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Ray and Wentzel–Kramers–Brillouin (WKB) approximations have long been important
tools in understanding and modelling propagation of atmospheric waves. However,
contradictory claims regarding the applicability and uniqueness of the WKB
approximation persist in the literature. Here, we consider linear acoustic–gravity
waves (AGWs) in a layered atmosphere with horizontal winds. A self-consistent
version of the WKB approximation is systematically derived from first principles and
compared to ad hoc approximations proposed earlier. The parameters of the problem
are identified that need to be small to ensure the validity of the WKB approximation.
Properties of low-order WKB approximations are discussed in some detail. Contrary
to the better-studied cases of acoustic waves and internal gravity waves in the
Boussinesq approximation, the WKB solution contains the geometric, or Berry, phase.
The Berry phase is generally non-negligible for AGWs in a moving atmosphere.
In other words, knowledge of the AGW dispersion relation is not sufficient for
calculation of the wave phase.
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1. Introduction

The Wentzel–Kramers–Brillouin (WKB) approximation, also known as the WKBJ,
JWKB, or Liouville–Green approximation (Heading 1962; Frömann & Frömann 1965;
Olver 1974; Maslov & Fedoriuk 1981; Fedoryuk 1987) is an important tool in the
theoretical analysis of waves in continuously stratified media (Brekhovskikh 1960;
Bretherton 1968; Gossard & Hooke 1975; Grimshaw 1975; Ursin 1983; Ostashev
1997; Brekhovskikh & Godin 1998, 1999; Nazarenko, Kevlahan & Dubrulle 1999).
Generally speaking, it is applicable provided that the spatial scale of variations of the
propagation medium parameters are large compared to the spatial scales of variation
of the wavefield. In this respect, the WKB approximation is very similar to the
application of the ray theory to layered media. In this paper, the WKB method is
understood to be an asymptotic technique for solving ordinary differential equations,
specifically, one-dimensional wave equations.
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We are interested in the application of the WKB method to linear acoustic–gravity
waves (AGWs) in fluids, especially to waves in the Earth’s atmosphere. AGWs
are mechanical waves in compressible fluids in a gravity field. They encompass
gravity waves and infrasound. These waves play an important role in the dynamics
of stars and planetary atmospheres (Duvall et al. 1993; Podesta 2005; Fouchet et al.
2008), and have been extensively studied in meteorology, climate research, and space
physics contexts (Gossard & Hooke 1975; Hargreaves & Gadsden 1992; Fritts &
Alexander 2003). Several developments have motivated a renewed interest in AGW
theory. Ground-breaking observational techniques (Nishida, Kobayashi & Fukao 2013;
Garcia et al. 2014) have provided new insights into atmospheric waves. AGWs
couple wave processes in the solid earth and the ocean with those in the ionosphere
and thermosphere (Watada 2009; Godin & Fuks 2012; Ardhuin & Herbers 2013;
Godin, Zabotin & Bullett 2015) and, thus, underlie radar observations of earthquakes
(Maruyama et al. 2012; Astafyeva et al. 2013) and satellite detection of tsunamis
(Makela et al. 2011; Occhipinti et al. 2013; Garcia et al. 2014; Coïsson et al. 2015).
Vertical transport of horizontal momentum by atmospheric waves plays a crucial role
in large-scale circulation of the middle and upper atmosphere, and the development
of climate models requires vastly improved parameterizations of the momentum flux
(Vadas & Liu 2009; Geller et al. 2013; Jia et al. 2014 and Schirber et al. 2014). On
the other hand, accurate, data-assimilating atmospheric models are becoming available
(Liu et al. 2010; Fuller-Rowell et al. 2010; Akmaev 2011) that provide a sufficiently
detailed description of the physical parameters of the background atmosphere to
enable quantitative comparison of theoretical predictions of wavefields to AGW
observations in the middle and upper atmosphere.

The wave equation for linear AGWs is more involved than the acoustic wave
equation (Brekhovskikh & Godin 1998, 1999) or the wave equation for gravity
waves in incompressible fluids in the Boussinesq approximation (Lighthill 1978;
Gill 1982; Miropol’sky 2001). The difference in structure of the wave equation for
AGWs from wave equations for sound and gravity waves has important implications
for construction of the WKB and ray approximations. Care needs to be exercised in
introducing the large parameter, which underlies an asymptotic analysis of atmospheric
waves, in a way that is consistent with the physics of the atmosphere.

Various prescriptions for wavefield calculations, all claiming to represent the WKB
approximation, can be found in the literature on atmospheric waves. Moreover, it
is often claimed that even positions of turning points are not uniquely defined
and are somehow dependent on the chosen ‘flavour’ of the WKB approximation
(Pitteway & Hines 1965; Einaudi & Hines 1970, 1974; Gossard & Hooke 1975;
Fritts & Alexander 2003). This unnecessary confusion makes applicability of the
WKB approximation to atmospheric waves questionable and its predictions uncertain.
Here, we derive the WKB approximation as an asymptotic solution of the wave
equation and demonstrate that various mathematically legitimate approaches lead to
the same WKB approximation, which is markedly different from the ad hoc solutions
presented in Pitteway & Hines (1965), Einaudi & Hines (1970, 1974), Gossard &
Hooke (1975), Jones & Georges (1976) and Fritts & Alexander (2003).

The paper is organized as follows. Governing equations for AGWs are formulated
in § 2. The WKB approximation is derived for atmospheric waves in § 3.1 and in
appendix A using two alternative forms of the wave equation. Asymptotic results
are compared to ad hoc solutions, and properties of the geometric phase of AGWs,
which is missing from the ad hoc solutions, are discussed in § 3.2. The conditions
of validity of the WKB approximation are considered in § 3.3. The transition of
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the AGW asymptotics into those for gravity waves in incompressible fluids and for
sound is addressed in § 3.4. The gravity waves are further considered in appendix B,
where we also discuss an alternative way of introducing the large parameter in the
AGW problem and demonstrate the significance of the physics-based scaling. In
§ 4, we show that AGW energy and wave action are conserved exactly in the first
WKB approximation. In § 5, the asymptotic solutions are compared to known exact
solutions of the wave equation, and it is shown how new exact analytic solutions can
the obtained as special cases of the WKB series. Several examples of exact analytic
solutions for waves in both a moving and a quiescent atmosphere are derived in
appendix C. Section 6 summarizes our findings.

2. Governing equations
We consider linear waves in a compressible fluid in a uniform gravity field with

acceleration g. In a Cartesian coordinate system with horizontal coordinates x and y
and a vertical coordinate z increasing upward, background, i.e. unperturbed by waves,
pressure p0, density ρ, sound speed c and flow velocity u in the fluid are smooth
functions of z; the background flow is horizontal: u= (ux, uy, 0); and g = (0, 0,−g).
The fluid is stationary (i.e. its parameters are independent of time t) in the absence of
waves. The background pressure and density are related by the hydrostatic equilibrium
equation

dp0/dz=−ρg, (2.1)

while c(z) and u(z) can be arbitrary. We neglect the Earth’s rotation and curvature,
which makes the theory inapplicable to atmospheric waves with periods longer than a
few hours. Wave propagation is assumed to be an adiabatic thermodynamic process;
we disregard irreversible processes associated with viscosity, thermal conductivity,
and diffusion. For a discussion of AGW absorption that results from the irreversible
processes, see Vadas & Nicolls (2012) and Godin (2014b) and references therein.

In layered media, wavefields can be represented as a superposition of continuous
waves with harmonic dependence exp(ik · r − iωt) on horizontal coordinates and time,
which are sometimes referred to as quasi-plane waves (Brekhovskikh & Godin 1998).
Here, r = (x, y, z) is the position vector, and k= (kx, ky, 0) and ω are the horizontal
wavevector and wave frequency. Below, the dependence exp(ik · r − iωt) of the wave-
induced pressure p and fluid velocity v perturbations, vertical displacement of fluid
parcels w, etc. on horizontal coordinates and time is assumed and suppressed.

In quasi-plane waves, the vertical dependences of p and w satisfy a set of two first-
order ordinary differential equations,

dp
dz
+ g

c2
p= ρ(ω2

d −N2)w, (2.2)

dw
dz
− g

c2
w=

(
k2

ω2
d
− 1

c2

)
p
ρ
, (2.3)

where the Doppler-shifted, or intrinsic, wave frequency ωd and the buoyancy frequency
N are given by

ωd =ω− k · u, N2 =−g2c−2 − gρ−1 dρ/dz. (2.4a,b)

The intrinsic frequency has the meaning of the wave frequency in the reference frame
uniformly moving with the local background flow; like the flow velocity, ωd is a
function of z. In terms of p and w, fluid velocity perturbation is given by the equation
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v = kp
ωdρ
−w

du
dz
− iωdw ẑ. (2.5)

Equations (2.2), (2.3), and (2.5) are obtained from the Euler, continuity, and state
equations linearized with respect to wave amplitude (see e.g. Godin 2012b). Similar
governing equations can be found in Pierce (1965), Pitteway & Hines (1965),
Bretherton (1969) and Tatarskiy (1979).

The quantity
p̃= p− ρgw (2.6)

has the meaning of the Lagrangian pressure perturbation, i.e. the wave-induced
pressure perturbation in a moving fluid parcel (Lamb 1932), as opposed to the
(Eulerian) pressure perturbation p at a fixed point in space. Using p̃ as an unknown
function instead of p, (2.2) and (2.3) become

dp̃
dz
+ gk2

ω2
d

p̃= ρ
(
ω2

d −
g2k2

ω2
d

)
w, (2.7)

dw
dz
− gk2

ω2
d

w=
(

k2

ω2
d
− 1

c2

)
p̃
ρ
. (2.8)

Note that all the effects of the background flow are described though the intrinsic
frequency ωd. In both representations, (2.2), (2.3) and (2.7), (2.8), the governing
equations in moving fluids differ from the respective equations in quiescent fluids
only by substitution of ωd for ω.

By eliminating one of the dependent variables from either (2.2) and (2.3) or (2.7)
and (2.8), one readily obtains closed-form wave equations for various characteristics
of AGW fields:

d
dz

[
ω2

d dp̃/dz
ρ(ω4

d − g2k2)

]
+
[

1
c2
− k2ω2

d

ω4
d − g2k2

+ gρ
d
dz

k2

ρ(ω4
d − g2k2)

]
p̃
ρ
= 0, (2.9)

d
dz

[
dp/dz

ρ(ω2
d −N2)

]
+
[

ω2
d

c2(ω2
d −N2)

− k2

ω2
d
+ d

dz
g

c2(ω2
d −N2)

]
p
ρ
= 0, (2.10)

d
dz

[
ρω2

d dw/dz
ω2

dc−2 − k2

]
+
[
ω2

d −
g2k2

ω2
d − k2c2

− g
ρ

d
dz

(
ρk2

ω2
dc−2 − k2

)]
ρw= 0. (2.11)

A simple relation ρc2∇ · v = iωdp̃ between the Lagrangian pressure perturbation and
velocity divergence follows from (2.5), (2.6), and (2.8). Using this relation, it is easy
to see that, at u ≡ 0, (2.9) reduces to Lamb’s (1932) wave equation, where ∇ · v
is the dependent variable. An inspection shows that one-dimensional wave equations
(2.9)–(2.11) are consistent with more general, three-dimensional wave equations for
AGWs in moving fluids (Godin 1987; Ostashev 1987, 1997).

All the wave equations (2.9)–(2.11) are linear second-order ordinary differential
equations. Their coefficients are rather different, however, leading to distinct,
inconsistent ‘WKB approximations’, when ad hoc techniques (Einaudi & Hines
1970, 1974; Gossard & Hooke 1975) are applied to different wave equations, see
§ 3.2. In the next section, we show that this problem is eliminated when a systematic
asymptotic approach is used to solve the wave equations for AGWs.
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3. Derivation of the WKB approximation
From the equation of state of an ideal gas and (2.1) it follows (Lamb 1932; Pierce

1965) that

p0(z)= p0(0) exp
(
−
∫ z

0

dz1

h(z1)

)
, ρ(z)= ρ(0)h(0)

h(z)
exp

(
−
∫ z

0

dz1

h(z1)

)
, (3.1a,b)

c2 = γ p0/ρ = γRT/µ, h= c2/γ g. (3.2a,b)

Here T , R, µ, and γ are the absolute temperature of the gas, the universal gas
constant, the molecular weight, and the ratio of specific heats at constant pressure
and constant volume; h is the scale height of the atmosphere. For diatomic ideal
gases, γ = 1.4.

We now make the key assumption that certain parameters of the propagation
medium vary gradually and slowly with height z. It is important to note that the
spatial scales of variation of the unperturbed density and sound speed are generally
distinct. Below, we assume that the spatial scale L of variation of the flow velocity as
well as of the gas temperature and composition (and, therefore, of h and c) is large.
No restrictions are placed on h. The scale L can be large or small compared to the
density scale height h. For instance, L is infinitely large in the isothermal atmosphere
of constant composition, while h is a constant ∼8 km.

A convenient way to formalize the assumption that h, u, and c have a spatial scale
L is to consider these as arbitrary smooth functions of ζ = z/L. We want to find an
asymptotic solution for the AGW wavefield that is valid at large L (formally, at L→
∞). To do so, we follow the approach described by Brekhovskikh & Godin (1998)
for acoustic waves.

3.1. Derivation based on the wave equation for Lagrangian pressure perturbations
We search for a solution to (2.9) in the form

p̃(z)= p̃(0) exp
(

iL
∫ ζ

0
ϕ(ζ1, L) dζ1

)
, ζ = z/L, (3.3)

where ϕ is an unknown function of the dimensionless variable ζ and the parameter
L. In a fluid with the background density profile (3.1), substitution of (3.3) into the
wave equation (2.9) gives a nonlinear first-order ordinary differential equation (more
specifically, a Riccati equation):

i
L

dϕ
dζ
+ iϕ

[
1
h
+ 1

L
d

dζ
ln
(

ω2
dh

ω4
d − g2k2

)]
= ϕ2 −m2 − 1

4h2
− gk2

Lω2
d

d
dζ

ln
(

h
ω4

d − g2k2

)
,

(3.4)
where

m2 = ω
2
d

c2
− k2 − 1

4h2
+ gk2

ω2
d

(
1
h
− g

c2

)
. (3.5)

Note that m(ζ )=O(1) and does not contain terms that are small or large with respect
to the parameter L. For definiteness, it will be implied that m= |m|, when m2 > 0, and
m= i|m|, when m2 < 0.

We represent the unknown function ϕ in terms of a power series:

ϕ(ζ , L)= f + i/2h, f =
∞∑

n=0

fn(ζ )L−n (3.6)
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in the small parameter of the problem, L−1, and note that

f 2 =
∞∑

n=0

L−n
n∑

l=0

fn−l fl = f 2
0 +

∞∑
n=1

L−n

(
2f0 fn +

n−1∑
l=1

fn−lfl

)
. (3.7)

By substituting (3.6) and (3.7) into the Riccati equation (3.4), and equating terms of
the same order in L−1, we find

f0 =±m, (3.8)

f1 = i
2

d
dζ

ln
(

ω2
dhf0

ω4
d − g2k2

)
+ gk2

2f0ω
2
d

d
dζ

ln
(

h
ω4

d − g2k2

)
+ 1

4f0h
d

dζ
ln
(
ω4

d − g2k2

ω2
d

)
,

(3.9)

fn = 1
2f0

[
ifn−1

d
dζ

ln
(
ω2

dhfn−1

ω4
d − g2k2

)
−

n−1∑
l=1

fl fn−l

]
, n > 2. (3.10)

This is an exact solution of the wave equation as long as m 6= 0, ωd 6= 0, and ω2
d 6= gk.

From (3.5) and the identity

m2 +
(

1
2h
− gk2

ω2
d

)2

=
(

1− g2k2

ω4
d

)(
ω2

d

c2
− k2

)
(3.11)

it follows that all fn are finite when 0<m2 <∞.
When m 6= 0, the solutions (3.3) corresponding to the upper and lower signs in (3.8)

are linearly independent, and (3.6), (3.8)–(3.10) define the full asymptotic solution of
the problem. This is the WKB asymptotic solution for AGWs. The solution breaks
down in the vicinity of a point or points where m= 0. Such points are referred to as
turning points (Brekhovskikh & Godin 1998).

WKB approximations of various order are obtained by retaining a finite number of
terms in the series (3.6). In the first WKB approximation, one retains only terms f0
and f1. Then, (3.6), (3.8) and (3.9) give two linearly independent approximate solutions
of the wave equation:

p̃(z)= p̃(0)

√
ρm(0)(ω2

d − g2k2/ω2
d)

ρ(0)m[ω2
d(0)− g2k2/ω2

d(0)]
exp

(
±i
(∫ z

0
m dz1 + χ

))
, (3.12)

χ =
∫ z

0

dz1

2m

[
gk2

ω2
d

d
dz1

ln
(

h
ω4

d − g2k2

)
+ 1

2h
d

dz1
ln
(
ω4

d − g2k2

ω2
d

)]
. (3.13)

Here, we have returned to integration over dimensional height z, and the scale L no
longer enters the solution explicitly. The first WKB approximation gives the solution
to the wave equation with accuracy up to the factor 1+O(L−1). To the same accuracy,
from (2.6), (2.7), and (3.12) we get

w(z)= gk2ω−2
d ± im− 1/2h

(ω2
d − g2k2ω−2

d )ρ
p̃(z), (3.14)

p(z)= ω
2
d ± img− g/2h
ω2

d − g2k2ω−2
d

p̃(z) (3.15)
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for the vertical displacement and the Eulerian pressure perturbation, respectively.
Equations (3.14) and (3.15) as well as their corollary

w(z)= gk2ω−2
d ± im− 1/2h

(ω2
d ± img− g/2h)ρ

p(z) (3.16)

can be viewed as the WKB polarization relations. These do not contain derivatives of
any environmental parameters and coincide with the polarization relations for plane
AGWs in a uniformly moving fluid with height-independent c and h (e.g. Godin &
Fuks 2012). The WKB polarization relations involving the oscillatory velocity v follow
readily from (2.5) and (3.14)–(3.16).

When m2 > 0, the asymptotic solutions that are obtained by choosing either the
upper or lower sign in (3.12)–(3.16) have the meaning of obliquely propagating locally
plane waves; the waves propagate vertically in opposite directions in the particular
case k= 0. When m2< 0, the two asymptotic solutions describe exponentially growing
with height and exponentially decreasing with height (evanescent) locally plane waves
that propagate horizontally. Note that in each of the locally plane waves, different
physical quantities p/ρ, w, p̃/ρ, ∇ · v, etc. share the same exponential factor and
differ by the factor before the exponential. These pre-exponential factors describe
polarization relations for AGWs. Also, p, w, p̃, and v diverge in the vicinity of the
turning points where m→ 0. It should be emphasized that, in contrast to what is
often claimed in the literature (Einaudi & Hines 1970, 1974; Gossard & Hooke 1975;
Fritts & Alexander 2003) but in agreement with physical expectations, the wave
turning point is the same whether it is defined using p, w, p̃, or v.

In addition to the turning points, where m2 = 0, the WKB approximation may
diverge and become inapplicable in the vicinity of points where either

ωd = 0 (3.17)

or
ω2

d = kg. (3.18)

Neither of these conditions can be met when k= 0 (vertical propagation). When (3.17)
holds, we have ω= k ·u, and the intrinsic frequency vanishes. Such points are referred
to as points of wave-flow synchronism (Brekhovskikh & Godin 1998) or critical levels
(Gossard & Hooke 1975), and are singular points of the WKB approximation for
sound waves (i.e. at g = 0) as well. However, the physics of resonance interaction
with flow in the vicinity of points of wave–flow synchronism is distinct for sound and
AGWs. For sound, m2< 0 when the condition (3.17) is met. Unlike sound, for AGWs
in a stably stratified fluid, wave–flow synchronism occurs for propagating waves
(m2 > 0, m→∞) (Gossard & Hooke 1975) rather than waves that are evanescent in
a vertical direction.

The WKB solutions are inapplicable in the vicinities of the turning points and
points of wave-flow synchronism; the vertical extent of the vicinities depends on the
singularity type but is small compared to the spatial scale L (see e.g. chapter 9 in
Brekhovskikh & Godin 1998 where acoustic waves are considered, and references
therein). The applicability of the WKB approximation for AGWs in the vicinity of a
turning point is discussed in more detail in § 3.3.

Apparent singularities of the type (3.18) are specific to AGWs and can occur only
in fluids with inhomogeneous background flow. It follows from (3.5) that m2 < 0
and waves are evanescent when (3.18) holds. Condition (3.18) coincides with the
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dispersion equation of incompressible wave motion (Godin 2012a, 2014a, 2015) in
uniformly moving fluids and is related to the existence of non-trivial wave solutions,
in which Lagrangian pressure perturbations are identically zero. As discussed in
appendix A, the WKB solutions are not necessarily singular when the condition
(3.18) is met.

3.2. Comparison of the asymptotic and ad hoc solutions. Geometric phase
In the literature on atmospheric waves, it is often argued (e.g. Einaudi & Hines
1970, 1974; Jones & Georges 1976) that the WKB approximation can be derived
by applying the following prescription. Any linear second-order ordinary differential
equation, which governs AGWs with harmonic dependence exp(ik · r − iωt) on the
horizontal coordinates and time, is first reduced to its normal form,

d2ψ/dz2 + q2ψ = 0. (3.19)

Then, the function q2(z, k, ω) is interpreted as the vertical wavenumber squared, m2=
q2(z, k, ω) is interpreted as the dispersion equation of AGWs with the wavevector
(k,m), and the functions

ψ1, 2(z)= const. q−1/2 exp
(
±i
∫ z

0
q dz1

)
(3.20)

are claimed to be the solutions of the wave equation in the WKB approximation
(Einaudi & Hines 1970, 1974; Jones & Georges 1976). Such an interpretation of the
WKB approximation is rather widely accepted in the atmospheric wave community
(Gossard & Hooke 1975; Fritts & Alexander 2003). To distinguish the functions (3.20)
from the asymptotic solutions considered in § 3.1 and appendix A, we refer to the
functions ψ1,2 as ad hoc solutions.

The ad hoc solutions coincide with the first WKB approximation for solutions
of the time-independent non-relativistic Schrödinger equation for a particle in
a potential field (e.g. Fedoryuk 1987), for horizontally polarized electromagnetic
waves (e.g. Brekhovskikh 1960), and for acoustic waves in fluids with a constant
density (e.g. Brekhovskikh & Godin 1998) but, as has been mentioned already,
are problematic when applied to AGWs. For atmospheric waves, the function q2

in (3.19) depends on the choice of the dependent variable ψ . For instance, for the
choices ψ(z)=[(k2c2 −ω2)ρh]1/2w(z) and ψ(z)= kc[(N2 −ω2)ρh]−1/2p(z) one obtains
(Einaudi & Hines 1970, 1974)

q2
w =m2 + d

dz

[
1
2h
+ gk2

2ω2
ln

c2γ

(c2k2 −ω2)

]
− 3

4

[
d
dz

ln(c2k2 −ω2)

]2

+ d2(c2k2 −ω2)/dz2

2(c2k2 −ω2)
(3.21)

and

q2
p = m2 + g

d
dz

[
1
c2
+ k2

ω2
ln c2 − 2+ γ

2c2
ln(N2 −ω2)− γ (γ − 1)g2

2ω2c4

]
+
[

k
g

dc2

dz
+ γ (γ − 1)g3

ω2c4
+ d

dz

]
d
dz

ln(N2 −ω2)+ 1
4

[
d
dz

ln c2(N2 −ω2)

]2

− γ g2

ω2c2

[
2

d2 ln c2

dz2
+
(

d ln c2

dz

)2
]
− 1

2c2

d2c2

dz2
, (3.22)
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respectively. The atmosphere was assumed to be quiescent by Einaudi & Hines (1970,
1974). Generally, functions q2 for various choices of ψ in (3.19) differ from m2, which
is defined by (3.5), and from each other by terms O(L−1). Equations (3.21) and (3.22)
illustrate the fact that the ad hoc approach (Einaudi & Hines 1970, 1974; Gossard
& Hooke 1975; Jones & Georges 1976; Fritts & Alexander 2003) gives different
dispersion equations of AGWs and different positions of turning points, where the
ad hoc solutions (3.20) are singular, for different choices of the dependent variable
ψ .

The actual WKB solutions for AGWs generally do not have the form (3.20)
regardless of the choice of the function q(z), see (3.12) and (A 7). In addition to the
phase integral (eikonal)

S(z)=
∫ z

0
m(z1) dz1, (3.23)

the exponent in the solution (3.12) for p̃ in the first WKB approximation contains
the term ±iχ . When AGWs are propagating waves, i.e. m2 > 0, between heights
0 and z, χ(z) is real-valued, and ±(S + χ) has the meaning of the phase of two
linearly independent solutions. Both S(z) and χ(z) are purely imaginary, when m2 < 0
between heights 0 and z, see (3.13). Turning points, where m = 0, generally do not
lead to singularities in χ(z). Unlike S given by (3.23), the integrand in (3.13) for
χ contains first derivatives of the environmental parameters, namely, h and u. For
wave propagation over distances O(L) or larger, the increments of χ are O(1), and
retaining χ(z) in the asymptotic solution (3.12) is necessary to approximate exact
solutions to the wave equation.

An additional phase term, which is quite analogous to χ , is present also in the first
WKB approximation for w; it is given by the second and third terms in the square
brackets in the integrand in (A 7). This additional phase term has properties quite
similar to those of χ but looks somewhat different because of the phase shift between
p̃ and w, which is obvious in the polarization relation (3.14).

The additional phase terms in (3.12) and (A 7) are but a manifestation of a much
more general phenomenon. Analogous phase terms arise in wavefunctions describing
adiabatic transitions in quantum systems, have important implications in numerous
physical problems, and are usually referred to as the geometric phase or Berry
phase (Berry 1984; Shapere & Wilczek 1989; Bohm et al. 2003; Berry 2010). The
geometric phase arises also in the WKB-type approximations for various types of
waves, including waves in fluids and solids (Babich 1961; Karal & Keller 1964;
Bretherton 1968; Berry 1990; Tromp & Dahlen 1992; Babich & Kiselev 2004). In
a study that was limited to the first WKB approximation, an expression for the
geometric phase of atmospheric waves, which is equivalent to (3.13), was previously
derived by Budden & Smith (1976). They referred to the geometric phase as the
‘additional memory’.

For AGWs, the geometric phase χ , (3.13), vanishes for vertically propagating waves,
i.e. at k= 0. When k 6= 0, but there is no wind and γ = const., the quantity under the
integral in (3.13) is a full differential, and

χ(z)= gk
2ω2

[
arcsin

(
2kh(z)− b√

b2 − 1

)
− arcsin

(
2kh(0)− b√

b2 − 1

)]
, b= (γ − 1)gk

γω2
+ ω2

γ gk
.

(3.24)
Then, the geometric phase increment χ(z3)− χ(z2) can be expressed in terms of the
environmental parameters at just the two heights, z2 and z3. However, when there
is a variable wind u(z) and/or γ is not constant due to a continuous change in the
composition of the atmosphere, the integrand in (3.13) is not a full differential, and
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FIGURE 1. (Colour online) Geometric phase of AGWs in a quiescent atmosphere. The
geometric phase χ(z) is shown in radians as a function of dimensionless parameters
h(z)/h(0)= c2(z)/c2(0) and kh(0) in an atmosphere with the ratio γ = 1.4 of specific heats
at constant pressure and constant volume; kg/ω2 = 20.

the geometric phase increment depends on the values of the environmental parameters
c, h, and u at all heights between z2 and z3. In this respect, the geometric phase differs
from the wave amplitude, which is given by the factor in front of the exponential in
(3.12) and depends only on the local values of the environmental parameters. When
a wave is launched from a height z2, is reflected at a turning point, and returns
to the height z2, the wave amplitude is unchanged, but both the eikonal and the
geometric phase gain finite increments. While the wave amplitude can be found from
the energy conservation law (see § 4) and knowledge of the dispersion relation is
sufficient to calculate the eikonal, an asymptotic analysis has been necessary to derive
(3.13) for the geometric phase and, therefore, to calculate the AGW phase at oblique
propagation.

As a rule, the AGW field cannot be approximated without taking the geometric
phase into account. Figure 1 illustrates the significance of the geometric phase χ ,
(3.24), in the simple case of a quiescent atmosphere with a constant γ . In figure 1,
the dimensionless parameter h(z)/h(0) can be interpreted as the ratio of absolute
temperatures at heights z and z = 0. The range of sound speeds in the figure, from
c(0)/1.5 to 2c(0), is close to their range in the real atmosphere; χ is shown for
propagating waves, for which m2(z) > 0 and m2(0) > 0. For propagation between
heights with sufficiently different sound speeds (or, equivalently, air temperatures),
the increment of the geometric phase can be as large as 10π (figure 1).

It follows from the dispersion equation (3.5) that propagating AGWs (i.e. waves
with real-valued k and m) exist when either ωd

2 >Ω2 or ωd
2 <N2

0 , where

Ω = c
2h
= γ g

2c
, N2

0 =
g
h
− g2

c2
= (γ − 1)g2

c2
. (3.25a,b)

Since 1<γ < 2 in ideal gases, we have 0<N0<Ω . Waves with ω2
d >Ω

2 and ω2
d <N2

0
form the acoustic and buoyancy branches of AGWs, respectively. (For a discussion of
the acoustic and buoyancy branches, see Hines 1960 and Gossard & Hooke 1975. In
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FIGURE 2. (Colour online) Atmospheric stratification. (a) An example of the sound speed
c and wind velocity profiles predicted by the Whole Atmosphere Model (Fuller-Rowell
et al. 2008, 2010; Zabotin et al. 2014); ux and uy are the zonal (from west to east)
and meridional (from south to north) components of the wind velocity. (b) Atmospheric
parameters that constrain the frequencies of propagating AGWs. Buoyancy frequency N,
the effective buoyancy frequency N0, and the acoustic cutoff frequency Ω are defined in
the text and are calculated for the sound-speed profile shown in (a) assuming that γ = 1.4
and g= 9.8 m s−2.

the literature on atmospheric waves, AGWs on the buoyancy and acoustic branches are
sometimes loosely referred to as gravity waves and infrasound, respectively.) Under
the conditions of figure 1, ω<N0, and the results pertain to AGWs on the buoyancy
branch.

To illustrate the dependence of the geometric phase on the AGW frequency
and horizontal wavevector in the real atmosphere, we use the wind velocity
and temperature profiles generated by the Whole Atmosphere Model, or WAM
(Fuller-Rowell et al. 2008, 2010). The WAM description of the atmosphere above
southern Iceland, which is shown in figure 2(a), was previously used in modelling
long-range propagation of atmospheric waves generated by the 2010 eruption of
Eyjafjallajökull volcano (Matoza et al. 2011; Zabotin et al. 2014). Note that below
about 250 km the effective buoyancy frequency N0, which enters the AGW dispersion
relation (3.5), varies much more smoothly with height than the buoyancy frequency
N (figure 2b). Unlike N, N0 is always positive and smaller than the acoustic cutoff
frequency Ω; N and N0 are indistinguishable at very high altitudes, where the
atmosphere becomes nearly isothermal (figure 2b).

In the real atmosphere, the geometric phase χ , (3.13), of AGWs with frequencies
ωd <N0 can be both positive and negative (figure 3). Its sign is mostly opposite that
of the eikonal S, (3.23), at heights 0< z< 100 km. Variations of the geometric phase
with height can exceed 2π and, because of the wind, strongly depend on the direction
of the horizontal wavevector k unless the trace velocity C=ω/k is large compared to
the wind speed. (The trace velocity is the reciprocal of the magnitude of the horizontal
slowness k/ω of the wave and has the meaning of the phase speed of the trace of the
wave on the horizontal plane.) More rapid variations of χ are associated with stronger
winds and larger temperature and wind velocity gradients (figures 2 and 3).
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FIGURE 3. (Colour online) Geometric phase at various heights and azimuthal directions of
propagation for atmospheric waves on the buoyancy branch of the AGWs. Wave frequency
f = 2 mHz and horizontal wavevector k = 2π f C−1(cos α, sin α, 0) with the trace speed
C= 60 m s−1. Parameters of the atmosphere are shown in figure 2.
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FIGURE 4. (Colour online) Geometric phase as a function of height for waves on the
acoustic branch of the AGWs in the atmosphere with parameters shown in figure 2.
Wave frequencies f = ω/2π and trace speeds C = ω/k are 4.5 mHz and 400 m s−1 (1);
4.65 mHz and 380 m s−1 (2); 5 mHz and 400 m s−1 (3); and 5 mHz and 380 m s−1 (4).
Horizontal wavevector k= (2π f C−1, 0, 0).

On the acoustic branch of AGWs, the geometric phase χ tends to zero in the limit
of high frequencies, but remains significant when the wave frequency is of the order
of the acoustic cutoff frequency (figure 4). The intervals of heights where waves are
evanescent, i.e. m2 < 0, contribute to neither χ , (3.13), nor the eikonal S, (3.23), and
account for the horizontal segments of lines 1 and 2 in figure 4. The geometric phase
is sensitive to small variations in wave frequencies and trace speed, especially when
a turning point approaches the heights where gradients of air temperature or wind
velocity are large (figure 4).
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3.3. Validity of the WKB solutions when turning points are present
While the WKB solutions diverge at turning points z = zt, where m(zt) = 0, the
solutions remain valid outside a layer |z− zt| < dt, which proves to be narrow
compared to the spatial scale L of c, u, and h variations. Consider a turning point
z = zt, such that there are no other singular points of the WKB solutions in the
vicinity |z− zt| � L of zt. To evaluate dt and find the domain of applicability of the
first WKB approximation in the vicinity of the isolated turning point, we will follow
Brekhovskikh & Godin (1998) and require that the difference between the first and
second WKB approximations is small.

In the vicinity |z− zt| � L of the isolated turning point, from (3.5) we have

m2 =±µ2 · (ζ − ζt)[1+O(ζ − ζt)], (3.26)

where ζt = zt/L and µ2 is a representative value of |m2| away from the turning point.
Equations (3.9), (3.10), and (3.26) give f1=µ2O(m−1) and f2=µ4O(m−5). The second
WKB approximation differs from the first approximation (3.12) by the factor

E2(ζ )= L−1
∫ ζ

0
f2(ζ1) dζ1, (3.27)

see (3.3) and (3.6). Here, f2 and E2 diverge, when ζ→ ζt; E2= (µL)−1O((ζ − ζt)
−3/2).

For the first WKB approximation to be applicable, it is necessary that |E2| � 1 and,
therefore, |ζ − ζt| � (µL)−2/3. In terms of dimensional height z, the applicability
condition becomes

|z− zt| � (µ−2L)1/3, (3.28)

or dt ∼ (µ−2L)1/3. Thus, the vicinity of the turning point, where the first WKB
approximation is invalid, is large compared to the vertical scale µ−1 of the wavefield
variation away from the turning point but is small compared to the scale L of the c,
u, and h variations.

Within its domain of applicability, the WKB approximation predicts a large increase
of the wave amplitude in the vicinity of the turning point. According to (3.12),
(3.15), (3.26), and (3.28), |ρ−1/2p̃| and |ρ−1/2p| in the vicinity of the turning point
are amplified by the large factor O((µL)1/3) compared to their values away from the
turning point on its ‘illuminated’ side, where m2 > 0 and the AGWs are propagating
(as opposed to evanescent) waves.

Let us show that the condition (3.28) applies also to higher-order WKB
approximations. Assume that

fn =µ2nO(m1−3n) (3.29)

for n = 1, 2, . . . , N − 1. We have already seen that (3.29) holds at n = 0, 1, and 2.
Then, it follows from (3.10) that (3.29) is valid for n=N. Hence, (3.29) is valid for
all natural n. According to (3.3) and (3.6), the nth WKB approximation for p̃ differs
from the (n− 1)th approximation by the factor exp(En(ζ )), where

En(ζ )= L1−n
∫ ζ

0
fn(ζ1) dζ1. (3.30)
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When ζ → ζt, it follows from (3.26), (3.29), and (3.30) that En = (µL)1−n

O((ζ − ζt)
3(1−n)/2) . The necessary condition |En+1| � 1 of applicability of the nth

approximation with n> 1 is again given by (3.28). Since (3.28) ensures the smallness
of contributions of all higher-order approximations, it is not only a necessary but also
a sufficient condition of validity of the first WKB approximation (as an asymptotic
solution in the limit L→∞). A different approach is necessary to obtain rigorous
estimates of the deviation of the first WKB approximation from exact solutions at
finite L, see Olver (1974), Fedoryuk (1987), Brekhovskikh & Godin (1998) and
references therein.

The condition (3.28) of the WKB approximation validity can be written in a rather
intuitive form in terms of the phase integral S, see (3.23). In follows from (3.26) and
(3.28) that the WKB approximation is applicable at heights z, where the increment of
the phase integral between the current height and the turning point is large compared
to unity:

|S(z)− S(zt)| � 1. (3.31)

The WKB applicability conditions (3.28) and (3.31) for AGWs have the same
form as in the case of acoustic waves (Brekhovskikh & Godin 1998, § 8.1). The
condition (3.28) has been derived from the asymptotic series (3.3), (3.6), (3.8)–(3.10)
for the Lagrangian pressure perturbation p̃. As expected, the same result follows
from the series (A 1), (A 3)–(A 6) for the vertical displacement w. The necessary
reasoning is essentially unchanged and is based on the observation that, as follows
from (A 4)–(A 6) and (3.26), the same estimate (3.29) applies to functions Fn in (A 3)
as to functions fn.

In various ad hoc approximations, which were referred to as ‘WKB approximations’
in Pitteway & Hines (1965), Einaudi & Hines (1970, 1974), Gossard & Hooke (1975),
Jones & Georges (1976) and Fritts & Alexander (2003), the value of m2 differs from
our (3.5) by the terms µO(L−1), which originate from the terms containing derivatives
dh/dz, dc/dz, and/or dωd/dz. In particular, an additional term µO(L−1) results from
replacement of g(h−1 − gc−2) with N2, the buoyancy frequency squared, in the last
term on the right-hand side of (3.5). The difference between the m2 values arising in
various ad hoc approximations (Einaudi & Hines 1970, 1974) are also µO(L−1), see
(3.21) and (3.22). The ad hoc approximations diverge at their respective turning points.
An addition µO(L−1) to m2 shifts the turning point height, i.e. the location of a zero
of the function m2(z), by µ−1O(L0), see (3.26). Such a shift is much larger than the
vicinity |z − zt| < dt of the actual turning point, where the WKB approximation is
not applicable. To rationalize the difference between various ad hoc approximations,
Einaudi & Hines (1970, 1974) argued that these approximations differ significantly
only when the WKB approximation is not valid. Our analysis of the conditions of the
WKB approximation applicability shows that Einaudi & Hines’ argument is fallacious.

3.4. Limiting cases
In the limit g → 0, the background fluid density ρ is no longer related to the
background pressure p0 by (2.1); the vertical dependencies of c, ρ, and u can be
prescribed independently in a layered fluid with a generic equation of state. In
this limit, p0 = const. and h−1 → 0. For a fluid with a generic equation of state,
equation (3.2) for h does not necessarily apply, and the ratio h(0)/h(z) should be
understood as ρ(z)/ρ(0), see (3.1). The only type of mechanical wave supported by
ideal compressible fluids in the absence of gravity is sound, i.e. acoustic waves. The
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difference vanishes between the Lagrangian, p̃, and Eulerian, p, pressure perturbations;
wave equations (2.9) and (2.10) reduce to the well-known acoustic wave equation
(e.g. Brekhovskikh & Godin 1998, § 1.2).

Asymptotic solution of the wave equation simplifies greatly in the acoustic case
because parameters of the medium now have only one scale of spatial variations, L,
instead of two distinct scales, L and h, in the case of AGWs. In this limit, (3.5),
(3.8)–(3.10), which define the WKB series for AGWs, reduce to

m2 = ω
2
d

c2
− k2; f0 =±m; fn = 1

2f0

(
ifn−1

d
dζ

ln
fn−1

ρω2
d
−

n−1∑
l=1

fl fn−l

)
, n > 1,

(3.32a−c)
and agree with the equations (Brekhovskikh & Godin 1998, § 8.1) which define the
WKB series for acoustic waves and were derived by different means. In particular, in
the first WKB approximation (3.12) and (3.13) give χ ≡ 0 and

p(z)= p(0)
√
ρω2

dm(0)/ρ(0)ω2
d(0)m exp

(
±i
∫ z

0
m dz1

)
(3.33)

in agreement with the acoustic result (Brekhovskikh & Godin 1998, § 8.2). Obviously,
acoustic waves have no Berry phase. This is consistent with the general equation
(3.13) for the Berry phase χ , where the integrand on the right-hand side vanishes in
the acoustic limit. When k/ω is independent of frequency, m/ω is also independent
of frequency according to (3.32). Then, the amplitude and phase of propagating sound
waves (3.33) are, respectively, independent of and proportional to ω. These properties
reflect the well-known fact that sound, unlike AGWs, propagates without dispersion
in fluids with gradually varying parameters (e.g. Brekhovskikh 1960; Brekhovskikh &
Godin 1998, 1999).

In the ad hoc approach (Einaudi & Hines 1970, 1974; Gossard & Hooke 1975;
Jones & Georges 1976; Fritts & Alexander 2003) it is implied that the WKB
solutions have the form (3.20) with some function q(z). Equation (3.33) shows
that this assumption does not hold even for sound when the fluid is moving or its
density varies with z. It follows from (3.21) and (3.22) that the functions qp(z)/ω and
qw(z)/ω retain a dependence on frequency in the acoustic limit. Thus, the unjustified
assumption, equation (3.20), about the form of the WKB solutions in the ad hoc
approach leads to the unphysical prediction that sound waves are dispersive.

In the opposite limit, where gravity is the dominant restoring force and
compressibility of the fluid is negligible, the WKB approach is often applied to
study internal gravity waves in the Boussinesq approximation (Garrett 1968; Gill
1982, chapter 8; Miropol’sky 2001, chapter 3). For the Boussinesq approximation
to be justified, relative changes of the background density ρ(z) need to be small
compared to unity. Therefore, this version of the WKB approximation is not relevant
to the atmospheric waves unless the range of heights considered is limited to be
within a fraction of the scale height h. A version of the WKB approach, which is
suitable for internal gravity waves in incompressible fluids and does not rely on the
Boussinesq approximation, is considered in appendix B.
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4. Conservation of wave energy

Consider a general solution of the wave equation in the first WKB approximation:

p=
[(
ω2

d −
g2k2

ω2
d

)
m
ρ

]−1/2 {
C1

(
ω2

d −
g
2h
+ img

)
eiψ +C2

(
ω2

d −
g
2h
− img

)
e−iψ

}
,

(4.1)

w=
[(
ω2

d −
g2k2

ω2
d

)
mρ
]−1/2

×
{

C1

(
g2k2

ω2
d
− 1

2h
+ im

)
eiψ +C2

(
g2k2

ω2
d
− 1

2h
− im

)
e−iψ

}
, (4.2)

where

ψ =
∫ z

z1

dz3

2m

[
2m2 + gk2

ω2
d

d
dz3

ln
(

h
ω4

d − g2k2

)
+ 1

2h
d

dz3
ln
(
ω4

d − g2k2

ω2
d

)]
(4.3)

and constants C1 and C2 have the meaning of amplitudes of two linearly independent
solutions. Here, we have used (3.12)–(3.15) and assume for definiteness that
neither m2 nor the quantity ω2

d − kg change their signs within the range z1 < z < z2

of heights considered. We also assume that ωd 6= 0. Note that ψ is real when m2 > 0,
and is purely imaginary when m2 < 0.

For AGWs with periodic dependence on time and horizontal coordinates, the wave
energy conservation law (Godin 1997; Brekhovskikh & Godin 1998) requires that the
time-averaged vertical component of the power flux density is constant in the absence
of absorption: Iz = const., where

Iz =ω Im (p∗w). (4.4)

Here and below, the asterisk * denotes complex conjugation. Equation (4.4) is exact
for AGWs in media with horizontal flow (Brekhovskikh & Godin 1998). The ratio
Iz/ω gives the vertical component of the wave action flux density (Brekhovskikh &
Godin 1998).

When m is real, substitution of (4.1) and (4.2) into (4.4) gives, after some algebra,

Iz =ω sgn (ω2
d − gk)(|C2

1| − |C2
2|). (4.5)

No approximations are made in the derivation of (4.5) from (4.1) and (4.2).
Equation (4.5) reveals several important properties of the power flux in the WKB
approximation. First, it shows that wave energy is conserved exactly in the first
WKB approximation. Second, as for plane waves (Godin & Fuks 2012), power fluxes
are additive in the waves having the same horizontal wavevector k and propagating
upward and downward. Waves with opposite signs of the vertical component of
phase slowness have opposite signs of the vertical power flux density. Third, the
directions of the phase increase with height and of the vertical component of the
power flux coincide on the acoustic branch of AGWs, where ω2

d > N2
0 ≡ gh−1 − g2c2,

and are opposite on the buoyancy branch, where ω2
d <N2

0 .
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To establish the third property of the power fluxes, we note that the definition of
m2, (3.5), can be rearranged to read

m2 +
(

1
2h
− ω

2
d

g

)2

=
(

1− N2
0

ω2
d

)(
ω4

d

g2
− k2

)
. (4.6)

It follows from (4.6) that, when m2 > 0, the quantities ω2
d − N2

0 and ω2
d − gk do not

equal zero and have the same sign. Therefore, sgn (ω2
d − gk) can be replaced with

sgn (ω2
d −N2

0) in (4.5).
Now, consider the case where m is purely imaginary. Then ψ is purely imaginary

and eiψ and e−iψ are real-valued in (4.1) and (4.2). After some algebra, from (4.1),
(4.2), and (4.4) we find

Iz = 2ω sgn (ω2
d − gk) Im (C∗1C2). (4.7)

Since we have assumed that the quantity ω2
d − kg does not change its sign, Iz

is independent of height. It follows from (4.5) that, in the regime of vertically
inhomogeneous (evanescent) waves,

(i) wave energy is conserved exactly in the first WKB approximation;
(ii) waves which exponentially increase or decrease with height do not transport

energy in the vertical direction;
(iii) non-zero vertical power flux results from interference of two evanescent waves

that exponentially decrease and exponentially increase with z and have the same
horizontal wavevector k;

(iv) for a wavefield with given amplitude coefficients C1 and C2, the direction of the
vertical power flux is determined by the sign of the quantity ω2

d − gk.

Since sgn X is discontinuous at X = 0, one might conclude, erroneously, that (4.7)
indicates a discontinuity of the power flux at the height z = zc, where ω2

d(zc) = gk,
which would clearly contradict the energy conservation law. In fact, (4.1) and (4.2) are
inapplicable in the vicinity of zc. To ascertain properties of the WKB approximation
and the power flux in this vicinity, one should use another form of the WKB solution
to the wave equation. From (3.16) and (A 7), we obtain

p=
√(

1
c2
− k2

ω2
d

)
ρ

m

2∑
j=1

Dj
ω2

d − (−1)j img− g/2h
g2k2ω−2

d − (−1)j im− 1/2h
exp[(−1)j+1iΨ ], (4.8)

w= [(c−2 − k2ω−2
d )/mρ]1/2(D1eiΨ +D2e−iΨ ), (4.9)

where D1 and D2 are arbitrary constants and

Ψ =
∫ z

z1

dz3

2m

[
2m2 + d

dz3

(
1
2h
− gk2

ω2
d

)
−
(

1
2h
− gk2

ω2
d

)
d

dz3
ln
(

h
c2
− k2h
ω2

d

)]
. (4.10)

Equations (4.8)–(4.10) give the general solution of the wave equation in the first WKB
approximation. The solution is valid as long as neither m2 nor the quantity ω2

d − k2c2

change their signs within the range z1 < z< z2 of heights considered. We continue to
assume that ωd 6= 0. Note that Ψ defined by (4.10) is real when m2 > 0, and is purely
imaginary when m2 < 0.
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When m2 > 0, substitution of (4.8)–(4.10) in (4.4) gives

Iz =ω sgn (ω2
d − k2c2)(|D2

1| − |D2
2|). (4.11)

Since ω2
d − k2c2 and ω2

d − gk have the same sign at m2 > 0 (see (3.11)), (4.5) and
(4.11) are equivalent, as expected. When m2 < 0, substitution of (4.8)–(4.10) in (4.4)
gives

Iz = 2ω sgn (ω2
d − k2c2) Im (D∗1D2). (4.12)

Equation (4.12) proves that, in the first WKB approximation, the power flux remains
continuous and, moreover, constant in the vicinity of points where ω2

d = gk.
As a caveat, this reasoning does not apply if the conditions ω2

d = gk and ω2
d = k2c2

are met simultaneously. In this degenerate case, ω= k ·u(zc)± (gk)1/2 and k= gc−2(zc).
Neither of the representations (4.1)–(4.3) and (4.8)–(4.10) of the WKB solution holds
then in the vicinity of zc.

5. Comparison of the WKB and exact solutions
5.1. Plane waves

In the elementary case of a fluid where c, u, and h are independent of height (in
particular, in an isothermal ideal gas with constant γ ), governing equations readily
reduce to differential equations with constant coefficients (Pierce 1965); linearly
independent solutions for ρ−1/2p̃, ρ−1/2p, and ρ1/2w are just exp(±imz) (Lamb 1932;
Pierce 1965). Thus, continuous AGWs with a given horizontal wavevector k are a
superposition of two plane waves.

In this case, χ ≡ 0 in (3.12) and (3.13). For n > 1, fn ≡ 0 in (3.9) and (3.10)
and Fn ≡ 0 in (A 5) and (A 6). Then, as expected the WKB solutions (3.12), (3.14),
(3.15), and (A 7) reduce to the well-known plane-wave solutions, as do various ad hoc
approximations (Einaudi & Hines 1970, 1974). A more stringent test of the validity of
the approximate solutions is provided by another exact solution (Godin 2012a, 2014a),
which describes a particular type of AGWs in arbitrarily stratified fluids.

5.2. Incompressible wave motion in compressible fluids
Arbitrarily stratified compressible fluids with uniform background flow support AGWs
with the dispersion equation (3.18), in which p̃≡ 0,

p= gρw, w(z)=w(0)ekz. (5.1a,b)

Fluid motion in these waves is incompressible in the sense that ∇ ·v≡0 in accordance
with (2.5). With appropriate boundary conditions, solution (5.1) describes a surface
wave which propagates horizontally (Godin 2012a, 2014a).

In the WKB approach, we have m2 = −(k − 1/2h)2 from (3.5) and (3.18). With
F0 = i(k − 1/2h), (A 5)–(A 6) give Fn ≡ 0 for all n > 1. Then, the WKB equations
(3.16) and (A 7) become exact and coincide with (5.1).

This should be contrasted with predictions of various ad hoc approximations
considered by Einaudi & Hines (1970, 1974) and Jones & Georges (1976). None of
these approximations reproduces the exact solution (5.1).
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5.3. The WKB series as an exact analytic solution
When an asymptotic series defined by either (3.7)–(3.10) or (A 3)–(A 6) is convergent,
the series gives an exact solution for AGWs in a continuously stratified atmosphere.
In particular, this is the case when either series has only a finite number of non-zero
terms. Therefore, by establishing conditions when the WKB series terminates, one
can generate explicit, analytic solutions of the problem. Here, we consider a simple
sufficient condition of the WKB series termination.

Let f2(ζ ) = εs(ζ ), where ε is a small parameter and s(ζ ) is an infinitely
differentiable function. Then, it follows from (3.10) that fn(ζ ) = O(ε) for all n > 3
and all ζ such that neither of (3.17), (3.18) and m= 0 holds. Moreover, if f2(ζ )≡ 0,
then fn(ζ )≡ 0 for all ζ and n > 3. Similarly, from (A 6) it follows that Fn(ζ )≡ 0 for
all n > 3 in the series (A 3) when F2(ζ )≡ 0. Thus, the first WKB approximation for
the Lagrangian pressure perturbations, (3.12) and (3.13), gives exact solutions of the
problem, when f2(ζ )≡ 0; the first WKB approximation for the vertical displacement,
(A 7), gives exact solutions of the problem, when F2(ζ )≡ 0.

We have seen in §§ 5.1 and 5.2 that f2(ζ ) ≡ 0 and F2(ζ ) ≡ 0 for two known
exact solutions. However, these equations can help in generating new exact solutions.
Exploring the full set of such solutions is beyond the scope of this paper, and we
limit ourselves to just a few examples. Three new exact solutions are derived in
appendix C.

6. Conclusion

The assumptions that the sound speed, background flow velocity, and composition of
the propagation medium vary gradually with height and that the spatial scale of these
variations is large compared to the vertical spatial scale of wavefield variations, have
allowed us to introduce a large parameter of the problem and systematically derive
an asymptotic solution for the field of AGWs. The resulting WKB approximation for
AGWs has been constructed to all orders in the large parameter of the problem; lower-
order WKB approximations have been obtained in an explicit form. As expected, the
WKB approximations, which were derived from various AGW wave equations, proved
to be equivalent.

The asymptotic solution is consistent with the exact AGW solutions that are known
in certain specific cases. The WKB solution reduces to the exact, plane-wave solution
in the case of an isothermal atmosphere (Lamb 1932; Pierce 1965) and in the case
of incompressible motion of arbitrarily stratified, compressible fluids (Godin 2012a,
2014a). New exact analytic solutions for AGWs in a continuously layered atmosphere
have been derived from the requirement that the WKB series contains only a finite
number of non-zero terms.

The WKB approximation ensures exact wave energy conservation in both
propagating and evanescent waves. In upward- and downward-propagating waves,
the vertical components of the power fluxes have opposite signs and are additive.
Evanescent waves, the amplitudes of which increase or decrease exponentially with
height, do not transport wave energy vertically. However, superposition of such
evanescent waves leads to a non-zero vertical power flux.

In the limit of vanishing gravity, the asymptotic solution reduces to known
WKB solutions for acoustic waves (Brekhovskikh & Godin 1998, § 8.1). In the
opposite limit, where gravity is the dominant restoring force, the WKB approach
is often applied in the literature to study internal gravity waves in the Boussinesq
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approximation. However, the latter approximation and its underlying assumption of
small relative changes in the background density are not relevant to atmospheric waves
unless the range of heights considered is within a fraction of the atmospheric scale
height. A comparison of the WKB solutions that are derived with and without the
Boussinesq approximation (see appendix B) shows that, when applied to atmospheric
waves, the Boussinesq approximation leads to large amplitude errors and adequately
describes the wave phase only for a part of the internal gravity wave spectrum.

When derived systematically from first principles, the WKB approximation for
atmospheric waves does not suffer from any of the ambiguities or contradictions
previously asserted in the literature (Pitteway & Hines 1965; Einaudi & Hines 1970,
1974; Gossard & Hooke 1975; Fritts & Alexander 2003). The contradictions and
ambiguities had resulted from unnecessary assumptions about the form of the WKB
solutions, which are found here to be incompatible with the physics of AGWs.

Care needs to be exercised when following the common practice of extending
the dispersion equation of waves from the isothermal to generic atmosphere. The
dispersion equation of AGWs in a smoothly varying atmosphere coincides with their
dispersion equation in an isothermal, uniformly moving atmosphere provided the
latter equation is expressed in terms of the sound speed or barometric height and not
in terms of the buoyancy frequency.

Derivation of higher-order WKB approximations helped us to demonstrate
self-consistency of the asymptotic approach and derive the validity conditions of
the first WKB approximation. In particular, a rather intuitive condition has been
established for the WKB approximation validity in the vicinity of a turning point.
The WKB approximation becomes applicable when the absolute value of the phase
integral between the observation point and the turning point is large compared to
unity, see (3.31). The vertical extent of the vicinity of the turning point where the
first WKB approximation is invalid is large compared to the vertical scale of the
wavefield variation away from the turning point but is small compared to the spatial
scale of the sound speed and wind velocity variations.

In addition to the eikonal and wave amplitude, calculations of the geometric,
or Berry, phase are necessary for the WKB and ray solutions to approximate the
acoustic–gravity wavefield in an inhomogeneous, moving atmosphere. Unlike the
wave amplitude, which is determined by the initial amplitude and the fluid parameters
at the beginning and the end of the propagation path, the geometric phase generally
depends on the values of gradients of environmental parameters at every point along
the path. While the geometric phase vanishes in the acoustic limit and for vertical
propagation of AGWs, it has been found to readily reach significant, O(1) values for
oblique propagation of waves on both buoyancy and acoustic branches of atmospheric
AGWs.

Further work is required to extend the above analysis to AGW propagation in a
dissipative and horizontally inhomogeneous atmosphere.
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Appendix A. Derivation of the WKB approximation based on the wave equation
for the vertical displacement

We search for a solution to (2.11) in the form (cf. (3.3))

w(z)=w(0) exp
(

iL
∫ ζ

0
Φ(ζ1, L) dζ1

)
, (A 1)

where Φ is an unknown function. Substitution of (A 1) into the wave equation (2.11)
gives the following Riccati equation for Φ:

i
L

dΦ
dζ
− iΦ

h
− iΦ

L
d

dζ
ln
[

h
ω2

d

(
ω2

d

c2
− k2

)]
=Φ2−m2− 1

4h2
− gk2

Lω2
d

d
dζ

ln
[

h
(
ω2

d

c2
− k2

)]
,

(A 2)
where m is defined in (3.5). To solve (A 2), let us write Φ in terms of a power series
in L−1 (cf. (3.6)):

Φ(ζ , L)= F− i/2h, F=
∞∑

n=0

Fn(ζ )L−n. (A 3)

Substitution of (A 3) into the Riccati equation (A 2) and equating terms of the same
order in L−1, we find

F0 =±m, (A 4)

F1 = 1
2F0

(
gk2

ω2
d
− 1
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)
d

dζ
ln
[

h(ω2
dc−2 − k2)

gk2 −ω2
d/2h

]
− i

2
d
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(A 5)

Fn =− iFn−1

2F0

d
dζ

ln
[

h
Fn−1

(
1
c2
− k2

ω2
d

)]
− 1

2F0

n−1∑
l=1

FlFn−l, n > 2. (A 6)

This is an exact solution of the wave equation as long as m 6= 0, ωd 6= 0, and ω2
d 6= gk.

From (3.5) and (3.11) it follows that all Fn are finite when 0<m2 <∞.
In the first WKB approximation, retaining only terms F0 and F1 in (A 3), from (A 1),

(A 5), and (A 6), we find

w(z) = w(0)

√
[c−2(z)− k2ω−2

d (z)]ρ(0)m(0)
[c−2(0)− k2ω−2

d (0)]ρ(z)m(z)
exp

(
±i
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0

dz1

2m

[
2m2 + d
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)
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1
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dz1
ln
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h
c2
− k2h
ω2

d

)])
. (A 7)

AGW polarization relations follow from (2.3), (2.8), and (A 7) and prove to be
identical to (3.14)–(3.16).

Using (3.11), it is straightforward to check that the two results for w(z), (3.12)–
(3.14) and (A 7), which have been obtained from wave equations for different AGW
parameters, are equal exactly. (To perform such a check, it is sufficient to note that
the two expressions agree at z= 0 and that the derivative with respect to z of the ratio
of the two expressions for w(z) equals zero identically. The algebra is cumbersome
but straightforward.) Similarly, it can be shown that the WKB solution of the wave



WKB approximation for atmospheric waves 281

equation (2.10), where the Eulerian pressure perturbation is the dependent variable,
is equivalent to the WKB solutions (3.12)–(3.14) and (A 7), which are derived from
other wave equations. These findings illustrate the fact that the WKB approximation
for AGWs, when derived in a systematic manner, is the same regardless of the
initial choice of dependent variable or variables. Furthermore, the equivalence of
(3.12)–(3.14) and (A 7) shows that an apparent singularity of (3.12)–(3.14) at z such
that ω2

d = gk, which is not present in (A 7), is not a true singularity of the solution.
Similarly, an apparent singularity of (A 7) at z such that ω2

d = k2c2, which is not
present in (3.12)–(3.14), is not a true singularity of the solution. In fact, the WKB
approximation remains valid in the vicinity of the points where ω2

d = k2c2 or ω2
d = gk

as long as such points do not coincide with each other and are located sufficiently
far from the turning points and the wave–flow synchronism points discussed in § 3.1.

Appendix B. An alternative scaling of the problem
Wave equations (2.9)–(2.11) are invariant with respect to multiplication of the

background fluid density ρ by a constant. It is straightforward to cast the wave
equations in the form where density enters their coefficients only through the
logarithmic derivative d(ln ρ)/dz. Therefore, in considering AGW propagation
in fluids with gradually varying parameters, it appears natural to assume that
H ≡ −[d(ln ρ)/dz]−1, just like the sound speed c and background flow velocity
u, is a smooth function of ζ = z/L. Then,

ρ(z)= ρ(0) exp
(
−
∫ z

0

dz1

H(z1)

)
, (B 1)

and the buoyancy frequency squared N2= gH−1− g2c−2 according to (2.4). Hence, the
buoyancy frequency is also a smooth function of ζ = z/L.

It will be assumed in §§ B.1 and B.2 that the large parameter L enters the density
scale height H and, therefore, the buoyancy frequency N only through ζ = z/L. As in
the main text, we wish to find an asymptotic solution for the AGW wavefield that is
valid at large L (formally, as L→∞). No restrictions are placed on H.

B.1. Derivation based on the wave equation for Lagrangian pressure perturbations
As in § 3.1, we search for a solution to (2.9) in the form (3.3) and let

ϕ(ζ , L)= f + i/2H, f =
∞∑

n=0

fn(ζ )L−n (B 2)

(cf. (3.6)). Substitution of (3.3) into the wave equation (2.9) gives the following
Riccati equation:
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where (cf. (3.5))
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)
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By substituting (3.3) and (B 2) into the Riccati equation (B 3) and equating terms of
the same order in L−1, we find that

f0 =±M, (B 5)

f1 = 1
2f0

d
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d
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(B 6)
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, n > 2. (B 7)

This is an exact solution of the wave equation as long as m 6= 0, ωd 6= 0, and ω2
d 6= gk.

From (B 5) and the identity

M2 +
(

1
2H
− gk2

ω2
d

)2

=
(

1− g2k2

ω4
d

)(
ω2

d

c2
− k2

)
, (B 8)

it follows that all fn are finite when 0<M2 <∞. Aside from the AGW propagation
being an adiabatic thermodynamic process, no assumptions about the equation of state
of the fluid have been made in deriving the asymptotic solutions.

In the first WKB approximation, retaining only terms f0 and f1 in (B 2), from (3.3),
(B 5), and (B 6) we find

p̃(z) = p̃(0)

√
[ω2

d(z)− g2k2ω−2
d (z)]ρ(z)M(0)

[ω2
d(0)− g2k2ω−2
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1
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ω2
d

)])
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(B 9)

The first WKB approximation gives the solution to the wave equation with accuracy
up to the factor 1 + O(L−1). To the same accuracy, from (2.7) and (B 9) we obtain
AGW polarization relations, which differ from (3.14) to (3.16) only by replacement
of h by H.

B.2. Derivation based on the wave equation for the vertical displacement
Let w 6= 0 at some height, say, z = 0. (In the opposite case, where w ≡ 0, we have
the Lamb wave, the possibility of existence of which in stratified fluids is considered
in Godin 2012b.) We search for a solution to the wave equation in the form (A 1),
where now

Φ(ζ , L)= F− i/2H, F=
∞∑

n=0

Fn(ζ )L−n (B 10)

(cf. (A 3)). Substitution of (A 1) and (B 10) into the wave equation (2.11) gives the
following Riccati equation for F:
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where M is defined in (B 4). With F given by the power series (B 10), equating terms
of the same order in L−1 in (B 11), we find

F0 =±M, (B 12)
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From (B 4) and (B 8) it follows that all Fn are finite when 0<M2 <∞.
In the first WKB approximation, retaining only terms F0 and F1 in (B 10), from

(A 1) and (B 12) and (B 13) we find

w(z) = w(0)

√
[c−2(z)− k2ω−2

d (z)]ρ(0)M(0)
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As with (3.12) in the main text and (A 7), using the AGW polarization relations,
it is easy to check that the WKB solution (B 16), which is obtained from the wave
equation for the vertical displacement, is identical to the WKB solution (B 9), which
is obtained from the wave equation for the Lagrangian pressure perturbation.

It is instructive to compare (B 16) to solutions obtained in the Boussinesq
approximation. For internal gravity waves in quiescent, incompressible fluids, Lighthill
(1978, § 4.1) derived an equation in the Boussinesq approximation, which can be
written as

d2Q
dz2
+ s2Q= 0, s2 = k2

(
N2

ω2
− 1
)

(B 17)

for waves with harmonic dependence on horizontal coordinates and time. The
dependent variable Q = −iωρw in Lighthill’s equation has the meaning of the
vertical component of mass flux density (Lighthill 1978, § 4.1). Here, as in the main
text, w is the wave-induced vertical displacement of fluid parcels. The same equation
(B 17) is derived in (Miropol’sky 2001, § 3.3) but for the vertical component of fluid
velocity, Q = −iωw. Assuming a slow variation of the buoyancy frequency with
height, solutions of (B 17) in the first WKB approximations are (Miropol’sky 2001,
§ 3.3)

Q(z)=Q(0)
√

s(0)/s(z) exp
(
±i
∫ z

0
s(z1) dz1

)
. (B 18)

In the case of a quiescent, incompressible fluid, equations (B 4) and (B 16) simplify
and become, respectively, M2 = s2 − 0.25H−2 and

w(z)=w(0)

√
ρ(0)M(0)
ρ(z)M(z)

exp
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±i
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The term with dH−1/dz in the integrand on the right-hand side of (B 19) represents the
geometric, or Berry, phase. No Berry phase arises in the Boussinesq approximation.

The WKB solutions (B 18) and (B 19) obtained within and without the Boussinesq
approximation are obviously different. Aside from the factor [ρ(0)/ρ(z)]1/2, which can
be rather large for atmospheric waves but is assumed to be close to unity in the
Boussinesq approximation, the wave amplitudes in (B 18) and (B 19) will be close
provided sH� 1, or

(ω−2N2 − 1)k2g2N−4� 1. (B 20)

This condition also ensures the proximity of the wave turning points in the two
descriptions. For the phase discrepancy to be small compared to unity, one has to
require additionally that

(ω−2N2 − 1)k−2g−2ω4� 1. (B 21)

The latter inequality is obtained by replacing M with s in the last term in the integrand
in (B 19) and then explicitly calculating the resulting integral for the geometric phase.
For waves with frequencies ω� N, both conditions (B 20) and (B 21) are satisfied,
when ω� kg/N.

In terms of the vertical component of the wavevector of the internal gravity wave,
the necessary conditions of the applicability of the Boussinesq approximation, (B 20)
and (B 21), can be written as

g−1N2�M� gk2ω−2. (B 22)

Inequalities (B 20)–(B 22) illustrate the restrictions that arise from adopting (e.g.
Broutman, Rottman & Eckermann 2004) the unnecessary Boussinesq approximation
in the WKB and ray theories of internal gravity waves.

B.3. Comparison of asymptotic solutions
The WKB solutions (B 5)–(B 7) and (B 12)–(B 15) for AGWs, which are derived
in §§ B.1 and B.2, have a structure that is very similar to the structure of the
WKB solutions in the main text. In particular, both sets of solutions feature the
geometric phase, which is necessary for the asymptotic solution to approximate the
exact solutions to the wave equation. The two sets of solutions coincide in the
case of an isothermal atmosphere. Comparison of (3.12) and (3.13) with (B 9) or
(A 7) with (B 16) shows, however, that the two sets of WKB solutions differ in
important ways in fluids with generic inhomogeneities. For instance, the positions
of the turning points, which are the heights where, respectively, m = 0 and M = 0,
prove to be different as long as h 6=H, see (3.5) and (B 4). The differences extend to
include the AGW dispersion relations, wave eikonals, and the geometrical phases. The
differences between the two sets of asymptotic solutions illustrate that, while the WKB
solutions are defined uniquely for a given scaling of the problem, different scalings
(i.e. different sets of assumptions regarding environmental parameters) produce distinct
WKB solutions.

The background density profiles in (3.1) and (B 1) coincide when

H = h
1+ dh/dz

. (B 23)
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Thus, the difference between the two scalings can be formulated as follows. In the
main text, it is assumed that, for fixed ζ , h−1 is independent of the large parameter
L, while H−1, and, therefore, N2, is a sum of terms O(1) and O(L−1). Conversely,
in §§ B.1 and B.2 we assume that, for fixed ζ , H−1 and N2 are independent of the
large parameter L, while h−1 is a sum of terms O(1) and O(L−1). The latter scaling
is apparently inconsistent with (3.2) for h in an ideal gas, but may be appealing in
studies of waves in fluids with other equations of state. In particular, it is the scaling
that is typically implied in studies of internal gravity waves in the ocean (Garrett 1968;
Gill 1982, chapter 8; Miropol’sky 2001, chapter 3; Broutman et al. 2004).

Appendix C. Exact analytic solution for AGWs in continuously layered fluids
When the WKB series defined by either (3.7)–(3.10) or (A 3)–(A 6) has only a finite

number of non-zero terms, it provides an explicit analytic solution for linear AGWs
in a continuously layered atmosphere. As shown in § 5.3 in the main text, the WKB
series (3.7)–(3.10) and (A 3)–(A 6) have only two non-zero terms when f2(ζ ) ≡ 0 or
F2(ζ ) ≡ 0, respectively. Here, we present three examples of exact solutions that are
generated by equations f2(ζ )≡ 0 and F2(ζ )≡ 0.

First, consider AGWs with k = 0. In this case, the wavefield is independent of
horizontal coordinates and is not affected by the background fluid flow (wind). When
k= 0 and f2≡ 0, equation (3.10) with n= 2 becomes a first-order differential equation
d(hf1)

−1/dζ = ih−1 for f1. It is convenient to write its solution as

f1 = iL
(a1 + X)h

, X = L
∫ ζ

0

dζ1

h(ζ1)
=
∫ z

0

dz1

h
(C 1)

and consider X as a new independent variable. It is related to background pressure as
follows: X= ln[p0(0)/p0(z)], see (3.1). Note that X steadily increases from 0 to infinity
as the height z increases from 0 to infinity; h = dz/dX. In (C 1), a1 is an arbitrary
dimensionless constant. We will assume that a1 > 0 so that f1 has no singularities at
z> 0.

According to (3.2), (3.5), and (3.8), f 2
0 = ω2/γ gh − (2h)−2 for atmospheric waves.

Substitution of this expression and f1 from (C 1) into (3.9) gives

4
(a1 + X)h

= d
dz

ln
(

4ω2h
γ g
− 1
)
. (C 2)

We solve (C 2) for the unknown function z(X) and find

z= γ g
4ω2

[
X + a2

2

5
((X + a1)

5 − a5
1)

]
, c= γ g

2ω

√
1+ a2

2(X + a1)4. (C 3a,b)

Here, a2 is an arbitrary dimensionless constant, which will be assumed positive for
definiteness. Equation (C 3) defines variation of the sound speed with height in a
parametric form. Equation (3.12) give two linearly independent, exact solutions for
AGWs in the atmosphere defined by (C 3):

p̃(z)
p̃(0)
= a1

X + a1
exp

[
−X

2
± i

a2X
6
(X2 + 3a1X + 3a2

1)

]
. (C 4)

The case of an isothermal atmosphere is recovered from (C 3) and (C 4) in the limit
where a1

2a2= const. and a1→∞. It is easy to verify the validity of the exact solution
by a direct substitution of (C 4) into the wave equation (2.9).
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Two AGWs, which are described by (C 4), do not have turning points and propagate
vertically in opposite directions without reflections regardless of whether variations
of the sound speed with height are fast or slow. The family (C 3) of non-reflective
profiles has two free parameters, a1 and a2. Another two-parametric family of
non-reflective profiles for vertically propagating AGWs has been found by Petrukhin,
Pelinovsky & Batsyna (2011, 2012a,b) and Petrukhin, Pelinovsky & Talipova (2012c)
from different considerations and discussed in the contexts of wave propagation in the
Earth and solar atmospheres. The practical relevance of both families of non-reflecting
profiles is limited, though, by the fact that exact analytic solutions are available and
the profiles are reflectionless only when k= 0.

As a second example, consider obliquely propagating acoustic waves in a moving
fluid with a generic equation of state. Transition to the acoustic limit in the AGW
solutions is discussed in § 3.4. As in § 3.4, the functions c(z), ρ(z), and u(z),
which fully characterize the acoustic propagation environment, can be prescribed
independently. (For an ideal gas, it implies strong variations of its composition.)
When g→ 0 and f2 ≡ 0, (3.10) with n= 2 becomes a first-order differential equation
d(ρω2

d f−1
1 )/dζ = iρω2

d for f1. It gives

f1 =−i
d

dζ
ln(b1 + Y), Y = 1

ρ(0)ω2

∫ z

0
ρω2

d dz1. (C 5)

Defined by (C 5), Y has the meaning of a new vertical coordinate. It steadily increases
from zero to infinity when z increases from zero to infinity; Y = z in the case of a
motionless fluid with a constant density.

According to (3.5) and (3.8), f 2
0 =ω2

dc−2− k2 in the acoustic limit. With f1 given by
(C 5), (3.9) becomes

−4
d

dζ
ln(b1 + Y)= d

dζ
ln
(
ω2

dc−2 − k2

ρ2ω4
d

)
. (C 6)

We solve (C 6) for the unknown sound speed and find

c=
[

k2

ω2
d
+ ω2

b2
2ω

2
d(Y + b1)4

(
dY
dz

)2
]−1/2

. (C 7)

Here b1 > 0 and b2 > 0 are arbitrary constants. Equations (C 5) and (C 7) define the
sound-speed profile c(z) in a parametric form. For this sound-speed profile, (3.12)
gives two linearly independent, exact solutions for obliquely propagating acoustic
waves:

p(z)
p(0)
= (Y + b1) exp

[
± iωY

b1b2(Y + b1)

]
. (C 8)

The exact solutions (C 8) are valid for arbitrary profiles of the density ρ(z) and the
background flow velocity u(z). The non-reflective sound-speed profile (C 7) depends
on the horizontal wavevector k but is independent of the wave frequency ω as long as
the horizontal slowness k/ω is independent of ω. Then, the exact solutions (C 8) can
easily be extended to the time domain. In the particular case of vertical propagation
(k= 0) of sound in a fluid of constant density, (C 7) gives the sound-speed profile c=
b2(z+ b1)

2, for which it was found earlier (Brekhovskikh & Godin 1998, § 8.2) that
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the WKB series terminates and gives an exact solution of the acoustic wave equation
regardless of whether the wave phase variation is fast or slow compared to variation
of the wave amplitude.

As the last example, consider obliquely propagating AGWs in an atmosphere
with height-dependent winds. When F2 ≡ 0, (A 6) with n = 2 becomes a first-order
differential equation for F1. Solving the equation, we find

F1 =−i
d

dζ
ln
(∫ ζ

ζ1

(
c−2 − k2

ω2
d

)
h dζ2

)
, (C 9)

where ζ1 is an arbitrary constant. Substitution of F1 from (C 9) into (A 5) gives

1
2F0

(
gk2

ω2
d
− 1

2h

)
d

dζ
ln
[

h
(
ω2

d

c2
− k2

)]
− 1

2F0

d
dζ

(
gk2

ω2
d
− 1

2h

)
= i

2
d

dζ
ln

[
F0

h

(
1
c2
− k2

ω2
d

)−1 (∫ ζ

ζ1

(
c−2 − k2

ω2
d

)
h dζ2

)2
]
. (C 10)

We are interested in solutions with real-valued ω, k, F0, u, c, and h. Then, the
left- and right-hand sides of (C 10) are real and imaginary, respectively. From the
requirement that the left-hand side equals zero, it follows that ω2

d= 2ghk2. Then, from
(3.5) and (A 4) and the requirement that the right-hand side of (C 10) equals zero, we
find m= ka3(1+ z/z1)

−2 and

c=
(γ g

2k

)1/2
[

1− γ a2
3

2− γ
(

1+ z
z1

)−4
]−1/4

,
k
k
· u= ω

k
±
(

2
γ

)1/2

c. (C 11a,b)

Here, a3 > 0 and z1 > 0 are arbitrary constants.
Equation (A 7) gives exact solutions

w(z)
w(0)

=
(

1+ z
z1

)[
1− γ a2

3

2− γ
(

1+ z
z1

)−4
]1/4 √

ρ(0)
ρ(z)

exp
(
± ika3z1z

z+ z1

)
, (C 12)

which describe two AGWs that propagate without reflection in the atmosphere with
parameters given by (C 11). It is straightforward to verify that the WKB solution
(C 12) satisfies the wave equation (2.11) exactly. According to (C 11), the exact
solutions (C 12) exist only when k 6= 0 and require that the component of the wind
velocity along the wavevector is non-zero.
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