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ABSTRACT

Globally distributed crossovers of altimeter and scatterometer observations clearly demonstrate that ocean
altimeter backscatter correlates with both the near-surface wind speed and the sea state. Satellite data from
TOPEX/Poseidon and NSCAT are used to develop an empirical altimeter wind speed model that attenuates the
sea-state signature and improves upon the present operational altimeter wind model. The inversion is defined
using a multilayer perceptron neural network with altimeter-derived backscatter and significant wave height as
inputs. Comparisons between this new model and past single input routines indicates that the rms wind error is
reduced by 10%–15% in tandem with the lowering of wind error residuals dependent on the sea state. Both
model intercomparison and validation of the new routine are detailed, including the use of large independent
data compilations that include the SeaWinds and ERS scatterometers, ECMWF wind fields, and buoy measure-
ments. The model provides consistent improvement against these varied sources with a wind-independent bias
below 0.3 m s21. The continuous form of the defined function, along with the global data used in its derivation,
suggest an algorithm suitable for operational application to Ku-band altimeters. Further model improvement
through wave height inclusion is limited due to an inherent multivaluedness between any single realization of
the altimeter measurement pair [so, HS] and observed near-surface winds. This ambiguity indicates that HS is
a limited proxy for variable gravity wave properties that impact upon altimeter backscatter.

1. Introduction

Empirical models have been devised to improve sat-
ellite altimeter ocean wind speed retrieval using many
differing numerical approaches and datasets (Brown et
al. 1981; Dobson et al. 1987; Chelton and McCabe 1985;
Witter and Chelton 1991; Glazman and Greysukh 1993;
Young 1993; Lefèvre et al. 1994; Freilich and Challenor
1994). The global altimeter ocean wind product is most-
ly limited to validation and climatological usage (e.g.,
Young 1999) because the altimeter’s nadir-pointing ge-
ometry only permits estimates of surface wind speed
along a narrow (.2 km) swath and precludes wind di-
rection detection. However, accurate wind speed esti-
mates are also important because they are used in the
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point-by-point correction of an altimeter’s estimate of
mean sea surface height via the electromagnetic bias
algorithm. Freilich and Challenor (1994) and Glazman
and Greysukh (1993) expand on these points and sug-
gest that objective model improvement metrics should
include the minimization of wind speed biases and root-
mean-square error, removal of nonwind geophysical im-
pacts such as sea state, and functional continuity (finite
first derivative) such that the wind speed histogram is
not distorted.

The operational altimeter wind speed product for TO-
PEX is derived from interpolation over the look up table
known as the modified Chelton–Wentz algorithm
(MCW) of Witter and Chelton (1991). This model di-
rectly maps measured Ku-band altimeter backscatter
(s o) to the wind speed 10 m above the ocean (U10). The
overall bias, ^Uerr&, for this algorithm is suggested to be
0.48 m s21 (Uerr 5 Ualtim 2 Uinsitu) and the root-mean-
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square (rms) error lies between 1.5 and 2.0 m s21 (e.g.,
Witter and Chelton 1991; Gower 1996; Freilich and
Challenor 1994; Wu 1999). Numerous studies have sug-
gested that the form for this single parameter algorithm
could be improved upon (e.g., Freilich and Challenor
1994). However, the limited amount of validation data
combined with the generally small level of improvement
in algorithm performance leaves MCW as the current
choice for new altimeters such as the GEOSAT Follow-
On (GFO) and Jason-1.

A goal that remains of interest for altimeter wind
retrieval is the detection and correction of wind speed
errors associated with longer ocean waves that are not
necessarily closely coupled to the local wind field. Ev-
idence for a sea-state effect on altimeter-derived wind
has been addressed in several studies (Monaldo and
Dobson 1989; Glazman and Pilorz 1990; Glazman and
Greysukh 1993; Lefèvre et al. 1994; Freilich and Chal-
lenor 1994; Hwang et al. 1998). Reported results range
from substantial impacts to no impact (cf. Wu 1999).
The central and unique factor here is an altimeter’s co-
incident and accurate measure of significant wave
height, HS.

Motivation for the present study follows from com-
pilation of a large number of TOPEX altimeter obser-
vations made coincident with National Aeronautics and
Space Administration (NASA) scatterometer (NSCAT)
surface wind estimates. The global coverage, fidelity,
and volume of this dataset leads to a much clearer pic-
ture of HS variation impacts upon altimeter backscatter
and wind inversion over a range of wind speeds from
1 to 20 m s21. We develop two models, a forward and
an inverse solution, using neural network methods to
map between altimeter and scatterometer observations
and incorporating a globally derived correction for sea-
state impacts using the altimeter-derived HS estimate.
Numerous independent datasets containing collocation
between altimeter and ancillary wind estimates are then
used to evaluate a best-choice routine and its applica-
bility for operational usage. This paper is derived from
an earlier report by Gourrion et al. (2000). That effort
includes wind speed models for the C-band altimeter
aboard TOPEX, but the present effort concentrates sole-
ly on Ku-band model definition.

2. Collocated datasets for training and validation

A choice is usually made in wind speed algorithm
developments between evaluating a limited amount of
measurements collected over fixed-location ocean buoys
and methods that utilize global wind statistics as the
basis for tailoring the model (cf. Witter and Chelton
1991; Freilich and Challenor 1994). A new option has
arrived because ocean observing satellites are now often
in orbit at the same time. Many of these satellites share
wind observing attributes that can be exploited when
their respective ocean footprints cross. This study fol-
lows the collocation approach and we make use of the

unprecedented ability to combine TOPEX/Poseidon
(termed TOPEX hereafter) satellite altimeter measure-
ments with those made at the same time and place by
satellite scatterometers. The resulting crossover datasets
are very large and form the basis for our algorithm
development and validation. The TOPEX/NSCAT da-
taset is chosen for algorithm training and will be detailed
below. Six additional datasets are assembled for sub-
sequent altimeter wind speed model validation. These
data sets contain similar TOPEX crossover compilations
using winds from other satellites European Remote-
Sensing satellite (ERS) and SeaWinds], surface models
[European Centre for Medium-Range Weather Forecasts
(ECMWF)], and buoys. We also include a dataset from
the ERS-2 altimeter. The varied data sources offer the
opportunity to assess altimeter algorithm stability with
respect to overall wind bias and rms errors, as well as
removal of wave height impacts. Moreover, inherent
dataset differences provide insight into issues such as
intercomparison noise sources and time-dependent sen-
sor calibration adjustments.

a. TOPEX and NSCAT

One central assumption in this study is that surface
wind estimates obtained using NSCAT can serve as the
reference for those points where near-simultaneous TO-
PEX observations occurred during the NSCAT mission,
September 1996 to June 1997. The collocated dataset
has the attributes of high spatial and temporal correla-
tion, large data population, and global coverage.

Past studies and the known characteristics of wind
wave growth suggest that long wave impacts may vary
over fairly small spatial scales of order 10–100 km. For
instance, the most common fetch for a wind sea on the
ocean is about 70 km (Tournadre and Blanquet 1994).
Not surprisingly, the horizontal length scale for atmo-
spheric fronts falls into this range as well. Thus to probe
the long wave impacts on altimeter winds, we desire a
finescale reference wind product. An attractive feature
for the case of NSCAT is the availability of a special
high resolution scatterometer wind product produced by
S. Dunbar at the Jet Propulsion Laboratory [High Res-
olution-Merged Geophysical Data Records (HR-
MGDR); Dunbar 1997]. The surface resolution is re-
duced to 25 3 25 km for each wind estimate, a so-called
wind vector cell.

Wind retrieval test results can differ depending on
intercomparison product resolutions and spatial and
temporal separation. This fact is already well docu-
mented from an altimeter wind inversion standpoint
(e.g., Monaldo and Dobson 1989; Gower 1996; Hwang
et al. 1998; Freilich and Dunbar 1993). To keep inter-
comparison errors to a minimum we desire equal sensor
surface coverage between the altimeter and scattero-
meter. The high-resolution NSCAT product is attractive
for this purpose as the TOPEX wind resolution cell is
relatively small O(2 3 6 km). Larger footprint (50 3
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50 km) products such as from Special Sensor Micro-
wave Imager (SSM/I), NSCAT, or ERS-1 or -2 encom-
pass four times greater area.

The model function used to derive NSCAT wind
speed is NSCAT-1 (Wentz and Smith 1999). A new
algorithm, NSCAT-2, is now in existence. Its inclusion
into our dataset is not straightforward but changes be-
tween NSCAT-1 and 2 have been evaluated and found
to be small in their wind speed impacts for the data
range (1–20 m s21) of interest here. Multiple indepen-
dent validations presented in section 6 suggest this is
the case. There we include evaluation of results against
a collocation of TOPEX with NASA’s Ku-band
SeaWinds scatterometer that uses the QSCAT-1 model
function to derive its wind. The potential for a nearly
constant 0.3 m s21 NSCAT bias is discussed in that
section, but data within this study do not confirm or
deny this discrepancy. The largest distinction between
NSCAT-1 and QSCAT-1 models comes at very high
wind speeds, above 15–20 m s21. An appendix address-
es altimeter inversion for speeds above 20 m s21.

A given collocation point within this dataset can be
characterized as follows. TOPEX altimeter data come
from the TOPEX/Poseidon Merged Geophysical Data
Records, generation B (MGDRB; Benada 1997). A valid
TOPEX/NSCAT crossover occurs when the time dif-
ference is less than 6 one hour and wind cell spatial
intersection is within 612 km of their respective centers.
Flags within each sensor’s data record at that point must
indicate deep ocean, no sea ice, and high data quality
per handbook recommendations. Our resulting global
dataset consists of over 245 000 points spanning the
nine month NSCAT mission.

This study assumes that the scatterometer reference
winds are free of error due to sea state impacts. NSCAT
winds are derived from antenna incidence angles span-
ning 168–548 from vertical. Sea-state impacts are not
considered within the NSCAT wind inversion scheme
and are assumed negligible based on numerous studies
(see Nghiem et al. 1997). Recent global study (Quef-
feulou et al. 1999) does imply that a measureable sea
state effect can be seen in lower-angle NSCAT data, but
also that the larger-angle scatterometer data do not ex-
hibit significant correlation. Our datasets were used to
affirm the Queffeulou et al. (1999) findings (not shown
here) and lead us to conservatively accept only those
NSCAT winds where the observation angle exceeded
408. The expectation is that this will reduce possible
sea-state impacts on scatterometer winds to levels ac-
ceptable for altimeter model study. Buoy and wind fore-
cast validations in sections 3 (e.g., Fig. 5) and 6 indicate
that this is the case. The same angular cutoff criterion
is applied to all scatterometer data in this study.

To bring the TOPEX spatial resolution as near as
possible to NSCAT we include an average over those
TOPEX data points (one point every 6 km along track)
that fall within the given NSCAT wind cell. Thus the
TOPEX ‘‘wind cell’’ characteristics vary from 2 3 6

km to 2 3 25 km. An additional minimal filtering of
outliers includes the removal of those points where s o

is below 5.0 or above 30.0 dB and those cases where
the TOPEX liquid water estimate exceeds 500 mi-
crons—a likely rain event. The composite dataset con-
tains 96 436 samples. The main parameters of interest
at each point are the NSCAT 10-m wind estimate, TO-
PEX normalized radar cross section (s o) at Ku-band,
and TOPEX HS. TOPEX in this case denotes only the
NASA altimeter aboard the satellite; we do not use data
from the Poseidon altimeter for this study.

b. TOPEX and ERS C-band scatterometers

The ERS-1 and -2 satellites’ Active Microwave In-
strument included a C-band scatterometer that provided
another opportunity for TOPEX collocation. TOPEX/
ERS crossovers were compiled by CERSAT (Centre
ERS d’Archivage et de Traitement) with details provid-
ed in a data report (CERSAT 1996). To encompass the
1996–97 NSCAT period, and to acquire a large sam-
pling, data include both ERS-1 and -2 platforms over
the 2-yr period extending from November 1995 to No-
vember 1997. The period November 1995 to May 1996
corresponds to ERS-1, with ERS-2 data after this. The
scatterometers are virtually identical and their accurate
cross calibration was accounted for within the CERSAT
database.

ERS backscatter measurement processing results in a
wind inversion with surface resolution cell of 50 3 50
km. Version 3.2 of the CMOD wind inversion algorithm
was used. Flagging of both TOPEX and ERS data was
conservatively performed with the same criterion as for
the TOPEX/NSCAT dataset.

Collocation was first done for a 6 one hour time lag
and a 650 km spatial separation. This resulted in more
than 300 000 data points. A subset was extracted to keep
only those crossovers with 30 min and 15-km time and
space separations. The final dataset also contains only
those cases where all ERS data are for an incidence
angle higher than 408. This leads to a globally distrib-
uted total of 70 500 samples.

c. TOPEX and SeaWinds

Global Ku-band scatterometer-derived winds from
the SeaWinds sensor aboard the Quik-SCAT satellite
(QSCAT) have been available since July of 1999.
SeaWinds has two rotating antennas operating at fixed
incidence angles (468 and 528). Collocations of TOPEX
and QSCAT data have been performed by CERSAT for
the twelve month period from July (1999) to August
2000. The Ku-band wind speed algorithm for SeaWinds
is the QSCAT-1 model function. Note also that there
was a substantial change in TOPEX between the NSCAT
and QuikSCAT periods in that the original NASA al-
timeter (side A) aboard TOPEX was switched off and
replaced with a redundant system (side B) in February



DECEMBER 2002 2033G O U R R I O N E T A L .

1999. The changes associated with this TOPEX switch
are not expected to significantly impact this study.

For the TOPEX/SeaWinds dataset the crossovers con-
straints for time and space separation are less than 30
min and 15 km, respectively. As with NSCAT, a high-
resolution processing was applied, resulting in 25 3 25
km wind cells. This product provides two different TO-
PEX measurement resolutions to remain consistent with
the collocated datasets detailed above. The first is the
single point MGDR-B data with 2 3 6 km resolution.
The second is a 13-s average along the TOPEX track,
corresponding to a 2 3 70 km ground cell. The former
is used in the validations of section 6. Filtering of the
two data sources was performed as described for TO-
PEX/NSCAT with the exception being that all SeaWinds
wind vector estimates are implicitly for incidence angles
above 408. The dataset used in our study contains more
than 330 000 data points.

d. TOPEX and ECMWF winds

Atmospheric model estimates of surface wind vector
from the ECWMF surface analysis are provided for each
point in the three collocation datasets described above.
These model-derived winds are used for altimeter al-
gorithm validation purposes. Note that these model
winds do not come from the ECMWF reanalysis. The
ECMWF analysis provides near-surface wind vector es-
timates for an altitude of 10 m above the ocean and for
neutral stability. Their output is on a 1.1258 3 1.1258
grid every 6 h. Model output is interpolated in space
and time to derive a wind estimate collocated with the
altimeter observation. This results in a maximum time
lag of 63 h. Ground resolution for ECMWF is then 125
3 60–125 km, depending on latitude.

This type of wind product has proven to be quite
useful for past global development of the average wind
characteristics of a sensor such as the satellite scatter-
ometer or altimeter. However, the inherent smoothness
associated with the relatively larger spatial and temporal
scales of such a model does introduce variance into any
comparison with a finer-resolution observations. For ex-
ample, Freilich and Dunbar (1993) estimate this inter-
comparison noise factor to be roughly 30% in their al-
timeter wind model study.

e. ERS-2 altimeter and NSCAT

Observations from the Ku-band altimeter aboard the
ERS-2 satellite are provided as one independent as-
sessment of the results derived using the TOPEX-based
crossover datasets. Crossovers between the ERS-2 al-
timeter and NSCAT have been obtained from CERSAT
and the compilation covers the whole NSCAT period
(CERSAT 1997; Queffeulou 1999). Our dataset was as-
sembled and filtered for the cases above. One difference
here is that NSCAT wind estimates are for 50 3 50 km
(not 25 km) wind cells. The ERS-2 altimeter measure-

ments are averaged over 11 s, representing an along
track distance of about 70 km. One-second averaged
altimeter measurements are also provided. The globally
distributed dataset contains 129 000 crossovers.

f. TOPEX and NDBC buoys

A dataset of collocated buoy/altimeter measurements
has been developed at the Southampton Oceanography
Centre to investigate sea-state effects on retrieved al-
timeter wind speed (e.g., Gommenginger et al. 2002).
Featuring nearly 4500 data points, it is the largest dataset
to-date of collocated buoy/altimeter measurements in
the open ocean, and represents a significant increase
with respect to previous collocated datasets featuring
only a few hundred points (Monaldo and Dobson 1989;
Glazman and Greysukh 1993). The buoy data originate
from the U.S. National Data Buoy Center (NDBC), the
Canadian Meteorological Data Services (CMEDS), the
UK Met Office (UKMO), and the Japanese Maritime
Agency (JMA). These moored buoys were selected for
their location in open waters and their proximity to the
TOPEX altimeter tracks. Here, the space–time collo-
cation criteria were set to select data within 50 km and
30 min of a TOPEX overpass, in accordance with the
criteria commonly used in this type of study (e.g.,
Hwang et al. 1998). With these criteria and the appli-
cation of the standard ice and rain flags in the Aviso
MGDR products, the collocation yielded a dataset of
4444 measurements obtained between September 1992
and December 1998.

The buoy wind speed represents a 8-min average. It
is provided as a neutral stability 10-m estimate, adjusted
using the air–sea temperature dependent correction fac-
tors of Dobson (1991). No attempt was made to com-
pensate for the small systematic drift in TOPEX HS

estimates toward the end of 1998 (end of the side A
mission) as this represented a small proportion of our
dataset. Basic outlier removal eliminated any data for
which the altimeter U10 (retrieved with MCW) and the
buoy U10 differed by more than 5 m s21.

3. The training set—NSCAT and TOPEX

Figure 1 presents TOPEX altimeter parameters versus
NSCAT-derived wind speed for the TOPEX/NSCAT
collocation dataset. Only one tenth of the total sampling
are represented in Figs. 1a–c. Figure 1a shows TOPEX
Ku-band s o versus NSCAT wind speed. Their relation
appears to be close to linear above 5–6 m s21, while,
with decreasing wind speeds, s o increases rapidly. One
can note that s o scatter is on the order of 1–2 dB for a
given wind speed. This scatter also increases with de-
creasing wind speed. An obvious feature of the large
dataset is measurement across a range of ocean wind
speeds but note that the population lessens above 15 m
s21.

TOPEX HS measurements are shown in Fig. 1b. The
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FIG. 1. (a) TOPEX Ku-band s o, (b) TOPEX HS, and (c) TOPEX
MCW-derived wind speed—all versus the reference NSCAT 10-m
wind speed. (d) Histograms for UNSCAT (thick), UECMWF (dashed), and
UMCW (thin). The model curve in (b) represents fully developed seas
for a given NSCAT wind speed using the Sverdup–Munk model.

FIG. 2. Spatial density of TOPEX/NSCAT satellite crossover points used in this study.

observed range of sea-state conditions and HS wind de-
pendence are consistent with past global TOPEX ob-
servations (e.g., Callahan et al. 1994). A model curve
is superposed on the graph representing HS for a wind
sea that has reached full development under a given
wind (Sverdrup and Munk 1947). Observed HS values

falling below this curve likely indicate cases where a
wind sea is building. For light to moderate winds HS

data usually exceed this curve indicating that a swell
component is common. It follows that idealized fetch-
limited wind sea situations are infrequent on the open
ocean. This holds except for cases of high wind speeds
where swell becomes a much smaller contributor within
the total wave height.

Figure 1c presents altimeter wind speed estimated
from the operational TOPEX algorithm (Witter and
Chelton 1991), showing that wind differences frequently
exceed 62 m s21. About 15% of the TOPEX-derived
wind estimates exceed these bounds within the complete
TOPEX/NSCAT dataset. Furthermore, a systematic
overestimation of wind speed by about 0.5 m s21 is
observed over the whole wind speed range. This bias
is confirmed by the wind speed histograms presented in
Fig. 1d. This same level of bias has also been pointed
out in past studies (e.g., Freilich and Challenor 1994).
Figure 1d also provides the wind speed histogram for
collocated ECMWF wind model data. There is excellent
agreement between the NSCAT and ECMWF estima-
tion. Note that the global wind distributions show pre-
vailing ocean wind speeds fall between 3 and 12 m s21.
This strong weighting of the sampled population to-
wards a median value near 7 m s21 needs consideration
in wind model developments and validation.

Figure 2a gives some sense of the global distribution
of this compilation. Data for both satellites were con-
servatively filtered for sea-ice occurrence and so this
should not be a noise factor. A salient characteristic of
the crossings for these polar-orbiting platforms was the
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FIG. 3. NSCAT and ECMWF wind speed comparisons: (a) bin-
averaged relations (dashed) and symmetrical linear regression (solid);
(b) standard deviation of the Unscat 2 Uecmwf wind difference, as a
function of NSCAT wind (dashed) and ECMWF wind (solid).

increased likelihood of high-latitude intersections. This
same polar weighting is evident in the TOPEX/ERS and
TOPEX/QSCAT data.

Next is an assessment of the chosen reference wind
product for model developments—NSCAT’s 10-m wind
derived from a 25-km wind vector cell. As noted earlier,
scatterometer data are restricted to winds derived using
radar incidence angles above 408 to ameliorate possible
wind speed errors associated with long waves or sea
state. For indepth validation of the NSCAT winds and
the NSCAT-1 geophysical model function see Freilich
and Dunbar (1999) and Wentz and Smith (1999).

Figure 3a presents bin-averaged relations (1 m s21

bin width) and an orthogonal linear regression between
the ECMWF model wind and the NSCAT product. As
mentioned earlier the model winds have been interpo-
lated and are a lower resolution product to begin with.
Both products will have substantial rms about a ‘‘true’’
wind measurement as well as possible biases. An or-
thogonal linear regression is provided to show results
are invariant with choice of regressor. The comparison
between the two parameters shows excellent agreement
with a slight bias that never exceeds 0.3 m s21 in the
average of one estimate when averaged over binned
subsets of the other.

Referencing Fig. 3b one sees that standard deviation
(std) of the UNSCAT 2 UECMWF wind difference as a func-
tion of ECMWF or NSCAT wind speed is about constant
at 1.7 m s21 for winds less than 10 m s21. For higher
wind speeds the std increases strongly—up to 2.4 m s21

at 16 m s21. This increase is likely associated with the
different resolution cells for NSCAT (25 km) and
ECMWF (120 km). This becomes more important for
stronger winds because they are likely to be associated
with smaller-scale meteorological features.

The cross correlation between significant wave
height, altimeter backscatter and surface wind is now
addressed. Figure 4 displays a gridding of s o versus
UNSCAT with color representing the average value for
altimeter-derived HS at a given wind speed and s o. One
can observe a clear dependence of altimeter s o upon

HS variation for a given U10. The relative magnitude of
the change decreases with increasing wind speed. How-
ever, the variance is quite strong for common ocean
wind speeds, such as the 2-dB range at 6 m s21. Such
a 2-dB range translates to large wind error for the MCW
s o wind speed algorithm where wind sensitivity is about
3 m s21 dB21 at 6 m s21.

It is important to recognize that the pattern that
emerges in Fig. 4 is due to the very large amount and
global nature of the assembled dataset. Much of the
space mapped here represents infrequent events and
high latitude observations that might not be seen in
smaller and more localized composite datasets (e.g., al-
timeter collocations with the NDBC buoy network ob-
servations). One can expect such a mapping to gain even
better definition with a long-term multiyear data com-
pilation where the sampling of sparse regions and in-
frequent events increases (e.g., continued collocation
between TOPEX/Jason-1 and the SeaWinds sensors).

The observed correlation between altimeter s o and
HS for any fixed wind speed confirms, at least in some
respects, numerous past studies suggesting sea-state im-
pacts on altimeter wind estimations as discussed in our
introduction and first noted by Monaldo and Dobson
(1989). Cursory inspection of the GEOSAT/NDBC da-
taset used for many past sea state impact studies indi-
cated little of the variations seen in Fig. 4 and as such,
inconclusive findings (cf. Wu 1999) are not surprising.

Another means of illustrating the sea-state impact is
in terms of the operational altimeter wind product. Fig-
ure 5 (left panel) provides that TOPEX estimate versus
the coincident ECMWF model wind speed for varied
HS levels. The TOPEX wind bias is systematically above
or below the reference wind for a given HS. NSCAT
wind data (right panel) for the same conditions indicate
that the scatterometer wind product shows a negligible
relation to HS variation. These data affirm that the al-
timeter exhibits this mean HS dependence, whereas the
high angle scatterometer winds do not.

We reemphasize that the results shown here depict
the average, not instantaneous, globally derived signa-
tures. Moreover, significant wave height is the lowest-
order moment of the directional wave height spectrum,
and HS does not necessarily covary with the long wave
slope statistics that correlate more closely with s o mea-
surements. Therefore, just as for the backscatter alone,
one anticipates no unique pairing of s o and HS that maps
to a unique U10. Ambiguity is likely to remain due to
the indeterminate ratio of sea versus swell within HS,
the indeterminate direction of the sea versus the swell,
unknown fetch and duration, etc. The notion that HS is
a limited surrogate for actual long wave impacts in al-
timeter U10 inversion should be kept in mind when de-
veloping a two-parameter (s o and HS) wind speed al-
gorithm for the altimeter.

4. Two-parameter model functions
As discussed, a sea-state impact upon s o measure-

ments has been suspected for some time, but the pre-
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FIG. 4. Grid for TOPEX s o vs NSCAT wind speed and HS, where color represents the average value for
HS. Bin width : 0.2 m s21, 0.1 dB.

FIG. 5. Symetrical linear regression between (a) Umcw and Uecmwf,
(b) Unscat, and Uecmwf vs ECMWF U10 for different SWH classes: 1 m
(dashed line), 3 m (dotted line), 5 m (solid line). The HS range is
60.5 m about the indicated value.

vailing wind speed inversion for TOPEX still follows
the single parameter MCW model:

os 5 f (U ).MCW 10 (1)

The NSCAT/TOPEX data offers a new opportunity
to develop a globally based altimeter wind speed so-
lution relevant for operational usage. That is, invert U10

using solely those two products measured by any Ku-
band altimeter:

oU 5 f (s , H ).10 1 S (2)

Referring back to Fig. 4 one can see that the three-
dimensional representation indicates some nonlinearity,
particularly when considering both high and low wind
speed regimes. For this reason we choose artificial neu-
ral networks to develop the empirical model relating
these three parameters, s o, HS, and U10. This choice
assures a robust nonparametric mapping, with one ram-
ification being that a derivative sea-state parameter such
as pseudowave age (e.g., Glazman and Greysukh 1993)
that combines wind speed (or s o) with HS should be
encompassed by this solution.

The overall objective in this nonparametric regression
is to generate a globally faithful and continuous rep-
resentation of the observed relation between a reference
U10 and TOPEX measurements. A most direct inversion
is given by f 1 [Eq. (2)]. However, from a physical or
sensor perspective one anticipates that Ku-band s o ob-
servations are correlated with the local wind waves (U10)
but also with the long wave roughness and its surrogate,
HS. As such, a more physically relevant (forward) model
treats those latter variables as network inputs and s o as
the output:

os 5 f (U , H ).2 10 S (3)



DECEMBER 2002 2037G O U R R I O N E T A L .

FIG. 6. Correlation of the dependent variable in (a) f 2 and (b) f 1

with variation in HS: y axis depicts the value of the linear correlation
coefficient computed at each respective x-axis location.

TABLE 2. Coefficients for the f 1 model.

Parameter Matrix elements

Wx

Wy

Bx

By

P

233.95062
23.93428

0.54012
18.06378

22.28387
0a 1 b s0 0s s

211.03394
20.05834
10.40481

20.37228
. . .

a 1 b HH H SS S

TABLE 1. Input and output data scaling coefficients needed for
both neural network models.

Parameter a b

s 0

HS

U10

20.34336
0.08725
0.10000

0.06909
0.06374
0.02844

TABLE 3. Coefficients for the f 2 model.

Parameter Matrix elements

Wx

Wy

Bx

By

P

243.39541
2.78612
1.18281
7.83459
1.13906
1 U10a bU10 U10

26.92550
1.22293

23.30096
21.46489

. . .
1 HSa bH HS S

Wind speed is readily derived from f 2 by inversion
using a look-up table. These two functions [Eqs. (2) and
(3)] will not necessarily provide identical U10 values for
identical s o and HS inputs.

This point is deduced from the relatively high cor-
relation observed between the radar backscatter and HS

in comparison to the correlation between NSCAT’s wind
speed and HS (see Fig. 6). At a given value of its first
input parameter s o (U10), the f 1 ( f 2) mapping has a
relatively lower (higher) correlation between its output
variable U10 (s o) and HS. The input variables [U10, HS]
for f 2 are less self-correlated than those for f 1. Thus,
the f 2 mapping is expected to weight the sea-state pa-
rameter more strongly than f 1.

Detail for f 1 and f 2 model developments are provided
in appendix A. In initial studies (Gourrion et al. 2000)
two differing neural techniques were applied to the TO-
PEX/NSCAT data. The first approach used a general
regression neural network (GRNN) and the second ap-
proach used the multilayer perceptron (MLP). That re-
port concludes that the two approaches give results that
are in close agreement. This paper reports only the MLP
solutions as they provide closed-form solutions that are
most readily disseminated.

a. Model definition

Given the input pair [s o, HS] or [U10, HS] the fol-
lowing equations and coefficients (Tables 1, 2, and 3)
define the analytical neural network solutions f 1 and f 2,
respectively.

The f 1 solution provides an altimeter-derived 10-m
neutral-stability wind speed trained to the NSCAT-1
model function output:

Y 2 af U1 10U 5 f 5 , (4)10 1 bU10

while f 2 predicts the normalized radar cross section at
Ku-band and for vertical incidence:

Y 2 a of s2os 5 f 5 . (5)2 b os

The variable Y (for either f 1 or f 2) is derived as
T T2(W X 1B ) 21y yY 5 [1 1 exp ] , (6)

with X defined as
T T2(W P 1B ) 21x f xX 5 [1 1 exp ] . (7)

The subscripts on scaling coefficients (a and b) corre-
spond to the appropriate altimeter parameter, boldface
variables are vectors, and T denotes the vector transpose.
Here, P (respectively P ) is the two-row input matrixf f1 2

to the f 1 ( f 2) transfer function given by

o ˜s̃ U10, respectively ,1 2 1 2˜ ˜H HS S

the ; denoting data normalized with the appropriate a
and b coefficients. Equations (4) and (5) provide the
network outputs once renormalized using these coeffi-
cients.

Both Eqs (6) and (7) are log-sigmoid transfer func-
tions, commonly used in MLP neural network devel-
opments. Output from each spans from 0 to 1. Among
MLP nonlinear transfer functions, these are easiest to
compute both in the forward and backpropagation (par-
tial derivative) modes of operation. The log-sigmoid
transfer function is chosen because outputs become as-
ymptotic at the input extremes. Inputs closer to zero
cause the output to act more linearly. These properties
lead to an ideal amplifier when coupled together in stag-
es. Each stage can only saturate to 0 or 1, thereby not
overwhelming inputs of the following MLP stage. The
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FIG. 7. (a),(b) represent the average over the input data domain for
the f 1 (left) and f 2 (right) models as derived from TOPEX/NSCAT
dataset. (c),(d) represent the overall behavior of the neural network
solutions. Curves depict data or model results about three different
SWH values: 1 m (circles), 3 m (pluses), and 5 m (squares). The
MCW model is overlaid for comparison (thick line).

FIG. 8. Frequency distribution of wind speeds over the entire
NSCAT/TOPEX dataset.

FIG. 9. (a) The average of TOPEX HS values for a given NSCAT
U10 (60.5 m s21) and TOPEX s o 5 12.2 (60.2 dB). (right panel)
(b) The average NSCAT U10 at differing zonal bands for the fixed
TOPEX data pair [s o 5 12.2 (60.2), HS 5 1.7 (60.2)].

attenuating property of the log-sigmoid is what allows
us to represent nonlinear input–output relationships
within our training and test data.

As described in appendix A, we empirically deter-
mined that adequate characterization is obtained with a
three-layer MLP network. Model outputs are readily
calculated with the simple matrix operations defined in
Eqs. (4)–(7).

b. Model results

Figure 7 illustrates model response versus s o and
versus wind speed for three separate HS values. Upper
panels depict the average TOPEX/NSCAT observations
and are representative of the f 1 and f 2 training sets. The
standard TOPEX routine (MCW) is displayed for ref-
erence. Both neural models clearly differ from this
MCW result. The observations and models also make
it clear that the f 1 mapping differs substantially from
f 2. As already discussed, this may lead to differences
with respect to HS impacts on wind inversion. Differ-
ences are particularly evident in Fig. 7 at low and high
U10. Overall, it is apparent that the f 1 model represents
a weaker departure from MCW.

Histograms of NSCAT and model-derived winds are
shown in Fig. 8. Wind speed is retrieved from f 2 using
a look-up table. The histogram bin size here is 1.0 m
s21. Agreement between the three products is close, with

the models missing only slightly in the range of 5–7 m
s21. Referring back to Fig. 1, one observes that the new
functions appear to improve over MCW.

Finally, recall that multivaluedness within this par-
ticular three parameter dataset thwarts efforts to further
refine model performance by various methods such as
changing the training set makeup, network size, or data
limits. That is, given altimeter measurement pairs [s o,
HS] do not always map to a unique wind speed. This
property is partially attributed to the fact that HS is a
limited proxy for the actual long wave conditions dic-
tating the relation between s o and U10. Illustration is
provided in Fig. 9, where the left panel shows observed
U10 ranging from 4 to 8 m s21 for fixed values of HS

(1.7 m) and s o (12.2 dB). The right-hand panel provides
evidence that the multivaluedness is geophysical in na-
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TABLE 4. Wind speed error statistics for TOPEX altimeter U10 de-
rived using the specified algorithms. Computations are made over the
96 436 samples within the collocated dataset TOPEX/NSCAT where
the reference NSCAT wind speed fell between 1 and 17 m s21. Error
trends are the slopes a in the linear regression model Uerr 5 b 1 aX
where X is UNSCAT or HS. The separation time between altimeter and
scatterometer estimates is 6 1 h.

Altimeter
model

Bias
(m s21) Std Rms

% error
.2 m s21

U error
trend

HS error
trend

B81
MCW

FC
GG2

Lefèvre
f1

f2

0.36
0.61
0.02
0.04
0.28
0.04
0.01

1.16
1.19
1.22
1.07
1.44
1.05
1.10

1.22
1.34
1.22
1.07
1.47
1.05
1.10

9
12

7
5

15
5
6

20.22
0.03
0.03

20.06
20.28

0.00
20.02

20.04
0.48
0.48
0.17
0.17
0.20

20.06

ture. This plot shows systematic U10 variance versus
latitude for the specified [s o, HS] pair. To first order,
this latitudinal dependence indicates some regional
change in the long wave climate. Toward the poles there
is typically a larger ratio between swell and wind waves
within the total sea state. Wind speed is systematically
0.6 m s21 lower than at midlatitudes. Regardless of the
source, a multivalued behavior manifests itself in em-
pirical model training as a fundamental error source that
the network cannot resolve without additional infor-
mation. This is true for both f 1 and f 2 mappings. The
latitudinal dependence evident in Fig. 9 also suggests
that the improved two-parameter altimeter wind models
will still exhibit residuals in regional or seasonal eval-
uations. Further work on these points is warranted but
deemed beyond the scope of the present effort.

5. Wind speed model intercomparison

This section uses the total TOPEX/NSCAT data to
compare model-derived results with previously pub-
lished altimeter wind speed routines. A following sec-
tion documents additional independent validation. A key
study objective is to provide wind estimates with im-
proved overall statistical performance when applied to
global open-ocean observations. Past efforts have em-
phasized that the measure for algorithm accuracy should
not solely be the global wind speed error (cf. Glazman
and Greysukh 1993). The large amount of data in our
training and validation datasets permits detailed wind
error evaluation. This includes the ability to assess error
at light, moderate and high wind speeds, as well as the
identification of residual correlation with the reference
wind speed and/or HS. Evaluation criteria values both
bias and rms minimization. Due to operational and cli-
mate study considerations, a continuous function is also
desired. Moreover, estimates should produce a faithful
global wind speed histogram.

There are many published altimeter wind speed mod-
els that use only the Ku-band s o. A review is found in
Chelton et al. (2001). Here, the choice of single-param-
eter algorithms for intercomparison is limited to Brown
et al. (1981), Witter and Chelton (1991), and Freilich
and Challenor (1994). These are noted as B81, MCW,
and FC, respectively, in the text to follow. The conten-
tion is that these models encompass most other varia-
tions—B81 represents a buoy-tuned discontinuous
(three branch) function that has often produced the low-
est overall rms, whereas MCW and FC represent
smoother, statistically derived functions that are well-
validated and robust.

Two wind speed models that utilize both the Ku-band
s o and HS are also assessed. Lefèvre et al. (1994) pro-
vides a closed-form parametric solution as a function
of the two altimeter inputs based on comparison between
TOPEX and wind model (ARPEGE, the Meteo-France
atmospheric model) data. Glazman and Greysukh (1993,
GG2 hereafter) developed a classification approach

where wind speed is estimated using one of two dis-
tinctly separate single parameter (s o → U10) models.
This work was based on comparisons between the GEO-
SAT altimeter and buoy-derived wind and wave mea-
surements. For operational inversion, the classification
relies on altimeter HS and s o estimates. The two GG2
wind models are rooted in the concept of pseudowave
age, z[. f (H S /U 2 )], where the first model is for
‘‘young’’ or fetch-limited wind wave conditions and the
second covers all other situations (i.e., covering fully
developed seas and the ubiquitous mixed seas). As noted
in GG2, the classification is inherently discontinuous
and leads to bimodality in the output U10 distribution.

Table 4 presents wind speed differences between the
altimeter and scatterometer for the commonly cited case
where statistics are computed over all wind values.
Computations for each altimeter algorithm are included.
The reference (NSCAT) U10 range used here is 1–17 m
s21. The limits encompass the range of conditions over
which most of the models were developed. Note that,
where applicable, TOPEX s o values are adjusted down
by 0.63 dB before use in GEOSAT-era routines (see
Callahan et al. 1994).

The wind speed difference Uerr is defined as
altimeter referenceU 5 U 2 U ,err 10 10 (8)

where the reference is NSCAT in this case and the neu-
tral stability wind speed is given in meters per second.
Wind error standard deviation is simply

2 2 1/2 2 2 1/2std 5 (^U & 2 ^U & ) 5 (rms 2 bias ) . (9)err err

This factor provides bias-independent rms assessment
and is of some value in the following discussion where
small differences become significant.

A first observation regarding Table 4 is the rms error
level of 1.0–1.4. This is low compared to past published
values of 1.6 to 2.0 associated with buoy or model wind
speed comparisons. This decrease is most likely attri-
buted to the tight constraint on spatial collocation dis-
tance (,15 km) and similar spatial footprints. Such rms
levels agree with altimeter and buoy comparisons where
the spatial separation is limited to 15 or 20 km (e.g.,
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TABLE 5. Results follow the same format as table 4, but estimates
are now localized to three separate wind speeds (4, 8, and 12 m s21)
as indicated.

Altimeter
model Bias Std Rms

% error
.2 m s21

HS error
trend

3–5 m s21 15 894 samples
B81
MCW
FC
GG2
Lefèvre
f1

f2

1.20
0.62

20.04
0.43
1.52
0.09
0.15

1.02
1.28
1.24
0.92
1.08
1.07
0.99

1.57
1.43
1.24
1.01
1.87
1.07
1.00

16
3
9
6

26
7
6

0.72
0.91
0.89
0.61
1.05
0.50
0.17

7–9 m s21 22 602 samples
B81
MCW
FC
GG2
Lefèvre
f1

f2

0.30
0.59

20.03
20.15
20.12

0.04
20.02

0.81
1.14
1.14
1.14
1.07
1.00
1.01

0.86
1.28
1.14
1.15
1.08
1.00
1.01

3
12

7
7
6
5
5

0.50
0.78
0.78
0.26
0.99
0.26

20.05
11–13 m s21 8311 samples
B81
MCW
FC
GG2
Lefèvre
f1

f2

20.84
0.85
0.28
0.01

20.88
0.06

20.07

0.91
1.19
1.23
1.12
1.20
1.15
1.36

1.24
1.46
1.26
1.12
1.49
1.16
1.36

6
14

7
5

15
5

10

0.38
0.53
0.56
0.44
0.93
0.28

20.26

Hwang et al. 1998). The largest temporal separation here
is one hour. Total sample population is more than
96 000, thus parameter noise levels are negligible.

The overall bias for any altimeter routine is well be-
low 1 m s21 with only MCW output showing a value
above 0.5. Slopes computed for the linear trend of Uerr

versus wind speed are provided as some indication of
bias variability with wind speed. It is clear that B81 and
Lefevre model bias trends are much higher than for the
other routines. The most commonly reported assessment
parameter, global rms, shows values spanning from 1.05
to 1.47. The Lefevre algorithm exhibits the highest error.
The single parameter models (B81, MCW, and FC) ex-
hibit similar rms and std estimates (1.2) while the 3
two-parameter algorithms (GG2, f 1, f 2) are below 1.10.

Table 4 also provides a column representing the wind
error slope versus HS for consistency with Freilich and
Challenor (1994). But this parameter is of questionable
meaning when taken over all wind speeds and a much
clearer picture emerges when viewing that error trend
for specific U10 levels as shown in Table 5. This table
summarizes local error estimates near 4, 8, and 12 m
s21 that provide measures at the most populated mod-
erate wind region, and for low and high wind levels
where there is still a substantial data population. Con-
tinuous detail versus the reference U10 is provided in
Fig. 10. The panels show wind error bias, standard de-
viation, and rms along with the linear regression cor-
relation coefficient (R) for wind error versus HS.

Residual statistics versus wind speed are not typically
cited in altimeter wind studies, often due to the limited

data samples and hence high uncertainty. But this in-
formation helps to ascertain small but measurable al-
gorithm differences. Referring to Table 5 and Fig. 10,
it becomes evident that overall B81 statistics of Table
4 can be misleading. The figure shows that B81 has the
lowest rms error in the range of 7–9 m s21. But highest
rms levels then occur for B81 at low and high winds
in step with the bias magnitude. B81 also presents lower
wind error standard deviation than the other single pa-
rameter algorithms, again related to wind-dependent
bias. B81 bias variation relates directly to the 20.22 m
s21 error trend of Table 4 and seems consistent with
Freilich and Challenor (1994) who noted that the chosen
three-branch form of the Brown model leads directly to
these characteristics. All indications are that B81 is a
weaker choice for wind inversion than, for example,
MCW or FC.

The MCW statistics exhibit constancy (bias, std, HS

-related residual) versus U10, but a constant positive bias
of about 0.5 to 0.6 m s21 produces a systematically
elevated rms. This bias agrees with other studies (e.g.,
Glazman and Greyzukh 1993; Freilich and Challenor
1994). The FC model presents a lower bias as well as
stable rms and bias variation over all winds. In fact, we
conclude that FC is nearly equivalent to MCW aside
from this 0.5 m s21 constant. For example, HS corre-
lation for MCW and FC in Fig. 10 is almost identical.

Perhaps the most notable observation regarding single
parameter models is the measurable correlation between
wind error and the altimeter-derived HS for any wind
speed. The error slope (and linear regression correlation
coefficient) is strongest in the range 4–9 m s21 with
values of 0.8–0.9. Correlation decreases slightly for the
lowest and highest U10 and reaches a minimum at high-
est winds.

Tables 4 and 5 and Fig. 10 show that the two input
algorithms provide low bias levels and consistently low-
er standard deviations aside from Lefèvre et al. (1994).
Considering all factors, it is evident that the Lefevre
model performs poorly and this algorithm will not be
discussed further.

Data indicate that the GG2 model leads to wind error
statistics that often match the low levels obtained with
the neural network solutions. But the bias is somewhat
erratic versus U10. One feature of this model is the abrupt
lowering of the HS error trend for moderate wind speeds
of 7–9 m s21 seen in Fig. 10. Aside from this region,
the HS impact (error trend or correlation) is nearly iden-
tical to the single parameter algorithms. This localized
use of the HS input is a feature of the two-class scheme
used in that algorithm combined with the large range
of possible [s o, HS] combinations within this moderate
wind range. Basically, the GG2 leads to a bimodal wind
histogram (not shown) due to its discontinuous nature,
much as for B81.

As alluded to earlier, the HS error trend for a given
U10 will, by design, be significantly reduced in the neural
models relative to routines such as MCW or FC. Table
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FIG. 10. Altimeter wind speed error statistics for the cited algorithms as a function of NSCAT U10: (a)
bias, (c) standard deviation, (b) SWH correlation with wind error, and (d) rms. Calculations are made over
2 m s21 bins.

5 and Fig. 10 clearly indicate that the f 2 routine strongly
attenuates the HS residual (to less than 0.1 m s21 m21

while MCW and FC were generally higher than 0.6 m
s21 m21). The f 1 model provides a reduction but not
removal of this correlation. Recall that these two al-
gorithms carry different weighting of HS due to their
alternate training. Both neural solutions provide a very
small and stable bias across the complete wind speed
range. The rms for the two solutions is nearly identical
up to 10 m s21 and at that point the f 2 begins to increase
substantially with increasing wind speed. This increase
is partially related to the aforementioned multivalued-
ness that the neural network encounters when attempting
to optimize the [U10, HS] → s o mapping over both mod-
erate and high wind speeds. The forward network mod-
el, f 2, upon inversion to wind speed, can actually lead
to a negative correlation with HS at high winds as seen
in Table 5. Thus while f 2 best removes the HS depen-
dence and may represent a better physically based model
for Ku-band s o as a function of HS (surrogate for wave

climate), the model is not optimal for point-to-point U10

inversion. This observation is strong evidence in support
of the idea that HS does not directly describe true long
wave conditions that cloud the mapping between U10

and s o.
Considering all algorithms and observations includ-

ing their bias, functional continuity and rms error min-
imization, it appears that f 1 provides the best overall
altimeter wind speed model. The improvement (relative
to the operational MCW model) is on the order of 10%–
15% in terms of the global or local reduction in the
wind error standard deviation or rms. In an absolute
sense, the new routine appears to lower the rms error
by 0.1–0.2 m s21. Improvements are negligible for the
high winds above 12–14 m s21. The bias is minimized
to less than 0.1 m s21 over all wind speeds. These ob-
servations are derived for the NSCAT scatterometer ref-
erence winds. Recall that though these data were also
used to develop the model, the training method used
only 5% of the total dataset. This insures a high level
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TABLE 6. Altimeter Uerr statistics as for Table 4, but where the reference U10 now changes with each row as indicated. The three TOPEX/
ECMWF subsets come respectively from the TOPEX/NSCAT, TOPEX/QSCAT, and TOPEX/ERS compilations as discussed in section 2.
Separation times for altimeter comparisons with scatterometer and buoy observations is 630 min in all cases. Computations are made over
the reference wind range of 1 to 17 m s21. The slope of the error trend with HS (see Table 4) is given as aHs

.

Dataset
Time
period

Extent
(month)

No. of
samples

FC

Bias Std aHS

f1

Bias Std aHS

TOPEX/NSCAT
TOPEX/QSCAT
ERS/NSCAT
TOPEX/ERS

1996–97
1999–00
1996–97
1995–97

9
12

9
24

48 331
88 324

129 701
55 765

0.02
20.48
20.70
20.07

1.16
1.18
1.02
1.08

0.49
0.44
0.47
0.27

0.05
20.53
20.56
20.08

0.99
0.97
0.87
1.01

0.20
0.15
0.16

20.03
TOPEX/ECMWF1
TOPEX/ECMWF2
TOPEX/ECMWF3
TOPEX/BUOY

1996–97
1999–00
1995–97
1992–98

9
12
24
75

231 102
312 102
208 518

4380

20.24
0.03

20.06
20.32

1.84
1.46
1.64
1.45

0.38
0.37
0.25
0.56

20.20
0.03

20.05
20.132

1.77
1.43
1.56
1.33

0.14
0.08
0.01
0.26

TABLE 7. Results follow the same format as table 6, but estimates
are now localized to three separate wind speeds (4, 8, and 12 m s21)
as indicated.

Dataset

FC

Bias Std aHS

f1

Bias Std aHS

3–5 m s21

TOPEX/NSCAT
TOPEX/QSCAT
ERS/NSCAT
TOPEX/ERS
TOPEX/ECMWF1
TOPEX/ECMWF2
TOPEX/ECMWF3
TOPEX/BUOY

20.03
20.65
20.92

0.08
20.01
20.01

0.05
20.34

1.23
1.07
0.86
1.12
1.85
1.46
1.63
1.49

0.92
0.70
0.53
0.79
0.93
0.66
0.81
0.80

0.10
20.50
20.72

0.21
0.13
0.18
0.19

20.03

1.05
0.89
0.76
0.94
1.83
1.40
1.57
1.43

0.52
0.39
0.29
0.38
0.59
0.28
0.44
0.51

7–9 m s21

TOPEX/NSCAT
TOPEX/QSCAT
ERS/NSCAT
TOPEX/ERS
TOPEX/ECMWF1
TOPEX/ECMWF2
TOPEX/ECMWF3
TOPEX/BUOY

20.07
20.47
20.77
20.11
20.34
20.04
20.04
20.46

1.09
1.10
0.89
0.91
1.72
1.38
1.52
1.35

0.78
0.72
0.67
0.54
0.94
0.66
0.76
0.86

0.03
20.38
20.53
20.09
20.27

0.02
20.01
20.18

0.95
0.96
0.79
0.84
1.68
1.34
1.47
1.19

0.27
0.17
0.11

20.03
0.47
0.14
0.25
0.34

11–13 m s21

TOPEX/NSCAT
TOPEX/QSCAT
ERS/NSCAT
TOPEX/ERS
TOPEX/ERS2
TOPEX/ECMWF1
TOPEX/ECMWF2
TOPEX/ECMWF3
TOPEX/BUOY

0.31
20.49
20.29
20.20
20.14
20.39

0.13
20.21
20.08

1.14
1.14
1.10
0.97
0.76
1.78
1.53
1.52
1.59

0.57
0.54
0.48
0.44
0.39
0.68
0.59
0.51
0.88

0.10
20.70
20.40
20.43
20.38
20.58
20.14
20.47
20.05

1.05
1.04
1.01
0.90
0.68
1.69
1.50
1.50
1.41

0.30
0.20
0.18
0.12
0.05
0.45
0.29
0.20
0.63

of independence and confidence for these conclusions
within the assumption that NSCAT winds represent a
valid U10N reference. Attention is now given to addi-
tional algorithm validation using the numerous inde-
pendent data products discussed earlier.

6. Further model validation

Model intercomparisons presented above suggest that
the two-input altimeter algorithm, f 1, provides the best
performance. The model is now evaluated against the

seven additional collocation datasets detailed earlier.
These sets include independent altimeter (ERS-2) mea-
surements as well as reference wind speed estimates
from C- and Ku-band scatterometers, the ECMWF mod-
el, and a large open-ocean buoy compilation. The varied
reference winds encompass most sources used in past
altimeter studies and they each present differing spatial
sampling, TOPEX time period, and scattering or model
physics. The main goal here is to determine if the al-
gorithm provides consistently improved results across
these varied sources. Expanded detail in support of the
following findings can be found in Gourrion et al.
(2000).

Initial altimeter algorithm assessment against these
data indicates that relative differences amongst the al-
gorithms discussed in the previous section (e.g., f 1 per-
formance vs f 2) remain consistent with the TOPEX/
NSCAT findings. Therefore presentation is condensed
to compare and contrast the preferred single and two-
parameter routines: FC and f 1. As mentioned earlier,
FC is essentially the operational MCW routine without
a 0.5 m s21 overall bias.

Altimeter wind error statistics are presented in Tables
6 and 7. Sample population and time period covered are
listed in Table 6. Note that the buoy dataset covers the
longest time period, yet contains the fewest points.

Look first to U10 bias values. It is evident that both
the FC and f 1 models provide biases that fall below 0.5
m s21 for all TOPEX cases. Given that the combined
periods span from 1992 to 2000, this is, first of all, an
indication of long-term stability for the satellite’s s o

calibration. For reference, a s o change of 0.1 dB cor-
responds to roughly 0.3 m s21 in wind speed for the
altimeter. The ERS-2 altimeter (ERS/NSCAT in the ta-
bles) exhibits a consistent 0.5 to 0.9 m s21 bias below
TOPEX for both the FC and f 1 models. This translates
to a small 10.2 to 0.3 dB s o bias range between the
ERS-2 altimeter and TOPEX. Returning to the TOPEX
table entries, the bias differences between FC and f 1,
for any given dataset in Tables 6 and 7, are very small;
in almost all cases less than 0.1 m s21. Agreement be-
tween the present operational algorithm and the pro-
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posed f 1 implies that a switch to use of the latter model
should be seamless.

One possible outlier with respect to the altimeter wind
speed bias (for both FC and f 1) comes in the QSCAT
comparison. Here the TOPEX bias is consistently below
other sets by about 0.5 m s21. Recall that QSCAT is a
Ku-band scatterometer but differs from NSCAT in sev-
eral aspects, the most important being the scatterometer
model function. We noted in section 2 that the NSCAT-
1 model function was purported to be 0.3 m s21 too low
and that the QSCAT-1 model is without this bias. Rais-
ing the NSCAT-1 model by 0.3 m s21 would bring TO-
PEX closer to QSCAT but also, consequently, bias TO-
PEX above most other table entries. The weight of the
other data presented here, including possible time-de-
pendent sensor and model bias variations, is not ade-
quate to accept or dismiss bias adjustments at this small
level. Averaging the bias values over all TOPEX entries
of Table 7, one concludes that the absolute wind speed
bias level is below 0.3 m s21 for both f 1 and FC al-
gorithms.

Reduction in the error variation versus HS is the prime
indicator of a difference between the FC and f 1 algo-
rithms. The reduction is evident for all a entries inHs

Table 7. This is consistent with the results of the pre-
vious section and with the goal of attenuating long-wave
impact on the altimeter wind speed. Some disparity be-
tween particular reference sets is evident, but the re-
duction is not. The values of FC a range from 0.6 toHs

0.9 and the f 1 model lowers these levels on average by
factors of 1.8, 3.5, and 2.4 at 4, 8, and 12 m s21, re-
spectively. Thus, regardless of possible sampling or
product disparities, the sea state–related impact is al-
ways measurably decreased in a global average sense.
Similar results hold for those wind levels not shown,
consistent with Fig. 10.

Finally, the rms wind error is assessed using the stan-
dard deviation to directly compare (without bias) FC
and f 1 results. Reference winds lead to some clear dif-
ferences here for the TOPEX data sets. Scatterometer-
based comparisons using NSCAT, QSCAT, and ERS, all
provide the lowest std levels, generally between 0.9 and
1.2 m s21. As before, f 1 output reduces the std by 10%
to 15% overall and at the noted wind speeds. The TO-
PEX–ECMWF comparisons show std levels of 1.5–1.8,
an increase of 30%–45% over results obtained using the
scatterometers. This rise is consistent with the expected
increase in intercomparison noise due to ECMWF’s in-
herently larger time and space averaging as predicted
by Freilich and Dunbar (1993). Moreover, the std re-
duction obtained using f 1 is not so dramatic, only 3%–
5%. So while the HS dependence (a) is clearly atten-
uated in the ECMWF comparisons using the f 1 algo-
rithm, the elevated intercomparison noise tends to mask
the precision gained. Note that the ERS/NSCAT com-
parison usually indicates the lowest std levels, and these
values are also comparable to those of the TOPEX/ERS
computations. The common factor between these two

datasets, not found in the others, is the use of a 50-km
scatterometer wind vector cell. The lower std levels for
these table entries may be associated with a possible
reduction in the scatterometer’s inherent wind estimate
noise. Regardless, the nominal 10%–15% reduction in
std is still found when using f 1 in lieu of the FC al-
gorithm.

a. Buoy comparison

Comparison between TOPEX-derived wind speed
and buoy measurements represents our only in situ val-
idation. For this reason, greater detail is presented here.
Further information on this particular data set can be
found in Gommenginger et al. (2002). Findings to fol-
low were also affirmed by comparing GEOSAT altim-
eter data to NDBC buoy observations in Gourrion et al.
(2000). Comparison statistics are listed in Tables 6 and
7. The results are generally consistent with the findings
above. Note however that std values are now of the
order of 1.4 m s21 instead of the 1.0 m s21 levels found
for the altimeter/scatterometer validation datasets. This
may be attributed to differences in measurement tech-
niques, sampling methods and/or in the time–space col-
loction criteria. The std and residual HS trend (a ) dis-Hs

play a reduction between the one- and two-parameter
algorithms, which is consistent with previous validation
results. In this case, the improvement in the overall std
with the additional parameterization on HS is of the order
of 10%.

Figure 11 presents statistics versus buoy wind speed
over the range of 1–17 m s21 calculated in 2 m s21-
wide wind bins incremented by 0.5 m s21. Display for-
mat follows Fig. 10 and results are shown for four al-
timeter model functions as indicated. Comparison of
Figs. 11 and 10 suggests the altimeter wind error is
nearly invariant between these two reference wind prod-
ucts for wind speeds above 4–5 m s21. As before, one
sees the FC and MCW models track each other aside
from a ;0.5 m s21 bias. GG2 compares well with the
f 1 results in all aspects. These two input models once
again outperform the single parameter mapping. In Fig.
11 and Tables 6 and 7 the f 1 model returns the smallest
and most stable wind error bias over the full wind speed
range, with retrieved winds only slightly underestimated
(by 0.2 m s21) at intermediate wind speeds. The std for
GG2 is lowest of all models at low wind speed, although
the neural network-derived model is alone in achieving
a near-zero bias. Here again we observe that the two-
parameter models reduce, but do not eliminate, the re-
sidual dependence on HS.

Beside the statistical tests presented above, the ability
of altimeter wind speed algorithms to reproduce the his-
togram of the original validation dataset is a good as-
sessment of the models’ overall performance. Accurate
recovery of the wind histogram is particularly important
for climatology studies. Hence, the performance of the
two-parameter f 1 model is compared to the MCW mod-
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FIG. 11. Altimeter wind error statistics using buoy measurements as the reference wind. Computations
and data display follow those for Fig. 10.

FIG. 12. Frequency distributions of wind speed retrieved with (a)
MCW and (b) f 1 along with the buoy-derived result. Bin size is 1.5
m s21.

el, as this is the model currently used for operational
wind speed retrieval on TOPEX and ERS altimeters.

The retrieved wind speed histograms are compared
to the buoy result in Fig. 12. Visual improvement is
evident for f 1 with respect to MCW. The goodness of
fit is estimated via the computed correlation between

the buoy and model wind speed histograms. One finds
a correlation of 0.989 for MCW and 0.994 for f 1. The
improved fit is most noticeable at intermediate to high
wind speeds (U10 . 8 m s21). Consequently, the two-
parameter f 1 model is expected to return more accurate
global wind fields than the current operational MCW
algorithm.

b. Residual sea-state effects

The availability of in situ wave period measurements
within the collocated TOPEX/buoy dataset permits fur-
ther investigation of the effect of sea state on altimeter
retrieved wind speed. From this dataset a dependence
of altimeter wind speed on wave age has been reported
(Gommenginger et al. 2002) and MCW winds shown
to systematically underestimate winds in underdevel-
oped sea conditions (wave age , 1.5). Here we assess
if wave age dependence is ameliorated by the param-
eterization with HS in the f 1 model. Figure 13 represents
the retrieved wind error Uerr calculated for MCW and
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FIG. 13. Residual dependence on buoy-derived wave age (z) ob-
served in the retrieved wind error calculated with (a) MCW and with
(b) f 1.

f 1 against the buoy-derived wave age calculated from
the peak wave period, Tp, as z 5 gTp(2pU10)21. A de-
pendence of the wind error on wave age is clearly ob-
served for young seas (z , 1) for both altimeter wind
speed algorithms. No residual dependence on wave age
is observed for either model for wave age greater than
1.5.

The residual wave age dependence for young seas is
quantified with the linear regression coefficient of Uerr

against z calculated for z , 1.0. We find that the pa-
rameterization with HS used in the f 1 model yields a
marginal reduction in the wave age trend, from 4.0 for
MCW to 3.5 m s21 per unit of wave age for f 1. However,
the dependence of altimeter wind speeds on wave age
in underdeveloped sea conditions certainly remains.
Thus the addition of HS into the algorithm falls far short
of correcting the known underestimation associated with

young seas. It is again notable that only 7% of the total
TOPEX/buoy samples over this period of 1992–98 have
z , 1.0. This fraction is consistent with the global ob-
servations (see Fig. 1) discussed earlier.

7. Summary

This study defines and validates a two-input altimeter
wind speed algorithm applicable for operational use,
where a Ku-band altimeter’s coincident s o and HS es-
timates are utilized in the point-to-point inversion. An
analytical formulation (termed f 1) is prescribed with
nine coefficients as detailed in section 4. Motivation
comes from the new capability to assemble large, glob-
ally distributed and high fidelity model training sets
composed of coincident satellite altimeter and scatter-
ometer crossovers. The dataset chosen for model train-
ing and subsequent validation is a 96 000 sample com-
pilation of TOPEX and NSCAT crossings. Limiting
NSCAT usage to only higher incidence angle retrievals
strengthens our assumption that the scatterometer wind
product is itself free of sea-state impacts. Subsequent
validations using buoy and ECMWF winds provide fur-
ther support.

The empirical development is focused to define an
improved and robust wind inversion that incorporates
HS into the solution. This routine should be applicable
for all Ku-band altimeters such as those aboard the ERS,
ENVISAT, GFO, and Jason-1 platforms. f 1 intercom-
parison to past altimeter models and numerous inde-
pendent validations demonstrates modest, but measur-
able, success in improving upon the current operational
MCW model. These independent data sources include
an extensive buoy compilation, the ERS scatterometer,
the SeaWinds scatterometer, and the ECMWF model.
The f 1 inversion ([s o, HS] → [U10N]) delivers an overall
rms improvement of 10–15%, 0.1 to 0.2 m s21 in ab-
solute terms. The domain for model application covers
all values of HS and wind speeds ranging from 1 to 20
m s21. Error statistics were evaluated over the range of
1–17 m s21. Wind speed bias is below 0.3 m s21 through-
out this range. Improvement in rms error is significant
up to winds of about 12 m s21 and equivalent to MCW
above this point. The weighting of HS within the model
becomes negligible at these high wind levels. While
wind speeds above 20 m s21 are infrequent, a slight
modification of f 1 that aligns the altimeter inversion
with that predicted by the QSCAT-1 model function is
proposed in appendix B. Statistically, the GG2 algo-
rithm provides similar improvement, but we recall that
this classification scheme leads to point-to-point esti-
mate discontinuities and a bi-modal wind speed distri-
bution. TOPEX wind speed histograms, derived using
f 1, provide marked improvement over the MCW result
in comparison to either buoy, model or scatterometer
results. This affirms the continuous nature of the net-
work solution and its applicability for operational use.
The TOPEX-generated model is also shown to work
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well when applied to ERS-2 altimeter data. The model
is adjusted for differing altimeters using a constant s o

bias and is also relatively insensitive to HS estimate
errors.

Physically, one expects that HS is a limited proxy for
actual gravity wave slope variations that affect the nom-
inal relation between the observed radar cross section
and wind speed. Observations and model functions de-
pict measurable correlations amongst the three variables
[s o, HS, UNSCAT] but they also exhibit a multivaluedness
that inhibits further wind estimate improvement in the
absence of additional surface roughness information.
This ambiguity leads to an increased altimeter wind
speed noise if one attempts to use the forward ( f 2)
model for U10 inversion. This effect occurs even though
f 2 is the most effective at removing residual error as-
sociated with HS. Another repercussion is the inability
of the f 1 model to correct altimeter wind underesti-
mation during fetch-limited events. These events are
rare within the global data set and the neural network
minimization solution gives little weight (by design) to
this mapping within the domain of possible outcomes.

These points emphasize that present empirical and
global-mean model functions do not fully capture the
scattering physics. Their application to specific case
study will not dramatically improve upon results derived
using the MCW model. It is clear, however, that the f 1

algorithm is a measurable improvement that can directly
replace the single parameter routine. As importantly, the
documented correlation between s o and HS at any cho-
sen wind speed needs to be considered within the em-
pirical modeling of the altimeter sea state bias correction
(cf. Chapron et al. 2001). Future work combining the
altimeter’s unique coincident measure of HS with mul-
tifrequency s o (e.g., at S-, C-, Ka- and/or Ku-band)
signatures is certain to bring further refinement to these
geophysical inversions on both global and local scales.
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APPENDIX A

Neural Network Methodology

A multilayer perceptron (MLP) is a well documented
neural architecture that, when combined with backpro-
pagation of errors, provides a powerful and compact
solution to many intractable problems (e.g., Hagan et
al. 1996; Sterling and Pollack 1996). Advantages of the
backpropagation MLP include a small solution network
and quick (forward) computational speed that permits
training over a large input vector set. The main disad-
vantage is the many variables which must be considered
when constructing a MLP. This includes the number of

hidden layers, the type of transfer function(s), the initial
conditions, and the types of backpropagation MLPs
available. One must also consider the training time
which is a direct function of training set size and MLP
chosen for the task.

For this study, it was empirically determined that ad-
equate characterization is found using a three layer MLP
consisting of an input layer, a single hidden layer, and
an output layer. Two nodes represent the two inputs [U10,
HS] for f 1 or [s o, and HS] for f 2. The hidden layer has
two nodes and the output layer has one, U10 or s o. A
log-sigmoid transfer function, f net , of the form

2(WA1B) 21f 5 [1 1 exp ]net (A1)

is used between both the hidden and output layers where
A is the input vector and W and B are the network
weights and biases. A requisite rescaling of all input
and output variables normalizes the data to run between
0.1 and 0.9 due to the asymptotic limits of this function.

The MLP network developed here is not trained in
the traditional manner of dividing the set in two and
using one set for training and the other set for inde-
pendent testing. This is due to the sparse distribution of
data at the extremes in the data grid and how these points
are underrepresented during neural training. Since a
function’s sensitivities (partial derivatives with respect
to all network weights and biases) are added during
training (Hagen et al. 1996), large differences in data
distribution across the training domain can potentially
lead to solutions that are biased towards higher density
regions. It is clear from the wind speed distributions
shown in section 2 that there are many more training
samples near 7 m s21 than, for example, near 2 or 18
m s21. In turn, it was empirically determined that the
nonunique nature (see below) of the proposed mapping
between these three chosen parameters leads to a so-
lution that favors minimization near the densest data
population at the expense of low and high wind regimes.
To compensate for these effects, we equalize the dis-
tribution of points placed into any given training set,
effectively compressing the training set size at the same
time. The size reduction enables a large portion of data
to be held aside for validation and permits use of the
following backpropagation method to speed solution.

Training set equalization involves partitioning the
data into 21 equally spaced wind speed bins spanning
from 0 to 20 m s21. Only 200 randomly-selected sample
data pairs from each bin are allowed into any given
training vector set. Any bin with fewer than 200 samples
has all its points included. All data samples for wind
speeds above 20 m s21 are also included in any given
training set. This equalization procedure focuses solely
on the wind speed rather than, for example, a three-
dimensional equalization across the triplet [s o, HS, U10]
dataset. This more rigorous partitioning was performed
and no measureable difference was found. In fact, slight
degradation in model performance generally resulted.
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FIG. B1. TOPEX altimeter s o measurements versus scatterometer
wind speed for winds above 18 m s21. (a) NSCAT and (b) QSCAT
observations are presented. Satellite measurements were coincident
to within 15 km and 30 min.

An inherent multivaluedness, to be discussed later, is
responsible for much of this behavior.

Final network coefficients were determined using the
following procedure. A loop is initialized that converges
to an optimized solution by creating network coeffi-
cients for each of many random draws of equalized
training subsets (5% of the total set), each subset ex-
tracted as described above. An enhanced error back-
propagation technique, called the Levenberg–Marquardt
algorithm, is used to increase training speed. For each
training set this Levenberg–Marquardt algorithm is run
towards a convergence limit easily obtained after 10
epochs. At this point training is halted and a ‘‘goodness-
of-fit’’ (Kohler 1988) test computed using the x2 test
statistic, K, of the form

n

2K 5 (y 2 x ) /x , (A2)O i i I
i51

where y is the model output data distribution, x is the
known output distribution, and i represents a distribution
bin.

The Levenberg–Marquardt algorithm alone does a
good job minimizing the msse (mean sum squared er-
ror). For almost any randomly drawn data set the msse
will converge to nearly the same minimum value. How-
ever, what we desire here is a mapping that both min-
imizes the global error variance as well the error bias
and skewness across the entire output variable domain.
This additional step of computing a x2 test statistic be-
tween the known and neural-calculated distributions
serves as an additional optimization criterion to the Lev-
enberg–Marquardt training. The combined x2 goodness-
of-fit and msse optimizations lead to computed and
known data distributions that are equalized and a so-
lution where bias and variance variation are minimized.
Note that this training method provides a solution that
is ultimately derived from a small subset of the total
data; that is, any given model solution is only derived
from one equalized training subset containing roughly
4500 data points.

APPENDIX B

Correction to f 1 for High Wind Speeds

Young (1993) addressed the special case of altimeter
wind inversion at high winds by examining those rare
events when the GEOSAT altimeter swath crossed over
strong cyclones. Ground truth was inferred using mod-
eled cyclone winds for six such storms within the period
of 1987–89. The resulting formulation, applicable above
20 m s21, relates GEOSAT Ku-band backscatter to wind
speed under a simple linear model:

oU 5 26.4s 1 72.10 (B1)

This model was developed to extend an altimeter’s
wind inversion domain of validity beyond limits ob-
tainable under past studies such as Witter and Chelton

(1991). Typical upper limits for acquiring reliable ref-
erence winds in these efforts has been 15–20 m s21.
Scatterometer data sets within the present study offer
the opportunity to corroborate the Young findings. In
particular, the winds derived from SeaWinds using the
QSCAT-1 model function are purported to be a validated
improvement (e.g., Donnelly et al. 1999) over past scat-
terometer inversions at these high wind speed levels.
Assuming this is the case, high wind data from both the
TOPEX/NSCAT and TOPEX/QSCAT compilations are
presented in Fig. B1. In total, the 30-min filtered ob-
servations yield 247 points for the former and 4800
samples for the latter for events where winds exceed 18
m s21. These amounts represent less than 0.3% and 1.5%
of the respective global data sets. The discrepancy be-
tween the number of high wind samples for NSCAT and
QSCAT sets is unresolved at this point pending further
validation of the scatterometer models at high winds.
Note that these data are for clear sky conditions as in-
dicated by the TOPEX radiometer and scatterometer
data flags.

Substantial scatter is evident in the TOPEX s o ob-
servations versus U10, but a linear decay with increasing
wind is apparent. Young (1993) and f 1 models are also
shown. Note that three f 1 curves are given, spanning
HS of 3–9 m, and that this changes little in the model
output at these winds.

The neural network training used to develop f 1 was
presented with the NSCAT data of Fig. B1 but model
constraint was weighted strongly towards wind speeds
less than 20 m s21. Thus, it is not unexpected to see
divergence between f 1 and these observations. What is
remarkable is the agreement between data (for both
NSCAT and QSCAT references) and the model of
Young (1993). Computation of a linear least squares fit
through the TOPEX/NSCAT and TOPEX/QSCAT data
sets for these high wind values agrees well with Eq.
(B1). Standard GEOSAT-to-TOPEX comparison pro-
cedure dictates adjusting s o levels by 0.63 dB when
applying a GEOSAT-era model like Young’s to TOPEX
data. But these results do not include that bias. This s o

discrepancy falls within the cyclone wind model’s es-
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timated margin of error (Young 1993) and agreement
here suggests that no adjustment be made for TOPEX
application.

Conclusions are then that for high wind speeds above
18 m s21, the f 1 model will give increasingly negative
wind speed biases; spanning from below 0.5 to as much
as 5 m s21 for mean values from 18 to 30 m s21, re-
spectively. The model of Young (1993) can be directly
applied to TOPEX data to remedy this trend when look-
ing at cyclone-level values up to at least 30 m s21.
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