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TRANSFORMATION OF SHORT WAVES IN A NONUNIFORM FLOW FIELD ON
THE OCEAN SURFACE. THE EFFECT OF WIND GROWTH RATE MODULATION

K.A. Gorshkov, I. S. Dolina, I.A. Soustova,
and Yu. I. Troitskaya UDC 551.466.8

We develop a model of transformation of the short surface wave spectrum in the presence of a
nonuniform flow on a water surface, in which the modulation of wind-wave growth rate is taken
into account. The model of a turbulent near-water atmospheric layer is used to calculate the
modulated growth rate. In this model, turbulent stresses in the wind are described using a gra-
dient approximation with model eddy viscosity specified with allowance for the known laboratory
experiments. The examples of short-wave modulation in the presence of nonuniform flows on a
water surface, originating from ripples and intense internal waves, are considered. It is shown
that deformations of the wind-velocity profile and its long-wavelength perturbation due to the
nonlinear interaction between the wind surface waves and the wind has a significant effects on
the short-wave growth rate and its modulation. In the case of ripples, this deformation reduces
to an increase in the roughness parameter of the wind-velocity profile and to a velocity-profile
modulation with ripple period. The modulated growth rate is calculated within the framework of
a quasi-linear model of surface-wave generation by a turbulent wind, in which the hypothesis of
random phases of the wind-wave field is used. The amplitude and phase of the hydrodynamical
modulation transfer function are calculated within the framework of the relaxation model. The
calculation results are in reasonable agreement with the available experimental data. A model
described by the combined Korteweg – deVries equation is used to study a surface flow field gen-
erated by intense internal waves. The internal-wave parameters are takes from the results of the
COPE experiment. We calculate the wind growth-rate dependences on the wave-train phase for
the cases of downwind and upwind propagation of an internal wave. The calculation results agree
qualitatively with experimental data.

1. INTRODUCTION

One of the most prospective methods for remote studying of the ocean is based on measuring varia-
tions in the radar signals scattered by a rough water surface. Variations in the received signal originate from
the variability of wind-roughness parameters, which, in turn, results from transformation of these parameters
in the field of nonuniform large-scale flows on the surface. Such flows are caused by various processes in the
upper layer of the ocean, e.g., internal waves, flows around islands and underwater eminences, etc. Typical
scales of such flows amount to hundreds of meters. Long surface waves, including ripples, can have similar
scales. The variability due to such large-scale flows are observed over the wide wind-roughness spectrum
comprising wavelengths from a few meters to a few centimeters. Modulation of the amplitude of a decime-
ter wave in a field of internal waves and nonuniform flows is well explained within the framework of the
kinematic mechanism [1]. At the same time, the mechanism of centimeter-wave modulation is not clarified
completely, despite the rapt attention to this surface-wave band which determines sea-surface radio images
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formed by the Bragg mechanism. A hypothesis on the “cascade mechanism” of centimeter-wave modula-
tion was put forward in the middle of the eighties [2]. A physical explanation for the cascade mechanism,
proposed recently, treats it as a modulation of the stimulated higher harmonics of decimeter waves [3]. How-
ever, it should be noted that, according to experiments, stimulated decimeter-wave harmonics significantly
contribute to the centimeter wave-roughness spectrum under conditions of a strong wind [3]. In addition,
we should note that if waves with steep crests exist on a water surface, the radio-wave scattering can be
determined by scattering from such crests. In this case, the wavelengths of surface and radio waves are not
related by the resonance Bragg condition [4], and the decimeter surface waves can efficiently scatter the
centimeter radio waves. However, this mechanism becomes efficient only if the wind is sufficiently strong
and the major fraction of wind waves have steep crests.

If a wind is weak, then waves have flat profiles, and the surface roughness is mainly contributed
by free wind-excited waves. In this case, variations in the wind-velocity profile due to a nonuniform flow
on the water surface modulate the short-wave growth rate. Such modulation can notably influence the
variability of the spectrum of centimeter surface waves. The effect of wind growth-rate modulation is now
actively discussed in relation to the problem of determination of the hydrodynamical modulation transfer
function (MTF) of long surface waves and ripples [5–9]. In addition, the influence of this effect on the
centimeter-wave modulation in the field of intense internal waves is discussed at present [10].

In this paper, we present a theoretical model for the mechanism of modulation of the growth rate of
short surface waves in the presence of nonuniform flows and discuss applications of this model to observations
of the surface-wave modulation in the presence of ripple waves or intense internal waves. Basic equations
describing transformation of the spectrum of short surface waves in the presence of nonuniform flows on a
water surface are given in Sec. 2. Basic equations describing a wind turbulent boundary layer above a rough
water surface are given in Sec. 3. The hydrodynamical MTF of ripple waves is found in Sec. 4 in which our
model is also compared with the available experimental data. A model of centimeter-wave modulation in a
field of intense internal waves is described in Sec. 5. Here, the calculations are also compared with data of
the COPE experiment [11].

2. BASIC EQUATIONS DESCRIBING MODULATION OF THE SPECTRUM OF SHORT
SURFACE WAVES IN THEPRESENCEOF NONUNIFORM FLOWS ONAWATER SURFACE

Short-wave modulation in a field of nonuniform flows is described by the kinetic equation for the
short-wave elevation spectrum F (K,x, t). In the simplest case where the directions of wind, waves, and flow
are identical and the modulation is maximum, this equation reads

∂F

∂t
+ [U0(x, t) + Cgr]

∂F

∂x
− ∂Ω
∂x

∂F

∂K
= 2B[F,K,U, x, t] + η̃

∂U0

∂x
F + Int[F,K]. (1)

Here, U0(x, t) is the nonuniform flow field, K and Ω are the wavenumber and frequency of the short wave
in the laboratory frame, Ω = KU0(x, t) + Ω0, Ω0 is the short-wave eigenfrequency, B[F,K,U, x, t] is the
modulated short-wave growth rate equal to the algebraic sum of the wind growth rate, determined by the
wind velocity U , and the viscous decay rate (this term depends on the long-wave field), Int[F,K] is the
“collision integral” describing the nonlinear wave interaction. The second term on the the right-hand side
stands for the radiative stress, while η̃ is the factor introduced in [12–14]. Note that the equation for
the wave-action spectrum Ñ does not comprise the radiative stress. In this case, an expression for η̃ can
readily be obtained from the relationships between the spectra Ñ and F of the wave action and elevation,
respectively, i.e., η̃ is determined by the dispersion characteristics of the waves.

For potential waves in the absence of a drift flow we have

η̃ = Cgr/Cf − 1,

where Cgr = ∂Ω0/∂K and Cf = Ω0/K are the group an phase velocities of the short wave, respectively.
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If a nonuniform flow on a water surface is sufficiently weak and the variations in the short-wave spec-
trum originating from this flow are small, then the collision integral Int[F,K] in Eq. (1) can be approximated
by the relaxation model proposed in [15].

Let the equilibrium spectrum F0 of the elevations of a rough water surface for the wind velocity U
obeys the equation

2B[F0,K,U ]F0 + Int[F0,K] = 0

following from Eq. (1).
Similar to [15], we consider the spatially uniform small perturbation F1 of the elevation spectrum:

F = F0[K] + F1[F0,k, t].

Such a perturbed spectrum relaxes to the equilibrium spectrum. If βr denotes the relaxation rate, then

F1[F0,k, t] = F1 exp(−βrt),

while Eq. (1) in the linear approximation with respect to F1 yields

−βrF1 =
∂F1

∂t
=
(
δ

δF
Int[F ]

∣∣∣∣
F=F0

+ 2B[F0,K,U ] + 2
δB0

δF

∣∣∣∣
F=F0

F0

)
F1,

where δ/δF denotes the variational derivative. Then the variational derivative of the collision integral is

δ

δF
Int[F,K]

∣∣∣∣
F=F0[K]

= −
(

2B0[F0,K,U ] + 2
δB0

δF

∣∣∣∣
F=F0[K]

F0 + βr

)
. (2)

As in [15], the approximation of the collision integral is also used in the case where the spectrum perturbation
is a function of the spatial coordinate. Assume that a perturbation of the short-wave spectrum is caused by
a nonuniform flow on a water surface, then transformation of short waves in the field of this nonuniform flow
and wind growth rate modulation are the mechanisms sustaining this perturbation. In this case, modulation
of the amplitude-dependent wind growth rate of the short waves are determined by two factors: perturbations
of the wind velocity, induced by the nonuniform flow, and modulation of the wind-wave amplitude, i.e.,

B[F,K,U, x, t] = B0[F0,K,U ] +
δB0

δU
U1(x, t) +

δB0

δF
F1(x, t),

where U1(x, t) is the wind-velocity perturbation due to the nonuniform flow. If the nonuniform flow is
sufficiently slow, so that long-wavelength variations in the wind velocity are determined by variations in the
tangential stress T whose unperturbed value is equal to u2∗, then

B1 =
δB0

δu2∗
T1 +

δB0

δF
F1, (3)

where T1 is the long-wavelength perturbation of the tangential stress.
Substituting the formula for B into Eq. (1) and taking into account Eq. (3) for B1 and Eq. (2) for

the variation in the collision integral, we obtain in the linear approximation the following equation for F1:

∂F1

∂t
−K

∂F0

∂K

∂U0

∂x
= −βrF1 + η̃

∂U0

∂x
F0 + 2

δB0

δT

∣∣∣∣
T=u2∗

T1F0.

If the nonuniform flow is a small-amplitude harmonic wave with the elevation

η = a cos(ωt− kx), (4)
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then
U0 = cka exp[i(kx − ωt)], F1 = F10 exp[i(kx − ωt)]

and

F1 =
iωka

βr − iω

(
K
∂F0

∂k
+ η̃F0

)
+ 2

δB0

δu2∗
T1

F0

βr − iω
, (5)

where c is the phase velocity of the wave. In what follows, similar to [15], we put the relaxation rate equal
to 2B0[F ].

The first term in Eq. (5) describes conservative transformation of short waves in a nonuniform flow
field. Estimates show that this mechanism dominates modulation of the decimeter waves in the presence of
internal waves [1, 2] and is very important for the formation of the hydrodynamical MTF of long surface
waves [16]. At the same time, it is important to infer additional factors to explain the centimeter-wave
modulation in the presence of both internal and long surface waves. The second term in Eq. (5) describes
the effect of wind growth rate modulation of surface waves, which is discussed in this paper. Calculation of
this growth rate requires a model of the wind boundary layer above a rough water surface.

3. WIND BOUNDARY LAYER ABOVE A WATER SURFACE WITH A NONUNIFORM FLOW
FIELD

Consider a wind boundary layer above a water surface. To describe average fields, we apply the system
of Reynolds equations [17] based on the simplest closure hypothesis consisting in a gradient approximation
of turbulent stresses:

σij = −2
3
〈u′2i 〉 δij + ν

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
. (6)

Here, 〈ui〉 is the ith component of the average velocity, 〈u′2i 〉 is the average kinetic energy of turbulent
pulsations, ν is the turbulent viscosity coefficient, and δij is the Kronecker delta. Let ν be a given function
of the vertical coordinate z. The following approximation obtained in [18] is a good representation of the
function ν(z):

ν(z) = νa

[
N0 + 0.4z+ (1 − exp[−(z+/L)2])

]
. (7)

Here, z+ = zu∗/νa is the vertical coordinate in the units of the viscous length, u∗ is the wind friction
velocity, and νa is the kinematic viscosity of the air. The parameters L and N0 in Eq. (7) are determined
by the regime of flow over the surface. In the case of hydrodynamically smooth flow over a water surface,
L = 22.4 and N0 = 1. The influence of the water-surface roughness due to the existence of waves on the
surface can be taken into account by solving the problem of momentum transfer from the wind to the waves,
which is done in Sec. 4. Another simplified method was proposed in [19], which yields N0 > 1 for a rough
surface. This method is used in Sec. 5. Note that Eq. (7) describes the effective viscosity in both the viscous
sublayer and in the logarithmic boundary layer.

Let us consider two-dimensional motions for which the system of Reynolds equations can be written
for the vorticity χ and the stream function ψ:

∂χ

∂t
+
∂ψ

∂z

∂χ

∂x
− ∂ψ

∂x

∂χ

∂z
− ∆(νχ) + 2

∂2ν

∂z2

∂2ψ

∂x2
= 0, ∆ψ = χ. (8)

The boundary conditions of impenetrability and adherence,

∂ζ

∂t
+
∂ψ

∂z

∂ζ

∂x
+
∂ψ

∂x

∣∣∣∣
z=ζ(x,t)

= 0,
∂ψ

∂z

∣∣∣∣
z=ζ(x,t)

=
∂ψw

∂z

∣∣∣∣
z=ζ(x,t)

, (9)

where ψw is the stream function of the flow in the water, hold on the water surface z = ζ(x, t).
The considered model of a near-water atmospheric boundary layer takes into account a viscous sub-

layer of an extremely small thickness no larger than 1 mm, which is much less than the typical surface-wave
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height. Hence, to exclude the strong geometrical nonlinearity, one should use curvilinear coordinates such
that one coordinate line coincides with the rough water surface [20]. In the case of orthogonal coordinates
(s, γ) specified by the transformation

x = x(s, γ, t), z = z(s, γ, t),

where z = z(s, γ = 0, t) is the water-surface equation, system (8) takes the form [21]

χt +
χs

I
[ψγ − (xsxt + zszt)] − χγ

I
[ψs + (xγxt + zγzt)] =

=
∆(νχ)
I

− 2
I2
νγγψss − Iγ

I3
[(ψγνγ)γ − νγψss] − Is

I3
(2νγψsγ − ψsνγγ) + ψγνγ

I2
s + I2

γ

I4
, (10a)

∆ψ = χ =
ψss + ψγγ

I
, (10b)

while boundary conditions (9) take the form

ψ|γ=0 = 0, (10c)

∂ψ

∂γ

1√
Ia

=
∂ψw

∂γ

1√
Iw

. (10d)

Hereafter, the subscript denotes the partial derivative over the corresponding coordinate, I = ∂(x, z)/∂(s, γ)
is the Jacobian of the orthogonal coordinate transformation, and the subscripts “a” and “w” refer to the
corresponding quantities in the air and water, respectively.

Within the framework of the proposed model, the modulated wind-wave growth rate can be found in a
fairly simple way if the typical temporal and spatial scales, τ and λ, of the surface waves are small compared
with the corresponding flow scales T0 and L0, i.e., if there exists the small parameter µ = 0(τ/T0, λ/L0) of
the problem. In this case, the problem is solved as follows. At first, the variable flow of the wind, which
is induced in the air by a flow on a water surface, is found within the framework of the model described
by Eqs. (10a), (10b), and (11). Next, the wind growth rate of sufficiently short surface waves in the lowest
order of µ, which corresponds to the parametric approximation, is obtained. In what follows we present
the examples of calculations of the modulated growth rate of short surface waves and modulation of their
spectral density for two cases, namely, ripple waves and intense internal waves.

4. MODULATION OF WIND WAVES BY RIPPLE WAVES

It was shown above that modulation of the short-wave spectrum in the presence of ripple waves
is described by Eq. (5) which comprises the complex amplitude of the long-wavelength perturbation of
the short-wave growth rate T1(δB0/δT )

∣∣
T=u2∗

, where T1 is the complex amplitude of the long-wavelength
perturbation of the tangential turbulent stress of the wind. Let us calculate this quantity within the
framework of the adopted model. The problem splits into two: (i) determination of the long-wavelength
perturbation of the wind velocity, which is induced by a ripple and (ii) determination of the short-wavelength
perturbation.

4.1. Average flow and long-wavelength perturbation

Under oceanic conditions, the elevation of a water surface in a ripple waves is much larger than the
thickness of the viscous sublayer of the atmospheric boundary layer even if the ripple-wave amplitude is
small. Therefore, we firstly apply the transformation to the curvilinear coordinate system (s, γ) in which
one coordinate line coincides with the water surface perturbed by a long wave. In the case of a harmonic
wave with elevation field (4) the curvilinear coordinates in the reference frame moving with phase velocity
of the long wave are time-independent:
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x = s− a exp(−kγ) sin(ks), y = γ + a exp(−kγ) cos(ks).

Thus, the system of hydrodynamical equations in terms of the vorticity and stream function is identical to
Eqs. (10a) and (10b) if xt = yt = 0.

The solution of Eqs. (10a) and (10b) can be represented as the sum of the stream function ψ0 and
vorticity χ0 averaged over the wave perturbations, the long-wavelength perturbations ψ(l) and χ(l) of these
quantities, induced by a ripple wave with elevation (4), and the short-wavelength perturbations ψ(s) and
χ(s) due to wind waves. Hence,

ψ = ψ0(γ) + ψ(l)(γ, s) + ψ(s)(γ, s, t), χ = χ0(γ) + χ(l)(γ, s) + χ(s)(γ, s, t)

in the reference frame moving with phase velocity of the wave.
It is well known that wave perturbations decrease at distances from the surface exceeding about the

corresponding wavelength. We will consider such distances for which the short-wavelength perturbations
are small compared with the long-wavelength ones.

Averaging the system of Eqs. (10a) and (10b) over the short-wavelength perturbations and linearizing
the resulting equations with respect to the long-wavelength perturbations, we obtain

d2

dγ2
(νχ0) +

d2

dγ2
Σ0(γ) = 0, (11)

ψ0γγ = χ0, (11)

for the average flow and

∂χ(l)

∂s

∂ψ0

∂γ
− ∂χ0

∂γ

∂ψ(l)

∂s
−
[
∂2

∂γ2
+

∂2

∂s2

]
νχ(l) =

∂2[Σ1(γ, s) − 2y1γΣ0(γ)]
∂γ2

−2νγγψ
(l)
ss −Iγ (νγψ0γ), (12a)

∂2ψ(l)

∂γ2
+
∂2ψ(l)

∂s2
= χ(l) + 2y1γχ0 (12b)

for the long-wavelength perturbation. Here, Σ0(γ) and Σ1(γ, s) are the average value and the long-
wavelength perturbation of the wind-wave momentum flux:

Σ0(γ) + Σ1(γ, s) ≈ − ∂2

∂γ2
ψ

(s)
γ ψ

(s)
s , (13)

where the overbar denotes averaging over short-wavelength perturbations. Since ψ(s) decreases with distance
from the air–water interface, it is evident from Eq. (13) that the wave momentum flux Σ decreases, as well.
In this case, as was shown in [22], the wave momentum flux for wind waves, whose phase velocities are,
by definition, less than 20u∗, undergoes significant variations in the vicinity of the surface in the transition
region from the viscous sublayer to the logarithmic boundary layer, i.e., the scale δ of variation in the
quantities Σ0 and Σ1 amounts to 20−30 viscous lengths νa/u∗.

As the distance from the surface increases, the average vorticity field obeys the boundary condition

νχ0

∣∣
γ→∞ = u2

∗, (14)

while long-wavelength perturbations decrease:

{ψ(l), χ(l)}∣∣
γ→∞ → 0. (15)

If the characteristic scale of the long-wave boundary layer is small compared with its wavelength,
while the phase velocity is large compared with the flow velocity inside the boundary layer, then Eqs. (12a)
and (12b) reduce to one equation for the long-wavelength perturbation of the turbulent stress, which, by
applying the gradient approximation of turbulent stresses, can be presented in the following form:
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T (l) = νχ(l), (16)

∂2T (l)

∂γ2
+ ikcχ(l) = − ∂2

∂γ2
[Σ1(γ) − 2y1γΣ0(γ)], (17)

∂2ψ(l)

∂γ2
= χ(l).

The typical vertical scale of the long-wavelength perturbation of the turbulent stress T (l) is equal to LT ≈
κu∗/(ck) � 1/k since u∗/c � 1, where κ = 0.4 is the Carman constant.

Equation (17) can be solved by the technique of matched asymptotic expansions if the scale LT is
much larger than the scale δ = (20−30) νa/u∗ of the sources on the right-hand sides of Eqs. (12a) and (12b).
This condition can be written as ck � u2∗/(30νa). For the threshold friction speed u∗ ≈ 5 cm/s of a wind,
for which generation of the waves takes place [21], and the air viscosity νa = 0.15 cm2/s, the frequency of
ripple waves should be much less than 6 s−1, which is valid for almost all cases.

If the conditions δ � γ � k−1 are satisfied, then the terms on the right-hand sides of Eqs. (12a)
and (12b) are negligibly small and the eddy-viscosity coefficient in this region is equal to ν = κu∗γ. Then
Eq. (17) yields the equation

d
dγ

γ
dU (l)

dγ
+
ikc

κu∗
U (l) = 0, (18)

U (l)
∣∣
γ→∞ = 0 (19)

for the long-wavelength perturbation U (l) of the wind velocity, which is related to T (l) as follows: T (l) =
κu∗γ∂U (l)/∂γ.

The solution of Eq. (18), which decreases with increasing distance from the surface, can be expressed
in terms of modified Bessel functions:

U (l) = BK0

(
2 exp(iπ/4)

√
γ+ ckνa/u2∗

)
, (20)

where γ+ =γu∗/νa.
A modified Bessel function has the logarithmic asymptotic

U (l) =
T1

κu∗

[
ln
(

3.15kcνa

u2∗
γ+

)
+
πi

2

]
(21)

for γ+ ckνa/u
2∗ � 1. It follows from Eq. (21) that the long-wavelength perturbations of the tangential stress

tend to the constant value T (l) = T1 is this case. The unknown constant T1 can be found using the conditions
of matching the obtained “external” solution, valid at large distances from the surface, with the “internal”
solution which holds near the surface.

4.2. Short-wavelength perturbation

For simplicity, we consider here only waves with wavevectors directed downwind. Actually, the
wavevectors of wind waves can be directed arbitrarily, so that the model presented here can only be consid-
ered an estimation model aimed at illustrating how the nonlinear effects, caused by interaction of the waves
with a wind, influence the transformation of the short-wave spectrum.

4.2.1. Short-wavelength perturbation in the “long-wavelength” coordinates (s1, γ)

In the zeroth order with respect to the small parameter µ of the problem, the equations describing short
waves against the background of a field of long waves can be written as follows [9]:
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∂(XI)
∂t

+
∂X

∂s1

∂Φ
∂γ

− ∂X

∂γ

∂Φ
∂s1

= I ∆(νX) − 2Iνγγ
∂2Φ
∂s21

,

(
∂2

∂γ2
+

∂2

∂s21

)
Φ = IX. (22)

System (22) is written in the coordinates (s1, γ), where s1 =s+ct and

Φ = ψ + cIγ =

γ∫
0

U0(γ1) dγ1 + Re
[
(ψ(l)(γ) − 2kacγ) exp[ik (s1 − ct)]

]
+ ψ(s)(s1, γ, t)

= Φ0(γ,Σ) + ψ(s)(s1, γ, t). (23)

The functions Φ and X approximate the stream function and vorticity in the coordinates (s1, γ) and Σ =
ik (s1− ct) is the “slow” coordinate (with respect to the short-wavelength perturbations) reckoned along the
surface perturbed by the long-wavelength wave.

Let us present the field of surface elevations in the form of the Fourier–Stieltjes integral

ξ(s1, γ, t) =
∫

dA(K) exp[i (Ks − Ω(K)t)].

Assume for simplicity that the phases of the short-wavelength field are random, then

dA(K) dA(K1) = F0(K)δ(K −K1) dK dK1, (24)

where F0(K) is the equilibrium spectrum of water-surface heights.
If the wave spectrum is sufficiently wide, then the problem can be solved in the quasi-linear approx-

imation analogous to the one used in the theory of interaction of waves and particles in a plasma [23].
Within the framework of the quasi-linear approximation, the equations for each harmonic are linear, while
the nonlinearity affects only the average fields of velocity, vorticity, etc.

4.2.2. Short-wavelength perturbation in the “short-wavelength” coordinates (ξ, η) “adapted”
for the random field of short waves

The wave field in the quasi-linear approximation should be sought as the sum of independent harmonics. The
displacement of the water surface due to the wind-wave field can be large in comparison with the thickness
of the viscous sublayer in the air. To avoid this geometrical nonlinearity, we use, as in [24], the curvilinear
coordinates such that one coordinate line coincides with the water surface in the first approximation with
respect to the surface-height amplitude. Let us apply the following coordinate transformation:

s1 = ξ +

+∞∫
−∞

i exp[iK (ξ − Ω(K)t/K) −Kη + iϕK ] dA,

γ = η +

+∞∫
−∞

exp[iK (ξ − Ω(K)t/K) −Kη + iϕK ] dA, (25)

where Ω(K)/K is the phase velocity of the Kth harmonic and ϕK is the phase of this harmonic, which is
assumed random.

Similar to [24], the expression for the stream function is written in the following form:

Φ = Φ0(η,Σ) + ϕ(s)(ξ, η, t). (26)
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Equations (23) and (26) comprise the same function Φ0 describing the average flow and its long-
wavelength perturbation. However, this function in Eq. (26) is equal to η and not to γ. In this case,
the short-wavelength perturbation ϕ(s)(ξ, γ, t) of the stream function, which enters Eq. (26), differs from
the term ψ(s)(s1, γ, t) in Eq. (23) since the former function describes the stream-line deviation from the
coordinate lines given by Eq. (25).

The stream function Φ and the vorticity X obey the system of equations

J3I

[
∂χ

∂t
− ∂χ

∂ξ

s1ts1ξ + γ1tγ1ξ

J
− ∂χ

∂η

s1ts1η + γ1tγ1η

J

]

+ J2

(
∂X

∂ξ

∂Φ
∂η

− ∂X

∂η

∂Φ
∂ξ

−
(
∂2

∂ξ2
+

∂2

∂η2

)
(νX)

)

= −2νηηΦξξJ − Jη [(νηΦη)η + νηΦξξ] − Jξ (2νηΦξη − Φξνηη) + νηΦη

J2
ξ + J2

η

J
, (27a)

(
∂2

∂ξ2
+

∂2

∂η2

)
Φ = IJX, (27b)

where J = (s1ξ)2 + (s1η)2. This system results from system (22) upon coordinate transformation (25). The
boundary conditions for system (27) are as follows [9]:

Φ
∣∣
η=0

= 0 (27c)

is the condition of impenetrability of the water surface,

Φη|η=0 = (1 + 2yγ)
∫

2Ω dA (27d)

is the condition of adherence on the water surface, and

νX
∣∣
η→∞ = u2

∗ + Re[T1 exp(iΣ)] (27e)

is the condition ensuring the vorticity-field matching with the external solution and the decrease in the
short-wavelength perturbations.

The wave perturbations

{
ϕ(s)

χ(s)

}
=

+∞∫
−∞

exp[iK (ξ − Ω(K)t/K)]
{

Φ2(η)
X2(η)

}
dA(K)

in the quasi-linear approximation obey the system

(1 + 2y1γ) [(Φ0η − Ω/K)X2 − Φ2X0η] iK

= (1 + 2y1γ) (d2/dη2 −K2) (νX2) + 2K2Φ2νηη − 2K exp(−Kη) [νη (Φ0η − Ω/K)]η ,

Φ2ηη −K2Φ2 = [X2 − 2K exp(−Kη)X0] (1 + 2y1γ) (28)

of linear equations, following from Eqs. (27a) and (27b), with boundary conditions on the surface:

Φ2

∣∣
η=0

= 0, Φ2η

∣∣
η=0

= (1 + 2yγ) 2Ω(K),

following from Eqs. (27c) and (27d) and complemented by the condition that the perturbations vanish at
infinity.
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In turn, the average values Φ0η and X0 obey the system of equations

d2

dη2
(νX0) =

d2

dη2
[τwave(η)], (29a)

d2Φ0

dη2
=


X0


1 +

+∞∫
−∞

F0(K)K2 exp(−2Kη) dK


 + 2

+∞∫
−∞

Re(X2F0(K)K2 exp(−Kη)) dK


 (1 + 2y1γ),

(29b)
which can be obtained by averaging Eqs. (27a) and (27b) over the coordinate ξ. Here, F0(K) is the spectrum
of water-surface elevations in Eq. (24) and

τwave =

η∫
0

K dη̃


− 1

2
Im[Φ∗

2X2F0(K)] dK

+

+∞∫
−∞

[exp(−Kη̃)νη̃ Re(Φ2η̃ −KΦ2) + 2 exp(−2Kη̃)νη̃Φ0η̃]F0(K)K2dK




has the meaning of the momentum flux from the waves to the wind, averaged over the horizontal coordinate
ξ.

The boundary conditions
Φ0η

∣∣
η=0

= 0, (29c)

νX0η

∣∣
η→∞ = u2

∗ + Re[T1 exp(iΣ)] (29d)

for the system of Eqs. (29a) and (29b) follow from Eqs. (27d) and (27e). Integrating the system of Eqs. (29a)
and (29b) with boundary conditions given by Eqs. (29c) and (29d), we obtain

dΦ0

dη
=

η∫
0

u2∗ + T1

ν
dη1 +

+∞∫
−∞

∆U(K, η) dK, (30)

where

∆U(K, η) =




η∫
0

τwave(η1)
ν

dη1 +

+∞∫
−∞

F0(K)K2(exp(−2Kη)X0 − exp(−Kη)ReX2) dK


 (1 + 2y1γ)

is the component added to the profile of the average-velocity and to its long-wavelength perturbation due
to momentum transfer from a wind wave with wavenumber K to the wind flow.

With allowance for definition (23) of the function Φ it is not difficult to find the relationship between
U (l) = dϕ(l)/dη (see Eq. (21)) and dΦ0/dη:

dΦ0

dη
= U (l) − 2Re[kac exp(iΣ)] + U0(η).

It is known that the coefficient ν of eddy viscosity has the linear asymptotic ν = 0.4u∗η [17] as the distance
form the surface increases. In particular, this is obvious from Eq. (7)). At the same time, ν → νa = const
for η → 0. As a result, is is easily seen that the first term in Eq. (30) has a logarithmic asymptotic, and the
second term tends to a certain constant:
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Fig. 1. Dependence of the parameter ∆u1 on
the wind-wave “age” for the wind friction velocity
u∗ = 10, 20, and 30 cm/s (curves 1–3, respec-
tively).

Fig. 2.Dependence of the growth rate of the wind
waves with wavelength 2.3 cm on the wind-wave
“age” for the wind friction velocity u∗ = 10, 20,
and 30 cm/s (curves 1–3, respectively).

U0(η) + U (l) =
u∗
κ

[
1 + Re

(
T1

u2∗
exp(iΣ)

)]
ln

η

η0
+ 2ckRe[a exp(iΣ)] +

+∞∫
−∞

∆U(K, η)
∣∣
η→∞ dK,

where η0 is the roughness parameter. For a hydrodynamically smooth flow, we have η0 = 0.118 νa/u∗. If
the coefficient of turbulent-stress modulation is large, i.e., mT =

∣∣T1/(u2∗ka)
∣∣ � 1, then the transformation

of short waves is mainly determined by the modulation of this quantity, and the terms of the order of y1γ

in system of Eqs. (28) and (29) are negligible. Then, introducing the notation ε = Re[T1 exp(iΣ)]/u2∗, we
arrive at

νX0

∣∣
η→∞ = u2

∗(1 + ε)
∣∣
ε=Re[kamT exp(iΣ)]

,

and the formulas for U0 and U (l) reduce to

U0(η) =
u∗
κ

ln
η

η0
+




+∞∫
−∞

∆U(K, η)
∣∣
η→∞ dK



∣∣∣∣
ε=0

,

U (l) =


u∗
κ

ln
η

η0
+


 ∂

∂ε

+∞∫
−∞

∆U(K, η)
∣∣
η→∞ dK



∣∣∣∣
ε=0


 Re[kamT exp(iΣ)]. (31)

A comparison of Eqs. (31) and (21) yields

T1 =
2κcu∗ka

ln
(3.15kcνa

κu2∗
η+
0

)
− κ∆u1 + πi/2

, (32)

where

∆u1 =
1
u∗

∂

∂ε

+∞∫
−∞

∆U(K, η)
∣∣
η→∞ dK, η+

a = η0u∗/νa.

The first terms in the denominator of Eq. (32) is negative, so that the phase of the coefficient of turbulent-
stress modulation is close to −π in the linear approximation (for ∆u1 < 0) with respect to the wind-wave
amplitude. The second term is positive since the change of the average velocity profile, resulting from the
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nonlinear interaction with wind-wave field, is negative: ∆u1 < 0 (see [21]). This means that the phase T1

can change if the absolute value of ∆u1 < 0 is sufficiently large.
To find ∆u1, we solve numerically the self-consistent

Fig. 3. Dependence of the parameter B =
(∂B0/∂u∗)u∗ for a wave with wavelength
2.3 cm on the wind-wave “age” of for the
wind friction velocity u∗ = 10, 20, and
30 cm/s (curves 1–3, respectively).

quasi-linear system of equations comprising the equations for
the harmonics and for the average flow. The equations for each
harmonic are solved numerically by a mesh method based on
the Gauss elimination procedure adapted for a banded matrix.

Calculation of the modulated short-wave spectrum within
the framework of the relaxation model requires knowledge of the
quantities βr and B = (δB0/δu∗)u∗, which enter Eq. (5), and
∆u1. Within the framework of the quasi-linear model, these
quantities are determined by the wind velocity and the wind-
wave spectrum. In the calculations, we used the “JONSWAP”
spectrum [25]

F0(K) =
1
2
αpK

−3 exp

[
−5

4

(
Kp

K

)2
]
γr,

r = exp
[
−1

2

(√
K −√

Kp

)2
/ (

σ
√
Kp

)2
]
,

(33)

where αp = 0.57 (Cp/u∗)−3/2, γ = 3.3, σ = 0.1, Kp = g/C2
p , Cp =Nu∗ is the phase velocity of the energy-

carrying component, N is the so-called parameter of the wind-wave “age,” and g is the free-fall acceleration.
It is known that N increases with increasing fetch. It is well known [25] that the average slope of the wind-
wave spectrum decreases with increasing N . Hence, the waves become “more linear.” The dependences of
the problem parameters ∆u1, B0 = βr/2, and B = (δB0/δu∗)u∗ on the parameter N for several values of
the wind friction velocity are presented in Figs. 1–3. It is seen in Fig. 1 that small values of N (“young”
wind waves) correspond to large moduli of the negative term added to the average velocity profile due to
the nonlinear interaction between the wind waves and the wind flow. Evidently, this is inferred by the fact
that smaller values of N correspond to larger average amplitudes of the wind-wave field. The wind growth
rate B0 of a short surface wave decreases with decreasing N (see Fig. 2) since the average wind velocity
described by the quantity ∆u1 decreases.

The results of calculations of the hydrodynamical MTF are presented in Fig. 4 for conditions corre-
sponding to the measurements [26]. The wavelength of the Bragg wave amounts to 2.3 cm, which correspond
to the X radio-wave band. The theoretical curves are parameterized by the “age” of wind waves in the
“JONSWAP.” The “age” parameter describes the degree of nonlinearity of the wind-wave field. Figure 4a
shows the results of calculations of the hydrodynamical MTF for wind waves with infinitesimally small am-
plitudes. A comparison of Figs. 4b and 4c with Fig. 4a shows that the values of the MTF modulus, yielded by
both the linear and quasi-linear theory, agree satisfactorily with experimental data given in [26]. However,
the values of the phase calculated using the linear approximation contradict the experimental data (see
Fig. 4a), while the quasi-linear approximation yields the values of the phase of the hydrodynamical MTF,
which are in much better agreement with the experimental data (Figs. 4b and 4c).

The same figures show the values of the hydrodynamical MTF calculated without taking the effect
of modulation of the Bragg-wave growth rate into account (see the dashed lines). It is seen that such
calculations poorly agree with the measured values of the MTF phase and amplitude.

5. MODULATION OF SHORT SURFACE WAVES IN THE PRESENCE OF INTENSE INTERNAL
WAVES

In this section, we present a model of centimeter-wave modulation in a field of intense internal waves.

475



Fig. 4. Dependences of the quantity M and the phase ϕMTF of the hydrodynamical MTF on the frequency of
the long-wavelength wave, calculated within the framework of the linear (a) and quasi-linear (b and c) theory.
The short wavelength is equal to 2.3 cm. The solid lines correspond to the calculations with allowance for
the growth-rate modulation, and the dashed lines, to the calculations without account of this effect. Curves 1
correspond to a wind friction velocity of 16 cm/s, curves 2, to 30 cm/s, and curves 3, to 50 cm/s. The
experimental points are taken from [26]. The fetch parameter N = 25 (b) and N = 10 (c)

The internal-wave parameters are taken from the “COPE” experiment [11] in which superintense
internal waves corresponding to high contrasts of the scattered radar signal were observed. The latter was
probably stipulated by the high hydrodynamical contrast in the field of resonance centimeter surface waves.
The results of this section are presented in [10] in greater detail.

To describe the flow field on a water surface generated by internal waves, we apply the Gardner model
proposed in [27, 28].

5.1. Model of intense internal waves

The “COPE” experiment was aimed at studying flows generated powerful internal tides [11]. The
observed picture showed the decay of a tidal wave in the shelf zone into a sequence of mutually interacting
pulses propagated toward the coast. A number of features pointed out that the observed process was strongly
nonlinear. In particular, the pulse amplitudes were several times larger than the thickness of the upper layer
of water, and the pulse velocities were much larger (several times larger) then the velocity of long linear
internal waves. A comparison made recently in [27, 28] showed that, in general, the evolution of large groups
of such pulses can be adequately modelled by ensembles of interacting solitons within the framework of the
combined Korteweg – deVries equation with quadratic and cubic nonlinearities (the Gardner model):
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∂η

∂t
+ c

∂η

∂x
+ αη

∂η

∂x
+ α1η

2 ∂η

∂x
+ β

∂3η

∂x3
= 0. (34)

If the simplest two-layer model of the stratification is used, then the coefficients in Eq. (34) take the following
values: c2 = gh1∆ρ/ρ, α = 3c/(2h1), β = ch1h2/6, α1 = −3c/(8h2

1) (the mean values of the quantities h1,
h2, and ∆ρ/ρ in the areas where the experiment was performed were h1 = 7 m, h2 = 143 m, ∆ρ/ρ = 3·10−3).
Equation (34) which is usually applied for a description of the evolution of weakly nonlinear long internal
waves can be derived from the full system of hydrodynamical equations assuming that the deviation η(x, t)
of the interface between two liquids is small compared with the thicknesses h1 and h2 of the two layers and
that the typical scales of internal waves are much larger than the total depth of the liquid. Moreover, the
quadratic and cubic terms in Eq. (34) are usually kept simultaneously if the quadratic term is anomalously
small, i.e., for h2 ≈ h1. In this respect, it is important to emphasize that taking the nonlinear terms into
account also in the case where h2 � h1, for which the approximation of weak nonlinearity is formally invalid,
allows one to achieve a plausibly good correspondence between the amplitudes and velocities of the most
intense observed pulses and the solitons of Eq. (34). Moreover, it was shown in [27] that the dynamics of
interaction of the solitons is also very similar to the experimentally observed processes of collision of the
pulses.

The behavior of ensembles comprising N interacting solitary waves is described in the so-called N -
soliton solutions of completely integrable evolution equations to which Eq. (34) also belongs. However,
the known formulas for the N -soliton solutions are so cumbersome and complicated, that it is difficult
to retrieve detailed information on the interaction process, including the possibility of determination of the
soliton parameters (such as its coordinate, velocity, and amplitude) at any time, directly from these formulas.
The soliton interaction can be described in the simpler and much clearer way using an approximate approach
familiar by its analogy with the description of collision of classical (point) particles [28, 29]. It was shown
in [28] namely on the example of Eq. (34) that the approximate approach, even in the first order, can be
improved such that the correct general structure of the exact N -soliton solution in the form of a rigorous
superposition of quasi-solitons with relatively slowly varying parameters can be found. In this case, the
solutions for the quasi-soliton parameters are determinative and remain qualitatively valid for arbitrary
conditions of the problem, while higher-order approximations only refine these solutions.

The one-soliton solution of Eq. (34) has the form

ηs =
α

2α1

√
V

Vcr

[
th
x− (c+ V ) t+ ∆

2
√

6α1β/α2
− th

x− (c+ V ) t− ∆
2
√

6α1β/α2

]
, (35)

where Vcr = α2/(6α1), ∆
√
V/β = Arch(1/

√
1 − V/Vcr). The amplitude

(ηs)max =
α

α1

√
V

Vcr
th
(
∆/

√
6α1β/α2

)

of soliton (35) varies from zero, which corresponds to the soliton velocity equal to c, to the maximum value
equal to α/α1, for which the soliton velocity is c+ Vcr. Note that the most intense pulses of internal waves,
observed in the “COPE” experiment, correspond namely to solitons close to the limiting ones.

The possibility of presenting soliton (2) in the form of a compound structure formed by more ele-
mentary formations, called kinks, is principal for the problem of the interaction of pulses. Such solutions
exist within the framework of Eq. (34) for V = Vcr and have the form

η+
K =

α

2α1

(
1 + th

[
x− (c+ Vcr) t
2
√

6α1β/α2

])
, η−K =

α

2α1

(
1 − th

[
x− (c+ Vcr)t
2
√

6α1β/α2

])
. (36)

A comparison of Eqs. (36) and (35) for V ≈ Vcr, when the soliton has the form of a large-size plateau with
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∆ � 1, bounded by steep jumps of the field, makes it possible to write the solution of Eq. (35) in the
following form:

ηs = η+
K + η−K − α

2α1
≈ α

2α1

[
th
x− (c+ Vcr) t+ ∆

2
√

6α1β/α2
− th

x− (c+ Vcr) t− ∆
2
√

6α1β/α2

]
. (37)

Equation (37) corresponds to a compound solution obtained by the method of matched asymptotic expan-
sions [28]. Namely, the general solution is the sum of the solutions corresponding to the regions of strong
variations in the field minus their common asymptotic being the solution in the external region. In the case
considered, this asymptotic is simply the constant α/(2α1). The representation given by Eq. (37), which
follows from the procedure of matching, does not yield all the soliton parameters (in particular, the quantity
∆), but reproduces correctly the overall structure of the field as the superposition of kinks. This allows one
to search the solution of the more general problem of interaction of N solitons in the zero approximation as
a superposition of 2N alternating kinks (36):

η0
N (x, t) =

α

2α1

2N∑
i=1

(−1)i+1 th
x− (c+ Vcr) t− Si(t)

2
√

6α1β/α2
. (38)

Here, Si(t) is the slowly varying component of the coordinate of

Fig. 5. Dependence of the isopycn displace-
ment in the internal wave on the hiorizontal
coordinate ξ = x/Lx.

the ith kink, for which dSi/dt� Vcr. The ratios (Vcr − Vi)/Vcr,
where Vi are the velocities of the unperturbed stationary soli-
tons, are the small parameters εi of the problem. The quantities
εi introduced in such a way are evidently less than unity for all
possible values of Vi.

The algorithm for constructing solutions in the higher
approximations consists in finding local corrections, sought in-
dependently in the vicinity of each kink, and subsequent match-
ing of these corrections. In addition, within the framework of
each nth approximation, the procedure of matching the local
corrections η(n)

i found in the vicinity of the ith kink should take
into account the asymptotics of the corresponding order, which
decay exponentially with increasing distance from the centers
of the neighboring kinks.

Following this algorithm, we obtain that the general N -
soliton solution with allowance for the corrections of the first approximation, takes the form

η
(0)
N + η

(1)
N =

α

2α1

2N∑
i=1

(−1)i+1

(
1 − dSi

dt

)
th
x− (c+ Vcr) t− Si(t)

2
√

6α1β/α2
,

where the kink coordinates Si are found by solving the system of equations

dSi

dt
= −8 ch(Si+1 − Si).

Satisfactory agreement between the theoretical calculations and the experimental data allows us to
use the theoretical model for determination of the velocity field on the surface of a liquid.

Below we give the approximate formula for calculating a 9-pulse group, i.e., internal-wave solitons
corresponding to the “COPE” observations, for the above-mentioned parameters at the fixed time t0:
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η0
9(x, t0) = 14.03

{
th
[
(25.7)−1 (x+ 38.5)

] − th
[
(25.7)−1 (x− 38.5)

]
+ th

[
(25.7)−1 (x− 395.6)

]− th
[
(25.7)−1 (x− 432.9)

]
+ th

[
(25.7)−1 (x− 946.7)

]− th
[
(25.7)−1 (x− 1023.8)

]
+th

[
(25.7)−1 (x− 1286.1)

]−th
[
(25.7)−1 (x− 1339.5)

]
+th

[
(25.7)−1 (x− 1871.28)

]−th
[
(25.7)−1 (x− 1914.5)

]
+th

[
(25.7)−1 (x− 2442.4)

]−th
[
(25.7)−1 (x− 2499.6)

]
+th

[
(25.7)−1 (x− 2977)

]−th
[
(25.7)−1 (x− 3070.8)

]
+th

[
(25.7)−1(x−3669.9)

]−th
[
(25.7)−1(x−3763.1)

]
+ th

[
(25.7)−1(x−4246.9)

]−th
[
(25.7)−1(x−4288.3)

]}
.

(39)

Here, the displacement of the surface and the coordinates are in meters. In what follows, this formula is
used to calculate the velocity field on the surface of a two-layer liquid.

The dependence of the isopycn displacement in an internal wave on the horizontal coordinate ξ =
x/Lx, where Lx = 25.7 m, calculated using Eq. (39), is shown in Fig. 5.

With allowance for the two-layer approximation of the stratification, the “rigid lid” condition on the
surface, and the shallow-water approximation, the condition

∂t(h1 + η) + ∂x[(h1 + η)U ] = 0

of mass conservation in each layer yields the relationship

U [m/s] = 0.45
η9(m)/7

1 + η9(m)/7
(40)

between the above-obtained solutions ηN and the velocity field U(x, t) on the surface for the model param-
eters mentioned above.

Based on the obtained approximate calculations for a group of nine pulses, i.e., solitons of internal
waves corresponding to the “COPE” observations, we retrieve the velocity field on the surface and then use
the retrieved velocity field to calculate modulation of the spectral density of the short-wave height field.

5.2. Wind boundary layer above a water surface with nonuniform flow field

Similar to the case of interaction with ripple waves, we describe a wind boundary layer above a rough
sea surface within the framework of the system of Eqs. (19a), (19b) and (11). However, in contrast to long
surface waves, the displacement of a surface in internal waves is almost absent. Hence, the “long-wavelength”
transformation of coordinates, introduced in Sec. 4, is not applied.

The form of equations for a large-scale flow is identical to Eq. (8) with allowance for the replacement
(s, γ) → (x, z), but the right-hand side, similar to Eqs. (12a) and (12b) includes the term ∂2τ/∂γ2, where
τ is the wave momentum flux. This term is negligible for weak winds when the contribution of the wave
momentum flux to the transfer in the wind turbulent boundary layer is small [30]. If the wind is strong,
then the effect of the wave momentum flux can be taken into account by using the modified expression for
the effective eddy viscosity [19] (see Eq. (7)).

With allowance for these assumptions, the system of equations describing large-scale perturbations
is identical to Eq. (8) with allowance for the replacements z → γ and x → s. Taking into account that the
velocity field U(s, t) is a stationary wave, i.e., U = U(s − ct), we obtain the following system of stationary
equations in the frame moving with the velocity c:

∂ψ

∂γ

∂χ

∂s
− ∂ψ

∂s

∂χ

∂γ
= ∆(νχ) − 2

∂2ν

∂γ2

∂2ψ

∂s2
, ∆ψ = χ. (41)

Boundary conditions (9), similar to Eqs. (10c) and (10d), become

ψ
∣∣
γ=0

= 0,
∂ψ

∂γ

∣∣∣∣
γ=0

= U(s) − c. (42)
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As the distance from the surface increases, the velocity field tends to the unperturbed logarithmic profile,
i.e.,

∂ψ

∂γ

∣∣∣∣
γ→∞

=
u∗
0.4

ln
γ

γ0
− c.

The estimates given in [10] show that long-wavelength perturbations induced in the air by internal
waves can be analyzed in the linear approximation. Then the system of equations for the perturbations
reads

(U0(γ) − c)
∂χ1

∂s
− d2U0

dγ2

∂ψ1

∂s
= ∆(ν(γ)χ1) − 2

d2ν

dγ2

∂2ψ1

∂s2
, ∆ψ1 = χ1, (43)

ψ1

∣∣
γ=0

= 0,
∂ψ1

∂γ

∣∣∣∣
γ=0

= U(s),
∂ψ1

∂γ

∣∣∣∣
γ→∞

= 0,

where U0(γ) = −c +
∫ γ
0 [u2∗/ν(z)] dz. If ν(z) is given by Eq. (7), then the asymptotic

U0(γ) = −c+ (u∗/κ) ln(γ/γ0)

holds for γ → 0.

Such equations can be solved using the numerical procedure described in [21] and adapted for a
nonharmonic perturbation.

Let the solution of system (43) be sought in the form of the Fourier integral

{
χ1

ψ1

}
=

+∞∫
−∞

{
χ1k(γ)
ψ1k(γ)

}
exp(iks) dk.

Then χ1k and ψ1k obey the following system of equations and boundary conditions:

(U0(γ) − c)χ1k − d2U0

dγ2
ψ1k =

1
ik

[(
d2

dγ2
− k2

)
(ν(γ)χ1k) + 2

d2ν

dγ2
k2ψ1k

]
,

d2ψ1k

dγ2
− k2ψ1k = χ1k,

ψ1k

∣∣
γ=0

= 0,
dψ1k

dγ

∣∣∣∣
γ=0

= Û(k), ψ1k

∣∣
γ→∞ = 0. (44)

Here, Û(k) is the Fourier image of U(s).

The system of equations (44) for the kth harmonic was solved numerically. The numerical calculations
showed that the form of the solution on scales about the viscous-sublayer thickness depends only slightly on
k. In this case, upon calculating the inverse Fourier transform of the obtained solution, we can present the
velocity field of the perturbation, induced in the air by the field of an internal wave, in the following form:

U(s, γ) =
∂ψ

∂γ
= U(s)Re

(
dψ1k

dγ

)
+

1
π

+∞∫
−∞

U(s′)
s− s′

ds′ Im
(

dψ1k

dγ

)
, (45)

where ψ1k is the solution of Eq. (44) with boundary condition dψ1k/dγ = 1 for an arbitrary, sufficiently
small k.

Using Eq. (45), it is easy to calculate χγ =∂2U/∂γ2 and the vorticity field χ=∂U/∂γ induced by the
wave, which enter Eq. (44).
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5.3. Modulation of short wind waves in the field of a wind over a sea surface in the
presence of an internal wave

Variation in the spectral energy density F (K,x, t) of short surface waves is described by kinetic
equation (1). Before proceeding to calculations of the function F , we estimate the terms in Eq. (1) for
the internal- and surface-wave parameters typical of the problem considered. The term on the left-hand
side, which describes the kinematic effects, is of the order of Fc/Lx, where c and Lx are the phase velocity
(c = 50 cm/s) and the typical scale (Lx ≈ 25 m) of an internal wave, respectively. Hence, Fc/Lx ∼
2 · 10−2F . The right-hand side of Eq. (1) describes the effects stipulated by generation of waves by the
wind and by the nonlinear wave interaction. These effects balance each other for the centimeter surface
waves [26], so the right-hand side of Eq. (1) can be estimated using the surface-wave growth rate [31]
β = (0.02−0.04) (u2∗/C2

f )Ω − 2νwK
2, where νw = 0.01 cm2/s is the kinematic viscosity of water. If the

wavenumber of the short wave is K = 3 cm−1, then Ω ∼ 70 s−1 and Cf ∼ 23 cm/s, so that we have
β ∼ 1 s−1 for u∗ = 20 cm/s and β ∼ 0.1 s−1 for u∗ = 10 cm/s since such a wind friction velocity is close
to the generation threshold. This implies that the left-hand side describing the kinematic effects in the
field of short waves is small, and the modulation of short waves is mainly contributed by their growth-rate
modulation.

To calculate the modulation of the short-wave growth rate in the presence of an internal wave, we
use the system of equations for short waves in the presence of long waves. This system of equations is
analogous to the one used in Sec. 4. In the linear approximation, the complex amplitudes of the harmonics
of perturbations of the stream function ψ2 and the vorticity χ2 with wavenumber K obey the system of
equations identical to Eq. (28) for y1γ = 0 with allowance for the ansatz η → γ:
[[(

Φ0γ − Ω
K

)
χ2 − ψ2χ0γ

]
iK −

(
d2

dγ2
−K2

)
(χ2ν)

]
= −2νγγψ2K

2−2KA exp(−Kγ)
[(

Φ0γ − Ω
K

)
νγ

]
γ

,

d2ψ2

dγ2
−K2ψ2 = χ2 − 2KA exp(−Kγ)χ0. (46)

The boundary conditions have the form

ψ2

∣∣
γ=0

= 0, ψ2γ

∣∣
γ=0

= 2ΩA. (47)

In contrast to Eq. (28), Φ0γ and X0 can be obtained in explicit form: Φ0γ = U0(γ) +U(s, γ)− Ω/K, where
U(s, γ) is given by Eq. (45), χ0 = Φ0γγ , and A is the amplitude of the short surface wave.

Since the kinematic effects in the considered parameter range are small in comparison with the
effects due to the interaction with the wind, the dependences of the wavenumber K and the phase velocity
Cf of a short surface wave on the phase of an internal wave can be neglected in system (46) and boundary
conditions (47).

By solving the system of equations (46), we can find the wind growth rate of short waves according
to the formula

βw =
ρa

2ρw
νa

[
−Re(χ2γ −Kχ2)

CfKA
+ 4K2

]
. (48)

In this case, the total growth rate of a short wave modulated by an internal wave has the form

β = −2νwK
2 + βw.

The dependences of β on the wave phase are presented in Figs. 6a and 6b for the cases where an
internal wave propagates downwind (Fig. 6a) and upwind (Fig. 6b). A comparison with Fig. 5, in which the
isopycn displacement in the internal wave is plotted versus ξ, shows that the maximum of the displacement
(and the horizontal velocity) coincides with the minimum of the downwind growth rate of wind waves
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Fig. 6a. Dependences of the growth rate β on the horizontal coordinate ξ = x/Lx (Lx = 25.7 m). The
internal-wave phase velocity is directed downwind. The solid curves correspond to K = 1 cm−1, the dashed
curves, to K = 2 cm−1, and the dash-dot curve, to K = 3 cm−1. The value of the wind friction velocity in
cm/s is indicated near each curve. The right panel shows the plots of the real (solid curve) and imaginary
(dashed curve) parts of the perturbation of the wind tangential stress, which is induced by a long harmonic
wave. The thick curve is the power density of the energy exchange between the short wave and the wind (in
relative units).

Fig. 6b. The same as in Fig. 6a, but in the case where the phase velocity of the internal wave is directed
upwind.

(Fig. 6a) and with the maximum of the upwind growth rate of wind waves (Fig. 6b). To explain this effect,
we also show in Fig. 6 the profiles of the real (ReT1) and imaginary (ImT1) parts of the perturbation of
wind tangential stress induced by a harmonic wave with wavenumber k = 0.25 m−1. The same figure shows
the profile of the power density of the radiative and viscous forces, averaged over the wave period, which
determine the energy flux from the wind to the waves [22]. It is seen that the momentum-flux perturbations
are almost constant in the region of the maximum energy exchange, and the phase of these perturbations is
close to −π and 0 downwind and upwind, respectively. Since T1 does not depend on the vertical coordinate
in the region where the energy exchange is significant, the formula
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Fig. 7. Temporal dependences of the power of scattered radio signal (a) and the horizontal flux at a depth of
30 m (b) according to the data of [32].

Fig. 8. Dependence of the modulated growth
rate of a surface wave on the horizontal co-
ordinate ξ. The wind and wave parameters
correspond to the conditions of September
23, 1995 (according to the data [32]). The
wavenumber of the surface wave is K =
4 cm−1.

U0(z) =
(
u∗
0.4

+ Re
T1ka exp(ikx)

0.4u2∗

)
ln

z

z0

describes the wind velocity profile in this region with good
accuracy.

Thus oscillations of the effective wind velocity are anti-
phase with the velocity on the surface in the case of a tail
wind and are in-phase in the case of a head wind. This effect
has the simple physical explanation: the difference between
the velocities on the surface and in the overlying layers of the
wind boundary layer is less if a downwind flow exists on the
surface, and the smaller velocity difference results in a smaller
friction stress. If the wind and water-surface velocities are
antiparallel, then the friction stress is much larger.

If the tangential-stress perturbation T1 is almost con-
stant in the region of energy exchange between a wind wave
and an air flow, then the modulation of the wind growth rate
is entirely determined by the modulation of T1. This explains
the dependences β(ξ).

Let us apply the results of the developed model to estimating the data of the “COPE” experiment
in which the intensity of radio signal scattered from the sea surface and oscillations of the thermocline were
simultaneously measured on the coastal shelf near the state of Oregon [32]. It was found that the minima of
the scattered radio-signal power and the thermocline displacements were approximately in-phase. The same
phase relationship holds between the modulated wind growth rate of short surface waves and the isopycn
displacement of an internal wave propagated downwind (Fig. 6a).

To compare the experimental results with our model, we use the wind and wave parameters measured
during the “COPE” experiment in September 23, 1995. Figure 7 presents the data on the under-thermocline
horizontal velocity of the flow stipulated by internal waves and on the corresponding scattered-signal power.
Note that the isopycn displacement is anti-phase to the the velocity of the under-thermocline flow, i.e., the
scattered-signal minimum also coincides with the maximum of the isopycn displacement. In this case, the
wind velocity amounts to 9.5 m/s (u∗ ≈ 28.5 cm/s), and the angle between the wind-velocity and wave-
propagation directions, to θ ≈ 60◦. The velocity of internal-wave propagation was cIW = 1.03 m/s. The
measurements were performed using a radar with radiation wavelength λ = 3 cm at grazing angles, i.e., the
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Bragg wavelength was equal to 1.5 cm.
We calculated the modulated growth rate of Bragg waves within the framework of our model for the

above-mentioned parameters. Note that the wind and wave velocities are assumed aligned in this model.
Since the radar viewing direction was the same as the direction of internal-wave propagation, we adopted
for estimates that the surface velocity in the internal wave is equal to cIW = 1.03 m/s and the wind friction
velocity amounts to u∗1 = u∗ cos θ ≈ 14.3 cm/s. The calculated modulated growth rate is shown in Fig. 8.
It is seen that the phase of the growth-rate modulation is opposite to the isopycn-displacement phase, and
the growth rate even reverses sign at the isopycn-displacement maximum.

6. CONCLUSIONS

This paper is devoted to a description of one mechanism of modulation of short surface waves in the
presence of nonuniform flows. It is well known that nonuniform flows on a water surface induce irregularities
in the wind field, which, in turn, give rise to the irregularities of wind-ripple generation, i.e., to a modulation
of the wind growth rate of surface waves. This mechanism was considered for the first time in the case
where a nonuniform flow was induced by a long wave on a water surface [5]. However, development of the
consistent theory of this mechanism of short-wave modulation encountered significant difficulties related,
first and foremost, to determination of the phase of the surface-wave modulation coefficient, which was
experimentally observed to be close to zero, while it appeared to be close to −π in the theory. Taking into
account the nonlinear effect of the wind-profile deformation in the presence of surface wave allows one to
explain theoretically the values of both the amplitude and the phase of the modulation coefficient of the
surface-wave spectrum.

The mechanism of surface-wave growth rate modulation turns out to be efficient also in the case where
a nonuniform flow field on a surface is generated by intense internal waves. Note that the effect of growth-
rate modulation is considered in this paper without account of the conservative kinematic transformation
of surface waves. At the same time, modulation of short surface waves in a field of intense internal waves
was studied earlier in [33] without allowance for the growth-rate modulation. It was shown in that paper
that in the case of very short intense internal waves, a significant hydrodynamical contrast exists even for
centimeter waves. Analyzing the combined influence of these two effects will be done elsewhere later on.

This work was supported by the Russian Foundation for Basic Research (project No. 02–05–65099)
and the Council for Grants of the President of the Russian Federation for the Support of Leading Scientific
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