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A theory of guided propagation of sound in layered, moving fluids is extended to include

acoustic-gravity waves (AGWs) in waveguides with piecewise continuous parameters. The

orthogonality of AGW normal modes is established in moving and motionless media. A

perturbation theory is developed to quantify the relative significance of the gravity and fluid

compressibility as well as sensitivity of the normal modes to variations in sound speed, flow

velocity, and density profiles and in boundary conditions. Phase and group speeds of the normal

modes are found to have certain universal properties which are valid for waveguides with

arbitrary stratification. The Lamb wave is shown to be the only AGW normal mode that can

propagate without dispersion in a layered medium. VC 2012 Acoustical Society of America.
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I. INTRODUCTION

Acoustic-gravity waves (AGWs) are mechanical waves

in compressible fluids in a gravity field.1–3 At frequencies

much larger than the buoyancy frequency, AGWs reduce to

acoustic waves (infrasound). At sufficiently low frequencies,

where the fluid can be treated as incompressible, AGWs

reduce to surface and internal gravity waves. The term

“acoustic-gravity waves” is usually employed when restoring

forces due to both gravity and compressibility are significant.

AGWs are known to propagate hundreds and thousands of

kilometers in atmospheric and coupled atmospheric-oceanic

waveguides.4–8 In the past, theoretical investigations of long-

range propagation of AGWs primarily aimed to explain signals

generated by volcanic eruptions and nuclear explosions in

the atmosphere.2,4–7,9–11 Recently, interest in AGW propaga-

tion modeling has been renewed by a vast expansion of the

observation network,8 evidence of ionospheric8,12–15 and

tropospheric16–18 manifestations of earthquakes and tsunamis,

as well as by possible application of these manifestations for

tsunami early detection and warning.12–18

Any detailed description of AGW fields in the atmos-

phere and ocean undoubtedly requires numerical modeling

for specific environmental conditions. However, theoretical

investigations19–24 of general properties and the resulting

qualitative understanding of normal modes have proven very

useful in acoustics, and are likely to play a similar role for

AGWs. While earlier AGW studies typically assumed an

ideal gas half-space overlying a rigid boundary,1,4,9–11,25

investigations of AGW propagation above the ocean surface

and, more generally, of coupling of physical processes in the

ocean and atmosphere, require an environmental model that

allows for a general equation of state of the fluid as well

as the presence of fluid-fluid interfaces and compliant

boundaries. To study properties of AGW normal modes in

such media, in this paper we extend to AGWs a theory22,24

previously developed for acoustic waveguides in stratified,

moving fluids.

The paper is organized as follows. In Sec. II, linearized

equations of motion in stratified, moving, compressible flu-

ids in a gravity field are cast in a form convenient for the

analysis of waves in media with piecewise continuous pa-

rameters. Orthogonality relations for AGW normal modes in

the same or in distinct waveguides are derived in Sec. III. A

close relationship between the AGW mode orthogonality

and wave energy conservation is demonstrated in the Appen-

dix. Variations of the mode wave number resulting from

perturbations in various environmental parameters are quan-

tified in Sec. IV. General properties of phase and group ve-

locity of normal modes in generic stratified waveguides are

established in Sec. V. Section VI summarizes our findings.

II. EQUATIONS OF MOTION

Consider continuous linear waves of frequency x in a

fluid with background (i.e., unperturbed by waves) pressure

p0, density q, sound speed c, and flow velocity u in a uni-

form gravity field with acceleration g. The fluid is stationary

(i.e., its parameters are independent of time t) in the absence

of waves. Time dependence exp(–ixt) of the wave field is

assumed and suppressed. Linearization of the Euler, continu-

ity, and state equations with respect to wave amplitude leads

to the following set of equations24,26 governing wave fields:

rpþq
d2w

dt2
þðw �rÞrp0�ðpþw �rp0Þ

rp0

qc2
¼0; (1)

r � wþ ðpþ w � rp0Þ=qc2 ¼ 0; (2)

where p and w are the pressure perturbation and oscil-

latory displacement of fluid particles due to the wave and

d=dt ¼ �ixþ u � r is the convective time derivative. Wave-

induced fluid velocity perturbation v is related to the oscilla-

tory displacement by the equation24,26 v ¼ dw=dt �ðw � rÞu:
In Eqs. (1) and (2), we assume wave propagation to be an

adiabatic thermodynamic process and disregard irreversible
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processes associated with viscosity, thermal conductivity, and

diffusion of admixtures such as salt in seawater and water

vapor in atmospheric air.

Subsequent theoretical analysis is greatly simplified by

having only one scalar and one vector dependent variables, p
and w, in Eqs. (1) and (2). This form of equations of motion

is obtained by eliminating unknown wave-induced perturba-

tions in mass density, entropy density, and concentrations of

admixtures from linearized Euler, continuity, and state equa-

tions as well as equations expressing conservation of entropy

and mass of each admixture in fluid particles.24,26 Remark-

ably, of all the thermodynamic partial derivatives entering

the linearized equation of state only one characteristic of the

fluid, the sound speed, is present in Eqs. (1) and (2). No spe-

cific form of the equation of state is assumed in derivation of

Eqs. (1) and (2).24,26 While relation between background

pressure, density, and sound speed may be different in fluids

with different equations of state, wave fields in fluids with

any equation of state (or in a medium comprised of fluids

with distinct equations of state) can be investigated using

Eqs. (1) and (2) when the environmental parameters p0, q, c,

and u are given as functions of position.

Introduce a Cartesian coordinate system with horizontal

coordinates x and y and vertical coordinate z increasing

upward (Fig. 1). Then g¼ (0, 0, –g). Let the fluid be horizon-

tally stratified, with the background flow being horizontal:

u¼ (ux, uy, 0) and the parameters p0, q, c, and u depending

on the vertical coordinate z only. Then p0 and q are related

by the hydrostatic equilibrium equation dp0=dz ¼ �qg;
while c(z) and u(z) can be arbitrary. We will assume that the

background stratification is hydrodynamically stable.

In stratified fluids, arbitrary AGW fields can be repre-

sented by superpositions of waves with harmonic depend-

ence on horizontal coordinates:

pðrÞ ¼ PðzÞexpðiq � rÞ;
wðrÞ ¼ ½hðzÞ þWðzÞẑ�expðiq � rÞ: (3)

Here q and h are 2-D horizontal vectors: q¼ (qx, qy, 0),

h¼ (hx, hy, 0). From Eqs. (1)–(3) we obtain

h ¼ iqP

x2qb2
; v ¼ qP

xqb
�W

du

dz
� ixbW ẑ

� �
expðiq � rÞ;

b ¼ 1� q � u
x

(4)

and a set of first-order, ordinary differential equations

dP

dz
þ g

c2
P ¼ qðx2b2 � N2ÞW; (5)

dW

dz
� g

c2
W ¼ q2

x2b2
� 1

c2

� �
P

q
; (6)

for the unknown functions P and W. Similar equations can

be found in the literature.9,10,25,27 Here N2 ¼ �gq�1dq=dz
�g2=c2; and N is the buoyancy frequency.

The quantity pþ w � rp0 ¼ ~PðzÞexpðiq � rÞ; where

~P ¼ P� qgW; (7)

has the meaning of the Lagrangian pressure perturbation,

i.e., wave-induced pressure perturbation in a moving fluid

particle1,24 as opposed to the (Eulerian) pressure perturbation

p at a fixed point in space. Using ~P as an unknown function

instead of P, Eqs. (5) and (6) become

d ~P

dz
þ gq2

x2b2
~P ¼ q x2b2 � g2q2

x2b2

� �
W; (8)

dW

dz
� gq2

x2b2
W ¼ q2

x2b2
� 1

c2

� �
~P

q
: (9)

While dq/dz enters Eq. (5) through N2, Eqs. (8) and (9) do

not contain spatial derivatives of environmental parameters.

In Eqs. (5)–(6) and (8)–(9), all the effects of background

flows are described through the quantity b(z). b has the

meaning of the ratio of the wave frequency in the reference

frame, which follows the local background flow, to the wave

frequency in the original reference frame; b:1 in quiescent

fluids. Governing equations for AGWs in moving fluids dif-

fer from the equations in quiescent fluids by substitution of

xb for x.

The governing equations (5)–(6) and (8)–(9) are

supplemented by boundary conditions. On a horizontal fluid-

fluid interface, the linearized boundary conditions24,26 con-

sist in the continuity of ~P and W. On a horizontal locally

reacting (impedance) boundary with impedance Z, the

boundary condition24,26 is

~P ¼ �ixZW: (10)

FIG. 1. (Color online) Geometry of the problem. Background density q, sound

speed c, and flow velocity u¼ (ux, uy, 0) are functions of the vertical coordinate

z and may be discontinuous at interfaces within the fluid (a). Variation of the

field of a normal mode in the xy plane is characterized by a horizontal wave

vector q, direction of which is determined by azimuthal angle w (b).

658 J. Acoust. Soc. Am., Vol. 132, No. 2, August 2012 Oleg A. Godin: Guided acoustic-gravity waves

Downloaded 02 Oct 2013 to 134.246.158.75. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



In particular, ~P ¼ 0 on a free surface, where Z¼ 0, and

W¼ 0 on a rigid surface, where Z¼1. Note that generally

p= 0 on a free surface as long as g= 0.

In investigations of AGW propagation, the atmosphere

is usually modeled1,2,9 as a half-space with density vanishing

at z ! þ1. We will assume that at z>H sound speed and

flow velocity are constant and density decreases with height

exponentially (Fig. 1):

c ¼ cH; u ¼ uH; q ¼ qHexp
�

2lðH � zÞ
�
; z > H:

(11)

For the medium to be stably stratified, it is necessary that

N2> 0 and, hence, l > g=2c2
H: At z>H, linearly independ-

ent solutions to Eqs. (5) and (6) are

P ¼ exp½ð�l� sÞz�;

W ¼ ðgc�2
H � l� sÞexp½ðl� sÞz� 2lH�
qHðx2b2

H � 2glþ g2c�2
H Þ

; (12)

where bH ¼ 1� q � uH=x and

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � x2b2

H

c2
H

þ 1� g
2l� gc�2

H

x2b2
H

 !
q2

vuut ; Re s � 0:

(13)

For normal modes, there should be Re s> 0 and the solution

with upper signs should be chosen in Eq. (12).9,24 Note that

the amplitude of the vertical displacement in a normal mode

may increase exponentially with height, but the pressure and

the product PW tend to zero at z!þ1.

III. NORMAL MODE ORTHOGONALITY RELATIONS

Consider AGWs in a half-space z> 0 with an imped-

ance boundary at z¼ 0. We want to compare wave fields in

two different media (j¼ 1, 2). Both media are stratified flu-

ids, but these have generally different sound speed, flow ve-

locity, and density profiles cj(z), uj(z), qj(z) and may even

have different gravity accelerations gj and boundary impe-

dances Zj. In each medium, we will consider its own normal

mode with horizontal wave vector qj¼ qj(cos wj, sin wj, 0),

frequency xj, and vertical dependencies Pj(z), ~PjðzÞ; Wj(z) of

the Eulerian and Lagrangian pressure perturbations and ver-

tical displacement. The functions ~PjðzÞ and Wj(z) satisfy cor-

responding governing Eqs. (8) and (9) as well as boundary

conditions at z¼ 0 and z! þ1, which are discussed above

in Sec. II.

Let parameters of both fluids be continuous in a layer

z1< z< z2. By multiplying Eq. (8) for ~P1 by –W2, Eq. (8) for
~P2 by W1, Eq. (9) for W2 by � ~P1, and Eq. (9) for W1 by ~P2,

summing up the results, and integrating the sum over z, we

obtain the identity

ð ~P2W1 � ~P1W2Þ
��z¼z2

z¼z1
¼
ðz2

z1

dz
q2

1c2
1 � x2

1b
2
1

x2
1b

2
1q1c2

1

� q2
2c2

2 � x2
2b

2
2

x2
2b

2
2q2c2

2

 !
~P1

~P2 þ
g1q2

1

x2
1b

2
1

� g2q2
2

x2
2b

2
2

 !(

�ð ~P2W1 þ ~P1W2Þ � q1 x2
1b

2
1 �

g2
1q2

1

x2
1b

2
1

 !
� q2 x2

2b
2
2 �

g2
2q2

2

x2
2b

2
2

 !" #
W1W2

)
; (14)

where bj ¼ 1� qj � uj=xj:We assume that bjðzÞ 6¼ 0:28 The

half-space z> 0 is divided into a set of layers, where param-

eters of both media are continuous, by the boundary z¼ 0

and fluid-fluid interfaces in each of the media. Applying

Eq. (14) to individual layers, summing up the results, and

taking into account continuity of ~PjðzÞ and Wj(z) on fluid-

fluid interfaces, one finds that Eq. (14) remains valid when

media parameters are piecewise continuous at z1< z< z2.

Moreover, it follows from Eq. (12) (with upper signs) that

the integral in the right-hand side of Eq. (14) converges at z2

!þ1, provided ~P2W1 ! 0 and ~P1W2 ! 0 at z2 !þ1.

Then, we obtain

ð ~P1W2 � ~P2W1Þ
��
z¼0
¼
ðþ1

0

dz
q2

1c2
1 � x2

1b
2
1

x2
1b

2
1q1c2

1

� q2
2c2

2 � x2
2b

2
2

x2
2b

2
2q2c2

2

 !
~P1

~P2 þ
g1q2

1

x2
1b

2
1

� g2q2
2

x2
2b

2
2

 !(

�ð ~P2W1 þ ~P1W2Þ � q1 x2
1b

2
1 �

g2
1q2

1

x2
1b

2
1

 !
� q2 x2

2b
2
2 �

g2
2q2

2

x2
2b

2
2

 !" #
W1W2

)
: (15)

With integration extended over the whole vertical extent of the

fluid, identities (14) and (15) will be referred to as generalized

orthogonality relations for normal modes of AGWs. When

g1¼ g2¼ 0 and the boundary z¼ 0 is a free surface, Eq. (15)
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reduces to the known generalized orthogonality relation for

acoustic waves.22,24 Identities (14) and (15) are corollaries of the

equations of motion and boundary conditions. The identities

have no direct physical meaning but prove to be rather conven-

ient mathematical tools for establishing a number of properties

of AGW normal modes. In particular, mode orthogonality condi-

tions are obtained below as special cases of Eqs. (14) and (15).

Assume temporarily that cj(z), uj(z), qj(z) are continu-

ously differentiable functions. Then buoyancy frequencies

Nj are defined for all z> 0 and are continuous. Quite sim-

ilarly to derivation of Eqs. (14) and (15), from Eqs. (5)

and (6) we find another generalized orthogonality

relation:

ðP1W2 � P2W1Þ
��
z¼0
¼
ðþ1

0

dz

(
q2

1c2
1 � x2

1b
2
1

x2
1b

2
1q1c2

1

� q2
2c2

2 � x2
2b

2
2

x2
2b

2
2q2c2

2

 !
P1P2 þ

g1

c2
1

� g2

c2
2

 !

� ðP2W1 þ P1W2Þ � ½q1ðx2
1b

2
1 � N2

1Þ � q2ðx2
2b

2
2 � N2

2Þ�W1W2

)
: (16)

Equation (16) is similar to Eq. (15) but generally does not

reduce to it. We see that the generalized orthogonality rela-

tion for AGWs is not unique. Below, we will utilize mainly

Eq. (15) rather than Eq. (16) because the former applies to

general layered fluids and allows for fluid-fluid interfaces.

Let us apply the generalized orthogonality relation (15)

to the particular case where the two layered media are identi-

cal (c1¼ c2¼ c, u1¼ u2¼ u, q1¼q2¼ q, g1¼ g2¼ g), and

the two normal modes have the same frequency x and differ

only by their horizontal wave vectors. After simple algebra,

from Eqs. (7), (10), and (15) we obtain

ðþ1
0

q2
n

b2
n

� q2
m

b2
m

 !
PnPm

qx2
� qx2ðb2

n � b2
mÞWnWm

" #
dz ¼ 0:

(17)

This is a mode orthogonality (but not mode orthonormality)

relation. Here we distinguish two normal modes, which were

assigned subscripts j¼ 1, 2 in Eq. (15), by their mode

indexes n and m, which can take various integer values. If

desired, by using Eqs. (5) and (6), the integrand in Eq. (17)

can be expressed in terms of either Pn;Pm; dPn=dz; and

dPm=dz or Wn;Wm; dWn=dz; and dWm=dz: In quiescent flu-

ids, bn¼bm¼ 1, and Eq. (17) simplifies toðþ1
0

dz

q
PnPm ¼ 0; n 6¼ m: (18)

Thus, vertical dependencies of pressure in AGW normal

modes of different order are orthogonal with weight q–1, just

as in acoustic normal modes in motionless fluids.23,24 When

g¼ 0, W ¼ ðqx2b2Þ�1dP=dz according to Eq. (5), and the

orthogonality relation (17) of AGW normal modes reduces

to the known orthogonality relation22,24 of acoustic normal

modes in layered moving media.

When wave vectors qn and qm of normal modes are par-

allel, we have xðbn � bmÞ ¼ ðqm � qnÞ~u; where ~u ¼ ux cos w
þuy sin w is the projection of the background flow velocity

on the direction of the wave vectors. Then, dividing the

integrand in (17) by qm – qn, the mode orthogonality relation

can be written as

ðþ1
0

ðqmbn þ qnbmÞPnPm

qb2
nb

2
m

þ x3q~uðbn þ bmÞWnWm

" #
dz

¼ 2qmdm n; (19)

where dmn is the Kronecker symbol. The ability to normalize

the normal modes, as in Eq. (19) with n¼m, is due to the

fact that, according to Eq. (12), integrals of q�1jPnPmj and

q�1jWnWmj over the vertical extent of the fluid are finite for

proper normal modes with arbitrary orders n and m.29 Of

course, the choice of the non-zero factor in front of the

Kronecker symbol in Eq. (19) is arbitrary. It reflects the free-

dom in choosing normal mode normalization. An alternative

derivation of Eq. (19), which is based on wave energy con-

servation law24,26 rather than the generalized orthogonality

relation (15), is given in the Appendix.

Independence of the weighting function q–1 in Eq. (18) of

the mode indices is heavily relied upon in various coupled-

mode theories23,24,30–33 of sound propagation in irregular

waveguides in motionless media. For applications of the mode

orthogonality to derivation of mode coupling equations in

range-dependent waveguides and, more generally, for modal

decomposition of generic AGW fields in moving media, it is

important to represent the mode orthogonality relation (17) as

an integral of a weighted product of mode shape functions

with the weight being independent of the mode indices n, m.

To achieve such a representation, we follow an earlier analysis

of the corresponding acoustic problem34 and will characterize

AGW wave fields by a state vector S.

Consider a 2-D problem, where uy¼ 0 and CW AGW

fields are functions of the horizontal coordinate x and the verti-

cal coordinate z. The state vector is defined by the equation

S ¼ ðp;w1; dw1=dt;w3; dw3=dtÞT ; (20)

with superscript T denoting matrix transposition. When

the wave field is due to a single normal mode of order m,

from Eqs. (3) and (4) (where now qy¼ 0, qx¼ qm) we have

S ¼ SmðzÞexpðiqmxÞ and

Sm ¼ Pm;
iqmPm

qx2b2
m

;
qmPm

qxbm

;Wm;�ixbmWm

 !T

: (21)
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Here, it is convenient to characterize normal modes with the

x component of their wave vector qm, rather than with jqmj
and the azimuthal angle w, which takes only values 0 and p
in the 2-D problem. So, qm can be positive or negative in

Eq. (21).

Introduce auxiliary vectors35

Ym ¼ Pm;
�iqmPm

qx2b2
m

;
�qmPm

qxbm

;Wm;�ixbmWm

 !T

:

(22)

In terms of the state vectors Sm and Ym, the orthogonality

relation (19) (with ~u replaced by ux) of AGW normal modes

becomesðþ1
0

YT
nkBkSmdz ¼ � 2i

x2
qmdmn; (23)

where kBk is a sparse 5� 5 matrix:

Bk k ¼

0 �1 0 0 0

1 0 qux 0 0

0 qux 0 0 0

0 0 0 0 qux

0 0 0 qux 0

0
BBBB@

1
CCCCA: (24)

The AGW mode orthogonality relation (23) differs from

the orthogonality relation34 for acoustic modes in moving

media by the appearance of corresponding state vectors,

which explicitly contain functions Wn,m in the AGW case.

Equation (23) is largely similar to its counterpart (18) for

AGWs in quiescent fluids but differs in two respects.

Modes are characterized by state vectors in the moving

fluids rather than scalar shape functions Pn in Eq. (18); the

mode state vectors are orthogonal with a matrix weight

kBk rather than scalar weight q–1 in quiescent fluids. In

both cases, the weight depends on z but not on mode

indices.

As an example of application of the mode orthogonality

condition (23), consider the problem of modal decomposi-

tion of AGW fields in a 2-D waveguide. Let the wave field

consist of normal modes with unknown amplitudes gn. Then

Sðx; zÞ ¼
X

m

gmSmðzÞexpðiqmxÞ: (25)

Properties of the waveguide and, therefore, mode state vec-

tors Sm and Ym are assumed known. To find amplitudes gn,

we multiply both sides of Eq. (25) by YT
nkBk from the left,

integrate over the vertical extent of the waveguide, apply

Eq. (23), and obtain

gn ¼
ix2

2qn
e�iqnx0

ðþ1
0

YT
n ðzÞkBkSðx0; zÞdz: (26)

Mode decomposition (26) can be effected at an arbitrary ver-

tical cross-section x¼ x0 of the waveguide.

So far, we considered sets of proper normal modes hav-

ing the same frequency x and different horizontal wave

vectors qm, as is usually done in acoustics.23,24 In studies of

internal gravity waves, one typically considers sets of normal

modes with the same horizontal wave vectors q and different

frequencies xm.36 Orthogonality relations for modes having

the same frequency and for modes having the same wave

vector can be different. To derive the orthogonality relation

for proper normal modes with a given horizontal wave vec-

tor, we apply the generalized orthogonality relation (15) to

the particular case, where the two layered media are identical

(c1¼ c2¼ c, u1¼ u2¼u, q1¼q2¼ q, g1¼ g2¼ g), and the

two normal modes differ only by their frequency and corre-

sponding shape functions. Using the same notation as in

Eq. (17), from Eqs. (7)–(10), and (15) we obtain

ðxn �xmÞ
ðþ1

0

ðxn þxm � 2q � uÞ

� q2PnPm

qðxn � q � uÞ2ðxm � q � uÞ2
þ qWnWm

" #
dz

¼ Pmð0ÞWnð0Þ � Pnð0ÞWmð0Þ: (27)

The right-hand side of Eq. (27) vanishes when the boundary

z¼ 0 is free, rigid, or has an impedance inversely propor-

tional to frequency. In the case of a quiescent fluid with such

a boundary, the AGW mode orthogonality relation (27) sim-

plifies toðþ1
0

dz
q2PnPm

qx2
nx

2
m

þ qWnWm

� �
¼ 0; n 6¼ m (28)

and is clearly distinct from Eq. (18). An inspection shows

that, in an appropriate limit, Eq. (28) reduces to the mode

orthogonality condition derived in Sec. 3.1 of Ref. 36 for in-

ternal gravity waves.

IV. PERTURBATION THEORY

Consider variations of the wave vector qm¼ qm (cos w,

sin w, 0) of a normal mode due to small variations of wave-

guide parameters when wave frequency x and azimuthal

angle w, which determines the direction of the wave vector,

are kept constant. We apply the generalized orthogonality

relation (15) to the modes of the same order in waveguides

with slightly different parameters. Let q1¼ qm, q2¼ qm

þ dqm, w1¼w2¼w, c1¼ c, c2¼ cþ dc, q1¼q, q2¼qþ dq,

u1¼ u, u2¼ uþ du, Z1¼Z, Z2¼ Zþ dZ, g1¼ g, g2¼ gþ dg.

We want to calculate both sides of Eq. (15) with accuracy up

to the terms of second order in the small perturbations. Note

that coefficients in front of ~P1
~P2; ~P2W1 þ ~P1W2; and W1W2

in the integrand in the right-hand side of Eq. (15) are of the

first order in the perturbations and vanish when the two

waveguides become identical. Thus, one can disregard

perturbations of the mode shape functions and replace
~P1

~P2; ~P2W1 þ ~P1W2; and W1W2 with P2
m; 2PmWm; and

W2
m; respectively. This also applies to the left-hand side of

Eq. (15) after ~P1; 2 are expressed in terms of W1,2 and impe-

dances Z1,2 by using the boundary condition (10). By equat-

ing first-order terms in the right- and left-hand sides of

Eq. (15), after simple algebra we obtain
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dqm ¼ �qmhq2
mP2

m þ q2x4ð1� bmÞb4
mW2

mi
�1 i

2
x3W2

mð0ÞdZ þ q2
mhqbmPmWmidgþ

*
x2b3

m

c3
ðPm � qgWmÞ2dc

(

þðq2
mP2

m þ q2x4b4
mW2

mÞ
qm � du

x
þ x2b2

m

c2
� q2

m

� �
ðPm � qgWmÞ2 � q2ðx4b4

m � g2q2
mÞW2

m

� 	
bmdq

2q

+)
: (29)

To write the somewhat cumbersome result in a relatively

compact form, here we denote hFi ¼
Ð

q�1b�3
m Fdz; where

the integral is taken over the full vertical extent of the fluid.

It should be emphasized that no perturbations in the

mode shape functions enter Eq. (29). It is this property that

makes the expression (29) for mode wave number perturba-

tion useful in applications. Equation (29) has been derived for

a waveguide occupying half-space z> 0. In a different geome-

try, where fluid occupies half-space z< 0 or a finite layer with

variable properties of the upper boundary, Eq. (29) remains

unchanged, except dZ should be replaced with –dZ.

Generally, dc, dq, and du are piecewise continuous

functions of z in the right-hand side of Eq. (29). Discontinu-

ities may occur at fluid-fluid interfaces within the waveguide

and necessarily occur when the positions and/or the number

of the interfaces in the original and perturbed waveguides do

not coincide.

Equation (29) allows one to quantify the sensitivity of

AGW normal modes to small variations in the sound speed,

density, and flow velocity profiles as well as in the imped-

ance of the boundary z¼ 0 and in the acceleration of gravity.

Obviously, dqm (29) is not affected by the way the mode

shape functions are normalized. Note that sensitivity to

sound speed, flow velocity, and density variations around

any given altitude z0 is proportional to the magnitude

squared of the modal shape functions at z¼ z0. Particular

combinations of Pm(z0) and Wm(z0) are different for dc, dq,

and du. Since the acceleration of gravity is spatially uniform,

sensitivity to dg is determined by an integral of bm
–2PmWm.

Sensitivity to dZ variations is proportional to Wm
2(0). When

the properties of the waveguide’s boundary are close to that

of a rigid surface, where Z is infinite, it is more appropriate

to consider small variations in the reciprocal quantity Z–1.

Then the first term in braces in the right-hand side of Eq.

(29) is replaced by 0:5ix ~P
2

mð0ÞdðZ�1Þ;and the sensitivity to

the perturbation in the boundary properties is proportional to
~P

2

mð0Þ: In the derivation of Eq. (29) it has been assumed that

Z and Z–1 in the unperturbed waveguide [but not necessarily

the perturbations dZ and d(Z–1)] are independent of q.

According to Eq. (29), sound-speed perturbations do not

affect qm, to first order, if Pm¼ qgWm, i.e., the Lagrangian

pressure perturbation ~Pm � 0; in the normal mode. Such a

mode can indeed exist in motionless and uniformly moving

fluids.37,38 It corresponds to an incompressible wave motion

of compressible fluids and, in fact, its properties are inde-

pendent of the sound speed to all orders.37

If the ratio dq/q is independent of z, the density pertur-

bation does not affect the mode wave number in unbounded

fluids or fluids with free and rigid boundaries. Indeed, from

Eqs. (8) and (9) it follows that

d

dz
ð ~PmWmÞ¼qW2

m x2b2
m�

g2q2
m

x2b2
m

 !
þ

~P
2

m

q
q2

m

x2b2
m

� 1

c2

 !
;

(30)

and dq/q is multiplied by hbmðx2b2
mc�2 � q2

mÞ ~P
2

m

�q2bmðx4b4
m � g2q2

mÞW2
mi ¼ 0in Eq. (29). In fact, multipli-

cation of the density profile q(z) by a constant 1þ n does not

change qm to all orders in n. It is easy to see that, if Pm(z)

and Wm(z) satisfy Eqs. (8) and (9) and boundary conditions

at fluid-fluid interfaces in the original waveguide, then

(1þ n)Pm(z) and Wm(z) satisfy these equations and boundary

conditions with unchanged qm in a waveguide with the den-

sity (1þ n) q(z). When the original waveguide has an imped-

ance boundary, it follows from Eqs. (10) and (29) that qm

will be unchanged if the boundary impedance Z is multiplied

by the same factor 1þ n as the density profile.

When g¼ dg¼ 0 and dZ¼ 0, Eq. (29) reduces to results

obtained earlier22,24 from a generalized orthogonality rela-

tion for acoustic waveguides in moving media. Using a dif-

ferent approach, Pierce9 considered perturbations in the

wave number qm for AGW normal modes in an atmospheric

waveguide with a rigid boundary, assuming that profiles of

sound speed and density are smooth. The fluid was modeled

as an ideal gas with a height-independent ratio of specific

heats at constant pressure and constant volume. Under these

assumptions, sound speed and density perturbations are no

longer independent since the density profile can be expressed

in terms of the sound-speed profile. An inspection shows

that, for the waveguides treated in Ref. 9, Eq. (29) is equiva-

lent to the results obtained by Pierce.

The perturbation result (29) also can be applied to

quantify the influence of weak absorption on the mode

wave numbers. Let wave energy absorption in the fluid be

modeled by attributing small imaginary parts to the sound

speed and density, so that in Eqs. (5)–(9) real-valued sound

speed c and density q are replaced by (1–ia)c and (1–if)q,

respectively. Here jaj	 1, jfj	 ; a and f are real-valued

functions of height z and wave frequency x. In addition,

wave energy leakage through the waveguide boundary

z¼ 0 can contribute to mode attenuation. There is no time-

averaged energy flux through the boundary when its im-

pedance is purely reactive: ReZ¼ 0, see Eq. (A3) for AGW

power flux density. It follows from Eq. (A3) and the

boundary condition (10) that, when Im q(0)¼ 0, wave

energy is injected into the waveguide, if ReZ> 0, and

wave energy leaves the waveguide, if ReZ< 0. We will

assume that 0< – ReZ	jImZj. Then, by taking the wave-

guide without energy losses as the unperturbed state and

with the losses as the perturbed state, from Eq. (29) we

find
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dqm ¼ iqmhq2
mP2

m þ q2x4ð1� bmÞb4
mW2

mi
�1

�



x2b3
mc�2ðPm � qgWmÞ2a

D E

þ
�

x2b2
m

c2
� q2

m

� �
ðPm � qgWmÞ2

�

�q2ðx4b4
m � g2q2

mÞW2
m

	
bmf

2

�
�x3W2

mð0ÞRe
Z

2



:

(31)

The mode wave number perturbation is purely imaginary

and describes the mode attenuation. Note that weighting

functions are rather different in Eq. (31) for contributions to

the mode attenuation from the imaginary parts of the com-

plex sound speed and density. An inspection shows that, in

an acoustic waveguide (g¼ 0) in a moving fluid with free

and/or rigid boundaries and f:0, Eq. (31) reduces to previ-

ously established results,22,24 which, in turn, contain as their

special cases a number of earlier results for attenuation of

acoustic normal modes in quiescent waveguides.

In problems involving fast gravity waves, such as in

investigations of atmospheric manifestations of tsuna-

mis,12,14,16,18 it is important to know when the simpler

description of the fluid as an incompressible one needs to be

abandoned in favor of a complete yet more involved theory

of AGWs. A qualitative answer to this question is usually

obtained by either comparing terms with and without

sound speed in the governing differential equations or by

analyzing idealized problems which allow for plane-wave

solutions.1–3,39 Using Eq. (29), effects of weak compressibil-

ity can be quantified by taking a normal mode in the incom-

pressible fluid (c!1) as the unperturbed state and

considering compressibility as the perturbation. Mode wave

number in a compressible fluid differs from its value in the

incompressible limit by

dqm ¼ 0:5x2qmhq2
mP2

m þ q2x4ð1� bmÞb4
mW2

mi
�1

� hb3
mðPm � qgWmÞ2c�2i : (32)

Similarly, in investigations of guided propagation of very

low-frequency infrasound in the ocean and atmosphere,39–43

the question arises whether treatment of the wave as an

acoustic wave rather than AGW is justified. While, at best, a

general answer can give an order of magnitude of the

“transition” frequency, effects of gravity on a specific nor-

mal mode are readily quantified by Eq. (29) by choosing the

solution in the absence of gravity (g¼ 0) as the unperturbed

mode. Then, the change of the mode wave number due to

gravity is given by

dqm ¼ �0:5gx�2q3
mhq2

mP2
m þ ð1� bmÞðdPm=dzÞ2i�1

� hb�1
m dP2

m=dzi: (33)

In Eq. (33) we took into account that Wm ¼ ðx2qb2
mÞ
�1@Pm=@z

when g¼ 0.

When the flow velocity u is much smaller than the phase

speed cm¼x/qm of a normal mode, the influence of the flow

on the mode wave number is given by Eq. (29), where the

normal mode in the motionless waveguide is chosen as the

unperturbed state:

dqm ¼ �qm
qm � uav

x
;

uav ¼
ðþ1

0

dz

q
ðP2

m þ q�2
m x4q2W2

mÞu
�ðþ1

0

dz

q
P2

m :

(34)

Here, uav is independent of the direction of qm and has the

meaning of height-averaged flow velocity. Note that the azi-

muthal dependence of the mode wave number, qmþ dqm, in

slowly moving fluid is completely determined by the vector

uav (34). Active44 and passive45 measurements of the non-

reciprocity of modal phase Um, i.e., the difference in phases

of mth normal mode at propagation in opposite directions

between two points, can be used for tomographic reconstruc-

tion of the flow velocity profile u.24,44 For the phase non-

reciprocity, from Eq. (34) we find Um ¼ �2x�1ðqm � uavÞ
qmR½1þ Oðu=cmÞ�: Here R is the horizontal separation

between the points where measurements are made.

Consider a quiescent fluid half-space z> 0 with a con-

stant sound speed cH, arbitrary density profile q(z), and rigid

boundary z¼ 0. The solution with

PmðzÞ ¼ Pmð0Þexpð�gz=c2
HÞ; WmðzÞ � 0;

qm ¼ x=cH (35)

meets equations of motion (8)–(9), conditions at infinity and

boundary conditions at z¼ 0 and, hence, specifies a proper

normal mode. This is a Lamb wave,1,2 which is usually con-

sidered assuming an isothermal atmosphere with height-

independent ratio c of the specific heats. In the latter case,

the density profile is exponential and is given by Eq. (11)

with H¼ 0 and l¼ cg/2cH
2.1,2 When the sound speed c and/

or flow velocity u vary with height, no exact solution is

available for the Lamb wave, but for its phase speed cm from

Eqs. (29) and (35) we find

cmðwÞ¼
ðþ1

0

dz

q
e�2gz=c2ðcþux coswþuy sinwÞ

�
ðþ1

0

dz

q
e�2gz=c2

: (36)

This is generally an approximation valid to first order in the

small parameters j1–c/cHj	 1 and ju/cHj	 1. However, Eq.

(36) becomes exact when c and u are independent of z.46

According to Eq. (36), the Lamb wave remains non-

dispersive in waveguides with weakly stratified sound speed

and flow velocity, and its phase speed is given by a weighted

height average of the effective sound speed47 cþ q � u=q.

For a near-isothermal atmosphere, similar results were

obtained by Garrett10 and Bretherton.11

Let a Lamb wave with wave vector qL(w)(sin w, cos w, 0)

propagate in a stratified, moving atmosphere over an ocean.

We model the ocean as a quiescent half-space z< 0 with a

constant sound speed cW and an exponential density profile

qðzÞ ¼ qWexpð�2lWzÞ: Then the AGW field in water is
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given by Eq. (12) (with the lower sign), where now cH ¼ cW ;
qH ¼ qW ; l ¼ lW > 0; s ¼ sWðqLÞ > 0; H¼ 0, and bH¼ 1.

According to Eq. (13),

sWðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ l2

W � gx�2ð2lW � gc�2
W Þq2 � x2=c2

W

q
:

(37)

For the impedance Z defined by Eq. (10), from Eqs. (7) and

(12) we obtain

ZðqÞ¼ ix�1qW ½x2�glW�gsWðqÞ�=½gc�2
W �lWþsWðqÞ�

(38)

on the water side of the air-water interface. Since Z is contin-

uous at fluid-fluid interfaces, Eqs. (10) and (38) define the

boundary condition at z¼ 0 for the AGW in air. The imped-

ance Z (38) tends to infinity when qW !1, and, due to the

large density contrast between air and water, the air-water

interface is a weak perturbation relative to the rigid surface

z¼ 0 for AGWs in the atmosphere.48 In terms of the shape

functions Pm, Wm and the wave number qm of a Lamb wave

in the atmosphere with a rigid boundary, for the Lamb wave

over the ocean we find

qL ¼ qm �
qmx2½gc�2

W � lW þ sWðqmÞ�
2qW ½x2 � glW � gsWðqmÞ�

� hq2
mP2

m þ q2x4ð1� bmÞb4
mW2

mi
�1P2

mð0Þ (39)

from Eqs. (29) and (38). Equation (39) is valid up to terms

of the second order in the small ratio r¼q(0)/qW of the den-

sities of air and water at z¼ 0.

In the particular case, where u:0 and the atmosphere is

described by Eq. (11) with H¼ 0, we have qm¼x/cH, and

the shape functions Pm, Wm are given by Eq. (12). Then, Eq.

(39) simplifies to

qL¼
x
cH

1�rðlc2
H�gÞ gc�2

W �lWþsWðx=cHÞ
x2�glW�gsWðx=cHÞ

þOðr2Þ
� 	

:

(40)

An inspection shows that Eq. (40) agrees with results

obtained from direct analyses38,49 of surface AGWs at an

interface of the ocean and atmosphere modeled as isospeed

half-spaces.

In addition to weak perturbations in environmental pa-

rameters considered above, the perturbation theory can be

applied to quantify effects of strong environmental perturba-

tions if the latter occur in a thin layer. An important example

of such perturbations is a small shift of a fluid-fluid interface.

Consider two waveguides, piece-wise continuous parameters

cj(z), qj(z), and uj(z) (j¼ 1, 2) of which differ only in a layer

D – dD/2<D<Dþ dD/2. While dD is assumed to be small,

c1 – c2, q1 – q2, and u1 – u2 are arbitrary. (In particular, one

waveguide may have an interface at D1¼D – dD/2 and the

other at D2¼Dþ dD/2.) Retaining only first-order perturba-

tions in the generalized orthogonality relation (15), similarly

to derivation of Eq. (29) we obtain dqm ¼ q2 � q1 ¼ ð@qm=

@DÞdDþ OððdDÞ2Þ; where

@qm

@D
¼ � qm

2
hq2

mP2
m þ q2x4ð1� bmÞb4

mW2
mi
�1

�
(

x2

q2c2
2

� x2

q1c2
1

� q2
m

q2b
2
2

þ q2
m

q1b
2
1

 !
~P

2

m

� 2gq2
mðb�2

2 � b�2
1 Þ ~PmWm

�
h
g2q2

mðq2b
�2
2 � q1b

�2
1 Þ

� x4ðq2b
2
2 � q1b

2
1Þ
i
W2

m

)
: (41)

In particular, if an interface is located at z¼D in a wave-

guide and subscripts 1 and 2 stand for the values that corre-

sponding parameters take just below and just above the

interface, Eq. (41) gives the partial derivative of AGW mode

wavenumber with respect to position of the interface and, at

g¼ 0, reduces to a known result50 for acoustic waves. For

example, Eq. (41) can be applied to quantify the sensitivity

of dispersion relations of AGW normal modes to ocean

depth, provided the ocean bottom is modeled as a fluid.

Alternatively, if the seafloor is modeled as a rigid surface,

we have Wm(D)¼ 0, b1¼ 1, b2¼ bm, q1 ! 1, and Eq. (41)

simplifies to

@qm

@D
¼ hq2

mP2
m þ q2x4ð1� bmÞb4

mW2
mi
�1

� q2
m

b2
m

� x2

c2

 !
qmP2

m

2q

����
z¼D

: (42)

V. PHASE AND GROUP VELOCITIES OF NORMAL
MODES

Generalized orthogonality relation (15) furnishes a

simple way of calculating group velocities cðgrÞ ¼ @x=@q

of normal modes. Let the two states in the generalized

orthogonality relation (15) refer to an AGW normal

mode of the same order m in the same waveguide but at

different frequencies, so that c1¼ c2¼ c, u1¼u2¼u,

q1¼q2¼ q, g1¼ g2¼ g, Z1¼ Z2¼ Z, P1¼Pm, W1¼Wm,

x1¼x, and q1¼qm. We differentiate both sides of Eq.

(15) with respect to q2 and let x2¼x, q2¼ qm in the

result. It is convenient to use Eq. (10) and represent the

left-hand side of Eq. (15) as i½x2Zðx2Þ � x1Zðx1Þ�
W1ð0ÞW2ð0Þ. The coefficient in front of W1ð0ÞW2ð0Þ
equals zero at x1¼x2, and therefore derivatives of

W2 do not enter the result of differentiation. Quite

similarly, only coefficients in front of ~P1
~P2; ~P2W1

þ ~P1W2; and W1W2 need to be differentiated in the inte-

grand in the right-hand side of Eq. (15). Taking into

account that @ðxbÞ=@q ¼ cðgrÞ � u according to Eq. (4),

we obtain

cðgrÞ
m ¼ hðq2

mP2
mþq2x4b4

mW2
mÞuiþxhbmP2

miqm

hq2
mP2

mþq2x4b4
mW2

mi�0:5iðZþxdZ=dxÞW2
mð0Þ

:

(43)
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It is assumed here that there is no physical dispersion in

the medium, i.e., parameters q and c of the fluid are inde-

pendent of frequency. In this section, we consider normal

modes that propagate in a waveguide without attenuation,

so that qm is real; the shape functions Pm and Wm are cho-

sen to be real-valued. Since the impedance Z is purely

imaginary at reactive interfaces, the group velocity is real

in normal modes propagating without attenuation, as

expected. Mode group velocity is horizontal in layered

media. In quiescent waveguides, the direction of the group

velocity coincides with or is opposite to that of the wave

vector. In moving fluids, directions of cðgrÞ
m and qm are gen-

erally different. In the case of unidirectional flow, cðgrÞ
m and

qm are parallel only when the normal mode propagates up

or down the flow.

When eigenvalues and mode shape functions of AGWs

in a waveguide are found numerically, application of Eq.

(43) obviates the need to calculate group velocities of normal

modes at neighboring qm and/or x values and approximate

derivatives in the group velocity definition with finite differ-

ences. Use of equations of the kind of Eq. (43) improves ac-

curacy and decreases computation time in numerical

simulations of guided propagation.21 When the waveguide’s

boundary z¼ 0 is either free or rigid, the second term in the

denominator in Eq. (43) vanishes, and the latter reduces to

results obtained earlier for acoustic waveguides in moving

fluids22,24 and for AGWs in atmospheric waveguides with

smooth stratification.9

By taking into account an identity

@x
@q
¼ @x

@q

� �
w

q

q
þ @x

@w

� �
q

ð�sin w; cos w; 0Þ
q

;

from Eq. (43) we readily find

1

qm

@qm

@x

� �
w

¼hq
2
mP2

mþq2x4b4
mW2

mi�0:5iðZþxdZ=dxÞW2
mð0Þ

xhq2
mP2

mþq2x4ð1�bmÞb4
mW2

mi
;

(44)

1

qm

@qm

@w

� �
x

¼ �1

cm

@cm

@w

� �
x

¼ qmhðq2
mP2

m þ q2x4b4
mW2

mÞðux sin w� uy cos wÞi
xhq2

mP2
m þ q2x4ð1� bmÞb4

mW2
mi

:

(45)

As far as the effects of fluid flow on normal modes are con-

cerned, while qm and the mode phase speed cm at fixed azi-

muthal angle w depend only on the component of u that is

parallel to qm, derivatives @qm/@w and @cm/@w are proportional

to a height average of the flow velocity component that is or-

thogonal to qm. When the waveguide’s boundary z¼ 0 is either

free or rigid, Eqs. (44) and (45) reduce to results obtained ear-

lier for acoustic waveguides in moving fluids22,24 and for

AGWs in atmospheric waveguides with smooth stratification.9

In Sec. IV a perturbation theory was developed to quan-

tify the effects of environmental perturbations on AGW

mode wave numbers at a constant frequency. In an alterna-

tive representation, where normal modes are characterized

by a set of eigenfrequencies xm, which are functions of the

wave vector q,36 perturbations of the eigenfrequencies can

be found from Eq. (44), which relates infinitesimal changes

in mode frequency and wave number, and Eq. (29):

dxm ¼ �xm hq2P2
m þ q2x4

mb4
mW2

mi � 0:5i Z þ xm
dZ

dxm

� �
W2

mð0Þ
� 	�1
 i

2
x3

mW2
mð0ÞdZ þ q2hqbmPmWmidg

þ
*

x2
mb3

m

c3
ðPm � qgWmÞ2dcþ ðq2P2

m þ q2x4
mb4

mW2
mÞ

q � du

xm

þ x2
mb2

m

c2
� q2

� �
ðPm � qgWmÞ2 � q2ðx4

mb4
m � g2q2ÞW2

m

� 	
bmdq

2q

+)
: (46)

The same result, but after much lengthier algebra, follows

directly from the generalized orthogonality relation (15)

applied to normal modes with the same wave vector but differ-

ent frequencies in the unperturbed and perturbed waveguides.

We now discuss some universal properties of the phase

speed and group velocity of AGW normal modes in layered

waveguides with ideal (free or rigid) boundaries or without

boundaries. From the inner product of Eq. (43) and the wave

vector qm, we obtain

~cðgrÞ
m =cm¼1�hq2x4b5

mW2
mi=hq2

mP2
mþq2x4b4

mW2
mi; (47)

where ~cðgrÞ
m ¼ cðgrÞ

m � qm=qm ¼ ð@x=@qmÞw is the projection

of the group velocity on the direction of the mode wave vec-

tor. Let us assume that flow velocity does not exceed the

phase speed of the mode (but is not necessarily small com-

pared to the sound speed). Then bm> 0,28 the numerator and

denominator in the right-hand side of Eq. (47) are non-

negative and positive, respectively, and therefore

~cðgrÞ
m 
 cm: (48)

While the projection of the group velocity on the direction

of the mode wave vector cannot exceed cm, the full group
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velocity, as in the acoustic case,22,24 can be larger than cm.

For instance, for the Lamb wave with shape functions (35) in

a half-space z> 0 with height-independent c and u, we find

cm ¼ cþ ~u and cðgrÞ
m ¼ ðc2

m þ u2
?Þ

1=2 � cm from Eqs. (36)

and (43). Here ~u ¼ ux cos wþ uy sin w and u? ¼ uy cos w
� ux sin w are, respectively, the components of the flow ve-

locity u along and across the wave vector qm.

In waveguides in quiescent fluids ~cðgrÞ
m ¼ cðgrÞ

m and

bm¼ 1. Then, according to Eq. (47), the strict inequality

holds in Eq. (48) unless there is no vertical motion in the

wave, Wm:0. It follows from Eqs. (8) and (9) and boundary

conditions at z¼ 0 that such a wave will be a normal mode

only if c¼ const., cm¼ c, and the boundary z¼ 0 is rigid.

Thus, the only normal mode, for which cðgrÞ
m ¼ cm; is the

Lamb wave (35). For all AGW modes in all other stratified

quiescent waveguides cðgrÞ
m < cm:

Since x@cm=@x ¼ cmð1� cm=~cðgrÞ
m Þ; it follows from

Eq. (48) that mode phase velocity is a monotonous, non-

increasing function of frequency in stratified waveguides. In

the absence of a fluid flow, the Lamb wave (35) is the only

non-dispersive AGW normal mode. For all other AGW nor-

mal modes in quiescent waveguides, @cm=@x < 0 because

cðgrÞ
m < cm: For a normal mode to be non-dispersive in a

waveguide in a moving fluid, the motion in the mode should

be purely horizontal, i.e., Wm:0, according to Eq. (47). For

that to happen, any boundaries have to be rigid. In addition,

it follows from Eqs. (8) and (9) that the effective sound

speed cþ ~u should be height-independent. Then, cm ¼ cþ ~u
in the non-dispersive mode. Note that sound speed and flow

velocity may vary with height in a waveguide supporting the

non-dispersive normal mode.

For waveguides with rigid and/or free boundaries in qui-

escent fluids, it follows from Eq. (30) that

hðc�2 � c�2
m Þ ~Pm

2i ¼ ðx2 � g2c�2
m Þhq2W2

mi: (49)

As discussed above, if Wm:0, c is necessarily constant and

cm¼ c. If Wm is not identically zero and cm< g/x, the right-

hand side in Eq. (49) is negative, and the factor c�2 � c�2
m in

the left-hand side has to be negative within an interval of

heights. Hence, cm< cmax, where cmax is the maximum value

of the sound speed in the fluid. Similarly, if cm> g/x and

Wm is not identically zero, the right-hand side in Eq. (49) is

positive, and the factor c�2 � c�2
m in the left-hand side has to

be positive within an interval of heights. Hence, cm> cmin,

where cmin is the minimum value of the sound speed in the

fluid.

Additional properties of the phase speed of AGW nor-

mal modes in stratified waveguides in quiescent fluids can

be established by assuming a smooth density stratification so

that the buoyancy frequency is everywhere bounded.51

VI. DISCUSSION

The main results of this work are the generalized ortho-

gonality relation (15), orthogonality relations (18), (23), and

(28) of normal modes in moving and quiescent media, Eq.

(29) for variations in mode wave number due to small pertur-

bations in environmental parameters, and integral expression

(43) for the group speed as well as bounds for the phase

speed and the group velocity.

A remarkably general integral relation (15) holds

between fields of AGW normal modes in two waveguides in

stratified fluids with piecewise continuous profiles of sound

speed, density, and flow velocity. With the vertical displace-

ment of fluid particles and Lagrangian perturbations in pres-

sure chosen as primary characteristics of the AGW wave

field, the derivation of the generalized orthogonality relation

(15) is quite simple and rather similar to the derivation in the

acoustic case.22,24 We have assumed that the waveguide con-

sists of an arbitrary stratified layer 0< z<H located between

an impedance boundary and a half-space z>H with an expo-

nentially stratified density and constant flow velocity and

sound speed. The derivation applies equally to an unbounded

fluid as well as to a fluid layer between ideal (rigid or free)

or impedance boundaries. In all cases, integration in the

right-hand side of Eq. (15) should be carried out over the

full vertical extent of the fluid. When there are two imped-

ance boundaries, the left-hand side of Eq. (15) should be

replaced by the difference of the values that the quantity
~P1W2 � ~P2W1 takes on the lower and upper boundaries.

Similarly, the orthogonality relations (18), (23), (27),

and (28) of normal modes remain valid in unbounded wave-

guides and waveguides of finite vertical extent, provided

integration over z is carried out over the full vertical extent

of the fluid. Depending on the problem considered and, in

particular, on the type of wave source, it may be more con-

venient to consider normal modes with either the same fre-

quency and wave vectors being functions of the frequency x
and the mode order m (as well as wave vector’s direction),

or the same wave vector q and frequencies being functions

of q and the mode order m. While mode shape functions Pm

and Wm are the same in both descriptions, when viewed as

functions of z, q, x, and m, the mode orthogonality is

expressed by different equations when normal modes with

the same frequency or the same wave number are compared

(with the wave vector direction being kept constant in both

representations). This is important to keep in mind when

applying the orthogonality relations to mode decomposition

of AGW fields or to calculation of amplitudes of normal

modes generated by a given source.

Much like the generalized orthogonality relation (15),

from which it has been obtained, the perturbation theory pre-

sented in Sec. IV remains valid in unbounded waveguides

and waveguides of finite vertical extent, provided integra-

tions over z are carried out over the full vertical extent of the

fluid. In the forward problem, Eq. (29) quantifies the sensi-

tivity of AGW normal modes to variations in various envi-

ronmental parameters. In the inverse problem, when

dispersion curves of AGW modes are measured using either

ambient noise interferometry or signals from a localized

source, Eq. (29) can be used to determine unknown environ-

mental parameters such as the wind profile, just like the

counterparts of Eq. (29) are utilized in modal tomography in

underwater acoustics44 and surface wave tomography in

seismology.52

We have demonstrated that the phase speed of each nor-

mal mode is a steady, non-increasing function of frequency.
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It is well known that the Lamb wave in an isothermal atmos-

phere with a rigid boundary is non-dispersive.1,2 We have

shown that this is the only AGW normal mode which is non-

dispersive in any finite interval of wave frequencies in a lay-

ered waveguide in motionless fluid with either free or rigid

boundaries or without boundaries.

The bounds for mode phase and group speeds obtained

in this paper are not as detailed or informative as in the

acoustic case.22,24 It remains an open question whether more

restrictive bounds can be obtained for generic AGW

waveguides.

Atmospheric and oceanic waveguides usually have to be

treated as range-dependent or horizontally inhomogeneous

when the long-range propagation of AGWs is considered.

Much like its acoustic counterpart,24,32,34,50 the theory of

AGW normal modes in layered waveguides, which has been

developed in this paper, provides important building blocks

for understanding and quantifying horizontal refraction and

mode coupling of AGWs in irregular waveguides.
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APPENDIX: MODE ORTHOGONALITY AND ENERGY
FLUX IN A WAVEGUIDE

Various symmetries of wave fields in non-dissipative

systems can be derived from the energy conservation

law.19,32,53 Here we apply a version of a reasoning19,32 previ-

ously used in investigations of irregular (range-dependent)

acoustic waveguides to derive orthogonality relations of

AGW normal modes.

Consider a 2-D waveguide in a layered moving fluid with

uy¼ 0. Normal modes propagate along horizontal coordinate

x. The waveguide is either unbounded or has horizontal free

and/or rigid boundaries. There is no wave energy dissipation.

Let the monochromatic AGW field in the waveguide consist

of nth and mth normal modes with amplitudes gn and gm,

respectively. Then the pressure perturbations and the vertical

displacement of fluid particles in the waveguide are

p ¼ gmPmðzÞeiqmx þ gnPnðzÞeiqnx;

wz ¼ gmWmðzÞeiqmx þ gnWnðzÞeiqnx: (A1)

The time dependence exp(–ixt) of the wave field is assumed

and suppressed. Below we will see that qm and qn are real.

As in Eq. (21), qm and qn can be positive or negative.

Power flux density24,26 in AGWs in inhomogeneous,

moving fluids is

I ¼ p̂
@ŵ

@t
þ qu

@ŵ

@t
� dŵ

dt

� �
; (A2)

where d=dt ¼ @=@tþ u � r; and p̂; ŵ stand for the pressure

perturbation and oscillatory particle displacement with

arbitrary time dependence. For monochromatic waves with

complex amplitudes p and w, p̂ðr; tÞ ¼ Re½pðrÞexpð�ixtÞ�
and ŵðr; tÞ ¼ Re½wðrÞexpð�ixtÞ�: For the power flux

density averaged over the wave period, from Eq. (A2) one

finds

�I ¼ x
2

Im p�w� qu w� � dw

dt

� �� 	
; (A3)

where the asterisk denotes complex conjugation. According

to Eq. (A3), there are no time-averaged power fluxes through

free and rigid interfaces.24,26 It follows from Eqs. (12) and

(A3) that there are no power fluxes in proper normal modes

to z!þ1 in the case of a waveguide occupying half-space

z> 0.

Consider time-averaged power flux D(x0) through a ver-

tical cross-section x¼ x0 of a waveguide. D(x0) is given by

an integral of �Ix (A3) over the vertical extent of the wave-

guide. In the absence of power fluxes through the wave-

guide’s boundaries, wave energy conservation law24,26

requires that @D=@x0 ¼ 0: Let a single mode be propagating

in the waveguide, e.g., gn¼ 0 and gm= 0 in Eq. (A1). Then,

according to Eqs. (3), (4) and (A3) we have

Dðx0Þ ¼
jg2

mj
2x

e�2x0Imqm Re

ðþ1
0

qmjP2
mj

qb2
m

þ x3qu1bm

"

� jqmPmj2

x4q2jb4
mj
þ jW2

mj
 !#

dz: (A4)

For D to be independent of x0 and wave energy to be con-

served, there should be Imqm¼ 0 for all energy-carrying nor-

mal modes. Then, bm and coefficients in Eqs. (5) and (6) for

mode shape functions Pm(z) and Wm(z) are real, and the func-

tions Pm(z) and Wm(z) can be chosen to be real-valued.9,24

Below, we assume that this is the case.

When two normal modes with distinct wave vectors are

propagating in the waveguide, from Eqs. (A1) and (A3) we

find

Dðx0Þ ¼ jgmj2Dm m þ jgnj2Dn n

þ Dn mRe½gmg�neix0ðqm�qnÞ�; (A5)

where

Dn m ¼
1

4x

ðþ1
0

ðqmbn þ qnbmÞPnPm

qb2
nb

2
m

"

þx3qu1ðbn þ bmÞWnWm

#
dz (A6)

is independent of coordinates. The first two terms in the

right-hand side of Eq. (A5) are power fluxes in the mth and

nth normal modes, while the third term is due to inter-mode

interference. For D (A5) to be independent of x0 and for

wave energy to be conserved, it is necessary that Dnm¼ 0 at

n=m. Comparison of Eqs. (19) and (A6) shows that this

requirement is exactly the mode orthogonality condition
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derived in Sec. III for AGW normal modes having equal fre-

quency. From the standpoint of wave energy analysis, mode

orthogonality reflects the fact that time-averaged power

fluxes carried by individual normal modes through each

cross section of a waveguide are additive.

Quite similarly, the orthogonality relations for normal

modes with the same wave vector and different frequencies

can be derived from the requirement that power flux

through a waveguide’s cross section is independent of time

when the AGW field is a superposition of two normal

modes.
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