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ABSTRACT

Shipboard measurements of fractional whitecap coverage W and wind speed at 10-m height, obtained

during the 2006 Marine Aerosol Production (MAP) campaign, have been combined with ECMWF wave

model and Quick Scatterometer (QuikSCAT) satellite wind speed data for assessment of existing W parame-

terizations. The wind history trend found in an earlier study of the MAP data could be associated with wave

development on whitecapping, as previously postulated. Whitecapping was shown to be mainly wind driven;

for high wind speeds (.9 m s21), a minor reduction in the scatter of in situ W data points could be achieved by

including sea state conditions or by using parameters related to wave breaking. The W values were slightly

larger for decreasing wind/developed waves than for increasing wind/developing waves, whereas cross-swell

conditions (deflection angle between wind and swell waves between 6458 and 61358) appeared to dampen

whitecapping. Tabulated curve fitting results of the different parameterizations show that the errors that could

not be attributed to the propagation of the standard error in U10 remained largely unexplained. It is possible

that the counteracting effects of wave development and cross swell undermine the performance of the simple

parameterizations in this study.

1. Introduction

Breaking waves generate turbulence and entrain air at

the surface, resulting in sea spray and whitecaps (bubbles

and foam). Whitecapping has been studied by various

authors for a number of reasons. By altering spectral re-

flectance and roughness of the ocean surface, whitecaps

affect satellite remote sensing of ocean color (Gordon

1997) and wind vectors (Quilfen et al. 2007). Breaking

waves and whitecaps enhance air–sea gas transfer (Asher

et al. 1996; Woolf et al. 2007) and knowledge of the var-

iation of whitecapping can therefore improve the calcu-

lation of gas fluxes between ocean and atmosphere

(Woolf 2005). For greenhouse gasses such as CO2, this

information is relevant for climate studies. Whitecaps are

associated with marine primary aerosol production (sea

spray particles), and whitecap coverage has been used to

estimate aerosol fluxes over the ocean (Monahan et al.

1986; O’Dowd and de Leeuw 2007). Finally, a better

understanding of whitecapping is highly in demand by

wave modelers, because whitecaps relate to energy dis-

sipation of waves, the least known process of wave evo-

lution. Whitecaps are presently used as a ‘‘tuning knob’’

of any wave model (Cavaleri et al. 2007).

A common quantification of whitecaps is the spatial

fraction of whitecap coverage W (unless stated other-

wise, the unit for W in this paper is percent). Because

whitecaps are mainly wind driven, most W parameteri-

zations are a function of wind speed. Almost all re-

lationships between wind speed and W are described

by a power law or by a function of cubed wind speed.

Summaries of ‘‘wind speed only’’ empirical param-

eterizations are given by Zhao and Toba (2001) and

Anguelova and Webster (2006). The large differences

in the listed parameterizations and the scatter within the

various datasets imply that additional factors play a role

in the whitecap formation. In this study, we compare

a selection of published W algorithms, which are based
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on wind speed and sea state, using an in situ wind speed

and W dataset. We combine these field measurements

with wind and wave model data of the European Centre

for Medium-Range Weather Forecasts (ECMWF) and

with wind speed retrievals from the SeaWinds scatter-

ometer on the Quick Scatterometer (QuikSCAT) sat-

ellite. In situ data were obtained in the northeast

Atlantic during the 2006 Marine Aerosol Production

(MAP) survey (Callaghan et al. 2008b). This is an im-

portant dataset because of the occurrence of high wind

speeds and the detection of an apparent dependence on

wind history, among other features. However, sea state

was not measured and whitecap coverage was parame-

terized solely in terms of ship-board wind speed. The data

can be divided into two overlapping groups: all W data

points measured at wind speeds below 11.25 m s21 and

all W data points above 9.25 m s21. Applying a simple

regression of W1/3 versus wind speed, it was determined

that the regression slope for the lower wind speeds is

steeper than the regression slope over the higher wind

speeds (Callaghan et al. 2008b, Fig. 1). At wind speeds

above 9.25 m s21, W is generally larger for periods of

decreasing wind compared to periods of increasing wind in

terms of 2.5-h wind history (Callaghan et al. 2008b, Fig. 2).

At wind speeds below 9.25 m s21, any sensitivity to wind

history is not apparent. These results depend on the ac-

curacy of the ship-based wind measurements; therefore,

the independent datasets available to this study are useful

1) to check the robustness of results from the original

study and 2) because it is always difficult to extrapolate

from ship-based wind speeds to the globe, whereas sat-

ellite and model values are universally available and their

accuracy and homogeneity have been studied previously

(e.g., Caires and Sterl 2003, 2005; Quilfen et al. 2007). In

this study we address the following objectives:

1) testing the grouping of W data points in higher and

lower wind speeds and wind history trend, using

model and satellite wind speed data and

2) assessing additional existing W parameterizations

based on wind speed and sea state parameters, using

universally available data.

2. Existing parameterizations

a. Wind speed only

The most common W parameterizations take the form

of a power-law relation between W and U10,

W 5 aUb
10 (1)

with coefficients a and b derived from a best fit of a set of

observations. The values for a and b vary widely with

different locations and conditions. In tabulated overviews

of examples in whitecap literature, the exponent b ranges

from 2.0 to 5.16, with an average of roughly 3 (Zhao and

Toba 2001; Anguelova and Webster 2006).

The term W has also been related to cubed wind speed,

W 5 a(U
10

1 b)3 (2)

(e.g., Anguelova and Webster 2006; Sugihara et al. 2007;

Callaghan et al. 2008b). Regarding the in situ data, linear

regression between W1/3 and U10 fits best if regression is

performed on two overlapping groups (Callaghan et al.

2008b, Fig. 1). The first group includes all wind speed

measurements below 11.25 m s21, and cubing and

rearranging W1/3 5 a9U10 1 b9 results in W 5 3.18 3

1023 (U10 2 3.70)3. A threshold of 3.70 m s21 agreed well

with the finding of Monahan and O’Muircheartaigh (1986)

that whitecapping is only negligible when the wind speed is

less than 3 or 4 m s21. For the second group, all measure-

ments at wind speeds above 9.25 m s21, W 5 4.82 3 1024

(U10 1 1.98)3 is found (Callaghan et al. 2008b). Callaghan

et al. (2008b) retrieved a wind history trend for the second

group, with a significantly higher offset for decreasing

winds than for increasing wind speeds.

b. Wind speed and sea state

1) CLASSIFICATION OF SEA STATE ACCORDING

TO WAVE DEVELOPMENT

We can classify sea state by its degree of development.

In young developing seas, significant wave heights are

growing toward a fully developed height. This mature

stage is usually reached when the phase velocity Cp cor-

responding with the dominant peak wave slightly exceeds

the wind speed. When waves reach a mature stage in

gusty wind conditions, they keep growing, although at

a progressively reduced rate (Cavaleri et al. 2007). De-

veloped waves are usually encountered where the wind

has blown steadily for a lengthy period or where ‘‘swell’’

from an earlier period of stronger winds is present. In-

creased wave breaking and hence higher levels of W was

expected for developed seas. The term Cp can be cal-

culated using Cp 5 gT/(2p), where g is the gravitational

acceleration (9.8 m s22) and T is the wave period.

Another approach for classifying developed and de-

veloping sea state is by defining significant wave height

for fully developed seas. Various authors have proposed

definitions. Carter (1982) gives the wave height of fully

developed wave Hfd as

H
fd

5 0.02466U2
10, (3)

whereas according to Chen et al. (2002) the fully de-

veloped wave height is calculated differently for low and

high wind speeds,
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H
fd

5 1.614 3 10�2U2
10 for 0 # U

10
# 7.5 (4)

and

H
fd

5 10�2U2
10 1 8.314 3 10�4U3

10 for 7.5 # U
10

# 50.

(5)

2) CLASSIFICATION OF SEA STATE IN WIND AND

SWELL WAVES

Sugihara et al. (2007) took whitecap images from an

oceanographic tower, located 2 km from the coast. Wind

speed at 10-m height, varying between 4.64 and 16.57

m s21, and significant wave height, ranging between

0.27 and 2.92 m, were considerably lower than during the

MAP survey. Sea state and wind data were classified as

pure windsea (p), counter swell (c), following swell (f), and

cross swell (x). Evaluation reveals that whitecaps are mainly

ruled by wind waves, and that whitecapping is suppressed

by the presence of swell. This is recognized in the offset

being larger for p data points than for c, f, and x combined

(Sugihara et al. 2007, Fig. 12). At another coastal site,

Callaghan et al. (2008a) found that W values were rela-

tively smaller in swell-dominated seas than in mixed seas.

3) BREAKING WAVE PARAMETER RB

Zhao and Toba (2001) analyzed a range of whitecap

datasets obtained in a wind-wave tunnel, at an oceano-

graphic tower and during field surveys, and concluded

the breaking wave parameter RB is the best parameter

available to use in parameterization of the wave-

breaking process. The term RB may be interpreted as

a type of Reynolds number (Zhao and Toba 2001). They

find using least squares regression

W 5 3.88 3 10�5R1.09
B (6)

(R2 5 0.77), with dimensionless parameter RB defined by

RB 5 u2
*/n

a
-

p
, (7)

where na is the kinematic viscosity of air, vp is the peak

angular velocity of wind waves, and u
*

is the friction

velocity derived from wind speed and drag coefficient Cd

at 10-m height using

u* 5 C1/2
d U

10
. (8)

Earlier, Wu (1979) used Eq. (8), along with the idea that

whitecap coverage is proportional to the rate at which

work is being done on the sea surface by wind (i.e., to the

product of wind stress and surface drift velocity) to

conclude that W 5 au3
* 5 aC3/2

d U3
10.

4) REYNOLDS NUMBER RH

Zhao and Toba (2001) propose another kind of non-

dimensional Reynolds number RH for wind waves with

velocity and length scales represented by u
*

and signif-

icant wave height Hs, respectively,

R
H

5 u*H
s
/n

a
. (9)

Linear regression of the log–log relation between RH

and Hs over the extensive datasets they had accessed

results in

W 5 4.02 3 10�5R0.96
H (10)

(R2 5 0.71). As suggested by Zhao and Toba (2001),

using the kinematic viscosity of water nw instead of the

kinematic viscosity of air might be better conceptually.

Woolf (2005) reinforced this suggestion, using

R
Hw

5 u*H
s
/n

w
, (11)

with nw 5 1.26 3 1026 m2 s21, the value of kinematic

viscosity in seawater for temperature ranging between

138 and 13.88C (Riisgård and Larsen 2007).

5) WIND SPEED AND WAVE HEIGHT

Woolf (2005) suggests a theoretical relation between

whitecap coverage and the wind speed and significant

wave height of the sea based on the simple assumption

that energy dissipation of breaking waves « is proportional

to the product of wave height and wind speed, H � U. In

combination with Eqs. (10) and (11), this leads to the

proposition that

W } R
Hw

. (12)

6) ENERGY DISSIPATION OF WAVES

The suggestion that whitecap coverage is proportional

to the rate of energy dissipation from the wave field was

made by Cardone, as described in Ross and Cardone

(1974), and is now widely accepted. Hwang and Sletten

(2008) have proposed a specific relationship to wind and

sea state based on a specific theory of energy dissipation

from the wave field. An estimate of energy dissipation of

wind waves « (W m22) is

« 5 ar
a
U3

10, with a 5 0.20 -3.3
* h*. (13)

The air density ra is taken to be 1.20 kg m23. Wave

parameters v* 5 v
p
U3

10/g and h* 5 h2
rmsg

2/U4
10 are di-

mensionless reference wave frequency and wave vari-

ance, respectively; vp is the spectral peak frequency; and
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h2
rms is the variance of surface displacement (hrms 5 1/4 Hs).

Applying Eq. (13) to an extensive dataset of whitecap

observations predicts, for fractional W,

W 5 0.014(«� «
c
), (14)

with threshold energy dissipation for whitecap detection

«c between 0.013 and 0.038 W m22 (Hwang and Sletten

2008, Fig. 6b). The used dataset comprises wind speeds

up to about 20 m s21 and calculated « values ranging

from about 0.1 to 5 W m22.

3. Datasets

a. In situ data obtained during the MAP campaign

In situ data were acquired during the MAP campaign

in June 2006 in the northeast Atlantic. The MAP study

area, located between 55.58 and 57.58N latitude and

between 138 and 9.58W longitude, and methodology are

detailed in Callaghan et al. (2008b). On days 17, 19, 20,

21, 22, 27, and 28, whitecap images were analyzed to

maximize the range of wind speeds encountered during

the field campaign. On the order of hundreds of images

should be averaged to achieve convergent values of one

W data point (Callaghan et al. 2008a; Callaghan and

White 2009). This condition was met by analyzing all sea

surface images obtained within a 30-min sampling pe-

riod. Automated Whitecap Extraction (AWE) was ap-

plied to all images; AWE automatically determines the

optimal threshold intensity for whitecap detection for

every individual image (Callaghan et al. 2008a; Callaghan

and White 2009). The value of W was subsequently cal-

culated as the percentage of pixels with intensity value

above the threshold value. Wind speed was measured

27 m above sea level in meters per second, and the wind

profile power law, U10 5 U27(10/27)1/7, was applied to

calculate wind speed at 10-m height. The U10 values were

averaged over the half-hour periods, uncorrected for flow

distortion effects caused by the research vessel. The

standard error of U10 was estimated at 61 m s21. A total

of 43 158 images were analyzed to produce 107 data

points with U10 ranging between 4.6 and 23.1 m s21 and

W between 0.002% and 7.5%.

b. QuikSCAT satellite wind vector data

QuikSCAT data are from the SeaWinds microwave

scatterometer that was launched on the QuikSCAT

satellite in June 1999 (information online at http://winds.

jpl.nasa.gov/missions/quikscat). The primary mission of

the SeaWinds scatterometers is to measure wind speed

and direction at 10-m height over the ocean surface.

SeaWinds radiates microwave pulses using a rotating

dish antenna with two spot beams that sweep in a circular

pattern and measures backscattering. The backscattered

power relates to the earth’s surface roughness; for water

surfaces, the surface roughness is highly correlated

with near-surface wind speed and direction. The in-

strument collects data in a continuous, 1800-km-wide

band. QuikSCAT data are produced by Remote

Sensing Systems, and sponsored by the National Aero-

nautics and Space Administration (NASA) Ocean Vec-

tor Winds Science Team. Data are available online (at

http://www.remss.com). We downloaded all wind vector

data files for the North Atlantic for the second half of

June 2006. There are two measurements per day, relating

to a morning and evening pass. For each MAP station, we

used the pass that was closest to the station’s time. The

scatterometer orbital data is mapped to a 0.258 3 0.258

earth grid, and we interpolated the gridded data to the

stations’ locations using bilinear interpolation.

The relation between backscatter coefficient and

QuikSCAT wind speed is described by a saturation curve,

with decreasing sensitivity for wind speeds over 15 m s21

(Quilfen et al. 2007). This possibly explained QuikSCAT’s

bigger discrepancy between QuikSCAT and in situ wind

speed for higher winds, which appeared to be an over-

estimation (Fig. 1). The mean absolute error due to the

time difference between station and overpass, esti-

mated from a time series at (56.58N, 118W), was

1.3 m s21, whereas the mean absolute error between

interpolated wind speed at a station location and its

closest 0.258 3 0.258 grid point was 0.4 m s21. The

specification error of SeaWinds is 2 m s21, resulting in

FIG. 1. Scatterplot of in situ U10, obtained during the MAP survey,

vs U10 derived from ECMWF wave model and QuikSCAT satellite

data, with black dots indicating ECMWF and crosses indicating

QuikSCAT values. The black line shows a one-to-one relation.
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a total error of DU10 5 [(1.3)2 1 (0.4)2 1 (2)2]1/2 5

2.4 m s21. This estimation was roughly the same as the

root mean square error (RMSE) of 2.5, of a linear least

squares fit between QuikSCAT and in situ wind speed.

c. ECMWF data

The ECMWF offers data of global meteorological

quantities such as ocean winds and waves. The analysis is

produced by ECMWF’s Integrated Forecasting System

(IFS), a coupled atmosphere–wave model, with assimi-

lation of reliable observational datasets. We obtained

a dataset of modeled wind and wave parameters from

ECMWF’s operational archive for all days of the month

of June 2006, consisting of 6-hourly records (at 0000,

0600, 1200, and 1800 UTC), covering the area between

508 and 608N latitude and between 88 and 158W longi-

tude on a 0.258 3 0.258 grid. The gridded data were in-

terpolated to the MAP stations’ coordinate pairs using

bilinear interpolation. For each MAP data point, we

selected the ECMWF record that fell within a time span

of 3 h of the MAP recording. The following ECMWF

parameters were examined: wind speed at 10-m height

(WIND), significant wave height (SWH), significant

height of wind waves (SHWW), mean wave period

(MWP), mean period of wind waves (MPWW), mean

direction of wind waves (MDWW), mean direction of

total swell (MDTS), and coefficient of drag with waves

(CDWW) (http://www.ecmwf.int/publications/manuals/

d/gribapi/param).

For strong winds the ECMWF winds were generally

lower than the in situ winds (Fig. 1). It is known that

the 40-yr ECMWF Re-Analysis (ERA-40), a reanalysis

product of ECMWF using an earlier data assimilation

system, underestimates high wind speeds (Caires and

Sterl 2003, 2005). The absolute wind speed error introduced

by the difference between station and ECMWF record

time, estimated from a time series at (56.58N, 118W), was

0.7 m s21 on average. The uncertainty in WIND was un-

known; however, assuming 1 m s21 and a mean absolute

error caused by spatial difference of 0.4 m s21 (section

3b), a total error of DU10 5 [(0.7)2 1 (0.4)2 1 (1)2]1/2 5

1.3 m s21 was calculated. The progression of the wind

speed error partly explained the RMSE of 1.7, of a linear

least squares fit between WIND and in situ wind speed.

d. Data treatment

We used LabFit (Silva and Silva 2010) to perform

nonlinear curve fittings over the W data and to derive

coefficients fa, b, . . .g and their uncertainties fsa, sb, . . .g,
coefficient of determination R2; and RMSE. Coefficient

a2 was considered to be significantly different from

coefficient a1 if ja2 2 a1j . sa1. RMSE values were calcu-

lated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/N � 2�(W

i
�W)2

q
(Middleton 2000), where

Wi and W are the observed and fitted values of N data

points. We used the RMSE as an objective measure of

goodness of fit. The propagation of errors in applied pa-

rameters such as DU10, as well as unexplained scatter

caused by unknown factors, contributes to the RMSE.

Curve fitting results are shown in Table 1, and the re-

gression equations are labeled by the letter r, followed by

an Arabic number [e.g. Eq. (r3)].

Using nonlinear curve fitting, the error in W on vari-

able x was minimized, instead of minimizing the error in

log(W) on log(x) for power relations (Zhao and Toba

2001) or the error in W1/3 on x for cubed relations

(Monahan and Lu 1990; Sugihara et al. 2007; Callaghan

et al. 2008b). Because we were comparing various pa-

rameterizations, we applied nonlinear curve fitting to all

relationships. The regression equations were illustrated

in figures similar to how the parameterizations were

introduced earlier. Consequently, it may appear to the

reader that particular lines do not fit the data displayed

in log–log space or on an x–y1/3 scale very well.

Analysis of variance (ANOVA) using Matlab function

‘‘anova1.m’’ was applied to compare different groups of

W data. It returns the P value for the null hypothesis that

the means of the groups are equal.

4. Results

a. Wind speed only

1) POWER LAW

Starting with this ‘‘wind speed only’’ parameteriza-

tion, we found an exponent of 2.70 using all the in situ

data, almost identical to the power-law exponent de-

termined using whitecap data collected in the same region

of the North Atlantic (Monahan and O’Muircheartaigh

1986). Eqs. (r1)–(r3) derived using in situ, ECMWF, and

QuikSCAT wind speed data differed significantly, with

respective exponents 2.7, 3.8, and 1.9, showing that the

power relation between W and U10 not only depended on

location and sea state conditions but also on the wind

speed data source. The corresponding RMSE values im-

plied that the error of the fit was smallest for in situ data

and increasingly larger for ECMWF and QuikSCAT data.

2) GROUPING IN LOW AND HIGH WIND SPEEDS

Fitting the low and high wind speed whitecap data to

Eq. (2) resulted in Eqs. (r4) and (r6). The slopes and

intercepts of Eqs. (r4) and (r6) were not significantly

different than if W1/3 was linearly fitted to U10, and re-

arranged to conform to Eq. (2) (Callaghan et al. 2008b).

If W data were plotted with ECMWF wind speed values,

different relations between lower and higher wind speeds

were not obvious (Fig. 2a), and fitting all ECMWF wind
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speed data resulted in Eq. (r8). Using QuikSCAT wind

speed values, the segregation in the W data points did

appear, similarly to the in situ observations (Fig. 2b). Fit-

ting the data to Eq. (2) over lower and higher wind speeds

gave Eqs. (r5) and (r7), respectively. The outliers located

around U10 5 20 m s21 and W , 1% coincided with an

up to 7-h time difference between station and QuikSCAT

overpass time. In agreement with Callaghan et al. (2008b),

binning the W data points in 1 m s21 intervals of ECMWF

and QuikSCAT wind speed resulted in approximately

identical equations as using the unbinned data.

3) EFFECT OF WIND HISTORY

The wind history trend retrieved by Callaghan et al.

(2008b) for high wind speed in situ data [Eqs. (r9) and

(r10)] was examined using ECMWF and QuikSCAT

TABLE 1. Nonlinear curve fitting results of the various W parameterizations, using in situ U10 (3.70–23.09 m s21) and W (%) values and

using ECMWF wave model data to describe sea state. Fits were also calculated using ECMWF and QuikSCAT U10 data. Shown are the

fitted equation; applied curve; present conditions; applicable wind speed range and source; the a and b curve fitting coefficients and sa and

sb, their respective uncertainties; the coefficient of determination R2; the RMSE of the fit; and DW(U10), the estimated progression of the

error in U10 [Eq. (15)].

Eq. Conditions Range U10 Source U10 a 6 sa b 6 sb R2 RMSE DW(U10)

Law: aUb
10

r1 None Full In situ (15.9 6 5.6) 3 1024 2.70 6 0.12 0.90 0.6 0.3

r2 None Full ECMWF (9.51 6 5.6) 3 1025 3.76 6 0.20 0.89 0.7 0.5

r3 None Full QuikSCAT (11.5 6 5.0) 3 1023 1.86 6 0.14 0.80 0.9 0.5

Law: a(U10 1 b)3

r4 None ,11.25 In situ (35.7 6 9.4) 3 1024 23.83 6 0.54 0.88 0.15 0.14

r5 None ,11.25 QuikSCAT (17.2 6 5.0) 3 1023 25.69 6 0.37 0.75 0.3

r6 None .9.25 In situ (46.9 6 7.3) 3 1025 2.28 6 1.1 0.84 0.7 0.4

r7 None .9.25 QuikSCAT (7.94 6 1.9) 3 1025 13.5 6 2.9 0.71 1.0

r8 None Full ECMWF (14.4 6 2.1) 3 1024 22.89 6 0.69 0.89 0.7

r9* Decreasing wind .9.25 In situ 5.86 3 1024 2.00 0.89

r10* Increasing wind .9.25 In situ 5.66 3 1024 0.20 0.92

r11 Developed .9.25 In situ (41.8 6 18) 3 1025 3.84 6 2.6 0.72 0.6 0.4

r12 Developing .9.25 In situ (62.8 6 12) 3 1025 0.105 6 1.2 0.88 0.8 0.5

r13 x .9.25 In situ (85.9 6 4.3) 3 1026 11.7 6 4.3 0.64 0.2 0.16

r14 p, f .9.25 In situ (34.3 6 5.7) 3 1025 4.82 6 1.3 0.83 0.8 0.5

Law: aRB
b

r15 None Full In situ (28.6 6 9.8) 3 1025 0.86 6 0.03 0.94 0.5 0.2

r16 None Full ECMWF (9.45 6 6.0) 3 1025 0.96 6 0.06 0.88 0.7

r17 None Full QuikSCAT (18.6 6 9.3) 3 1024 0.66 6 0.04 0.85 0.8

r18 RB , 5 3 103 ,8.6 In situ (8.28 6 9.1) 3 1027 1.51 6 0.14 0.87 0.03 0.03

r19 RB , 5 3 103 ,8.6 ECMWF (1.07 6 1.7) 3 1025 1.17 6 0.20 0.76 0.03

r20 RB , 5 3 103 ,9.3 QuikSCAT (43.3 6 7.8) 3 1026 0.97 6 0.22 0.69 0.03

Law: aRb
Hw

r21 None Full In situ (4.51 6 2.9) 3 1026 0.91 6 0.04 0.92 0.6 0.1

r22 None Full ECMWF (4.70 6 4.3) 3 1026 0.91 6 0.06 0.86 0.7

r23 None Full QuikSCAT (3.14 6 2.4) 3 1025 0.77 6 0.05 0.87 0.8

r24 RHw , 2.5 3 105 ,8.7 In situ (1.53 6 3.6) 3 1028 1.34 6 0.20 0.82 0.02 0.00

r25 RHw , 2.5 3 105 ,8.6 ECMWF (1.22 6 2.8) 3 1027 1.16 6 0.20 0.76 0.03

r26 RHw , 2.5 3 105 ,8.6 QuikSCAT (3.93 6 9.6) 3 1027 1.05 6 0.21 0.73 0.03

Law: aRHw } HS

r27 Using SWH Full In situ (10.2 6 0.22) 3 1027 0.91 0.6 0.1

r28 Using SWH Full ECMWF (10.4 6 0.31) 3 1027 0.84 0.8

r29 Using SWH Full QuikSCAT (7.63 6 0.23) 3 1027 0.83 0.8

r30 Using SHWW Full In situ (11.3 6 0.23) 3 1027 0.92 0.6 0.1

r31 Using SHWW Full ECMWF (11.7 6 0.32) 3 1027 0.86 0.8

r32 Using SHWW Full QuikSCAT (8.47 6 0.25) 3 1027 0.85 0.8

Law: a(« 1 b)

r33 None Full In situ 0.882 6 0.02 0.184 6 0.08 0.93 0.5 0.3

r34 None Full ECMWF 1.05 6 0.04 0.002 6 0.09 0.88 0.7

r35 None Full QuikSCAT 0.420 6 0.02 1.22 6 0.31 0.81 0.9

r36 « , 0.2 ,8.3 In situ 0.973 6 0.09 0.004 6 0.01 0.80 0.02 0.01

r37 « , 0.2 ,8.7 ECMWF 0.865 6 0.10 0.004 6 0.01 0.75 0.03

r38 « , 0.2 ,8.2 QuikSCAT 0.632 6 0.09 0.022 6 0.02 0.68 0.03

* Relation taken from Callaghan et al. (2008b).
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wind speed data. ECMWF wind speed was defined to be

increasing if the previous 6-hourly wind speed value was

lower, decreasing if this value was higher and unchanged if

it was the same. The equivalent was done for QuikSCAT

wind speed by examining the previous overpass. A scat-

terplot of the ECMWF data (Fig. 3a) did not show any

apparent grouping in terms of wind history, whereas for

the QuikSCAT data (Fig. 3b) the case for grouping was

ambiguous. ANOVA was applied to test if W data points

from increasing and decreasing wind histories were sig-

nificantly different for wind speeds over 9 m s21. To re-

move wind speed dependence from QuikSCAT data, fit

residuals between W and Eq. (r7) were calculated. Un-

like Callaghan et al. (2008b), the ANOVA showed that

the difference between the two cases was not statistically

significant. In summary, we could not verify a wind his-

tory dependence using either the QuikSCAT or the

ECMWF wind speed data.

FIG. 2. Scatterplots of W1/3 against U10. The W data were acquired during the MAP survey, whereas corresponding

U10 values at the stations were derived from (a) ECMWF data [solid line represents Eq. (r8)] and (b) QuikSCAT

satellite wind vectors [solid and dashed lines represent Eqs. (r5) and (r7), respectively].

FIG. 3. Scatterplots of W1/3 against U10, with black dots indicating data points from periods of increasing wind, open

circles indicating data points from periods of decreasing wind, and crosses indicating data points from unchanging

wind. The W data were acquired during the MAP survey, whereas corresponding U10 values were derived from (a)

ECMWF data, with wind history derived from the previous 6-hourly synoptic time, and (b) QuikSCAT satellite wind

vectors, with wind history derived from the previous overpass. Solid and dashed lines are as in Fig. 2.
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b. Wind speed and sea state

1) CLASSIFICATION OF SEA STATE ACCORDING TO

WAVE DEVELOPMENT

The in situ data were grouped into developed (Cp .

U10) and developing (Cp , U10) sea states, with Cp

estimated using MWP (Fig. 4). Using in situ wind speeds,

the wave field was developed for wind speeds below

9.7 m s21, whereas for wind speed levels over 18 m s21

all waves were developing. Between wind speeds of 9.7

and 18 m s21, both developed and developing waves

occurred, with W values generally higher for the de-

veloped sea state than for the developing sea state. This

was illustrated by a significantly higher offset in the re-

spective cubed relations between U10 and W [Eqs. (r11)

and (r12)]. ANOVA revealed a P value of 0.006 for the

residuals between Eq. (r6) and developed and devel-

oping W data points. If we considered the ECMWF or

QuikSCAT wind speed values, instead of the in situ

values, no clear difference between developed and de-

veloping sea states could be detected (Fig. 5).

SWH values were also used in combination with in

situ wind speed to separate developed and developing

wave conditions. SWH during the MAP survey varied

between 1.0 and 7.8 m, with a mean value of 3.8 m.

Applying either Carter’s (1982) or Chen et al.’s (2002)

equations, shown in Figs. 6a,b, resulted in similar re-

lations between U10 and W as when the data were sep-

arated according to the phase speed of the waves [Eqs.

(r11) and (r12)].

2) CLASSIFICATION OF SEA STATE IN WIND AND

SWELL WAVES

We classified the MAP whitecap data with the help

of wave data from the ECMWF dataset. If the ratio

SHWW/SWH was larger (smaller) than 0.9, the sea state

FIG. 4. Scatterplot of W1/3 against U10, with black dots indicating

developed sea and open circles indicating developing sea. The W

and U10 data were acquired during the MAP survey. Classification

was achieved calculating phase speed Cp from ECMWF’s values

for mean wave period. Solid, dotted, and dashed lines represent

Eqs. (r4), (r11), and (r12), respectively.

FIG. 5. Scatterplots of W1/3 against U10, with black dots and open circles as in Fig. 4. Classification was achieved

calculating phase speed Cp from ECMWF’s values for mean wave period. The W data were acquired during the MAP

survey, and the U10 data were derived from (a) ECMWF data and (b) QuikSCAT wind vectors. Solid and dashed

lines are as in Fig. 2.
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was classified as pure windsea (mixed sea). Like Sugihara

et al. (2007), mixed seas were classified as following

swell if the angle between the direction of wind and swell

waves was within 6458 and as cross swell if the deflection

angle was between 6458 and 61358. Our dataset did

not provide any counter swell conditions (i.e., deflection

angles above 61358). Grouping the W data points in p, f,

and x revealed a direct and an indirect dependence on

sea state. The indirect dependence was through wind

speed (as W increases with wind speed). It can be seen in

a scatterplot of the in situ data (Fig. 7) that pure windsea

conditions were present for U10 . 12.9 m s21, whereas

following swell and cross-swell conditions occurred dur-

ing wind speed ranges 6.8 m s21 , U10 , 23.1 m s21 and

4.6 m s21 , U10 , 16.9 m s21, respectively. For the

ECMWF and QuikSCAT wind speed data, similar

indirect relations existed (Fig. 8). A direct dependence of

W on sea state was derived for wind speed values over

9.25 m s21. Using in situ wind speed (Fig. 7), W was

generally smaller during cross swell than during pure

windsea and following swell at similar wind speed. Sea

state conditions of pure windsea and following swell did

not appear to separate the W data points. ANOVA ver-

ified a significant difference (P 5 0.002) between x data

and p and f data grouped together. Fitting in situ U10 and

W data to Eq. (2) gave corresponding Eqs. (r13) and

(r14), with significantly different curve fitting coefficients.

Using ECMWF or QuikSCAT wind speed values, evi-

dence for dampening of whitecapping during a cross swell

was not found (Fig. 8).

3) BREAKING WAVE PARAMETER RB

We used Eq. (7) with na 5 0.14 3 1024 m2 s21 to cal-

culate RB (Jones and Toba 2001), MPWW to calculate

vp (with vp 5 2p/MPWW), and CDWW to calculate u
*

FIG. 6. Scatterplot of W1/3 against U10, with black dots and open circles as in Fig. 4. The W and U10 data were

acquired during the MAP survey. Classification was achieved by comparing SWH, with fully developed wave height

Hfd calculated using (a) Eq. (3) (Carter 1982) and (b) Eqs. (4) and (5) (Chen et al. 2002). Solid, dotted, and dashed

lines are as in Fig. 4.

FIG. 7. Scatterplots of W1/3 against U10, with black dots indicating

W data points during pure windsea (p), open circles indicating W

data points during following swell (f), and crosses indicating W data

points during cross swell (x). The U10 and W data were acquired

during the MAP survey, whereas classification (p, f, x) was ach-

ieved using ECMWF wave parameters. Solid, dashed, and dotted

lines represent Eqs. (r4), (r13), and (r14), respectively.
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[Eq. (8)]. Fitting whitecap data points to W 5 aRB
b , with

u
*

estimated from in situ U10, resulted in Eq. (r15). Ap-

plying ECMWF and QuikSCAT U10 data instead pro-

duced Eqs. (r16) and (r17), respectively. Here, RB

correlated slightly better with W than the wind speed

does, if in situ and satellite measurements of wind speed

were considered [(Eqs. (r1) and (r3)]. Using these ob-

servational data, knowledge of the sea state (i.e., wave

period and drag coefficient) appeared to improve W es-

timations. No improvement was detected for ECMWF

wind speed values [Eqs. (r2) and (r16)].

A scatterplot of W as a function of RB showed that the

W calculations for lower RB values deviated from the fit

(Fig. 9), and there appeared to be a change in slope near

RB ; 5 3 103. The RB values smaller than 5 3 103 cor-

responded with wind speed levels below 8.6 m s21 ac-

cording to in situ and ECMWF data and below 9.3 m s21

according to QuikSCAT data. Fitting the W data over

the range RB , 5 3 103 gave Eqs. (r18)–(r20). These fits

showed different curve fitting coefficients (i.e., larger

slopes and smaller intercepts) than the fits over the full

range of RB values. These differences were significant,

except for the slope using U10 data from ECMWF [Eqs.

(r16) and (r19)].

4) REYNOLDS NUMBER RH

The value of Hs was estimated using SHWW (SHWW

ranged from 0.2 to 7.6 m and was 3 m on average) for the

calculation of RHw [Eq. (11)]. Fitting of the whitecap data to

W 5 aRb
Hw, with u

*
calculated from in situ, ECMWF, and

QuikSCAT wind speed data [Eq. (8)], produced respective

Eqs. (r21)–(r23). The relations between RHw and W for in

situ and ECMWF wind speed values were similar and

close to Eq. (10). They did not provide better W estima-

tions than the wind speed only relation Eqs. (r1) and (r2).

FIG. 8. Scatterplots of W1/3 against U10, with black dots, open circles, and crosses as in Fig. 7. Classification (p, f, x)

was achieved using ECMWF wave parameters, W data were acquired during the MAP survey, and corresponding U10

values were derived from (a) ECMWF data and (b) QuikSCAT wind vectors. Solid and dashed lines are as in Fig. 2.

FIG. 9. Scatterplots of W against breaking wave parameter RB

[Eq. (7)], with open circles indicating values calculated using in situ

U10, black dots indicating values calculated using U10 from

ECMWF, and crosses indicating values calculated using U10 from

QuikSCAT. Black solid, dashed, and dotted lines represent Eqs.

(r15)–(r17), respectively, and gray solid, dashed, and dotted lines

represent Eqs. (r18)–(r20), respectively.
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If we applied the QuikSCAT observations of wind speed,

however, the RMSE in W calculations was reduced com-

pared to the wind speed only algorithm Eq. (r3).

Figure 10 shows how W varied with RHw and a change

in relation over lower values could be seen. A value of

2.5 3 105 related with in situ wind speed of 8.7 m s21 and

with ECMWF and QuikSCAT wind speeds of 8.6 m s21.

Compared to the fits over the full RHw range, fits over

RHw , 2.5 3 105 showed larger slopes and smaller in-

tercepts [Eqs. (r24)–(r26)]. The significance of the dif-

ference between the slopes regarding the ECMWF data

was ambiguous [Eqs. (r22) and (r25)].

5) WIND SPEED AND WAVE HEIGHT

According to Eq. (12), W is proportional to RHw and

therefore to Hs [Eq. (11)]. Fitting our data to W 5 aRHw,

using in situ U10 to derive u
*

[Eq. (8)] and SWH for Hs

to calculate RHw, gave Eq. (r27); using ECMWF and

QuikSCAT instead of in situ U10 resulted in Eqs. (r28)

and (r29). Calculating RHw with significant height of

wind waves, instead of significant wave height, resulted in

data points similar to those shown in Fig. 10. The relations

regarding wind waves [Eqs. (r30)–(r32)] illustrate that the

regression slopes were a little but significantly steeper if

significant height of wind waves was used instead of sig-

nificant wave height.

6) ENERGY DISSIPATION OF WAVES

For parameterizations in terms of energy dissipation

of waves, values of a and « were estimated for the waves

during the MAP stations using Eq. (13), with in situ U10

and the ECMWF dataset to approximate vp (2p/MWP)

and hrms (1/4 3 SWH). The variation of W with « is shown

in Fig. 11. Regression between energy dissipation and

whitecap coverage in percentage gave Eq. (r33). The

relatively low RMSE was comparable to the RMSE of

the fit between breaking wave parameter RB and W [Eq.

(r15)]. Figure 11 also illustrates the results of using

ECMWF and QuikSCAT U10, instead of in situ U10,

described by Eqs. (r34) and (r35). Using « to estimate W

levels, instead of the wind speed only algorithm Eqs.

(r1)–(r3), decreased the RMSE for the in situ wind

speed values [Eq. (r33)]. We did not see this improve-

ment if we used wave model or satellite wind speed data,

however [Eqs. (r34) and (r35)].

In the «–W plots (Fig. 11), a discrepancy in the fits was

shown for energy dissipation levels below ;0.2 W m22.

A value of « 5 0.2 W m22 corresponded with U10 values

8.3, 8.7, and 8.2 m s22 from the in situ, ECMWF, and

QuikSCAT datasets, respectively. Fitting the W data

over « , 0.2 W m22 resulted in Eqs. (r36)–(r38). These

fits performed over « , 0.2 W m22 produced negligible

intercepts, indicating zero threshold values of energy

dissipation. Regarding in situ and QuikSCAT data, the

intercepts were significantly smaller and the slopes were

steeper than for the fits over all data points. Using

ECMWF data, the intercept was similar, whereas the

slope was a little smaller.

5. Summary of results and discussion

a. The grouping of W data in high and
low wind speeds

Analysis of the QuikSCAT wind data confirmed the

grouping of W data in low (,11.25 m s21) and high

(.9.25 m s21) wind speeds. The slope in W 5 a(U10 1 b)3

was steeper for low speed values (Fig. 2b), similar to the

in situ measurements (Callaghan et al. 2008b). It has to

be kept in mind that suspected overestimation of winds

over 15 m s21 could have emphasized a gentler slope

for higher wind speeds. The ECMWF data did not show

any clear division into groups of low and high wind speeds

(Fig. 2a). This may be a consequence of the under-

estimation by the ECMWF of high wind speeds. Here,

W was also studied as functions of wave parameters RB,

RHw, and « (Figs. 9–11). The revealed changes in the re-

lations around U10 5 8.5 m s21 (steeper slopes for lower

wind speeds) were not unexpected, because all three

parameters are a function of U10. The changes were more

FIG. 10. Scatterplots of W against Reynolds number RHw for

wind waves [Eq. (11)] with open circles, black dots, and crosses as

in Fig. 9. Black solid, dashed, and dotted lines represent Eqs. (r21)–

(r23), respectively, and gray solid, dashed, and dotted lines repre-

sent Eqs. (r24)–(r26), respectively.
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significant if the parameters were calculated with observed

U10 data (in situ and QuikSCAT) than modeled U10 data

(ECMWF).

As suggested by Callaghan et al. (2008b), the study of

Monahan et al. (1983) offers a physical explanation for

the grouping of W data in low and high wind speeds.

When wind speed exceeds 10 m s21, supplementary

spume droplets are being formed via the mechanical

disruption of wave crests. These droplets are larger and

heavier than the spray droplets produced by bursting

bubbles, and their interaction with the marine atmo-

spheric boundary layer is different. Spume droplets torn

off from breaking crests and sprayed inside the airflow

reduce surface drag (Kudryavtsev 2006). According to

Andreas (2004), heavier spray droplets slow down near-

surface wind by extracting momentum from the wind,

and when the spume droplets eventually fall back onto

the surface they suppress the shorter waves. Although

these effects are thought to only become remarkable at

U10 . 20 m s21 (Andreas 2004; Kudryavtsev 2006), they

would agree with a dampening of W, and it may be that

described spume droplets effects occur at much lower

wind speeds. Another explanation could be that for

higher wind speeds underdeveloped waves start occur-

ring (Figs. 4, 6). This would result in less wave breaking

and hence less whitecaps than if all waves were fully

developed as was seen for lower wind speeds.

b. Effect of wind history and sea state development

Regarding wind speeds over 9.25 m s21, Callaghan

et al. (2008b) found using the in situ MAP data a higher

offset in the cubed U10–W relationship for decreasing

winds and suggested this was related to degree of wave

development. Evidence for a wind history trend using

the ECMWF or QuikSCAT wind speed data was not

found. However, if ECMWF wave model parameters

were used to classify the MAP data in developed and

developing wave environments, a larger offset for de-

veloped waves was derived [Eqs. (r11) and (r12)]. Be-

cause developed waves can be associated with decreasing

wind and developing waves can be associated with in-

creasing wind, our finding supported the wind history

trend. The observation that W increased with developing

stage of the sea is in agreement with the discovery that W

increases with wave age (Sugihara et al. 2007).

c. Effect of swell and swell direction

Regarding classification in wave field conditions, W

was generally smaller for cross swell, than for following

swell and pure windsea conditions combined (Fig. 7).

Sugihara et al. (2007) and Callaghan et al. (2008a) both

found that the presence of swell dampens whitecapping

but did not identify a clear relation with deflection angle

between wind and swell waves. A possible reason for

reduced whitecapping in the presence of swell may be

wave-driven winds, because these winds consume swell

energy (Semedo et al. 2009).

d. Evaluation of existing parameterizations

A number of known W parameterizations were eval-

uated using the MAP dataset by comparing the RMSE

values of their fits (Fig. 12). For a simple power relation

between in situ U10 and W, the RMSE of the fit was 0.6

[Eq. (r1)]. Only a fraction of the scatter in the W data

could be explained by the 61 m s21 standard error of

U10, as clarified in the following. An approximation of

the propagation of this error in the calculation of W was

derived from

DW(U
10

) 5 (dW/dU
10

)DU
10

. (15)

Applying Eq. (15) to Eq. (r1), DW(U10) 5 2.70 3 15.9 3

1024 3 U1.70
10 DU10; using the average value of U10 over

all stations, 12.6 m s21, and DU10 5 1 m s21, leads to

DW(U10) ’ 0.3%. An error of 0.3% would account for less

than half of the RMSE in W(DW2
112 5 DW2

1 1 DW2
2).

The remaining fraction of about 0.5% could be attributed

to other factors, and it was assumed that including sea

state parameters would reduce this unexplained error

in W. The values of the sea state parameters were taken

FIG. 11. Scatterplots of W against energy dissipation « [Eq. (13)]

with open circles, black dots, and crosses as in Fig. 9. Wave pa-

rameters vp and hrms were derived from MWP and SWH. Black

solid, dashed, and dotted lines represent Eqs. (r33)–(r35), re-

spectively, and gray solid, dashed, and dotted lines represent Eqs.

(r36)–(r38), respectively.
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from or calculated with the ECMWF wave model dataset.

A summary of all evaluated parameterizations using

MAP data is given in Table 1. The progression of the

standard error in U10 for lower wind speeds was esti-

mated using DU10 5 0.3 m s21, because the standard

deviation for wind speeds lower than 9 m s21 was almost

3 times smaller than for wind speeds above (Callaghan

et al. 2008b). For higher wind speeds, DU10 was as-

sumed to be equal to one. By doing so, the approxi-

mated standard errors for the grouped wind speeds

were on the low side, and the calculated errors in-

dicated the values we could at least expect. Reducing

DU10 by reducing the averaging time was not an op-

tion, because U10 was averaged over the half-hour pe-

riods during which video recordings were taken. Shorter

periods would not give the hundreds of whitecap images

needed to derive accurate W values. For all groups, the

RMSE of the fit was at least double DW(U10) (Table 1),

leaving room for improvement. An exception was the

low wind speed range, for which the RMSE of the

wind speed only fit Eq. (r4) was approximately equal to

DW(U10), indicating that for the MAP data not much

could be gained by incorporating additional factors. It

is therefore most effective to focus on parameteriza-

tions that describe W during high wind speeds. For the

independent datasets, a progression of the wind speed

error DW(U10) ’ 0.5% was calculated, applying Eq. (15)

to Eqs. (r2) and (r3) and using DU10 5 1.3 and 2.4 m s21

for the ECMWF and QuikSCAT wind speed data,

respectively (sections 3b and 3c). This, DW(U10) being

approximately equal to the scatter, clarified why efforts to

classify W data according sea state conditions were not

successful for the independent datasets.

Zhao and Toba (2001) analyzed various datasets by

regressing W values against wave age, wave period, U10,

friction velocity u
*
, breaking wave parameter RB, and

Reynolds number RH and concluded that RB has the

strongest relation with W. We found for the in situ data

that using RB or energy dissipation of breaking waves «

(Hwang and Sletten 2008) reduced the RMSE in W by

0.1 (Fig. 12a). Using ECMWF wind speed values to

calculate RB or « did not lead to improved W estima-

tions, and RHw gave even poorer results (Fig 12a). For

QuikSCAT wind speed data, however, an improvement

from 0.9 to 0.8 was achieved by using RB or RHw (Fig

12a). Applying the classification of W data in lower and

higher wind speeds to the full range of in situ and

QuikSCAT wind speed data did not advance the wind

speed only algorithm (Figs. 12a,b, parameterization 1).

High in situ wind speed data could be separated ac-

cording to developing state or composition of wind and

swell waves, but this did not lead to a significant im-

provement (Fig. 12b, parameterizations 2 and 3). How-

ever, if during high wind all waves were developed or all

waves were cross swells, the RMSE was expected to

reduce significantly, especially for the latter (Fig. 12b,

parameterizations 4 and 6).

In summary, we have demonstrated that wind his-

tory and wave development are significant to white-

capping, but we have not been able to notably reduce

the W data scatter of the MAP dataset by taking sea

state parameters into account (Fig. 12). The error in W

remained largely unexplained. A range of factors can

be thought of.

First, there are possible systematic errors in the ship-

based wind speed measurements. The moving vessel

probably interfered with the measured airflow, adding

a bias or increasing uncertainty in measured wind speed

values. Using a logarithmic wind profile law to extrap-

olate wind speed values at a height of 27 m to 10 m,

possible variations in the atmospheric stability were ig-

nored, because not all relevant parameters were measured

because of technical difficulties encountered during the

cruise (Callaghan et al. 2008b). Other unaccounted effects

that could have altered the wind speed profiles were wave-

driven winds (Semedo et al. 2009) and slowing of the wind

by spume droplets (Andreas 2004). Additionally the half-

hour-averaged wind speed measurements did not take

FIG. 12. Bar diagrams showing RMSE values (a) of the nonlinear

curve fits of the various W parameterizations using 1) wind speed

only [Eqs. (r1)–(r3)]; 2) RB [Eqs. (r15)–(r17)]; 3) RH, power re-

lation [Eqs. (r21)–(r23)]; 4) RH, linear relation [Eqs. (r27)–(r29)];

5) RH, linear relation, wind waves [Eqs. (r30)–(r32)]; and 6) « [Eqs.

(r33)–(r35)] and (b) applying a grouping in low (,9.25 m s21) and

high (.9.25 m s21) U10 and for the high U10 using 1) no conditions

[Eqs. (r4)–(r7)]; 2) grouping according to developing sea state [Eqs.

(r4), (r11), and (r12)]; 3) grouping according to the composition of

wind and swell waves [Eqs. (r4), (r13), and (r14)]; 4) only de-

veloped waves [Eqs. (r4) and (r11)]; 5) only developing waves [Eqs.

(r4) and (r12)]; 6) only cross swells [Eqs. (r4) and (r13)]; and 7) only

seas that are a combination of pure windsea and following swell

[Eqs. (r4) and (r14)].

754 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 41



wind speed fluctuations into account. Wind gustiness

could have a considerable effect on whitecapping, because

mature waves keep growing in gusty winds conditions well

above the limit of a fully developed sea obtained in steady

wind conditions (Cavaleri et al. 2007). In very unstable

conditions, the gain in wave height, denoted by DHs/Hs,

may reach values as large as 0.3 (Cavaleri et al. 2007).

Second, many factors in the complex process of

whitecapping were absent in the evaluated W parame-

terizations. Developed seas, indicating bigger waves,

were associated with increased whitecapping (Figs. 5, 6)

on one hand, but on the other hand swells could also

dampen whitecapping (Fig. 7). These two opposing ef-

fects implied that the W parameterizations we assessed in

this paper were too simple. There are various feedback

mechanisms between the sea surface and the atmosphere:

for example, the wave-driven winds and spume droplet

formation. Wave–wave interaction plays a role in swell

dissipation as well: for instance, longer waves enhance the

wave breaking of shorter waves (Cavaleri et al. 2007).

Also ignored were the interaction of waves with the

vertical structure of the upper layers of the ocean and the

concentration of surfactants at the sea surface.

Our study looked at the scatter within the MAP

dataset, but if knowledge of W is needed in global esti-

mations, for example to calculate carbon or aerosol

fluxes, the relation between wind speed and W has to be

identified for different locations and during different

seasons. Variables affecting this relation, such as fetch

conditions, surface salinity, sea surface temperature, and

near-surface atmospheric stability, often phrased in

terms of the water–air temperature difference DT (e.g.,

Monahan and Woolf 1989), can be very different than

present during the MAP survey. According to Monahan

and O’Muircheartaigh (1986), apparent latitudinal varia-

tion in the exponent of the U10–W power law is explained

by both wind duration and mean seawater temperature

changing with latitude. Empirical relations derived from

previous studies show that power relations between W

and U10 diverge widely, with exponents ranging between

about 2 and 5. Using one equation for the whole globe

could obviously lead to very big errors in the calculation of

carbon and aerosol fluxes, especially in the high wind

speed range. Further study of the relation between W and

U10 on a global scale, as well as its seasonal variability, is

therefore needed. An alternative approach would be to

measure W from satellite directly: for example, using

microwave radiometry (Anguelova and Webster 2006).

6. Conclusions

Referring to the two objectives stated in the intro-

duction, the following conclusions were derived:

1) Independent datasets reinforced the whitecap study

by Callaghan et al. (2008b) based on in situ mea-

surements. The QuikSCAT satellite wind speed data

showed a grouping of W data points in low (,11.25

m s21) and high (.9.25 m s21) winds, whereas the

wind history trend was coincident with state of wave

development assessed using ECMWF wave model

data.

2) Whitecapping was proven to be mainly wind driven.

Using in situ and QuikSCAT wind speed values,

a minor reduction in the scatter of the W data points

of the MAP data could be achieved compared to the

‘‘wind speed only’’ algorithm, if wave-breaking pa-

rameters were applied (Fig. 12a). Classification of the

data in high and low wind speeds and according to sea

state did not lead to better W estimations (Fig. 12b).

3) All W parameterizations performed better using in

situ wind speeds than ECMWF or QuikSCAT wind

speeds (Fig. 12).

4) Of the independent datasets, the ECMWF dataset

gave the best goodness of fit (Fig. 12a).

5) Grouping of sea state according to wave development,

wind history, or the composition of wind and swell

waves was not observed for ECMWF or QuikSCAT.

It is thought that uncertainties in the wind speed

retrievals were too big, concealing any sea state de-

pendence of whitecapping.

6) Using ECMWF or QuikSCAT data, the wind speed

only algorithm derived for the MAP data might not

apply to other parts of the globe or during different

times of the year.

7) The conclusion that developed waves related to in-

creased whitecapping qualitatively supported the

postulates that W increases with wave age (Sugihara

et al. 2007) and with wave height (Zhao and Toba

2001; Woolf 2005).

8) Cross-swell conditions reduce whitecapping (counter-

acting the effect described in the previous conclusion).

Finally, our study might not have resulted in a practi-

cally improved parameterization of whitecap coverage

and the data scatter remained largely unexplained, but it

might open doors to a better understanding of wave-

breaking and wind-wave interaction.
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