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Abstract—The development and validation of altimeter wind
speed algorithms is investigated following the collation of the
largest dataset to-date of coincident altimeter/buoy open ocean
measurements. Nonlinear relationships between buoy wind and
Topex backscatter are fitted to the 4500 points dataset using
least-squares (LSQ). The addition of altimeter significant wave
height (SWH) information causes a small but significant reduction
of about 10% in root-mean-square (rms) error. The new LSQ
algorithms yield significant improvement of the global wind speed
bias and rms error compared to earlier models, but describe the
wind to backscatter relationship poorly at extreme wind speeds.
Best results are obtained with the Gourrionet al. (2000) model,
improving on the Witter and Chelton (WC91) (1991) model
used operationally. A residual dependence on sea state persists
in all wind algorithms, which underestimate winds in young sea
conditions on average by 1–1.5 m/s.

A case study confirms that ordinary LSQ attribute exces-
sive weight to the peak of the wind speed histogram and yield
algorithms with poor performance at extreme winds. Measure-
ment errors are shown to greatly influence the fitted models
performance, as accounting for normally distributed errors in
both altimeter and buoy measurements with orthogonal distance
regressions (ODRs) yields significant improvements. Hence,
algorithms developed from relatively small collocated datasets
(few thousand points) may perform as well as models developed
from much larger datasets (tens of thousands of points) given
adequate treatment of errors. However, it is anticipated that the
ultimate accuracy of wind speed algorithms is still dependent on
the quality of the fitted datasets.

Index Terms—Algorithm development, altimeter wind speed,
collocated dataset, wave age.

I. INTRODUCTION

FOR almost two decades now, satellite altimeter radars have
provided quantitative information on wind speed, signif-

icant wave height (SWH), and sea surface height (SSH) on a
global scale. Despite small along-track coverage (2–7 km di-
ameter footprint), altimeter wind and wave measurements offer
a valuable contribution to global ocean circulation and climato-
logical studies. Accurate estimates of wind speed and SWH are
particularly important as they currently form the basis for cor-
recting the SSH measurements for sea state bias errors resulting
from the presence of ocean waves on the surface [1]. However,
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while it is generally accepted that altimeter SWH is now of com-
parable accuracy to that of moored buoys [2], [3], the issue of
altimeter wind speed retrieval has remained an active area of re-
search.

The retrieval of altimeter wind speed from microwave
backscatter at nadir has been the object of numerous studies
and many algorithms have been proposed in the past (e.g.,
[4]–[6]). The algorithm currently used to operationally provide
wind estimates is the Witter and Chelton model (WC91)[7].
Derived empirically from a large dataset of Geosat altimeter
data, it uses a lookup table to relate the wind speed at 10 m,

, singley to the altimeter backscatter coefficient at Ku-band,
. Wind speed variability related to nonlocal wave effects has,

however, long been reported [8] and there is recent evidence
of seasonal biases [9]. With the availability of altimeter SWH,
several attempts have been made to account for sea state effects
using SWH [10], [11], but the evidence for any improvement
has never been sufficiently compelling to justify the application
of a SWH parameterization to operational purposes.

In this paper, the use of SWH as a sea state parameter is
re-examined with a new Southampton Oceanography Centre
(SOC) dataset of collocated buoy/Topex measurements in the
open ocean. This dataset and its collation are described in Sec-
tion II. The development of relationships between wind speed
and the altimeter measurements using nonlinear least-square
(LSQ) fitting is presented in Section III together with the evalu-
ation of their global residual statistics with respect to published
models. In Section IV, further tests establish the shortcomings of
the LSQ approach and Section V looks at the impact of dataset
composition and measurement errors on the performance of the
derived algorithms.

II. THE SOC COLLOCATED TOPEX/BUOY DATASET

Datasets of collocated buoy/altimeter measurements have
previously been used to develop and study altimeter wind
retrieval algorithms ([10], [12]) but have always been limited
to only a few hundred data points. The difficulties in collating
large collocated datasets arise primarily from the relatively
short lifetime of satellite missions and the general scarcity
of continuous buoys records in the open ocean. Also, wind
speed studies require stringent time/space collocation criteria
to capture the short-term/small-scale variability of the wind
field, which further reduces the amount of data acceptable for
this type of research.

0196-2892/02$17.00 © 2002 IEEE



252 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 2, FEBRUARY 2002

Fig. 1. Location of moored buoys used for collocation with Topex data (circles: U.S. National Data Buoy Center; triangles: Canadian Marine Environmental Data
Service; squares: U.K. Meteorological Office; diamonds: Japanese Meteorological Agency).

The large collocated buoy/altimeter dataset used in this
paper has been made possible following the relative longevity
of the Topex altimeter and the steady increase of the number
of long-term buoys in the open ocean providing continuous
monitoring from which data is readily available for research.
The buoy data used in this paper originates from the U.S.
National Data Buoy Center (NDBC), the Canadian Marine
Environmental Data Service (CMEDS), the U.K. Meteoro-
logical Office (UKMO) and the Japanese Meteorological
Agency (JMA). The moored buoys used in this study were
selected for their location in open water and their proximity
to Topex tracks. The network of 41 moored buoys used aims
to provide a representation of the global ocean (see Fig. 1),
although information is still noticeably lacking in the southern
hemisphere, and in particular in the Southern Ocean. We note
that data are absent also in the Indian Ocean where seasonal
effects are known to be significant.

A judicious choice of time/space collocation criteria is critical
to ensure the quality of the final dataset. A compromise must
be reached between 1) providingin-situ measurements repre-
sentative of the conditions in the satellite footprint at the time
of the overpass and 2) allowing a sufficiently large number of
valid hits to allow meaningful statistical treatments. Here, the
time and space separation criteria were set to select data within
50 km and 1 h of the Topex overpasses, in accordance with the
criteria commonly used in this type of studies (e.g., [6], [13]).
With these sampling criteria and the application of the standard
ice and rain flags in the Aviso version of Topex geophysical
data records (GDR), the collocation exercise yielded 4512 hits
for the period between September 1992 and December 1998.
Basic outlier removal was performed by eliminating any data
for which the altimeter wind speed (retrieved with WC91) and
the buoy wind speed differed by more than 5 m/s, resulting in a
final dataset of 4444 collocated measurements.

The measurements in the collocated dataset consist of the
Topex altimeter backscatter coefficient and the SWH at both
Ku and C band, the buoy wind speed and direction, buoy SWH,
mean and peak wave period, and air and sea temperatures. Buoy
wind speed consists of the mean value computed for 8 min.
Where the buoy anemometer height differed from the standard
10 m height, wind speeds were adjusted using the air–sea tem-

perature dependent correction factors reported by Dobson [14],
[15]. The altimeter measurement for any given collocation point
corresponds to the single 1 Hz altimeter data located closest to
the buoy position within a 50-km radius. No attempt was made
to compensate for the gradual drift in Topex’s SWH estimates
toward the end of 1998, as the magnitude of the error at the end
of 1998 remained small (0.2 m [16]) and affected only 10%
of the dataset. Results were found to be consistent with sim-
ilar computations performed previously on a smaller 1992–1997
dataset, thus confirming that the drift in Topex SWH has no per-
ceptible impact on our analysis.

III. EMPIRICAL WIND ALGORITHM DEVELOPMENT

Many methods have been used to derive the relationship
between wind speed and altimeter backscatter. These range
from multibranch polynomial fits [4] to theory-driven formula-
tions [6], [17] or statistical histogram-matching approaches [5].
These algorithms form a disparate collection of relationships,
which can be difficult to inter-compare. Here, we propose to fit
our dataset with a number of simple functional forms inspired
by previously suggested models. To avoid problems of spu-
rious multipeaked histograms [18], only continuous and fully
differentiable functions able to describe the full wind speed
range from 0 to 20 m/s are considered. Results are presented
for a small selection of the more successful models, chosen for
their ease of implementation and the use of a minimum number
of fitted coefficients.

A. Nonlinear Least-Square Fitting Procedure

The LSQ fitting to the collocated dataset of nonlinear
functional forms was performed with a Levenberg–Marquardt
optimization program available in the MATLAB Optimization
toolbox. A bootstrap with replacement approach was adopted
to provide confidence intervals for the fitted coefficients and
the statistical parameters. A validation dataset of 882 points
was generated by randomly extracting 20% of the dataset
to enable independent assessment of the algorithms. The
development dataset used for the LSQ fit consisted of the
remaining 80% of the dataset augmented to the original dataset
size by duplicating a random 882 of the remaining data points.
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TABLE I
WIND ERRORSTATISTICS OVER THE FULL WIND SPEEDRANGE FORSINGLE PARAMETER ALGORITHMS

The data splitting and the fitting procedure were repeated 400
times for each algorithm. In this case, the statistical parameters
started to display a normal distribution after approximately 200
iterations.

For each realization, the parameters were evaluated also for
four reference models: the -only algorithms of 1) WC91 [7]
and 2) Freilich & Challenor (FC94) [5]; and the (, SWH) al-
gorithms of 3) Glazman & Greysukh (GG93); and 4) Gourrion
(Gr00) [19]. The GG93 algorithm refers to the “-resolved” al-
gorithm in the original paper where the altimeter backscatter
coefficient and SWH serve to calculate the pseudowave age
used to discriminate between two distinct-only models for
young and mature seas. The Gr00 algorithm refers to the di-
rect model, obtained by applying neural network tech-
niques to a large dataset of collocated Topex altimeter/NSCAT
scatterometer observations. Where algorithms were developed
for Geosat data (WC91, GG93, FC94), the Topex backscatter
coefficient was adjusted accordingly [20]. Similarly, where al-
gorithms were developed for neutral stability wind speed mea-
surements at 19.5 m height (FC94), the buoy wind speed was
adjusted to 10 m using [21].

B. Global Wind Error Statistics

Following common practice, the performance of the LSQ al-
gorithms was evaluated using the mean, root-mean-square error
(rms) and standard deviation (std) of the wind errordefined as

(1)

The functional forms and global wind error statistics of the
selected one-, two-, and three-parameter LSQ models are given
in Tables I and II. Note that all functional forms presented
make use of the backscatter coefficient in its linear form,,
which yields faster convergence (yet similar LSQ results) than
the same formulations based on in decibels. Among the
formulations in Tables I and II are model [M1] based on the
power of law suggested by [18] and model [M3] inspired by
the combination of a power law and an exponential proposed
by [5] in their inverse model. The figures in brackets in Tables I
and II represent the 95% confidence interval obtained from the
bootstrap method. Similarly, the values of the fitted coefficients

and their 95% confidence intervals are given in Table III. The
goodness of fit to the data of the various one-parameter models
can be assessed from Fig. 2.

From the mean wind error (bias) results in Tables I and II, we
find that all LSQ relationships remove the overall wind error
bias of the order of 0.2 m/s otherwise observed in the reference
models. Similarly, we find that even simple functional forms
return significantly reduced wind residuals at the 95% confi-
dence level. Similar functional forms applied to the backscatter
coefficient at Ku-band ([M1] and [M2]) and at C-band ([M4]
and [M5]) demonstrate the clearly degraded performance of
the C-band based models, thereby confirming that, at nadir,
Ku-band backscatter is better correlated with wind speed than
C-band.

In Table II, the impact of the SWH parameterization is ex-
amined with algorithms [M6]-[M8] using the same backscatter
dependence as -only models [M1]–[M3]. Here, the SWH in-
formation comes from the altimeter measurement at C-band,

, which correlates slightly better than with the
buoy SWH. The difference between and is
within the magnitude of the error measurements so that little
difference is observed when using instead of .
The dependence on SWH in the LSQ models was introduced as
a power law which describes well the variation of with SWH
[see Fig. 3(a)]. The SWH parameterization is seen to address
some of the variability observed at intermediate wind speeds
in the to relationship [see Fig. 3(b)] when compared to
the equivalent -only functional forms in Fig. 2. Best residual
error results amongst two-parameter models were obtained with
algorithm [M7] and [M8], which displayed an rms error reduc-
tion of the order of 10% with respect to the-only reference
algorithms.

Finally, model [M9] represents one example of the combined
use of Ku- and C-band backscatter in a three-parameter exten-
sion of the formulation used in model [M7]. From this and other
tested forms (not shown), there is no evidence that any signifi-
cant improvements can be achieved with an additional C-band
backscatter parameterization.

On the basis of these results, best performance is achieved
equally with two-parameter models [M7] and [M8]. Here,
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TABLE II
WIND ERRORSTATISTICS OVER THE FULL WIND SPEEDRANGE FORTWO- AND THREE-PARAMETER ALGORITHMS

TABLE III
COEFFICIENT OF THELEAST-SQUARE FITTED FUNCTIONAL FORMSFORMULATED IN TABLES I AND II WITH 95% CONFIDENCEINTERVALS IN BRACKETS

Fig. 2. Wind speed against altimeter Ku-band backscatter coefficient for
collocated buoy/Topex dataset, two reference models (WC91, FC94) and three
LSQ � -only formulations.

model [M7] is shown a marginal preference given its smaller
number of fitted parameters. Model [M7] is used in [22] as
the empirical model selected for comparison with theoretical
models predictions at nadir.

IV. WIND ALGORITHM PERFORMANCE: A CLOSERLOOK

Although global statistics are used traditionally to compare
the performance of models, further tests are advisable to assess

the validity of altimeter wind speed algorithms. In particular, it
is important to ensure that the performance of LSQ models are
maintained over the whole range of wind speeds.

A. Local Wind Error Statistics

We start by looking at the wind error statistics calculated lo-
cally for individual wind speed bins. Fig. 4 represents the wind
bias and std calculated over 1.5 m/s wide wind speed bins for
three -only models (WC91, FC94, and model [M3]) and three
( , SWH) models (GG93, Gr00, and model [M7]).

In Fig. 4(a), the Gr00 model produces the most consistent
near-zero bias over the full wind speed range. The WC91
model displays a positive bias ranging from 0.2 m/s at low
winds 10 m/s to 0.7 m/s at high winds 10 m/s , thus
confirming previous findings that the WC91 algorithm system-
atically overestimates all wind speeds. In contrast, the FC94
model underestimates wind speeds by as much as 0.5 m/s for
low winds between 4 and 10 m/s, while giving satisfactory
results for higher winds. Model GG93 display a monotonically
decreasing trend which underestimates wind speeds by 0.5
m/s or more for most of the wind range m/s . LSQ
models [M3] and [M7] display biases at low winds markedly
larger than any other algorithms. This can be traced to the
poorer fit of the curvature of the to relationship around

m/s [see Figs. 2 and 3(b)].
The wind error std in Fig. 4(b) broadly falls between 1.0 and

1.7 m/s for all models, and for all models the larger variability is
observed at wind speeds around 13 m/s (for reasons that are not
clear). The LSQ models [M3] and [M7] display the smallest std
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(a)

(b)

Fig. 3. (a) Wind speed against altimeterSWH for collocated buoy/Topex
dataset and altimeter wind speed retrieved with LSQ model [M7] featuring
a sea state parameterization as a power ofSWH . (b) Wind speed against
altimeter� showing the variability in theU to � relationship due to
SWH at intermediate wind speeds.

values of about 1 m/s for wind speeds around m/s, thus
highlighting the strong weight given to minimizing errors in this
high data density region with the LSQ technique. The WC91 and
FC94 models show consistent std over the wind speed range but
are generally higher than all other models. The best overall per-
formance in terms of consistency and low value of the std may
arguably be attributed to the GG93 model, which also returns
the smallest std at extreme wind speeds.

B. Residual Dependence on Wind Speed

Another way to look at algorithm performance is through the
residual dependence of the wind error on other variables. The
dependence of the wind error on the buoy wind speed is shown
in Fig. 5 as calculated for the same six algorithms as before. The
contour lines represent the density of points and help highlight
any residual dependence in the wind error.

Here, model WC91 and Gr00 produce the best results as wit-
nessed by the isotropy of the contour lines. In contrast, model
GG93 and LSQ models [M3] and [M7] produce clear warped
results, indicating a residual trend with buoy wind speed. In this
case, model GG93, [M3] and [M7] all appear to overestimate
low and underestimate high wind speeds. Here, we shall just
note that these latter models were all developed from small col-
located buoy/altimeter dataset, while models WC91, Gr00, and
FC94 which do not display the same trend, were derived from
more extensive global datasets.

C. Retrieved Wind Histograms

The agreement of the retrieved wind histogram with the
original buoy wind speed histogram provides one more test of
the validity of the algorithms. This is particularly important
for wind climatology studies of regional/global and inter-an-
nual/decadal changes in wind forcing. Fig. 6 compares the
histograms of the wind speed retrieved for the six selected
models with the histogram of the buoy wind measurements. The
coefficient represent the correlation between the altimeter
retrieved and the buoy wind speed histograms shown in each
subplot.

Here again, models WC91 and Gr00 produce the best
fit between the retrieved and buoy wind histograms, with a
correlation in excess of 0.99. LSQ models [M3] and [M7]
display clear signs of the shortcomings of the LSQ approach
in the present case, with retrieved wind histograms appearing
narrower and peakier and enhanced density maxima around the
dominant wind speed of m/s. The GG93 algorithm
results in a similar albeit less marked problem and a clear shift
of the density maximum toward lower wind speed [as suggested
in Fig. 4(b)]. The FC94 wind speed displays a Rayleigh-type
distribution which differs markedly from the original buoy
wind speed histogram, thus highlighting that 1) our 4500 points
dataset is NOT representative of the global wind field, and 2) by
way of its derivation, the FC94 model is designed to reproduce
the Rayleigh-type wind distribution of the global ocean and
thus performs less satisfactorily in a typical conditions.

D. Residual Dependence on Wave Age

The availability of in-situ wave period measurements from
the buoys collocated with the altimeter enables us to examine
any dependence of the altimeter wind speed on sea state ma-
turity as suggested by [12]. Here, we will simply look at the
residual wind calculated for the six chosen models against real
wave age, , defined as , with the peak
wave period measured by the buoys. A more detailed investiga-
tion of the effect of wave development (e.g., through fetch) on
altimeter winds can be found in [23].

The residual wind results are shown in Fig. 7 and have been
fitted with a 4th degree polynomial (depicted by the starred line)
to capture the changes in trend over the wave age range. From
this, a clear residual dependence on real wave age is observed
for all wind speed models, including the SWH-dependent two-
parameter models. The relative trends for the different models
are more easily inter-compared in Fig. 8, where the sea maturity
effect causes a 1–1.5 m/s mean underestimation of wind speeds
in young seas conditions for all models.
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(a)

(b)

Fig. 4. (a) Wind error bias and (b) std calculated for 1.5 m/s wide wind speed
bins for three� -only models (WC91, FC94, and [M3]) and three (� , SWH)
models (GG93, Gr00, and model [M7]).

We note from Fig. 8 that the Gr00 model produces the
smallest residual dependence on wave age, closely followed
by the GG93 model. The LSQ models [M3] and [M7] display
the largest residual dependence on wave age, although the
reduction in magnitude of the wind error for model [M7] for
both young and mature seas is consistent with the inclusion of
a SWH parameterization. For young seas, the-only WC91
model unexpectedly returns the smallest wind error. This is
attributed however to WC91 generally overestimating all wind
speeds and thus providing a closer fit than other models to the
higher wind speeds seen for young seas. This is confirmed by
the results for the -only FC94 model which shows a trend of
similar amplitude to WC91 but shifted toward more negative
wind errors.

E. Discussion

A closer look at the performance of various algorithms re-
vealed that minimizing the global wind error statistics is not

Fig. 5. Wind error,e, against buoy wind speed for three� -only models
(WC91, FC94, and [M3]) and three (� , SWH) models (GG93, Gr00, and
model [M7]).

Fig. 6. Altimeter retrieved (thick line) and buoy wind speed (thin line)
histograms over 1.5 m/s wide wind bins for three� -only models (WC91,
FC94, and [M3]) and three (� , SWH) models (GG93, Gr00, and model [M7]).

sufficient to assess the overall validity of altimeter wind speed
algorithms. Instead, the various characteristics of each model
described in Sections II and III need to be accounted for. The
pluses and minuses of each of the six models considered so far
can be quantified and summarized as in Table IV to help make
a balanced decision. Here, the performance of the algorithm is
scored in every category by star ratings as poorto moderate

and good .
The scoring in Table IV allows us to clearly identify the

Gr00 model as the best model overall with average to good
performance in all categories considered. Next best algorithm
according to this classification is the WC91 model, whose
major drawback lies in the systematic overestimation of the
wind error (positive bias) and the higher global and local std
of -only models. At the other end of the performance scale,
model LSQ [M3], GG93, and LSQ [M7] are performing much
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TABLE IV
SUMMARY OF PERFORMANCE FORTHREE� -ONLY MODELS(WC91, FC94,AND [M3]) AND THREE(� , SWH) MODELS(GG93, GR00,AND MODEL [M7]). THE

STAR RATING IDENTIFIES FOR POOR, FOR AVERAGE AND FOR GOOD

Fig. 7. Wind errore against real wave age,�, for three� -only models (WC91,
FC94, and [M3]) and three (� , SWH) models (GG93, Gr00, and model [M7]).
The starred line represents a 4th degree polynomial fit representing the change
in trend for young(� < 1:5) and mature seas(� > 1:5).

less satisfactorily, particularly in terms of the poor description
of the wind speed over the full wind range. As noted earlier,
these problems seem to be specific to those models derived
from fitting relatively small collocated buoy/altimeter datasets.
This may point at possible effects related to the composition
of collocated buoy/altimeter datasets or the existence of mea-
surement errors. These issues are explored further in Section V.
Overall, the addition of the SWH dependence in Gr00 allows
this model to be preferred to the currently operational WC91
model, predominantly in view of its reduced wind error bias
and its sensitivity to sea state development effects. We note
however that the SWH parameterization is not sufficient to
address fully the dependence of altimeter wind speed on sea
state development.

V. EFFECT OFDATASET COMPOSITION AND MEASUREMENT

ERRORS ONALGORITHM DEVELOPMENT

The LSQ fitted models developed from our collocated
buoy/altimeter dataset have so far proven unable to produce
satisfactorily results over the full wind speed range, while
producing exceptionally good results near the peak of the
wind speed distribution (around m/s). The impact
of the strongly peaked distribution on the fitting

Fig. 8. Residual wind against real wave age trend from Fig. 7 for three� -only
models (WC91, FC94, and [M3]) and three (� , SWH) models (GG93, Gr00,
and model [M7]).

procedure is investigated here by comparing LSQ results ob-
tained by fitting a measurement subset produced by equalizing
the two-dimensional (2-D) histogram of the full
collocated dataset. For this, the data in each bin of the 2-D
histogram are randomly sampled to retain a maximum of
samples (here, ), thereby flattening the histogram and
artificially thinning the dataset.

The possible impact of measurement errors on the perfor-
mance of the LSQ algorithms is explored with a different fitting
procedure known as orthogonal distance regression (ODR) [24].
This technique allows nonlinear functional forms to be fitted to
data while accounting for normally distributed errors in all vari-
ables. This technique is effectively a generalization of the LSQ
fitting method, which also assumes normally distributed errors
but only in the output variable (so far in this paper, buoy).
The ODR technique thus allows uncertainties in the altimeter
measurements to be accounted for as well. Note that this demon-
stration exercise is restricted to -only formulations (i.e., no
SWH dependence included) as the primary aim is to understand
what factors are responsible for the poor description of the
to relationship obtained by fitting our dataset.

The histogram-equalization and ODR exercises are carried
out with a different functional form, proposed by Freilich and
Challenor [5] to approximate the results of their statistical fit of
a global dataset. Although the FC94 model did not stand out in
Section IV as the optimal choice for a comparison, it is the only
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Fig. 9. Altimeter Ku-band backscatter to buoyU relationship for LSQ and
ODR fits of functional form (2) to the full collocated buoy/altimeter dataset
(4444 points; ODR3) and the histogram-equalized subset (479 points).

globally-derived model which results are approximated with a
simple analytical formulation and which allow a direct evalu-
ation of our fitting procedure. The analytical approximation of
the FC94 model expressed as a function of wind speed at 19.5
m, , reads

dB (2)

The functional form in (2) is fitted to the full dataset and
the histogram-equalized subset using the ordinary LSQ and the
ODR methods initialized with the same parameters. The ODR
procedure was run without a priori assumptions on the magni-
tude of the NRCS and wind speed errors. Estimates of the error
were produced by the ODR in the course of the fit for each vari-
able at each point. From this, it is possible to evaluate the std
of the error distribution, which in the present case was of the
order of 0.5 m/s and 0.5 dB for wind speed and NRCS, respec-
tively. The four resulting models are shown in Fig. 9 for com-
parison with the FC94 model, and superimposed on the point
density contour lines obtained for the full collocated buoy/al-
timeter dataset. Similarly, Fig. 10 shows the residual wind bias
and std calculated over 1.5 m/s wind bins obtained for those
same models.

Let us first consider the effect of dataset distribution on the
quality of the models. We find that the LSQ results differ widely
depending on which dataset is fitted. When fitting the full collo-
cated dataset, the LSQ results closely trace the ridge of highest
point density seen in the contour lines, but at the expense of
the fit at extreme wind speeds. When applying LSQ to the his-
togram-equalized dataset, the resulting model diverges from the
histogram peaks but remains unsatisfactory, as it becomes ex-
cessively sensitive to a typical data on the edges of the main
body of the data. In contrast, the histogram-equalization has
little effect on the results of the ODR fit.

(a)

(b)

Fig. 10. (a) Wind error bias and (b) std calculated for 1.5 m/s wide wind speed
bins for� -only models WC91, FC94, [3] and ODR3, and (� , SWH) models
GG93 and Gr00.

The ODR results, obtained with the same functional form as
for LSQ above, present a much improved fit, which compares
favorably with the global FC94 model for winds above 3 m/s.
We note that the ODR results closely follow the high data den-
sity ridge also while offering a good approximation of the data
at extreme wind speeds. The ODR models now adequately de-
scribe the sharp change of slope near dB [responsible
for the increased bias in LSQ models at low winds; see Fig. 4(a)]
and offer an even better approximation of the data at low winds

m/s than the FC94 model. Fig. 10 supports these
findings with the wind error bias [see Fig. 10(a)] and std [see
Fig. 10(b)] for the ODR models now showing more consistent
results over the range of wind speeds considered. Hence, ac-
counting for normally distributed errors in both output and input
variables with ODR permits the removal of undesirable prop-
erties of the LSQ fitted models, and returns results similar to
those of models developed from large global dataset. Thus, al-
timeter quantization and buoy measurement errors play a major
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role in defining the performance of the derived models, and this
error-related problem can be resolved either by developing algo-
rithms from as large as possible datasets (of the order of 100 000
data points as for WC91 and Gr00) representative of the global
ocean, or by selecting statistical techniques which can account
for the presence of errors in the fitted dataset.

VI. CONCLUSION

A new dataset of collocated buoy/Topex measurements has
been collated for the open ocean to investigate the relationship
between wind speed and altimeter backscatter and SWH. The
4500-strong dataset was fitted using a LSQ method with a se-
ries of simple nonlinear functional forms inspired by previously
published models. Comparison with four published models in-
dicated that the addition of SWH information helps reduce the
wind error std by about 10%. The LSQ models were found to
produce the best results in terms in global wind bias and std
when compared to the published models, but further analysis
revealed shortcomings related to the poor description by LSQ
models of the wind speed to backscatter relationship at extreme
wind speeds. Best overall results were obtained for two-param-
eter algorithm by Gourrionet al. [19], although a residual de-
pendence on sea state maturity remains for all models, resulting
in wind speeds being underestimated by 1–1.5 m/s in young sea
conditions.

An investigation into the impact on the LSQ fits of data dis-
tribution in small collocated datasets confirmed that the ordi-
nary LSQ technique is not suitable for wind speed algorithm
development as the principle of minimizing the distance be-
tween true and retrieved winds attributes excessive weight to-
ward optimizing the fit near the peak of the wind distribution
to the detriment of data at extreme wind speeds. A generaliza-
tion of the LSQ approach known as ODR was implemented and
established that the performance of models fitted to buoy/al-
timeter datasets can be vastly improved when accounting for
normally distributed errors in both altimeter and buoy measure-
ments. Hence, algorithms developed from relatively small col-
located datasets (few thousand points) could match the perfor-
mance of models developed from much larger datasets (few ten
thousand points) if adequate statistical methods which account
for measurement errors are used.

The application of ODR to two-parameter wind speed algo-
rithm development is deferred to another paper as several issues
need to be considered related to using ODR in three dimensions
and to dealing with nonnormal wind error distributions. It is an-
ticipated however that, in spite of more sophisticated statistical
methods, the accuracy of wind speed algorithms is ultimately
dictated by the quality of the fitted data. In the case of collo-
cated buoy/altimeter datasets, it is conceivable that today’s un-
certainty in buoy measurements of wind speed at sea [25] al-
ready limit the possibility of further improvements with these
methods.
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