Estimation of Spectra from
Speckled Images
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The effect of coherent speckling on the spectra of images and other
signals is investigated. A method for estimating the spectrum of the
unspeckled image is developed, and the errors inherent in such an
estimate are analyzed. It is found that the error decreases when
number of looks, number of averaged spectra, and contrast increase,
and when spectral width decreases.
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1. INTRODUCTION

Images and signals produced by coherent systems
are subject to the phenomenon of speckle [1]. The cause
is interference between wavelets returned from the
various scatterers within the resolution element of the
system. The result can be looked at as a form of multi-
plicative noise [2—35] with standard deviation equal to
its mean [1].

This noise can be particularly troublesome due to the
large standard deviation, and various schemes have
been proposed to deal with it, such as time or frequency
diversity [1], multilook processing (incoherent averag-
ing) [6], or various types of linear [2—5] or adaptive [7]
filters. These efforts have generally been directed
toward improvement of the signal in the time or image
domains. However, applications exist in which the spec-
trum of the output is of primary interest. For example,
synthetic aperture radar (SAR) images provided by the
SEASAT satellite are under intensive analysis for the
purpose of studying ocean wave spectra [8, 9], and even
in linear or adaptive filtering aimed at image improve-
ment, it would be useful to have a good estimate of the
underlying image spectrum rather than working from an
a priori assumption such as is often done [7].

Below we address the problem of estimating signal
and image spectra from speckled data. We first discuss
the effects of speckle and then ¢onsider the method and
errors involved in making the estimate.

II. THE NATURE OF SPECKLE

A useful model of speckle is given by Goodman [1].
Based upon this model, assume that our signal z; (defin-
ed on a discrete time domain) is subject to a multi-
plicative noise process v; so that the speckled signal z;
results
Zi = Vi (l)
Although we will work in one dimension, our results are
easily extended to two-dimensional images.

The speckle process v, is governed by the ‘‘multilook
Rayleigh’’ distribution; that is, it can be looked upon as
the sum of n independent exponentially distributed
variates, n being the number of looks. The probability
distribution for each of the v; is thus
P.(v) = [v/(n- 1! Fle”’ 2)
where (v) = nl. A general expression for the moments
of this distribution is
M =[(n+ k-1D)/(n-1)] I A3)
where M; is the k-th moment of the n-look distribution.

Some important moments and the corresponding stan-
dard deviations are listed in Table I. We see that, for
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TABLE 1.
Number of Looks (n)
1 2 3 n
M 1 2/ 3 nl
M7 202 6 122 nn + DI?
T I V21 V3T Vi

single look noise, the standard deviation is equal to the
mean. This is, therefore, an extremely bothersome type
of noise.

III. CONTRAST

We wish to estimate the spectrum of a signal present
in an ‘‘image’’ that has been speckled by the process
described above. Since images represent power, and can
never be negative, they can be separated into ‘‘ac’’ and
‘‘d¢’’ parts. The presence of a dc bias introduces the
idea of contrast, which we define below.

Fig. 1 defines the parameters A and H for a
sinusoidal signal. One definition of contrast that is
often used in the synthetic aperture radar literature is

@

By this definition C < 1 for nonnegative signals, with C =
1 corresponding to a sinusoidal signal whose minimum
value is zero. Since images represent an intensity that is
always nonnegative, their contrast is never greater than 1.
For signals not so limited, the contrast can be greater. For
example, a sinusoid of zero mean has a contrast of 2.

For signals more complicated than sinusoids, it is
necessary to come up with a different definition of con-
trast. We will choose a definition that is consistent with
the one above in the special case of sinusoidal signals. A
sinusoid

C=A/H.

f(®) = a cos wt ®)
has mean power (variance)

o} = a*/2 = A*/8. 6)
Combining (6) with (4) suggests that we define

C =2VZo/(f) + VZo) Q)

for general signals, where o} is the average ac power,
and (f) is the dc signal level. For signals with zero mean
(dc level), C = 2. Any signal g.(¢) with contrast C can
then be written in terms of another signal g, with con-
trast 2 (zero mean) as

g(0) = &) + (1/C-3)2VZo, ®)
where o}, the average ac power, is the same for g,
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and g,. The contrast C and contrast 2 signals differ in
bias level. The relationship between their Fourier
transforms is as follows

(1/C-%)2yZo,, k=0
g.(k) = { )

§2(k)s k '_’é 0

where the tilde symbol indicates Fourier transform and

£:(0) = 0. (10)
The power spectral densities are related as
2[2-C)/CY? ag, k=0
Sc(k) = (11)
Sz(k), k # 0.

1IV. SAMPLED SIGNAL

We define the discrete Fourier transform (DFT) as

f=/N) T g (12)

For a sampled signal, defined on a “‘circular’’ do-
main of length N, Parseval’s theorem states that
N-1

(1/N) ZO ilr= X AL

If the signal g. of contrast C is sampled, we thus find

(13)

o = (lg.| - (g (14)
= I:g-‘: Sz(k) = I:g: Sc(k) 15)

V. EFFECT OF SPECKLING

In what follows we will be discussing three signals:
&2, which has zero mean, g. which has a bias added so
that it has contrast C, and g. which is the coherently
speckled version of g.. The relationship between g, and
8. 1s given in (8); that between g, and g_ is
gy = g v (16)
where v, is the multilook Rayleigh process described
above.

Consider the signal

Z; = i an
Transforming this we get
Zi= 2 ZHo,v,. (18)

4
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Fig. 1. Contrast parameters.

The power spectral density of the speckled signal is then
given by
SL=@E0 = T X @, n- %0 (19)
P q
where the brackets indicate the ensemble average, and z
and v are assumed to be independent.
With regard to (19) we note that, in general,
N—1 N—-1
(fog) — ([/NZ) E E‘ (f;,kfm>e_(2"i/2N) (bm—kn)_ (20)
n=0 m=0

For a stationary random process,

< n*z"l> = Rz:(n - m) (21)
where R, is the autocorrelation function of z. Making
appropriate changes of variables and noting that all
arithmetic is modulo N, we can insert (21) into (20) to
get

@) = (IUN) by 3 Ruld) ™ @)

= 8/((’ Szz(k) (23)
where S..(k) is the power spectral density of z. Putting
(23) into (19) we find

S.(k) = § S..(k-p) S,.(p) (24)
where S is the spectral density of v.

Thus, as long as z; is stationary, the power spectral
density of z; will be the convolution of the power spec-
tral densities of z; and v,. Let us assume that a(i) is the
normalized autocorrelation function of v. Then

(v,v,) = n*l*[1 + (1/n) a(i - j)] 25)
and
S,.(k) = n*I* [8(k) + (1/n) a(k)]. (26)

Inserting this into (24) we see that, in general,
N-1
Sdky = wP {S.k) + (1/m) T S0 dtk - ).

We will consider three special cases.
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Case 1. Uniform Target. If the target is uniform,
the z process power spectrum has only a dc component
So(k) = K d(k) (28)
where K is a constant and we have indicated by the
subscript that a dc signal has zero contrast. The power
spectrum of the speckled image is then
So(k) = K n*I*[8(k) + (1/n) a(k)). (29)

Since this equation can be solved to give & in terms
of So, it is possible to determine the speckle process
autocorrelation function when the target is known to be
uniform. The significance of this lies in the fact that the
speckle correlation is often produced by the imaging
system being used, and thus this property of the system
can be studied by deliberately viewing a uniform target.

This technique has been used in the analysis of
SEASAT-A image spectra [10].

Case 2. White (Uncorrelated) Speckle. 1n this case

a(i) = d() (30)
a(k) = 1/N €Y
yielding

Sdk) = n*I* {S.(k) + (1/m) 8.} (32)

where we have defined the average spectral power

S.=(I/N) T 5.0). (33)

The ensemble mean power spectral density (psd) of
the speckled signal is proportional to that of the
unspeckled sigﬁal, but has added to it an overall bias
proportional to the average psd (average taken over all
frequencies). Hence, a psd that is sharply peaked, such
as that shown in Fig. 2, will stand out more strongly
against the bias than will one that is broader. In these
figures, (32) implies that the areas are related as
A = (1/n)A. (34)

In a later section we will show that the residual noise
in the psd estimate is proportional to the psd itself.
Therefore, the broad psd will be more corrupted by
noise due to the ‘‘bias’’ than will be the sharp psd. The
latter is thus easier to detect and measure.

Case 3. Nearest Neighbor Correlation. We assume
that nearest neighbor sample points are correlated to
some extent. That is, we let
a(i) =d@(@) + ed(i-1) +edi + 1) 35
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Fig. 2. Effects of speckling

so that

a(k) = (1/N) [1 + 2ecos(2nk/N)] (36)

and

Si(k) = n2P {S.k) + (1in) S,

N—1 277
+ (2&/nN) ; S.(6) cos— *k — 0 (37
=0

a relationship much more complicated than that of (32).

It is important to note that, while uncorrelated
speckle merely added a bias to the spectrum, correlated
speckle adds power that is not uniform in wavenumber,
thus changing the shape of the spectrum. A common
practice in viewing image spectra is to use a pseudo-
color display. When this is done, the choice of colors
usually in effect subtracts a bias from the spectrum, so
that the observer of a spectrum corrupted by uncor-
related speckle does indeed perceive the main features of
it correctly. The observer of a spectrum corrupted by
correlated speckle, however, may perceive features
which are more characteristic of the speckle process
than they are of the underlying unspeckled image spec-
trum. )

The question of how the underlying spectrum is best
to be estimated is taken up in the next section.

VI. ESTIMATION OF SPECTRUM
To estimate the spectrum S, from the speckled spec-

trum S., it is necessary to invert (24). Using (26) and
the definition of the Fourier transform, (24) becomes

Suky = mI{SK) + (1/n) T a@) e>M*
(/N) 2 Sy e on, (38)

Defining
S.(k) = (1IN) ; S.(£) et (39)

(we note that &, is neither the Fourier transform nor
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inverse transform of S. according to our notation, hence
the new definition and variable), (38) becomes

S'dk) = mP{SLk) + (1/m)2a() L) e~ O K},
(40)

Multiplying (40) by ¢?™™ ‘and summing over k yields

S8 = nHH{F () + (I/n) a(€) F (O} 41
so that
(0 = (1n*?) {n/[n + a(O)} FL&). 42)

Putting (42) into (40) and solving for S( we obtain the
desired spectral estimate:

N-1
S{(k) = (1/n*I?) {Sé(k) - Zo {a()/[n
+ a()IFe(j) e @M b}, 43
Equation (43) is our general result. Having used it to

estimate the psd of the contrast C signal, we can then go
on to estimate the psd of the zero bias signal (from (11)):

0, k=0
S.(k), k#0.

S:(k) = { (a4)

We consider two special cases.

Case 1. White (Uncorrelated) Speckle. In this case
a(i) = &(i) so that (43) becomes

Scky = (1Un?P) {Se(k) — [1/ (n + 1] FLO)}. (45)

But

Fu0) = (UN) 2 5:6) = S (46)
so that (45) becomes
S.(k) = (I/mI) {Sk) - [1/(n + D] S} (47)

which is a result we could also have derived directly from
(32).

Thus estimation of the spectrum in the case of un-
correlated speckle is accomplished by subtraction of an
appropriate bias.

Case 2. Nearest Neighbor Correlation. Putting (35)
for a(i) into (43) yields

S(k) = (1/n*1?) {S;(k) - [1/(n + 1)] S. -[2e/(n
+ €)] (1/N) TZ; S.(2) cos(2n/N) (k — l)}.
(48)
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Therefore, a priori knowledge of the speckle
autocorrelation function, such as is available through
the study of uniform targets (see (29) above), allows the
underlying image spectrum to be estimated. The correc-
tion is, however, more complicated than merely the sub-
traction of a bias. For cases in which correlation exists
beyond nearest neighbors, this process is easily extend-
ed, with (48) gaining added terms similar to the last one:
convolutions between S. and cosines of various orders.

VII. ERROR IN ESTIMATION

Equation (43) gives the spectral estimate in terms of
the spectrum of the speckled signal. The speckled signal
is a random process, and therefore this estimate will
have a noiselike character. The estimates given above
will be the mean value of this random process, but what
will be its standard deviation? To answer this, we will
first consider the probability distribution of the S.(k).

Consider a speckled process
é,' = x,'V.' (49)
in which the v, are as described in (16) and x; is a single
realization of a real nonnegative stationary random pro-
cess (the unspeckled signal). The psd is given by
S'(k) = <E*E>. (50)
We begin by considering the probability distributions of
the £,. From (49)

N-1
gk = (I/N) % e~ 2TN) ki ;. (51
=
We assume that the v, are at most locally correlated.
That is, their correlation length £ is small compared to
the span of the data N. Then, even if the x; exhibit
significant correlation over long distances, the right side
of (51) is essentially a sum of N/{ statistically indepen-
dent phasors, a large number due to the smallness of £
relative to N. Since the x; are stationary, no terms in (51)
dominate the sum and the central limit theorem may be
applied separately to the real and imaginary parts of Ek
implying that they are both normally distributed.
The real and imaginary parts of (51) are

R & = (UN) T cosl@n/N) ki, 52
Imé& = (IN) E: sin[2mN) kj] &, (53)
The expectation}value of their product is
((Re &)Um &)= (1/N?) NZ NZ

cos[(2n/N) kj] sin[(2n/N) kf] h(L - )) (54)

where

h(d-j) =, &) (55)
is an even function. Algebraic manipulation showsk 59
to be zero so that the real and imaginary parts of £, are
uncorrelated. Since they are also normal this implies
that they are independent. Thus £, has independent
normal real and imaginary parts, and is hence a
Rayleigh phasor.

The probgbility distribution of the squared
amplitude of &, will be

P& = (1/a)e &1 (56)
where
a=N(£)/N* = (§2)/N. 57

and using the moments of this distribution tabulated in
Table I we find

Sty = (&) = M} = a (58)
[6S(O) = M - (M})* = o (59)
so that

dS(k) = S(k). (60)

The cases k& = 0 andwk = N/2 must be treated
separately since £, and &y,, are real. When this is
done, and we combine the three cases we find

V2ISO0y-ml, k=0
daS(k) = { S(k), k+#0,N/2
VZ S(N/2), k = N/72.

(61)

Equation (61) implies that the error in estimating S(k) is
proportional to S(k) itself. If S(k) is estimated from v
independent averaged samples, the distribution of (56)
should be replaced by the ‘‘v-look”’ distribution ((2))
and the error becomes (considering the Kk = 0 and k =
N/2 cases separately)

VZv \/1-[m&/SK)T , k =0,
8S(k)/S(k) = { V17, k#0, N2
V27, k = N/2.
(62)

VIII. IMPLICATIONS

Let us consider the implications of this result for the
estimation of an actual power spectral density. We
assume a Gaussian shape for the psd
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Pk) = ae* "7 (63)

a contrast of C, and an n-look image with white speckle.
Finally, we assume that v independent power spectra are

averaged. From Parseval’s theorem we sec that the

mean power of the process g is

o= 2 Pky=awyn 64

so that the power spectral density of the contrast C

signal is (from (11))
2[2-OC)/Clawyn, k=0

PLk) = (65)
P), k # 0.

The averaged psd will be

P. = (UN) 2 P(O) (66)

7
= (@awVn/N){l + 2[(2- C)/C)*} ©n

so that the psd of the speckled process is, by (32),

n*l? aw Va2(1 +

1/nN)[(2 - C)IC)?
+ 1/nN], k=0
P:(k) = (68)

n22(P(k) + (aw VaN){(1/n)
+ 22 - OCI}), k #0.

Let us consider only the estimate of the magnitude of
the spectral peak, which (63) implies should be

P(k,) = a. 69
From (68)
Pdk,) = a n’I’(l + Vn (w/N) {(1/n)

+ (2/n)[2-C)/ C]’}). (70)

Equation (62) implies the error in the estimate of this
will be

8Pclko) = (1/Vv) Po(Ko). Q)]

From the estimate of the speckled spectrum, we subtract
the correction term given in (47). Of course, there will
be some error in estimation of the correction term P,
but since a large number of terms are averaged to com-
pute it, we will assume that this error is negligible com-
pared to (71). That is, the correction is applied perfectly
so that the final estimate has the correct mean value (cir-
cumflex here implies an estimate)

(P(ko)) = a

but the error in this estimate has standard deviation

(72)
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Fig. 3. Results forn = 1.

8P(ko) = SPy(ko)/m*P = (a/\/v) (1 + V& (w/N)

{(1/n) + @/n) [(2- CO)/CT*}) (73
and the fractional measurement error is
aPko)(P(ke)) = (IVD) (1 + Va(wiN) {(1/n)

+ (2/n) [(2- C)/C)?)). (74)

Clearly, then, the measurement -error decreases when

1) number of looks 7 increases,

2) contrast C increases,

3) width w decreases,

4) number of averaged spectra v increases.

The fractional error for various values of contrast,
number of looks, and width: N ratio is shown forv = 1
in Figs. 3 and 4. Values for C > 1 are shown as dotted
lines since images must have C < 1. We observe that
the minimal value of the fractional error is 1. This is to
be expected since, in the absence of other effects that
increase noise, the distribution of P is exponential with
standard deviation equal to the mean. Clearly, some
averaging of spectra (v > 1) is necessary in all cases for
reasonable estimates to be obtained. This can be ef-
fected by either averaging independent estimates of the
spectra, or by low pass filtering of the spectrum to
smooth it.
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Fig. 4. Results for n = 4. 9]
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