)− C(R)
n (t)|

)
, (5.1)

and let C(R)
n (t) be a solution obtained by using a very small time step (here

1t = Tp/200). Figure 1(a) shows Emax for different values of 1t for the one-
dimensional (crosses) and two-dimensional (circles) simulations. Consistent with the
order of the numerical scheme (4.3), Emax decreases proportional to 1t3. Figure 1(b)
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FIGURE 2. One-dimensional spectra in linear and logarithmic scales at t = 1000Tp for
different discretizations: n= 16 (crosses), n= 64 (dots) and n= 512 (solid line).

shows the maximum relative deviation of the invariants (3.1) during the simulations.
The averaged wave action and momentum, shown with pluses in the figure, are
conserved with very high accuracy independent of the time step. As was brought
to our attention by one of the referees, this is because both wave action (for any grid)
and momentum (for the regular grid used here) are conserved simply by construction
of the algorithm and thus conserved to machine precision independent of time step.
For the averaged Hamiltonian (crosses and circles in the figure) accuracy depends
on the time step, also here with the expected convergence proportional to 1t3. All
together, the results in figure 1 show that the numerical scheme seems to converge
properly and that the global truncation error of O(1t3) is verified.

Further we wish to check how the numerical results depend on the discretization
of the wavenumber plane. This is performed by running simulations with the same
initial condition and time step, but with different resolution of the wavenumber space.
Figure 2 shows the final one-dimensional spectrum after t = 1000Tp obtained by using
n = 16, n = 64 and n = 512 points to resolve the wavenumber axis on the interval
[0, 4kp]. It is clear that all three resolutions give similar results, however with some
small discrepancies in the n = 16 case. Still the results of figure 2 indicate that the
one-dimensional results are quite robust with respect to resolution of the wavenumber
axis.

In two dimensions the testing is performed by choosing three different
discretizations of the wavenumber plane in the region kx ∈ [0, 3.5kp], ky ∈
[−1.5kp, 1.5kp], where the spectral peak is located at (kx, ky) = (kp, 0), namely
nx×ny = 23×19 (437 points), nx×ny = 30×25 (750 points) and nx×ny = 46×37 (1702
points). Contour plots of the resulting two-dimensional wave spectra after t = 200Tp

and t = 1000Tp are shown in figure 3(a,b), while the corresponding directionally
integrated spectra at t = 1000Tp are shown in figure 3(c). We note that the results
obtained with the coarsest discretization differ somewhat from the two cases with
finer resolution, indicating that a too coarse resolution of the wavenumber plane may
produce inaccurate results. Fortunately, the two finest resolutions produce very similar
results, suggesting that we have reached ‘stable’ results with respect to the resolution
of the wavenumber space. One should note that different from the one-dimensional
case, where the spectra remained very smooth throughout the evolution, we here
observe some non-smoothness in the spectra after long time evolution. Figure 3
indicates that the amount of noise is somewhat decreased with finer discretization,
but this cannot be confirmed without performing simulations with even finer resolution.
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FIGURE 3. (Colour online) Two-dimensional spectra at t = 200Tp (a) and t = 1000Tp (b) for
the different discretizations. (c) The directionally integrated spectra in linear and logarithmic
scales at t = 1000Tp for nx × ny = 23 × 19 (dotted line), nx × ny = 30 × 25 (dashed line) and
nx × ny = 46× 37 (solid line).

However, due to the large number of interactions in a regular grid we are currently
unable to go to finer resolution in the two-dimensional case.

6. Evolution of one-dimensional spectra
It is well known that for a one-dimensional spectrum, Hasselmann’s kinetic equation

predicts no spectral change. This is because exact resonances are absent in one
horizontal dimension (Dyachenko & Zakharov 1994). On the other hand, it is also
well known that a sufficiently narrow and energetic spectrum will change on a faster
time scale not captured by the standard kinetic equation. This is for example verified
by numerical (Monte-Carlo) simulations using deterministic equations (see e.g. Dysthe
et al. 2003; Janssen 2003). It is therefore of interest to see whether the PAE is able
to capture this fast spectral evolution. For this purpose we have solved the PAE for
three different types of unidirectional JONSWAP spectra with different spectral widths,
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Case α γ ε

A 0.0364 1.0 0.12
B 0.0238 3.3 0.12
C 0.0083 20.0 0.12

TABLE 1. Parameters of the JONSWAP spectra used in § 6.
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FIGURE 4. Initial spectrum (dashed line) and spectrum after 1000Tp from simulations with
the PAE (thick solid line) and Mont-Carlo simulations with the Zakharov equation (thin solid
line), in linear and logarithmic scales. (a) Case A (γ = 1), (b) case B (γ = 3.3) and (c) case C
(γ = 20.0).

but with the same total energy. The three cases are summarized in table 1. In these
simulations, a uniform grid with n = 512 points is used to represent the k-axis on the
interval k ∈ [0, 4kp]. The integration in time is performed up to tmax = 1000Tp with
time step 1t = Tp/2.

In figure 4 the spectra obtained from the numerical simulations of the PAE are
compared with the corresponding spectra obtained using the Zakharov equation in
Monte-Carlo simulations with 100 runs where initial random phases were assigned
for each run. The figure shows the spectra after t = 1000Tp. It is clear that both the
PAE and the Zakharov equation predict a broadening of the spectra in the narrower
cases (γ = 3.3 and γ = 20). In the broader case (γ = 1), the spectrum only weakly
changes. In all cases there is quite good agreement between the PAE and the Zakharov



292 O. Gramstad and M. Stiassnie

0.360

0.375

0.365

0.370

200 400 600 8000 1000
0.360

0.375(a)

200 400 600 8000 1000

(b)

200 400 600 8000 1000

(c)

0.65

0.75

0.80

0.70

1.0

2.0

1.5

0.5

FIGURE 5. Time evolution of the modes corresponding to the spectral peaks obtained
from numerical simulations with the PAE, with (broken line) and without (solid line) the
contribution from βnpqr: (a) case A (γ = 1); (b) case B (γ = 3.3); (c) case C (γ = 20).

equation. Recall that the PAE gives the spectrum directly, while the spectra obtained
from the Zakharov equation are results of Monte-Carlo simulations assigning initial
random phases in 100 random runs.

The broadening of the spectra takes place during the first 300–400 periods before
reaching a practically stable state with no further change. This is illustrated in figure 5
which shows the evolution of the peak modes, S(kp), as a function of time. The
existence of a ‘stationary’ state is to a certain extent consistent with the standard
kinetic equation, which for a one-dimensional spectrum predicts no spectral change
a sufficiently long time after the phases were assumed uncorrelated. For a two-
dimensional spectrum one may not expect the existence of such a stationary state,
but rather a transition to a slower evolution on the O(ε−4) time scale, as predicted by
the kinetic equation for the long time evolution.

In order to check the effect of βnpqr in the PAE, we have run the above described
simulations both with and without including the contribution from βnpqr. The results
indicate that the effect of βnpqr is relatively minor. This is shown in figure 5, where
one sees that the results with and without βnpqr are almost identical. We recall from the
derivation in § 2 that βnpqr arose as an effect of the nonlinear Stokes correction of the
frequencies, and is a higher-order effect than other terms in the equation.

7. Evolution of two-dimensional spectra
We now turn to the more realistic situation of the evolution of two-dimensional,

directional, wave spectra. In principle, numerical simulations of two-dimensional
spectra do not introduce additional difficulties compared to the one-dimensional case.
However, limitations in computer memory and speed restrict the possible resolution in
the spectral space, since the total number of modes now must be distributed over the
two-dimensional wave-vector plane. In the following two-dimensional simulations we
have used a regular grid with nx × ny = 46× 37 points to describe the part of the wave-
vector plane kx ∈ [0, 3.5kp], ky ∈ [−1.5kp, 1.5kp], where the spectral peak is located
at (kx, ky) = (kp, 0). The time step used in the numerical integration is 1t = Tp. As
initial conditions we have used JONSWAP spectra in the form (4.8) with α = 0.0238,
γ = 3.3 and three different values for the directional spread parameter: N = 4, N = 16
and N = 90.
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FIGURE 6. (Colour online) Normalized directional spectrum ε−2S(k) at different times
during the evolution for an initial JONSWAP spectrum with α = 0.0238, γ = 3.3 and N = 4.
The contour levels are chosen as a geometric series with ratio 100.2 between contour levels.
The smallest (outermost) contour level has the value 10−2.2. (a) t = 0Tp; (b) t = 200Tp;
(c) t = 400Tp; (d) t = 600Tp; (e) t = 800Tp; (f ) t = 1000Tp.

The directional spectra from the two-dimensional simulations are shown in
figures 6–8. Directionally integrated spectra

Sk(k)=
∫

kS(k) dθ, (7.1)

where θ is the angle in the kxky plane, are shown in figure 9.
We observe that during the first part of the evolution, the spectra evolve

in a somewhat expected manner, and in qualitative agreement with Monte-Carlo
simulations of two-dimensional spectra with random phases assigned initially, using
nonlinear Schrödinger-type equations (Dysthe et al. 2003). A clear downshift of the
spectral peaks is observed in all cases, see e.g. figure 9, a feature which is well
established as a main property of the nonlinear evolution of a wave field.

After the relatively strong spectral change during the first 200–400 dominant periods,
the spectra seem to only weakly change in the subsequent part of the evolution.
This is as expected and similar behaviour is for example reported from Monte-Carlo
simulations with the Zakharov equation (Annenkov & Shrira 2006a, 2009). This can
also be seen in figure 10, which shows the rate of change of the spectrum defined as

1S(t)= 1
2ε2

∫
|S(k, t)− S(k, t + 2Tp)| dk. (7.2)

Figure 10 confirms the much stronger spectral change taking place during the first
200–400 dominant periods. It is possible to roughly estimate the time scales of the
evolution from figure 10. For very short time, the first few wave periods, the rate of
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FIGURE 7. (Colour online) Same as figure 6 but for N = 16.
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FIGURE 8. (Colour online) Same as figure 6 but for N = 90.

change is small and in agreement with the O(ε−4) time scale. This is consistent with
the short-time asymptotic behaviour of the PAE (Annenkov & Shrira 2006b). After
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FIGURE 10. Rate of change of spectra, N = 4 (solid line), N = 16 (dashed line) and N = 90
(dotted line).

this very initial stage, there is a period of relatively fast evolution on approximately
O(ε−2) time scale. Then again, after a few hundred dominant periods, the rate of
change gradually decreases and approaches more or less the O(ε−4) time scale.

For further comparison and validation we have also performed two-dimensional
simulations with the Zakharov equation, where 100 simulations with initial random
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FIGURE 11. (Colour online) Two-dimensional spectra at t = 200Tp (a) and t = 1000Tp (b)
for PAE without and with the effect of βnpqr and for Monte-Carlo simulations with the
Zakharov equation. (c) The directionally integrated spectra in linear and logarithmic scales at
t = 1000Tp for PAE without βnpqr (solid line), PAE with βnpqr (dashed line) and Monte-Carlo
simulations with the Zakharov equation (dotted line).

phases were used to calculate the evolution of the wave spectrum. We also compare
the results from simulations with the PAE with and without the effect of the Stokes
correction term βnpqr. For these comparisons we have chosen the initial spectrum with
N = 16. The comparison is shown in figure 11, and shows the spectra at t = 200Tp and
t = 1000Tp as well as the directionally integrated spectra at t = 1000Tp for the three
cases: PAE without βnpqr, PAE with βnpqr and Monte-Carlo simulations of the Zakharov
equation.

First we note that the effects of the Stokes correction term in the PAE seems to be
small, with the qualitative features of the spectra being practically the same both with
and without βnpqr. There are however some smaller differences in the magnitude and
location of the unphysical ‘noise’ that appear in the spectra after long time evolution.

We further note from figure 11 that there is good agreement between the PAE (with
or without βnpqr) and simulations directly with the Zakharov equation. Thus, the PAE
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seems to capture the spectral evolution in good agreement with deterministic models
such as the Zakharov equation. One should note that in both the simulations with
the PAE and with the Zakharov equation, see figures 9 and 11, we observe some
accumulation of energy at high wavenumbers, resulting in a relatively slow decay of
the spectral tails. This can probably be attributed to the absence of dissipation at high
wavenumbers, combined with a limited domain in k-space.

8. The effect of phase mixing
In the derivation of the PAE it is assumed that the phases are uncorrelated at t = 0,

i.e. the fourth-order cumulant knpqr(t = 0) = 0, see (2.17). As seen from the numerical
results in §§ 6 and 7, a spectrum with initially uncorrelated phases goes through an
evolution on the relatively fast O(ε−2) time scale. Some time after the phases were
assumed uncorrelated, this fast evolution of the spectrum ceases, and one observes a
further evolution on the much slower O(ε−4) time scale (or no evolution at all in the
one-dimensional case).

In the following we want to investigate the effect of ‘re-mixing’ of the phases on
the spectral evolution. That is, we imagine the presence of some physical process that
uncorrelates the phases at certain times during the evolution. Physically, wave breaking
may be an example of such a process (Babanin et al. 2007, 2010). It is clear that if
phase mixing occurs, this might lead to a quite different field evolution compared to
the case where the phases are assumed uncorrelated only in the far past, which is the
main assumption in standard kinetic equation.

Within the framework of the PAE, the non-Gaussianity of the wave field is realized
through the non-zero value of the fourth-order cumulant knpqr, see (2.17). Therefore,
forcing knpqr to be zero at some point in the evolution of the PAE is equivalent to
resetting the wave field to a Gaussian state, or in or other words, mixing/decorrelation
of the phases. Hence, what we in the following will refer to as ‘phase mixing’ is
accomplished by restarting the PAE, i.e. setting t = 0 and thus setting knpqr = 0, see
(2.17), while keeping the wave action spectrum Cn unchanged.

In the following numerical simulations where ‘phase mixing’ is applied, we have
used the same initial conditions as in §§ 6 and 7. However, at regular time intervals
Tr we now restart the simulations by using the end result Cn(t = Tr) as the new
initial conditions, i.e. we keep the spectrum Cn but make a new assumption of
random phases. Here we have used a regular interval Tr = 50Tp between each time
the phases are mixed. This choice of time interval is quite consistent with findings
from numerical simulations of wave breaking by Babanin et al. (2007).

In the one-dimensional case the numerical simulations show that, indeed, mixing
of the phases leads to quite different long-time spectral evolution compared to the
results in § 6, where the phases were assumed uncorrelated only at t = 0. After each
phase mixing, a new period of ‘fast’ evolution takes place, and we therefore do not
reach a ‘stationary’ state as seen in § 6. Figure 12 shows the spectra at t = 1000Tp in
the case where the phases have been mixed every 50Tp, compared to the case where
phases are not mixed (the results from § 6). It is clear that the phase mixing leads to
a stronger change of the spectrum, in particular much stronger downshift of the peaks.
Figure 13 shows the evolution of the initial peak mode for the cases with and without
phase mixing. We note that although the spectra continue to change as long as the
phases are mixed at regular intervals, the rate of change decreases with time, i.e. the
rate of change depends also on the spectral shape. In fact, figure 12 may indicate that
all spectra converge to some common equilibrium spectrum where there is no further
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FIGURE 12. Initial spectrum (dashed line) and spectrum after 1000Tp from numerical
simulations with (dotted line) and without (solid line) mixing of the phases at regular
intervals, in linear and logarithmic scales. (a) Case A (γ = 1), (b) case B (γ = 3.3) and
(c) case C (γ = 20.0).
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FIGURE 13. Evolution of the modes corresponding to the initial spectral peaks with (dashed
line) and without (solid line) phase mixing. (a) Case A (γ = 1); (b) case B (γ = 3.3); (c) case
C (γ = 20).

change, even with uncorrelated phases. If such a spectrum does exist it would be a
stationary solution to the PAE. Indeed, by looking at the spectra after very long time
evolution we see that they are becoming more and more similar, as seen in figure 14,
which shows the spectra after t = 50 000Tp (with phase mixing every 50Tp). However
the time required to reach a possible common equilibrium state seems to be extremely
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FIGURE 15. (Colour online) Same as figure 6, but for N = 16 and with phase mixing every
50Tp. To be compared with figure 7. (a) t = 0Tp; (b) t = 200Tp; (c) t = 400Tp; (d) t = 600Tp;
(e) t = 800Tp; (f ) t = 1000Tp.

large. Note also that the spectra at t = 50 000Tp are rather ‘extreme’, for example with
respect to the high-wavenumber part of the spectra, which are proportional to k−0.6

after t = 50 000Tp whereas they are proportional to k−3 initially.
We now examine the effects of phase mixing on the two-dimensional results. As

an example, the spectral evolution in the N = 16 case is shown in figure 15. We see
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FIGURE 16. Directionally integrated spectra ε−2Sk(k) in linear and logarithmic scales at t = 0
(dashed line) and at t = 1000Tp with (dotted line) and without (solid line) phase mixing. (a)
N = 4, (b) N = 16 and (c) N = 90.

that the spectral evolution is quite similar to the case without phase mixing, except
for the minor numerical artifacts seen in the original simulations that we do not have
here. The same features are also seen for the other values for N. Figure 16 shows
the directionally integrated spectra at t = 1000Tp for the results with and without
phase mixing. This confirms that the evolutions with and without phase mixing are
very similar, different from the one-dimensional case where phase mixing led to a
significantly different spectral evolution. Hence, random phases are not sufficient for
fast evolution to occur, but that the shape of the spectrum also needs to be sufficiently
far from some equilibrium state. Thus, our results indicate that mixing of phases alone
is not sufficient to dramatically change the evolution of a two-dimensional spectrum.

9. Discussion and conclusions
The main purpose of this work has been to investigate phase-averaged equations that

are able to describe evolution on the ‘fast’ O(ε−2) time scale. The standard kinetic
equation (Hasselmann 1962), which is currently the main model for describing spectral
evolution of water waves, is incapable of describing any evolution faster than the
slow O(ε−4) time scale. Nevertheless, fast evolution may occur frequently in nature
as a result of perturbations that bring a wave field to a state sufficiently far from
the near-stationary state predicted by the kinetic equation. Therefore, it is desirable to
establish alternatives to the kinetic equation that are able to describe ‘fast’ evolution.



Phase-averaged equation for water waves 301

A PAE that is able to capture such fast evolution was proposed by Annenkov
& Shrira (2006b). In the present paper we have extended their equation to include
some higher-order effects which are related to the nonlinear Stokes corrections of the
frequencies. We also present invariants of motion for this PAE. The main part of
the paper, however, studies the behaviour of the PAE through numerical simulations,
and thereby investigates whether it could have the potential to replace the kinetic
equation in situations where fast evolution occurs. Our main findings are summarized
and discussed below.

For one-dimensional spectral evolution the PAE is able to predict the evolution
in good agreement with Monte-Carlo simulations with the Zakharov equation. The
well-known features of spectral broadening and downshift of the spectral peak are
reproduced. The results are in contrast to the kinetic equation, which a priori predicts
no change of a one-dimensional spectrum. However, after the initial stage of the
evolution with strong spectral change, the spectra do not change further, consistent
with the standard kinetic equation.

Simulations with the PAE in the more realistic case of two-dimensional spectra
were also performed with reasonable success. The numerical results agree with known
features for two-dimensional spectral evolution and also in two dimensions we find
good agreement between the PAE and results from Monte-Carlo simulations with
the Zakharov equation. We clearly see the existence and importance of fast O(ε−2)

evolution during the initial stages of the evolution.
One should however note that in the two-dimensional simulations we observe some

numerical artifacts seen as noise in the spectra, after some time of evolution. These
artifacts occur after a few hundred wave periods if the initial spectrum is sufficiently
narrow. Although these, relatively minor, artifacts do not seem to dramatically
influence the qualitative behaviour of the spectral evolution in the cases we have
considered, they may put a limitation on the time range for which we can solve the
PAE numerically using the present numerical approach.

We investigated the importance of the new higher-order term in the PAE, which
includes effects related to the Stokes nonlinear frequency correction. The numerical
results show however that the effect of this term is small both in the one-dimensional
and two-dimensional cases that we have examined.

It is also worth noting that the two-dimensional results with narrow directional
spreading, e.g. N = 90, are fundamentally different from the corresponding one-
dimensional results. Compare for example the one-dimensional spectra, figure 4,
with the directionally integrated two-dimensional spectra in figure 9. Thus, the one-
dimensional results are probably not relevant for realistic ocean waves; however, in
this paper the one-dimensional simulations have provided convenient numerical test
cases.

We further investigated the effects of phase mixing at regular time intervals on the
spectral evolution. It is clear that mixing of phases may be one process that may lead
to fast spectral evolution. Our findings indicate that for one-dimensional spectra, phase
mixing significantly changes the spectral evolution, while for two-dimensional spectra
this effect is much weaker, and that phase mixing alone is not sufficient to provoke a
dramatically different spectral evolution.

We believe that the present paper clarifies some open questions regarding the
description of statistical evolution of water waves. Firstly, we show that the PAE,
which was first proposed by Annenkov & Shrira (2006b), can be solved numerically
without major difficulties for times up to O(103) wave periods. Previously to the
present work no real applications of such modified kinetic equations have been
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presented. Secondly, we have established that the PAE indeed has the potential to
describe fast spectral evolution of one- and two-dimensional wave fields in qualitative
agreement with known features of such evolution. This suggests that the PAE may
be a suitable replacement for the kinetic equation in situations where fast evolution
may occur, for example in wave forecasting models. Note however that the present
work only considers the initial part (O(103) wave periods) of the evolution after a
perturbation which leads to fast evolution. However, this is in fact the situation where
the standard kinetic equation is not applicable, and where an alternative approach, such
as the PAE, is needed.

In the present paper, fast evolution of the spectra occurred as a result of initial
spectra that were far from the ‘equilibrium’ predicted by the kinetic equation, in
particular due to the assumption of initial random phases. However, it is important
to remark that in nature fast evolution may occur for various reasons. In particular
it would be desirable to combine the PAE with forcing and dissipation terms and
see how, for example, a rapidly varying change of wind forcing affects the spectral
evolution on a fast time scale. In general we believe that the PAE has a great potential
in future studies and applications.
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Appendix. Relation to the kinetic equation
In the following we briefly outline how the kinetic equation (Hasselmann 1962) can

be derived from the more general PAE. Setting βnpqr = 0, the PAE has the form

dCn

dt
= 4Re

∑
p,q,r

T2
npqrδ

qr
np exp[i∆qr

npt]
∫ t

0
fnpqr(τ ) exp[−i∆qr

npτ ] dτ. (A 1)

Now, assuming that fnpqr depends on a slow time scale compared to ∆qr
npt, fnpqr(τ ) can

be taken outside the integral in (A 1), i.e.

dCn

dt
= 4Re

∑
p,q,r

T2
npqrfnpqrδ

qr
np

∫ t

0
exp[i∆qr

np(t − τ)] dτ. (A 2)

In the limit that the fast time t→∞ (in practice this restricts the evolution of Cn to be
on the slow O(ε−4) time scale) the integral yields a delta function of ∆qr

np, i.e.

dCn

dt
= 4π

∑
p,q,r

T2
npqrfnpqrδ

qr
npδ(∆

qr
np), (A 3)

which is the kinetic equation first derived by Hasselmann (1962). For a more detailed
derivation of the kinetic equation that follows a similar approach to that indicated
above, see e.g. Janssen (2004).
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