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ABSTRACT

A parametric windsea model for arbitrary water depths is presented. The model is derived from a conservation
of energy flux formulation and includes shoaling, refraction, dissipation by bottom friction, as well as finite-
depth modifications of the atmospheric input and nonlinear wave-wave interaction source terms. The importance
of dissipation due to a rough ocean floor on the migration of the spectral peak frequency is discussed and
compared with that caused by nonlinear energy transfer. Numerical simulations are used to systematically
examine wave growth and the development of the spectral peak in a depth-limited ocean.

Two idealized situations of wave growth and propagation are considered to further understand the influence
of bottom friction on the spectral dynamics. The first case studies the characteristics of fetch-limited wave
growth in a steady, uniform wind as function of depth and bottom roughness. The second case examines the
role of bottom dissipation on a fully developed deep-water spectrum propagating up a constant slope under a
steady onshore blowing wind. For case | the growth curves and peak frequency development are plotted as a
function of fetch, and wave spectra for infinite fetch and duration are shown for all depths and wave friction
factors. For case 2 the evolution of total energy and peak frequency along the shelf slope are presented for
stationary conditions as well as the stationary inshore energy spectra.

This numerical study reveals the following: (i) bottom friction is a finite-depth mechanism as important as
the nonlinear energy transfer in controlling the spectral shape in shallow water; (ii) under the influence of
bottom dissipation the positive energy transfer from wave-wave interactions to lower frequencies is reduced
and causes the spectral peak to wander towards higher frequencies; (iii) equilibrium energy spectra in finite
depth depend on depth and bottom roughness and occur when the nonlinear energy transfer and bottom friction
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source terms approximately balance each other.

1. Introduction

Surface gravity waves propagating from deep to
shallow water are modified once they feel the presence
of the ocean bottom. Wave-bottom interactions im-
pose significant limitations on wave growth which de-
pend on water depth and topographic features at the
sea bed. Very few field measurements are available to
understand completely the energy balance of shallow
water waves and the relative importance of finite-depth
processes in the evolution of the wave field. Moreover,
the interaction among these depth-dependent processes
and their influence on the spectral wave dynamics are
not fully understood. In order to gain some insight into
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the dynamic and kinematic behavior of surface waves
in finite-depth water, we examine the detailed space-
time evolution of the wave spectrum for idealized sit-
uations in a depth-limited sea.

Recognizing the important role played by numerical
wave prediction models, it is essential that these models
explicitly account, as accurately as possible, for the
most important physical processes. In deep water the
wave energy balance is generally controlled by the in-
terplay of energy input by the wind, nonlinear transfer
of energy due to resonant wave-wave interactions, dis-
sipation (wave breaking) and advection, while the effect
of tidal and wind-driven currents generally is neglected.
In shallow water, additional effects resulting from the
interaction with the bottom enter the wave energy bal-
ance. Typically, depth-refraction and shoaling of waves
as they propagate in water of slowly varying depth and
dissipation through bottom friction will affect the evo-
lution of the wave field. Bottom friction describes the
interaction between the near-bottom wave motion and
the composition of the sea bed. Through this process
the waves may generate bottom bedforms (ripples)
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and/or significant transport of sediments, which can
result in considerable loss of wave energy (Grant and
Madsen 1982). Other finite-depth mechanisms such
as percolation, soft bottom motions and scattering off
bottom irregularities (Shemdin et al. 1980) as well as
tidal and wind-driven currents and mean sea level
variations are important at specific locations on the
continental shelf and in coastal waters, but are presently
neglected in the finite-depth wave model described
here. ‘

One of the earliest studies of predicting the two-di-
mensional wave spectrum in shallow water (South
China Sea) was described by Barnett et al. (1969) who
used a general ray technique to transform waves from
deep to shallow water.- A source function for bottom
friction based on the work of Hasselmann and Collins
(1968) was also included to account for the additional
dissipation felt by the surface waves. Collins (1972)
studied two schemes, a parallel and irregular bottom-
contour model, which incorporated attenuation by
bottom friction, to assess the accuracy of shallow water
sea state predictions. Hasselmann et al. (1973) inves-
tigated the mechanism responsible for the observed
swell decay during JONSWAP, They assumed that tidal
currents were dominating wave-induced velocities in
the near-bottom boundary layer. This assumption ap-
pears to contradict results obtained by Grant and
Madsen (1979). A routinely operated wave forecasting
model for the continental shelf areas around England
which considered only depth-refraction and shoaling
was discussed by Golding (1978). In an updated version
(Golding 1983) a dissipative bottom friction term
(Collins 1972) with a constant friction factor was
added. Cavaleri and Rizzoli (1978) have described a
characteristic ray model of the Adriatic Sea which also
incorporated these finite-depth effects. The hybrid wave
. model GONO, operationally run for the North Sea,
models bottom friction with the JONSWAP form but
disregards depth-refraction effects (Janssen et al. 1984).
The HYPAS wave prediction model developed by
Giinther and Rosenthal (1983a, 1983b) neglects bot-
tom friction in the parametric windsea description but
bottom dissipation is introduced in the decoupled
propagation of swell components. Janssen and de
Voogt (1985) investigated the effect of a linearized
JONSWAP bottom friction term on a windsea de-
scribed by the Kruseman spectrum. More recently the
SWIM (1985) study intercompared three operational
shallow water wave models for two idealized wave gen-
eration cases and for a severe North Sea storm. The
objective of this study was to understand and improve
the representation of finite-depth wave mechanisms in
numerical models.

In this paper we present a finite-depth parametric
windsea model developed by Graber (1984) and ver-
ified in a complex North Atlantic frontal system by
Graber and Madsen (1985). The deep-water HYPA
model developed by Hasselmann et al. (1976) and
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Giinther et al. (1979) is rederived based on the concept
of energy flux. The choice of energy flux to represent
the directional relaxation of a wind-driven wave field
is an alternative method to that of Giinther et al. (1981)
who used wave momentum considerations to incor-
porate the response of the windsea to changes in the
wind direction. Similarly, Donelan (1977) developed
a simple, parametric wave model using a wave mo-
mentum formulation which was later revised by
Schwab et al. (1984). Applications of the Donelan
model have been limited to deep-water waves only.
The present model includes finite-depth effects and is
tested for idealized situations of fetch-limited wave
growth over horizontal and gently sloping bottoms with
bottom friction representative of a range of bottom
sediments. These numerical simulations are used to
further understand the influence of bottom friction on
the evolution of the spectrum in depth-limited gener-
ation cases.

2. Governing equations for windsea model: Physical
space

The surface wave field is generally described by the
two-dimensional wave spectrum ¥(k) in wave number
space or by F(f, 0) as a function of frequency f and
direction 6. The inclusion of a mean wave direction as
one of the parameters describing the windsea is con-
veniently carried out by adopting a vector quantity
which we have chosen as the wave energy flux

F(k,r, 1) = cg(k, r)¥(k, 1, t) 1)

where k = (k,, k,) and r = (x, y) are the wavenumber
and position vectors, respectively, ¢ is time, and ¢, is
the group velocity vector. ‘

The transport equation for the surface wave field in
a plane ocean with variable bottom topography was
originally given by Hasselmann (1960),

%=%+(f-v,)\p+(k-vk)\p=T ()
where

P = Vio(k, 1) = c (K, ) 3)

k=—-V,wk,r) 4)

are the ray equations for a steady, inhomogeneous me-
dium as defined by the dispersion relation w? = (27f)?
= gk tanhkh, in which k = |k| and 2 = h(r) is the
local water depth. The T describes all processes gen-
erating or dissipating energy of the wave field at each
wave component. Here D/ Dt describes the Lagrangian
rate of change relative to the advection of a wave group
along the ray paths as determined by (3) and (4).

A conservation equation for wave energy flux can
be derived from the following identity
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DF 98F
—=— V F+ (k-V)F
D= o (r-v,) (k-Vy)
_ DV Dc,
—cht+\Ith. (5)
The net rate of change of energy flux can be represented
by a sum of four mechanisms
DV
- TH

= Tin(k) + Tu(k) + Tus(k) + Tpp(k). (6)

From (2) it follows that T = ¢, T, the net source func-
tion for the wave number energy flux, includes pro-
cesses represented by atmospheric input by the wind
T in, nonlinear transfer of energy among resonantly in-
teracting wave modes 7T ,,;, dissipation by wave breaking
T 45, and attenuation due to bottom friction T, 1 The
additional term on the right-hand-side of (5) is the
differential flux of wave energy due to the rate of change
of the group velocity along a ray ( Note: This term van-
ishes in an ocean of constant depth).

" A more convenient form of the transport equation
is obtained in frequency-direction space (for details
see Graber 1984),

6 . , a6
™ + (V)6 + (k-VkG)E =&+ 6"(V,- c.)

+ E(k- V,(o)?—c—g — (e V) ()

by substituting & - £ (f, 0) for F (k) in (5). The Jaco-
bian & is defined by

®

with ¢ = (g/w) tanhkh the phase velocity, § = & ~'T
=&+ §u + S4s + §5 and the energy flux density
is given by the product of depth-dependent group ve-
locity and wave spectrum, i.e.,

6(f, 0, h) = c(f, DE(S, 6, h). ®

A consistent approach on the self-similarity of depth-
dependent frequency spectra was originally demon-
strated by Kitaigorodskii et al. (1975) and experimental
evidence was provided by Bouws et al. (1985). Thus
we chose the TMA spectral shape

& =S, 0)/0(ks, k) = 5%

E(f, 0, h) = $(wn)Es(f) % cos?(8 ~ 6o) (10)

where the depth transformation factor is defined as
B(wn) = X1 + wy?(x? = 1] (1)

with X the solution to the transcendental equation
X tanh(w,?X) = 1 and w, = 2xnf(h/g)"%.
The one-dimensional windsea spectrum, E;(f), is
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described by the JONSWAP spectral shape (Hassel-
mann et al. 1973) which is determined from the set of
five free parameters a; = [/, , v, 04, 03},

E/f; a)) = Epm(f; @)y PV mm 171207
with

(12)

-4
Ema(fi ) = ag?@ny s el -3 (L) 7] a9
Som
the Pierson and Moskowitz (1964 ) spectrum referring
to a fully developed sea.

The cosine-squared angular spreading function for
+7/2 about the mean windsea direction, 8,, indepen-
dent of frequency is adopted here in (10) to apply for
any depth. It should be recognized that this choice of
spreading function represents a simplification of the
directional characteristics of waves in variable water
depth. Thus, depth-refractlon would potentially focus
the wave energy in a smaller directional interval around
the mean direction as well as produce an asymmetric
distribution around the mean. To account for these
effects would require at least two additional parameters
to be included. There are, however, insufficient obser-
vational data to develop an angular spreading function
which accounts for these effects. Consequently we have
adopted the simple cosine-squared spreading function
which has been used extensively in deep-water wind-
wave models.

The mean windsea direction, 6, introduces a sixth
spectral parameter which can be determined in an
analogous way to that suggested by Giinther et al.
(1981) from the x (East) and y (North) components
of the total energy flux I,

27 ©
L= fo fo €| sindd fdb (14)
27 ] .
Iy=J(; J; |&| cosfd fdb (15)
from which it follows
6 = tan“[é] (16)
I.V

(A positive clockwise convention from north is as-
sumed.)

3. Governing equations for windsea model: Parametric
space -

The concept of a parametric windsea description has
originally been proposed by Hasselmann et al. (1973,
1976) and was further developed and extensively tested
in deep water by Giinther et al. (1979, 1981). In order
to translate the transport equation for energy flux (7)
into a set of partial differential equations for the pa-
rameters g;, we need to construct appropriate mapping
functionals which reveal the JONSWAP parameters.
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Following the approach in Giinther et al. (1981) we
find

o= $:(6}
[ 1627, 0,0+ 67,0, i01"a0
I e, M) ®(wn)
= pi{E(f)} (17)
where @, = fm, G2 = @, a3 = v, A3 = 6,4, as = 0. With

this definition the resulting mapping operators ¢/ are
identical to ¢/, which were previously defined by
Giinther et al. (1979). For the directional parameter
as = 0, the mapping operation is carried out directly
on the energy flux vector (Graber and Madsen 1982).
Making use of the definition of 6, in (16), ¢¢ can be
stated as

f 6, dfdb

f f &, dfdd

The functional or Fréchet derivative determined from
(18)is

as = ¢6{6} = tan™ (18)

3 f f (cos8e66 ), — sindod6 ) dfdb
w

[ [ san

Details on the derivation of (19) may be found in Gra-
ber (1984).

Applying the mapping functionals ¢, to the conser-
vation equation of energy flux one arrives at six, cou-
pled transport equation for the windsea parameters a;

¢6{o6} = . (19)
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for i,j= ,6 (20)

in which the components of the depth-dependent
propagation matrix Djjare

6 a6
Dijx = ¢} {ch oa } Dijy = ¢} [cgy 3a ] @n
with cge = || sind, ¢ = |c,| cosd,
Si=¢i{Sint+ S+ Sas + Sor} (22)
and

R = ¢{6’(V ¢) + co(k-Vi8) o aE

6 19
7 (ce* V) — A (cg-V,h)} . (23)

The source functions S; are modified to reproduce a
rapidly approaching quasi-equilibrium (Giinther and
Rosenthal 1983a). The additional terms enumerated
in R; result from mapping the refraction and group
velocity divergence terms onto the parameter space.
The last term in R; results from a variation 66 in &
due to a change 6/ in the water depth 4, i.e.,

06 06
86 = 5—501 ah — 6h.

' Details on the derivation of the parametric form of
R; is given in appendix A. The expressions for D;; are
given in Table 1. The terms Dy;, Ds;, Dis, and D;s for
i,j=1, + -+, 6, have been omitted since their contri-
bution to the overall transport equation is small. As a
matter of fact the parameters o, and o, are determined
from analytic expressions involving vy only (Giinther
et al. 1979).

TaBLE 1. The depth dependent coefficients D;; (The &; and J; are given in appendix B).

J
i 1 2 3 6
e dm e Am -

1 cxm(l + 5£0) me « £0 cgm EO cgmfmgo
2 Cm 7 2 (& + 3.61£) CamlE2 — 0.72280) —Com % 0.722¢, Como(E2 — 0.722£0)
3 Com 7~ Y (2139, - &) Cem z (1 — & — 4.28%) Cem(1 — 4.28%) Cemv(1 — & — 4.28%)

- = -2 é ‘ —_ u —_— -l i -1 ‘.’2
6 64 gf"' J 1283( o)™t 128 & J2 64 & A
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4. Source functions and directional relaxation

The growth and decay of surface waves is the result
of various linear and nonlinear physical processes
transferring energy to and from the wave field as well
as redistributing energy within the spectrum itself. The
following source functions are considered to influence
significantly the evolution of the spectral shape in an
ocean of finite depth.

a. Atmospheric input by the wind

Wave generation takes place in several phases. In
the linear phase wave growth is due to random pressure
fluctuations of a turbulent wind over a calm ocean
surface (Phillips 1957). This mechanism is effective
only in the initial stages of wave growth. Subsequently
the influx of energy from the wind is continued by an
instability mechanism coupling the wave field and the
mean boundary layer flow (Miles 1957), leading to an
exponential growth in energy density. The Miles
mechanism is generally represented by the parameter-
ization based on the results of Snyder et al. (1981),

Tin(f, 0, h) = B(f, 0, R)E(f, 6, h) (24)
where the growth function is given by
8(f, 6, h)
B&w[w_ 1], }_%|> 1
Pw c c
U
c

0,

<1

This functional form was deduced from direct mea-
surements of the work done by the wave-induced air
pressure fluctuations over the sea surface. Here p, and
p,, refer to the densities of air and water, w = 2xf, cis
the depth-dependent phase velocity, § and © are the
wave component and mean wind direction, respec-
tively. Thus, U, cos(8 — ©) = U, is the wind speed at
10 m parallel to the wave direction 8. The coeflicient
B was determined by Snyder et al. (1981) to vary from
0.2t00.3. ‘

The minimal input case discussed by Hasselmann
et al. (1976) is adopted here which means that dissi-
pation is assumed to be zero in the frequency range f
< 2 f. Hence, we consider only the net input of the
atmosphere, i.e., p = &5, + 4. Since wave growth
depends only on the ratio of the wind speed to phase
velocity, applying the operator ¢} to &y yields a mod-
ified input source function for finite depth, i.e.,

Slllet = Slln + Sclz'is ~ 0
Stet = St + Sks = afmQ(va) = afmQ(x)

SI?ICt = stn + S?iis ~ 0 (25)
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where v, = f,UX(wy)/g and x = k,U;%/g with
k.» = k(fn) denoting the wave number corresponding
the peak frequency. For the function Q(»,) we chose
the same expression as derived from the fetch-limited
behavior f,, and « (Giinther et al. 1979), namely

SZet = 0.005022af,,v,** = 0.0004330f,,c*3.  (26)

Note, in the deep-water limit, (26) reduces exactly to
the expression given by Giinther et al. (1979, 1981).
As found by Hasselmann et al. (1976 ) the atmospheric
input terms for f,, and y parameters (S. and S3..)
are negligibly small and therefore omitted.

The heuristic lower limit of the windsea peak fre-
quency is generally accepted as the frequency of a fully-
developed sea (Pierson and Moskowitz 1964). At the
Pierson-Moskowitz frequency, fpm, the parameter U,/
¢ = 0.82 in deep water and adopting this concept also
for fully developed sea states in finite depth leads to

- 0.13g tanhkth
M ™ Uso cos(8p — ©)

In the deep-water limit this expression reduces to
the original Pierson-Moskowitz relation. In the shallow
water limit, for which

Cmax (fPM) = (gh) 172 (28)

it would not be possible to reach fully developed con-
ditions if U;; > 0.82(gh)"/2. This result is supported by
the results of Bouws et al. (1987) who concluded from
their analysis of depth-dependent wave spectra that
choosing U)/c as the regression variable did not yield
a depth-independent quasi-equilibrium line. Alterna-
tively, (27) can be expressed in terms of a non-dimen-
sional wave number as defined by Bouws et al. (1985)

kU
4

27)

= 0.6672. 29)

In shallow water, wave growth is ultimately limited
by dissipation associated with wave breaking. Mc-
Cowan’s (1894) result for a limiting wave height to
water depth ratio, H/h = 0.78, is often adopted as a
shallow water breaking criterion. Presently, this limiting
process is not explicitly included in our model since
the inclusion of a realistic representation of the dissi-
pation due to bottom friction has shown that a quasi-
equilibrium state is attained before the shallow-water
breaking limit is approached.

b. Nonlinear transfer by resonant wave-wave interac-
tions

The general form of the “‘exact” nonlinear transfer
terms T, is given by the Boltzmann integral expressing
the rate of change of energy of the wave spectrum ¥(k)
at wavenumber k4 due to nonlinear wave-wave inter-
actions (Hasselmann and Hasselmann 1985),
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Tu(ke) = [ o0l + ko = ks = ko)

X §(wy + w3 — w3 — wg)[N N2(N3 + N,)
— N;No(N, + Ny)ldkidkadks . (30)

where N; = N(k;) = ¥(k;)/w; stands for wave action
densities, w; = (gk; tanhk;h)"/? are the wave frequencies
corresponding to the ith wavenumber, and o represents
a complex scattering coeflicient describing the coupling
strength of four-way resonantly interacting wave
modes. Hasselmann et al. (1973) deduced that the
general form of the nonlinear transfer scales as

Tulf, 0) = >g* f WS foms B) €2))

where ¢ is a dimensionless function describing the
spectral shape. Based on similarity arguments, Herter-
ich and Hasselmann (1980) have calculated the finite-
depth interaction for a narrow-band wave spectrum.
It was concluded from their analysis that the finite-
depth source function of the one-dimensional nonlin-
ear transfer can be scaled by a depth-dependent factor
R,ie.,

Su(f, h) = R(wwm)Su(f, c0) for

Confirmation of relation (32) and the validity of shape
similarity for directional distributions was made by
Hasselmann and Hasselmann (1981) who.computed
the interaction rates for a representative set of spectra
F(f, 6, h) from the “exact” nonlinear transfer integral
(30). Examination of the results of Hasselmann and
Hasselmann leads to an expression for the proportion-
ality factor

wpn =.0.7. (32)

x4

R = R(w;,,,,) = [1 + w%m(xz — 1)]2 .

(33)

Furthermore, it is found from their results that re-
lation (32) with R given by (33) is valid for values of
wpm = 0.4. For smaller values of wy,, the nonlinear
transfer exceeds the deep-water values by more than
one order of magnitude. For this region the weakly
nonlinear interaction theory is expected to break down.
Additional details on the computations and parame-
terizations of the nonlinear transfer is given in Has-
selmann and Hasselmann (1985).

Therefore, we treat the nonlinear source function
S,in the same manner as Giinther et al. (1979, 1981).
Extension to the finite-depth case is obtained by mul-
tiplying the deep-water values with the scaling factor
R. In summary, we arrive at the following parametric
expressions for S

Sy = —0.2548a%f,2(y — DR(why,) for y=1
SE{I = —Sasme(whm)

Sy = —16(v — ¥o)&* finR(wnm)
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S4 =—[25.56,— 0.50, — 1.74p)a> f,n R(wpm)
Sy = —[25.50, — 0.50, — 2.26 p}a? f,, R(wpn) (34)
where
3.3, x> 1.011

1 + 3.905(x — 0.6672)'7?,
0.6672 < x < 1.011

Yo

I, x<0.6672

p=16/(y +0.7)2
¢. Dissipation by bottom friction

In shallow water the interaction of the wave-induced
near-bottom flow with the microtopography of the sea
bottom develops a boundary layer as a result of a non-
vanishing boundary shear stress. Within this boundary
layer mechanical energy is lost through viscous effects
and hence attenuates the surface waves. Kajiura (1968)
derived a simple expression of the average rate of dis-
sipation of energy due to bottom friction for stationary
waves. In a rigorous theoretical treatment, Hasselmann
and Collins (1968 ) derived a general expression for the
dissipation rate of a wave spectrum. Both analyses were
based on a quadratic friction law,

7o = 3 ofviy || (35)
where 7, is the shear stress at the sea bottom, u, is the
near-bottom wave velocity just outside the wave
boundary layer, and f,, is the wave friction factor. Con-
siderable interest has been given to develop expressions
for the wave friction factor, since the initial work of
Jonsson (1966). Theoretical expressions for f,, were
obtained by Kajiura (1964, 1968) and Grant (1977)
introducing the concept of an eddy viscosity to close
the dynamical equations. Trowbridge and Madsen
(1984) improved on the formulation of f,, by including
more realistic eddy viscosity models. In general the
wave friction factor is found to be a slowly varying
function of the parameters characterizing the flow and
the bottom roughness. A more detailed treatment of
this subject can be found in Grant and Madsen (1986).

Recently, Grant and Madsen (1982) argued that the
fluid-sediment interaction must be accounted for as
precisely as possible for accurate predictions of wave
energy loss due to bottom friction. From analyses of
laboratory data they developed a formula for the
equivalent bottom roughness of a moveable bed under
the action of waves. Their roughness, which depends
on sediment and near-bottom wave characteristics,
may in turn be used in conjunction with their model,
Grant and Madsen (1986), to predict friction factors
for a moveable bed in the presence of waves. Figure 1
presents the wave friction factors, f,, as a function of
the near-bottom wave orbital excursion amplitude, 4,,
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FI1G. 1. Movable bed friction factor, f,, vs near-bottom orbital excursion amplitude,
Aj, obtained from Grant and Madsen (1982) for a 10 s wave as a function of diameter

(mm) of a quartz sand.

for various diameter quartz sands predicted by the
Grant-Madsen (1982) model. Although the predicted
values of f,, depend on wave period, this dependency
is sufficiently weak to regard the results presented in
Fig. 1 for a period of 10 s to be representative for the
range of periods expected in the marine environment.

Physically the friction factor variation shown in Fig.
1 represents for low values of 4, the flow resistance of
a flat, immobile bed, i.e., with a roughness equal to the
sediment diameter. As A, increases the wave-sediment
interaction reaches a threshold value (Madsen and
Grant 1976) at which sediment starts to move. Once
the threshold value is exceeded the sediment-fluid in-
terface deforms and wave-generated ripples appear. The
bottom roughness now scales with the ripple geometry,
which results in a dramatic increase in friction factors.
Further increase of the flow intensity, i.e., A,
“smoothes” the ripples, first gradually then rapidly, and
results in corresponding rates of decrease of the friction
factor with increasing 4, until the ripples are practically
washed out and the bed is returned to its initial flat
state. However, in contrast to the immobile, flat bed
state, sediment is now moving back and forth above
the bed. Associated with the sediment in motion is an
apparent increase in roughness reflected by the friction
factor, for large A, values, reaching a minimum value
which is larger than the value associated with the initial
flat bed. Beyond this minimum of the friction factor
for a mobile flat bed its variation is controlled by the
increase in intensity of sediment movement above
the bed.

The spectral dissipation function due to bottom
friction can be approximated according to Collins
(1972) and Madsen et al. (1988) by

be

f w (36)

2
gs mhzkh () ECS 8, k)

where the rms bottom velocity

<ub> = Upr

is representative of the near-bottom velocity field. The
resulting parametric source functions for the bottom
friction term can be derived from applying the mapping
functionals ¢} to (36). The final expressions for pa-
rameters f,,, « and v are

3
Sy = (2m)2f, % KTus,

2
Str=—(27)*fya % up[I> + 0.722KT]

fm

Sty ==Q2m)*fur == upl(X* — 1) — I + 4.28KT]

(38)

where the representative bottom velocity is computed
from

o' g

Upr = (2)1/2 .fm-lllll2

(39)

and the integrals /7, and I; must be evaluated numer-
ically
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x*-1
X2[1 + w2 (X2 = 1)]

Il = Wam f ""h_3
0
x%ﬂnﬂmhm)
Whm

2.0wpm
I = w;,?,j; wt(X? — 1)dw,. 41)

3S5whm

The shape function y is defined as
-4
‘l/(—w—h. s Ys 0') == exp{—. é. (&)
Whm 4 \wim /-

2
+ Iny exp[— (i - 1) /202”
Whm
and the functions K and I' are expressed as
g
K=|—i——
(2002 + Iny

— win(X24+1)
+ wia(X*=1)]"

2 1
). o=jmtam @)
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d. Directional relaxation of a windsea

When waves propagate into a region where the local
direction of the wind differs from the direction of the
waves, the wind component perpendicular to the wave
trajectory will attempt to turn the waves so that they
eventually become aligned with the direction of the
wind. Hasselmann et al. (1980) and Giinther et al.
(1981) have shown that the high-frequency components
of the spectrum almost instantaneously respond to a
sudden change in the wind direction. The nonlinear
interactions are thought of to be the mechanism which
translates changes in the energy flux direction of the
high-frequency tail to lower frequencies, thus resulting
in a turning of the entire spectrum towards the new
wind direction. In open water the mean wave direction
would eventually become parallel to the new wind di-
rection, while this, as shown by Donelan (1980), would
not necessarily be the case for fetch-limited situations.

For parametric wave models a reasonable choice,
expressing this directional response, is the mean direc-
tion averaged over the windsea spectrum as given by
(16). The prognostic equation for the parameter as
= @, reads then

%as o (p 94 9\ _ g 4
" +J§ (Dij ax + Dgjy ay) =S¢+ R¢. (44)

The functional form of Ss can directly be deduced from
applying the operator ¢ to the Snyder et al. (1981)
type input term (24). From this it follows that

Is f? :
S6=__—B—3—f—Ulosm(0—9o) (45)
I, g '

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 18

where the integrals I; and I, are given by [6/c,df
and [ & df, respectively. The nondimensional form of
these integrals are shape functions proportional to (f/
fm) " and (f/ f) 5, respectively. For the momentum
approach of Giinther et al. (1981), the identical
expression of S can be determined except with I; and
I, now expressed in terms of wave momentum and
proportional to (f/f,.) "2 and (f/f.) %, respectively.

For deep-water conditions, Giinther et al. (1981) de-
termined from data the value of the proportionality
constant r = 0.21 X 1072 radians. It is reassuring to
note that the deep-water value obtained from (45) for
a mean JONSWAP spectrum and B = 0.2

_311'3;;_‘z

r= Bé = 0.365 X 10~? rad

8 Pw 14 (46)

is in agreement with this result. Graber and Madsen
(1982) have demonstrated that in deep water the ad-
vection coeflicients Dy; differ in magnitude depending
on the formulation, energy flux or wave momentum,
used in the definition of the mean windsea direction.
However, for practical applications in deep water, it
was shown that either model formulation produces
only small differences in the predicted wave parameters.

5. Migration of the spectral peak

It is generally agreed that in deep water the spectral
peak of wind waves shifts towards lower frequencies
as a consequence of the nonlinear energy transfer. Input
from the wind occurs over the central .region of the
spectrum and wave-wave interaction processes rapidly
redistribute the enhanced energy level towards lower
and higher frequencies. In the high-frequency equilib-
rium range, the input and nonlinear transfer terms are
balanced by white-capping dissipation processes.

As surface waves propagate into waters of finite
depth, the low-frequency spectral components interact
with the bottom. This interaction rapidly increases in
strength until ultimately all spectral components are
engulfed in water depths shallow enough for even the
high-frequency tail to feel the bottom. The resulting
bottom frictional dissipation can absorb either all or
part of the energy transferred by wave-wave interac-
tions. The effect is reflected in the behavior of the spec-
tral peak by slowing down the rate of migration towards
lower frequencies or even totally reversing the trend of
the shift. Evidence supporting the importance of bot-
tom friction was given by Bouws and Komen (1983)
who found in their analysis of storm waves in the North
Sea that bottom friction was considerably larger than
the nonlinear transfer term.

As a starting point in describing the migration of
the peak we examine the parametric equation for the
parameter f,, to attempt to quantify the rate and the
sense of the shift as a function of dimensionless depth
and bottom roughness. Thus, for spatially homoge-
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neous cases in an ocean of constant depth this equation
simplifies to

'—t= S+ Sll,f

0fm
3 (47)

where Sy, and S}, are given by (34) and (38), re-
spectively. Since S%, is always negative, we normalize
(47) by — S, to preserve the sign of the dimensionless

rate for the spectral peak shift, i.e.,

oft  —18f, Sh\ oy SuTL2
o SL ot (H s,‘,,)_73'4 !
(48)

for a mean JONSWAP spectrum (y = 3.3, ¢, = 0.07,
op = 0.09) and a = 0.01. Figure 2 shows the nondi-
mensional migration of the spectral peak for different
friction factors. Positive values indicate that bottom
friction dominates and hence the trend of the peak
frequency to shift towards higher frequencies. It is ev-
ident that bottom friction factors f,, < 0.01 would slow
down the shift of the peak towards lower frequencies
but not completely stop this trend in any water depth.
However, for f,, = 0.01 bottom friction dominates the
low-frequency energy balance, causing the peak to mi-
grate towards higher frequencies over a wide range of
water depths. It should be noted that there are two
zero-crossing points which indicate that bottom friction
and nonlinear transfer balance each other. The first
turning point results when frictional attenuation grows
as the waves move into shallower water depths. The
second crossing point occurs because the scaling factor

20

“hm

F1G. 2. Dimensionless rate of peak migration against dimensionless
depth for different bottom friction factors.
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FIG. 3. Configuration of fetch-limited wave generation over flat but
rough bottom in steady, homogeneous offshore winds.

R for the nonlinear transfer in finite depth increases
very rapidly. As already mentioned, the simple scaling
relation R(wy,, ) is not applicable for w;,, < 0.4. Hence,
the second cross-over point is an artifact of the param-
etrization of the nonlinear energy transfer in finite
depth.

However, the location of the first turning point may
be used to explore the existence of equilibrium spectra
in shallow water. From the analysis of the Texel storm
by Bouws and Komen (1983) we obtain w;,, =~ 1.05
and f,, =~ 0.015. From Fig. 2 these values suggest, at
least qualitatively, that the storm spectrum was ap-
proximately in equilibrium. This fact seems to be con-
firmed from wave height measurements which re-
mained at a constant level for approximately 12 hours
(Fig. 1 in Bouws and Komen 1983).

6. Idealized test cases

Unfortunately there are no stretches on the conti-
nental shelf or in coastal embayments where the water
depth is less than S0 m and remains constant for
hundreds of kilometers. This fact prevents scientists
from making measurements of simple wave generation
cases to test and enhance our understanding of the
physics of wave growth in depth-limited situations. In
a similar way as done in the deep-water model inter-
comparison study SWAMP (1984) we can design
idealized wind-wave generation cases to expose the
model to influences caused by wave-bottom interac-
tions. A similar exercise has been carried out in the
SWIM (1985) study, where three operational shallow
water wave models are intercompared. The motivation
for this study is to investigate the role of realistic bottom
friction estimates on the development of the spectrum
in finite depth. We consider two hypothetical wave
generation cases: 1) fetch-limited wave growth in an
ocean of constant depth and 2) onshore propagation
of a fully-developed deep-water windsea.
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FIG. 4a. Growth curves of total energy E (m?) against fetch X (m) as a function of
friction factor f,, = 0.0 and depth (4 = 10, 20, 30, 60, 120 m) for Case I.

Case 1: Fetch-limited wave growth over a flat, rough
bottom in steady, uniform 20 m s~ offshore winds

The purpose of this test is to study wave development
in the presence of a natural bottom along the fetch of
a steady wind of 20 m s™! for different water depths
(see Fig. 3). Representative depths are chosen as: A
=10, 20, 30, 60, 120 m. The computations start at
a fetch of 5 km and extend to 2000 km. The numerical
simulations are conducted in two segments: (i) from
5 to 200 km at a spatial resolution of 5 km and a time
step of 180 seconds, and (ii) from 50 to 2000 km at
50 km grid spacing and a time step of 900 seconds.
Each run extends well beyond the time when stationary

100

conditions are reached, i.e., for (i) 75 hours and for
(ii) 200 hours. The initial conditions for all the model
runs correspond to a JONSWAP spectrum at fetch 5
km, i.e., f,» = 0.329 Hz, a = 0.0253, ¥ = 3.3, 0, = 0.07
and o, = 0.09. Corresponding to this input spectrum
the waves are essentially deep-water waves for all water
depths. However, for shallower water depths at a fetch
equal to 50 km the waves are in some cases affected
by the presence of the bottom. Therefore, time series
of the predicted JONSWAP parameters at fetch 50 km
from the short fetch simulations are used as boundary
conditions for the long fetch runs. This approach en-
sures that the predicted wave conditions are indepen-
dent of grid spacing for the overlap region (50 to 200

10!
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[ S I L T S

108 107
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FIG. 4b. Plots of peak frequency f,, (Hz).
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F1G. 4c. Wave energy spectra as a function of depth (m) at max-
imum fetch (2000 km) and duration (200 h). The asterisk indicates
* “equilibrium™ not being attained.

km). As discussed in section 4c a single friction factor
does not simulate accurately the fluid-sediment inter-
action illustrated in Fig. 1. However, to retain overall
simplicity constant wave friction factors f,, = 0.0, 0.005,
0.01, 0.03, 0.05 and 0.1 were chosen in the computa-
tions. While the value f,, = 0.0 represents an idealized
frictionless bed, the nonzero values may, with reference
to Fig. 1, be thought of as representing flat immobile
bed conditions (0.005 and 0.01), i.e., absolute mini-
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mum values, and minimum mobile bed friction (0.03,
0.05 and 0.1) for sediments ranging from silts to coarse
sands. The results are displayed in terms of total energy
and peak frequency as a function of fetch and the one-
dimensional energy spectrum for maximum fetch and
duration.

Figure 4 shows the results obtained for the idealized
frictionless bottom case, f,, = 0.0. It is noticed in Fig.
4a that the growth curves for water depths 10 and 20
m have not leveled off as the maximum fetch is ap-
proached. This feature is also exhibited in Fig. 4b in
that the peak frequencies are still decreasing as maxi-
mum fetch is approached. However, in Fig. 4b the
curve for 30 m depth, in addition to those for 10 and
20 m, has not reached equilibrium. As discussed in
section 4a this behavior is associated with the fact that
the chosen wind speed, 20 m s ™!, exceeds the maximum
phase velocity, cmax = (gh)'/?, for water depths of 30
m and less. For larger depths than 30 m equilibrium
is reached in the frictionless case. In fact, the growth
curve for 120 m water depth is effectively the deep-
water curves and identical to the HYPA curve in the
SWAMP (1984) study. At 200 km fetch the finite-depth
effect on the nonlinear transfer source terms becomes
noticeable and stratifies the peak frequencies so that
the peak frequency of the one-dimensional spectra at
the maximum fetch, Fig. 4c, increases with increasing
water depth.

For f,, = 0.01, friction is beginning to show its in-
fluence, as was anticipated from the discussion in Sec-
tion 5 and the results shown in Fig. 2. Wave growth
in shallower water is clearly suppressed which is indi-
cated by the gradual leveling of the growth curves ( Fig.
5a). For the lowest depth, growth has been reduced by
as much as 50%. The frequency of the spectral peak

T T T T 7T

100

ENERGY (m?)

It

120
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20
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FIG. 5a. Growth curves of total energy E (m?2) against fetch X (m) as a function
of friction factor f,, = 0.01 and depth (4 = 10, 20, 30, 60, 120 m) for Case 1.
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FI1G. 5b. Plots of peak frequency f,, (Hz).

develops with fetch as in deep water and shows little
sensitivity to the presence of a bottom (Fig. 5b). The
spectral peak densities are considerably decreased, even
for the 60 m spectrum (Fig. 5c). A closer look reveals
that the peaks are located at almost the same frequency.
This situation closely corresponds to the minimum
bottom friction necessary to balance the positive low-
frequency lobe of the nonlinear energy transfer.

Any additional drag felt by waves would lead to re-
versing the trend of a shift towards higher peak fre-
quency with increasing depth. This is demonstrated in

140 F
120 - /120
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-
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&
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[}
a
5 .
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z 30
[}
a0l 20°
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20}F
o 1 L J
0.00 0.10 0.20 0.30
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FIG. 5c. Wave energy spectra as a function of depth (m) at max-
imum fetch (2000 km) and duration (200 h). * indicates “equilib-
rium” not being attained.

Fig. 6 which shows depth-limited wave growth when
bottom friction, f, = 0.03, dominates the spectral
shape. After about 300 km the 20 and 30 m growth
curves have attained a maximum which has signifi-
cantly less total energy than any of the previous cases.
For & = 10 m, total energy ceases to grow at 200 km
(Fig. 6a). The influence of the bottom drag is now felt
by waves in waters 120 m deep and less. These are
typical depths found on the continental shelf along the
east coast of North America and in the North Sea. The
peak frequencies are stratified again, but now in order
of decreasing depth (Fig. 6b). It is evident from this
plot that the peak has migrated to significantly higher
frequencies due to the enhanced bottom dissipation.
Figure 6¢ shows the plot of spectra at infinite fetch and
duration. Notice the drastically reduced energy den-
sities for 2 < 30 m and the peak migration to the high
frequency side. It is emphasized that the influence of
bottom friction is quite pronounced for this case despite
the value of f,, = 0.03 being representative of a mini-
mum mobile flat bed friction for a silt-sized bottom
sediment (cf. Fig. 1).

A further increase in the friction factor, f,, = 0.05
and 0.1, results in strongly attenuated wave conditions.
Wind-generated waves in 10 m water depths can barely
retain the energy input by the wind since friction rap-
idly dissipates the available energy. Even for seas 60
m deep, the waves experience enough resistance to be-
come dissipation limited. The peak frequencies are
separated more which indicates that the influence of a
natural, mobile bottom is felt by a windsea in shallow
water for fetches less than 50 to 100 km. Additional
trimming of the energy peaks and stratification towards
higher frequencies become evident for all depths.
However, the nature of the evolution is for the higher
values of f,, in principle, not different from that rep-
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FIG. 6a. Growth curves of total energy E (m?) against fetch X (m) as a function
of friction factor f,, = 0.03 and depth (4 = 10, 20, 30, 60, 120 m) for Case 1.

resented in Fig. 6. A summary of the limiting significant
wave heights and peak frequencies corresponding to
the maximum fetch are given in Table 2 for all values
of f,, used in the computations.

Case 2: Wave propagation over a gently sloping, rough
bottom at normal incidence under influence of a
20 m s~! wind

The objective of this test is to understand how a
deep-water Pierson—-Moskowitz spectrum (fully devel-
oped windsea) is transformed by finite-depth effects
when propagating into shallow seas up a gently sloping

100

bottom (Fig. 7). Here we consider constant bottom
slopes of 10~* and 1073, typical for continental shelves
and marginal seas. Since the angle of incidence is taken
to be normal to the bottom contours, we investigate
only the combined shoaling and bottom dissipation
effect on wave evolution. As in the previous case, wave
attenuation is studied for a range of friction factors.
The runs were started from a flat sea with a constant
wind blowing onshore at 20 m s~ and were continued
until the wave field reached stationary state, with a
fully developed spectrum as the deep-water boundary
condition. The depths at the offshore and inshore ends
are 250 and 10 m. Only the result of the stationary
solutions is presented.
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FIG. 6b. Plots of peak frequency f,,, (Hz).
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The variation of the wave field along the shelf slope
of 107* is shown in Fig. 8 for the different friction
factors characterizing the bottom roughness. Most no-
ticeable is the dramatic reduction in energy as the waves
propagate up the slope (Fig. 8a). While this decrease
in the frictionless case (f,, = 0.0) is associated with the
increased dissipation through wave breaking, repre-
sented by the Kitaigorodskii transformation factor, the
additional effect of bottom frictional attenuation is
clearly evident in water depths of less than 100 m be-
coming pronounced in depths less than about 50 m.
The effect of bottom friction on peak frequency is
demonstrated in Fig. 8b by the increase in peak fre-
quency with increasing friction factor. The stationary
energy spectra obtained for 10 m water depth, shown
in Fig. 8c, clearly demonstrate how strongly shallow
water wave climates depend on offshore bottom
roughness (friction factor). The results shown in Fig.
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FIG. 7. Configuration of wave transformation over a gently sloping,
rough bottom at normal incidence.

8 are representative also for the variation along a 1073
slope, when it is recognized that a steeper slope .de-
creases the distance traveled by the waves and hence
reduces frictional effects relative to those exhibited in
Fig. 8.

To examine the nature of the stationary waves ob-
tained in a given water depth as a function of bottom
slope and friction, Tables 3 and 4 present significant
wave heights and peak periods for different depths and’
friction factors for slopes of 10~ and 1073, respectively.
The results in those tables may be directly compared
to the constant depth conditions reported in Table 2.
When making this comparison it should be recalled
that no equilibrium condition is reached for small
depths and low friction factors. However, for relatively
large friction factors and small depths (upper right hand
corners of Tables 2, 3 and 4) the equilibrium wave
heights decrease with decreasing slope while peak fre-
quencies increase. This behavior represents the extent
to which frictional effects have sufficient time to control
the wave characteristics. In this respect it is interesting
to note that the constant depth equilibrium wave char-
acteristics are within 15% of the 10 ~* slope results for
the smaller water depths (less than 30 m) and larger

TABLE 2. Significant wave height H;;; (m) and peak frequency f,, (Hz) at maximum fetch and duration for Case 1.
Asterisk values do not correspond to equilibrium conditions.

“fo \
0.0 0.005 0.01 0.03 0.05 0.10
Depth

(m) Hy; Jm Hys S Hys Jm Hyp;3 Jm Hyp; Im H,s S
10 4,58* 0.0370* ° 3.85* 0.0478* 3.34* 0.0641* 2.39 0.1340 2.13 0.1595 1.90 0.1812
20 6.10* 0.0469* 5.49* 0.0568* 5.01* 0.0697* 391 0.1096 3.56 0.1226 3.24 0.1337
30 7.18* 0.0537* 6.88* 0.0594* J 6.51 0.0677 5.21 0.0955 4,78 0.1045 4.33 0.1138
60 9.42 0.0631 9.16 0.0666 8.94 0.0694 8.55 0.0735 8.12 0.0772 7.14 0.0856
120 9.95 0.0666 9.89 0.0687 9.84 0.0690 9.66 0.0711 9.38 0.0728

0.0700 9.55
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FIG. 8a. Stationary distribution of total energy E (m?) along shoreward distance X
(m) and as function of friction factors (f,, = 0.0, 0.005, 0.01, 0.03, 0.05, 0.1) for
constant slope 10~ starting in deep water at # = 250 m.

friction factors (f,, = 0.03). Thus, for a sufficiently equation for energy flux. The model is based on the
gentle slope over a relative rough bottom the wave evo- premise that the inclusion of a mean wave direction
lution may be thought of as frictionally dominated. calls for a vector quantity that describes a kinematic
aspect of the wave field. The model is extended to in-
corporate finite-depth mechanisms such as shoaling,
refraction and dissipation by bottom friction. The at-
An alternative derivation for a parametric windsea mospheric input and nonlinear energy transfer terms
model is described, which is governed by a transport are modified to account for finite-depth effects.

7. Conclusions
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FIG. 8b. Plot of stationary distribution of peak frequency f,, (Hz) as function of friction
factors for 10~ slope.
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F1G. 8c. Plot of stationary wave energy spectra in limiting depth
h = 10 m as function of friction factors for 10~ slope.

From the transport equation for the peak frequency
Jfm we examine the possibility for the existence of an
equilibrium spectrum in finite depth. From this balance
equation we hypothesize that an equilibrium spectrum
occurs when the nonlinear energy transfer across the
peak is equal and opposite to the loss of energy caused
by the waves interacting with a rough bottom. This
condition results in a stationary location of the peak
within the spectrum, which otherwise would move to-
wards lower frequencies if nonlinear wave-wave inter-
actions dominate the spectral dynamics or wander to-
wards higher frequencies if the ocean bottom is suffi-
ciently rough to cause a large loss in wave energy. It is
encouraging that numerical simulations for various
conditions of the bottom roughness yield reasonable
limiting wave heights and peak frequencies for two
idealized situations of wave growth and propagation.
However, quantitative verification of our results awaits
further wave measurements combined with the detailed
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simultaneous specification of the space-time structure
of the bottom roughness.

We have tested the response of the model for diverse
roughness conditions on a flat seabed under steady,
homogeneous offshore winds in different water depths.
The results are presented in terms of the evolution of
total energy and peak. frequency against fetch. The
limiting values of significant wave height and peak fre-
quency are summarized and clearly demonstrate the
trend of decreasing energy and increasing peak fre-
quency for rougher ocean bottom. The second test was
designed to understand the transformation of a fully
developed offshore spectrum propagating up a constant
and rough slope in steady uniform onshore winds. This
numerical simulation was used to examine the behavior
of the wave spectrum with the additional process in-

troduced by shoaling. The stationary solution of the

transformed wave field shows the same general trend
as in Case 1.

In view of the conservatively low choice of friction
factors representing wave interaction with natural sed-
iments, our results support the following conclusions:
1) bottom friction is an effective process attenuating
wave energy for the space and time scales applicable
to continental shelves; 2) the resistance felt by surface
waves extends from the shallow depths of the coastal
zone to the typical depths found on shelves and in
marginal seas; 3) interactions of waves and rough bot-
tom is a dissipative mechanism which plays an equally
important role to that of nonlinear wave-wave inter-
actions in the evolution of the wave spectrum in finite
depth; 4) the net effect of these two processes controls
the migration of the spectral peak; 5) the turning points
(i.e., the nonlinear transfer balances bottom friction),
are possible locations where equilibrium sea states may
exist and occur when the direction of the spectral peak
shift along the frequency axis is reversed; 6) shoaling,
in general, reduces the strong influence of bottom fric-
tion on the spectral energy balance and tends to slow
down the migration rate of the spectral peak.

The finite-depth wind-wave model formulation pre-
sented in this paper avoided the introduction of any
“new” coefficients for which values must be obtained
prior to application. In a forthcoming paper the model

TABLE 3. Significant wave height H,,; (m) and peak frequency f,, (Hz) at stationary conditions as a function of £, and depth
(h = 10, 20, 30, 60 and 120 m) for Case 2, 10~* slope.

fw
0.0 ) 0.005 0.01 0.03 0.05 0.10
Depth )

(m) Hyp Jon Hy;s Jm Hy;s S Hy; Jm Hy; Jon Hys I
10 4.12 0.0563 3.37 0.0617 3.01 0.0657 2.29 0.0820 1.97 0.1024 2.07 0.1512
20 5.67 0.0604 4.98 0.0638 4.59 0.0665 3.77 0.0772 3.40 0.0879 3.30 0.1173
30 6.89 0.0625 6.38 0.0651 6.05 0.0673 526 . 0.0745 4.92 0.0813 4.58 0.0977
60 8.94 0.0647 8.82 0.0663 8.71 0.0678 8.41 0.0725 8.25 0.0751 7.98 0.0773

120 9.71 0.0654 9.69 0.0656 9.67 0.0658 9.62 0.0667 9.58 0.0674 9.45 0.0692
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TABLE 4. Significant wave height H,,; (m) and peak frequency f,, (Hz) at statlonary conditions as a function of £,, and depth (4 = 10, 20,
30, 60 and 120 m) for Case 2, 1073 slope.
S
0.0 0.005 0.01 0.03 0.05 0.10
Depth
(m) Hy; S Hy; Jm Hy; I H,; S Hy; *Sn H,; Jon
10 426  0.0629 3.98 0.0633 3.78 0.0638 3.31 0.0656 3.02 0.0675 2.56 0.0724
20 5.59 0.0634 5.42 0.0637 5.25 0.0641 4.83 0.0656 4.52 0.0671 4.01 0.0710
30 6.45 0.0637 6.36 0.0640 6.28 0.0643 597 0.0655 5.75 0.0668 5.28 0.0700
60 7.97 0.0648 7.95 0.0650 7.92 0.0651 7.82 0.0657 7.74 0.0664 7.53 0.0679
120 9.36 0.0656 9.35 0.0656 9.35 0.0656 9.33 0.0657 9.32 0.0658 9.27 0.0660
will be applied to an intense storm over the East Coast where
continental shelf.
_ x? -1 | = 362 _4w;,mX2(1 — wi,)
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APPENDIX A
Refraction and Group Velocity Divergence Terms

The evaluation of the R; terms follows the basic
method discussed by Giinther et al. (1981). For the
sake of brevity we present only the final steps leading
up to the parametric expressions. After some lengthy
algebraic manipulations one arrives at this compact
formulation

8 (.  Oh Sh
R; = i R,(smﬂo ax+cos60 ay)
for i=1, ,5 (Al
where
5 ,9)(2—1 2(1 — wi.,)
R ""[2 X [1 + win(X? — 1)]E’(f)]

and the term in parentheses of (A1) represents the
change in water depth parallel to the mean windsea
direction. Evaluation of the operation ¢/ yields the fol-
lowing result:

R, = 2xf,. Ko
R, = 2zaf,,[Is + 0.722KA,]
Ry = 2myf,u[ Ay + 4.278 KAy — Is]

(A2)
(A3)
(A4)

X2 =1(1 = win
A= (1+Q)

Q= w%m(xz - l)

-2 2whm 2 . —_ 2
e (x* =1 (A —w)
I = 0.65 1.35whm “h X 1+ w0 2(X* = 1) dwn

In deep water X = 1 and all the R; terms vanish iden-
tically. In shallow water, i.e., wu, < 0.4, with X =
wy~ ', the integrand takes on the form ~ (1 — w;?)?/
(2 — w;?) and may be evaluated analytically.

The derivation for an appropriate expression Rg
must necessarily reveal a dependence on the depth gra-
dient perpendicular to the mean windsea direction.
From the definition of ¢ in (19) the subsequent para-
metric relation emerges expressing the response of the
windsea spectrum to a variable bottom topography

ok ok
Re¢ = — —7r fmwhm (cosBO i sinfy — 3 ) (AS)
where
© _ x2-1 2(1 — wy?)
- .4 5 _ e\l "W).
i "’"”’fo X [3+1+w,,2(x2—1)]
><¢(—“’" 7, a)dwh (A6)
Whm

and J, is given by (B7).

APPENDIX B
Depth Dependent Advection Terms

The determination of the D;; in Table 1 is straight-
forward by applying the appropriate mapping func-
tionals:

é
Dy = o alf. e} for fi=1, -5 @D
J
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From the evaluation of operation (B1) if follows that

2 2 2
_ Whm (X = 1)(1 — whm)
o= K[‘ ST el (= D)) ] ®2)
Similarly, expressions for £, and &; can be calculated
5whaX
=0.722 -
=072 0.65[1 + win (X% - 1)]
2whm 2 2 _ 1
% f ItenX =D g, (83
1.35wpm wp” X
and
b= 3
27 0.65[1 + win(X? — 1)]
2w 2002
X f ltw (X" 1) dw,. (B4)
1.35wpm wpX
The propagation terms Dj are given by
D,'G = aD,'z for i= 1, ey, 5. (B5)

The group velocity ¢, corresponds to the velocity at
peak frequency, f,,, in depth, A,

Com = —2— X711 + whn(X2 = D]

47fom

For the directional parameter a¢ = 8, the advection

terms are calculated from the operation ¢§ applied to

the energy flux vector & (f, 8, h). The nondimensional

integrals depending only on the spectral shape and wa-
ter depth are

(B6)

Iy = wim [~ wrx 3¢( v, 0 )dw,. (B7)

® 14 wi(X:-1)
J3=w2mJ; wh 7'_hx4"’_

xw( ¥, 0 )dw,,. (BS)
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