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Abstract

A Boussinesgq model accurate to O(u)*, = kyhg in dispersion and retaining al nonlinear
effectsis derived for the case of variable water depth. A numerical implementation of the model in
one horizontal direction is described. An algorithm for wave generation using a grid-interior
source function is derived. The model is tested in its complete form, in a weakly nonlinear form
corresponding to the approximation 8 = O( u?), 8 =a/h,, and in afully nonlinear form accurate
to O(u?) in dispersion [Wei, G., Kirby, JT., Grilli, ST., Subramanya R. (1995). A fully
nonlinear Boussinesg model for surface waves: Part 1. Highly nonlinear unsteady waves. J. Fluid
Mech., 294, 71-92]. Test cases are taken from the experiments described by Dingemans
[Dingemans, M.W. (1994). Comparison of computations with Boussinesg-like models and labora-
tory measurements. Report H-1684.12, Delft Hydraulics, 32 pp.] and Ohyama et al. [Ohyama, T.,
Kiota, W., Tada, A. (1994). Applicability of numerical models to nonlinear dispersive waves.
Coastal Engineering, 24, 297-313.] and consider the shoaling and disintegration of monochro-
matic wave trains propagating over an elevated bar feature in an otherwise constant depth tank.
Results clearly demonstrate the importance of the retention of fully-nonlinear effects in correct
prediction of the evolved wave fields. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Great strides have been made in the recent past to extend the range of applicability of
Boussinesg-type equations for surface water wave propagation and bring them into the
family of operational coastal wave prediction models. Most of the initial recent work in
this area has centered on the notion that the primary avenue of improvement would be to
correct the model’s apparent linear dispersion characteristics by means of a reorganiza-
tion of dispersive (or O( u?), where u denotes the water depth to wavelength ratio)
terms, thereby extending the range of water depths in which a wave of a given frequency
could be modelled with reasonable accuracy. Madsen et al. (1991) and Madsen and
Sgrensen (1992) achieved this god in a depth-integrated model by simple rearrangement
of dispersive terms, while Nwogu (1993) achieved a similar result by redefinition of the
dependent velocity variable. Either approach led to models with linear dispersion
relations which can be written in the form

1—

a+%)(kh)2

w? = gk2h (1)

1— a(kh)?
where the choice @ = —2/5 produces the (2,2) Pade approximant of the full dispersion
relation. Models of this type have been extensively tested for their applicability to the
prediction of nearshore wave height and wave-induced circulation, as detailed in a recent
series of papers by Madsen et al. (1997a,b) and Sgrensen et al. (1998).

Subsequently, Kirby and Wei (1994) argued that models based on such an extension
to the linear formulation may not be producing a better nonlinear model in the extended
region, since the absence of dispersive modifications to nonlinear terms destroyed the
consistent ordering of coefficients in Stokes-type expansions of the model equations.
The results indicated that models retaining nonlinear effects to all orders resulting from
a direct application of the form of the velocity field obtained at any order in the
dispersion parameter u = k,h, would produce a more consistent picture of nonlinear
behavior both in the long wave limit and in the intermediate depth range being
investigated. Models of this type would drop the standard scaling assumption & = O( u?),
where 6 = a/h, denotes a height-to-depth ratio characterising nonlinear effects. Such a
model, retaining dispersion to O(u?) and all corresponding nonlinear effects, was
developed by Wei et al. (1995) and shown to be a much more accurate predictor of
solitary wave shoaling than the weakly-nonlinear model of Nwogu (1993). The accuracy
of that model as a predictor of Stokes-type solutions is documented in (Kirby and Wi,
1994) as well as in the companion paper to the present contribution, Gobbi et al.
(1998b), hereafter referred to as GKW98. These earlier results demonstrate the defects
in corresponding Stokes wave solutions for weakly nonlinear models in the asymptotic
approach to the shallow water limit. Models in the O( u?), fully-nonlinear formulation
have also been extensively tested for their applicability to the modelling of nearshore
waves and currents; see a recent example by Chen et al. (1999).

Recently, GKW98 have extended the formulation of the fully-nonlinear Boussinesg-
type model to O( u*), using a model based on kinematic flow-field information to the
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same order of approximation. The model has been tested both in the intermediate-depth,
Stokes-wave regime and in the shallow water, solitary wave regime, where convergence
to the full solution of Tanaka (1986) was demonstrated with increasing level of
approximation in powers of u?.

In the present paper, we present a numerical solution technique for the O( u*)
GKW98 model and apply it to the study of wave propagation and harmonic decomposi-
tion over an isolated shoal. Particular attention is paid to the question of whether the
most important feature retained in the final model is the fully-nonlinear property
(relative to aweakly nonlinear model at O( u*)), or the incorporation of enhanced linear
dispersion going from the O( u?) fully-nonlinear model of Wei et a. (1995) to the
O( u*) fully-nonlinear model of GKW98. Laboratory data is taken from two sets of
experiments, one (Dingemans, 1994) describing wave propagation over a gradual shoa
mimicking a natural bar formation, and one (Ohyama et al., 1994) describing wave
propagation over an abrupt feature reminiscent of an artificial submerged breakwater. A
detailed comparison between model predictions and laboratory data is given for each
case.

2. Derivation of fourth-order fully nonlinear model

In this section, we derive a fully nonlinear Boussinesg-type model based on a 4th
order vertical polynomial for the velocity potential, extending the work of GKW98 to
the variable depth case. A set of equations for a velocity-type variable is then given. We
assume the fluid is inviscid and incompressible, and the flow is irrotational, so that a
velocity potential ¢ exists and the velocity field can be written as

u= V¢, (2)

where the fluid velocity vector u = (u,v,w), and ¢ are functions of the spatial Cartesian
coordinates x,y,z and time t, and V; is the three dimensional gradient operator
V,=(0/0x, 3/dy, 3/92).

The full boundary value problem for potential flow is given in terms of nondimen-
sional variables by

¢, +uVi%=0 —h<z<dn; (3)
¢, +uVh - V=0, z=—h; (4)
1 2 1 2
n+ ¢t 58] (V) +F(¢z)}=0, z=om; (5)
1
771+5V¢'VTI_F¢2=01 Z:(ST]; (6)

x and y are the horizontal coordinates scaled by a representative wave number
ko= 2m/L,, where L, is awave length, z is the vertical coordinate starting at the still
water level and pointing upwards and h is the water depth, both scaled by a typical
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depth h,. m is the water surface displacement scaled by a representative amplitude a,.
Two dimensionless parameters are apparent: §=a,/h, and u?=(k,hy)?. Time t is
scaled by (ky(ghy)*?)~%, and ¢, the velocity potential, is scaled by sh,(ghy)*/?. g is
the acceleration due to the gravitational field, and V is the two-dimensional horizontal
(x,y) gradient operator.

Integrating Eq. (3) over the water column and using Egs. (4) and (6), we obtain a
mass conservation equation

n+V-M=0, M= ["Vodz. (7)
—h

We now proceed to derive model equations for waves over an arbitrary bottom h(x,y),
and assuming 8= 0(1) and O(u?) < 1. We assume an Nth degree polynomial
approximation for ¢ in the z coordinate

b= 2 {B(xy.1), (8)
n=0
where
{=(h+2), (9)

and ¢, are functions of the horizontal spatial coordinates and time. By taking the limit
of Eq. (8) as {— 0, it is clear that ¢, is the velocity potential at the bottom ¢=0.
Substituting Eq. (8) into Eq. (4), we obtain an expression for ¢, in terms of ¢,

b, = _MZGVh' Vb, (10)
where G = (1 + u2|Vh/?) 1. Since we are seeking an asymptotic approximation for ¢
in terms of the small parameter u?, it would be consistent if we expanded G in a
binomial expansion around wu®= 0. However, we choose not to do this in order to
maintain the positive definiteness of this quantity as the bottom slope becomes steep.
Substituting Eq. (8) into Eq. (3), and equating coefficients of like powers of ¢ to zero,
we obtain the following recursion formula

(n+2)(n+l)¢n+2+/"‘2[(n+2)(n+1)|Vh|2¢n+2+(n+l)vzh¢n+l
+2(n+1)Vh- Vo, ,+ V,] =0. (11)

We now use Egs. (10) and (11) to obtain the ¢,, in terms of ¢,. The series is truncated
a n=4, yielding

1
b=do— MZ(GVh‘ V¢o§+ EGVZ(l)O{Z)
1
+M4{[§szthh- Vb, + GVh- V(GVh- \7¢>0)}g2

+

1 1 !
5 GV 2V %, + ZGVh- V(GV o) + GV *(GVh- ‘7¢o)}53

1
- a<3V2(G\72¢>0)g4}. (12)
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Commensurate with the extension of the velocity potential to O( u*), we seek to derive
a set of model equations having a corresponding dispersion relationship in the form of a
(4,4) Padé approximant representing the approximation
tanhp 1+ (1/9)pu?+ (1/945) u*
= 2 7 +0(n). (13)
n 1+(4/9p"+(1/63)
Following GKW98, we define a new dependent variable
$=Bo.+ (1-B) ¢, (14)
where ¢, and ¢, are the velocity potentials at elevations z=z, and z=1z,, and B isa

weight parameter. Relationships between these parameters to give the appropriate
dispersion relationship were obtained by GKW98 and are given by

1 8p 1/2 8 1/2711/2
Za:_5_{567(1—ﬁ)} +{567B(1—B)} ot (19
4 85 1/211/2
S Ere ] o @

with 0.018 < B < 0.467. Although the free parameter 8 can be calibrated to give better
linear shoaling characteristics, we found that variations of 8 within the limits above had
little effect on the actual fully nonlinear numerical solution, at least for the cases tested,
and we used the value B = 0.2 throughout this work.

¢ may be written in terms of ¢, using Eq. (12) yielding

N 1
b=y — MZ( ARGV h- Ve, + Ethcsvzqso)

1
,u“{BhZ[EGZVZth- Vo + GVh- V(GVh- v¢0)}

+Ch? %szzhv%ﬁ %GVh- V(GV2,) + %GVZ(GVh- v¢>0)}
+2—14Dh4GV2(GV2d>O)}, (17)
where
A= [B(h+2) + (1= B)(h+ 7)), (19)
BEiz[B(hJFZa) +(1-B)(h+2)7, (19)
Eis[ﬁ(h—l-za) +(1-B)(h+12,)7, (20)
D= [ B(h+2)'+ (1-B)(h+2)], (2)
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Inverting Eq. (17) gives a formula for ¢, in terms of é which is substituted into Eq.
(12), leading to an approximation to the full velocity potential in terms of ¢

b=+ p2[(Ah—)Fy(d) + (BNZ = £ 2)Fy()] + w[( Ah— ) Fo( B)
+(BR? = £2)F,($) + (Ch* = £3)Fs($) + (Dh* = L) Fo()]. (22)

where
Fi(6)=GVh- v, (23)
U S
F(6) =56V, (24)
- L1 -
Fy(¢)=Vh: V(ANh: V§) + = Vh- V(BNV?4), (25)
Fi(#) = 5 VA(Ah- TF) 4 5 PE(BIFT2E) - S TR B
4 2 4 2
—Vh-V(Vh- V), (26)
Fs(6) = —EVZhVZgZ—EVh- v(v?&)—EVZ(Vh- v$) (27)
5 6 3 6 !
- 1 -
Fy(d)= -5, V*(V?°9), (28)

By substituting Eq. (22) into Eq. (7) and neglecting terms of O( «®) and higher, we
obtain the approximate mass flux

M =HV$+M2H{

(A-1)Fy () + Z(Bh— ;) Fz(g))]Vh

2

+(Ah— g) VF () +|Bh - H?) VFZ(J))}

2

+ uH Ch? — ?) Fs( &)

(A=1)Fy() +2

Hy .
Bh—E)F4(¢)+3

H3

+4 DhB—T)F6($)

Vh+(Ah— g)VF3(q~S)

2

Bh2—H—)\7F(43)+
3 4

3

Ch3—H—)VF(¢">)+
4 5

4

, H .
Dh —?)VFG(qS)}
(29)

+
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with H = h + &7. Substituting Eq. (22) into Eq. (5) and neglecting terms of O( u®) and
higher, we obtain the approximate Bernoulli equation evaluated at z= 67
n+ ¢+ p2[ (A= H)Fy(&) + (BN~ H?)Fy( b)] + w*[( AN —H)Fy( )
+ (BN — H2)Fy() + (Ch* = H¥) Fy( ) + (Dh* — H*) Fy( )]

+§ {|Vq§|2+ 2Vh- V[ n{(Ah—H)Fy(¢) + (BhZ — H2) Fy( )]
+u{( Ah—H)Fy(b) + (BR? —H?)F,($) + (Ch* — H?) F5( )
+(Dh* — H*) Fy( @)} + 1| P{( A — H) Fy($) + (BN — H2) Fy( )]
+ 12 Fy(8) + 2Fy(8)]" + 20| Fo( ) + 2HF,() + 3H2Fy( &)

+aHR(8)][Fi(8) + 2HFy(8)]} -0, (30)

The set of Egs. (7), (29) and (30) form a fully nonlinear Boussinesg-type model based
on a velocity potential ¢. We define a velocity vector

U(X,y.t) = BLVdLomr + (1= B)[Vd)oms. (31)
The relationship between T and <Z> can be found by inverting the gradient of Eq. (22) and
substituting into Eq. (31), and is given by

V=10 — p2Vh[( A—1)Fy + 2(B— A)hFp,| — u*Vh[(A—1)(Fy + Fy)

+2(B = A)h(Fy, +Fy) +3(C—B)W°F +4(D - C)W°F],  (32)

where
F,(l) =GVh-, (33)
Fpp(T) = %GV-D, (34)
Fu(l) = —|Vh[(A-1)Vh-T+ (B—A)hV- ], (35)
Fo(T) = _%vzh[(A—1)Vh-a+(B—A)hv.a], (36)
Fi(fl) = Vh- V( AV h- Ti) +%Vh- V(Bh2V- ), (37)

1 1
FM(G)EEVZ(Ath~G)+ZV2(Bh2V-G)
1
—EVZth-G—VhV(Vh-G), (38)
. 1,1 o1 .
F%(u)z—gv hV-u—§Vh-V(V~u)—EV(Vh~u), (39)

1
Fue(U) = —EVZ(V-G). (40)
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We then substitute Eq. (32) into the expression (29) for M, and into the gradient of the
Bernoulli Eq. (30). The resulting set of evolution equations are the approximate
conservation laws using the velocity-type variable {i, and is given by Eq. (7) with

H 2
Bh? — ?) VF,,

H
M = H{G + p? (Ah— E)(ZVhF22+ VF,) +

H
+ut ( Ah — 5)(2VhF42 + VF, + 2VhF, + VFy,)

2

H
+| Bh?— ?)(VF42 + 3VhF,s + VF,,)

3

H 4
Cch® — T ) (4V hF46 + VF45) +

H
+ Dh* — ?)VF%

B
for mass conservation, and
5
U = —Vn—EV(IGIZHFl(n.Gt) + (0, (42)
for momentum conservation. U, I';, and I', are given by
U=+ u?[(A-1)h(2VhF, + VFy) + (B— 1) h?VF,,]
+ p*[(A=1)h(2VhF,, + VF,, + 2VhF,, + VF)
+(B—-1)h*(VF,, + 3VhF, + VF,) + (C—1)h*(4VhF,s + VF,)
+(D —1)h*VFy], (43)

I = ,LLZV[ onFy, + (2h577 + 52772)F22t] + M4V[5”’I( Faze + Faar)

+(2hém + 8m?)(Fup + Fuay) + (30%m + 3h8m* + §%°) Fyg,

+ (0% + 612522 + 4hd % + 8% Fyg |, (44)
= —u? av{a [(AhN=H)(VF, + 2VhF,,) + (Bh? — H2) VF,,|

1
+ 5 (Fau 2HF22)2} — 5\7{0 [(AN=H)(VF, +2VhF,, + VF,,

+2VhF,) + (Bh? —H?)(VF,+ VF,, + 3VhF,)
+(Ch® = H3)(VFy + 4VhF,) + (Dh* — H*) V]

1
+ 5 |(AN—H)(VFyy +2VhF,) + (BR2 — H?) VF,|

1
+5 [(Fay + 2HF,) (Fyy + 2HF,, + i + 2HF,, + 3H2F,5 + 4HF,)| }
(45)
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Once U is known, the actual velocity field can be computed from substituting Eq. (32)
into the gradient of Eq. (22).

The resulting model is referred to below as the fully-nonlinear fourth-order model, or
FN4. To obtain a set of O(u*) weakly dispersive, weakly nonlinear equations with
8=0(u?) (as in the standard Boussinesy approximation), terms of O(8%?) and
smaller should be neglected. The resulting model is referred to below as the weakly-non-
linear fourth-order model or WN4. Finally, to recover the WKGS model, one must
neglect terms of O( u*) while keeping al terms proportional to powers of 8, and set
B =1. Nwogu's parameter «, is then related to A and B by

A=VB, B=2ay+1 (46)

with T being replaced by WKGS'su,,.
In the following, we restrict our attention to a one-dimensional version in X, obtained
by assuming i={, and V=109/0x.

3. Numerical implementation

In this section we present the numerical implementation of the FN4 (and WN4)
model derived in Section 2. The philosophy behind the numerical scheme follows very
closely the one of WKGS, but extended to higher accuracy for consistency with the
higher accuracy of the model itself. The time integration is done using a high order
predictor—corrector scheme and the spatial derivatives are approximated with high order
finite differencing. The order of accuracy in all the discretized terms in the equations is
such that the truncation errors, which contain dispersive-type quantities, are always
smaller than the highest-order dispersive term in the equations. This was done to assure
that even when using relatively large grid spacing, the dispersion introduced by the error
due to the discretization will not overwhelm the dispersive terms in the equations
themselves. In WKGS, this is accomplished by making the truncation errors of O( u*)
when combined with the term being discretized, assuming kA x= O( ). Since the
present model contains O( u*) dispersion, more accuracy in the approximate derivatives
is needed, so that the numerical truncation leads to errors of order higher than O( u?).
Among the several ways to implement the boundary conditions, we choose to use fully
reflective walls, with energy absorbing sponge layers used near the boundary in order to
implement a radiation condition. With this kind of formulation, it is necessary to include
some kind of wave generation inside the domain. The wave generation is implemented
by introducing a source function in the mass conservation equation acting on a limited
“source region’ conveniently placed in the domain.

We rewrite the one dimensiona equations with the source function and the sponge
layers as follows:

= _Mx+fs( X’t)' (47)

8
Ut=_nx_a(uz)x"'rl(nvut)+F2(771U)_de(x)’ (48)



66 M.F. Gobbi, J.T. Kirby / Coastal Engineering 37 (1999) 57-96

where M, U, I';, I, arethe one-dimensional (in x) versions of the quantities defined in
Egs. (41), (43)—(45), and where f(x,t) represents the source function and {f( x)
represents a dissipation term acting in the sponge layers. The sponge layer formulation
used is given by Wei and Kirby (1995).

3.1. Discretization and solution method

We discretize the spatial coordinate x by: x; =iAx, (i =0,1,2,...,N) and time t by:
tl=jAt, (j=0,12,...,N). There are three basic steps in advancing the solution by At
intime: (i) the right-hand-sides of Egs. (47) and (48) are evaluated, (ii) the equations are
integrated in time to solved for n and U, (iii) T is evaluated from U. Since we use a
predictor—corrector integration method and we have nonlinear terms containing time
derivatives on the right-hand-side of Eq. (48), starting at the corrector stage of step (i),
steps (i) through (iii) are iterated until convergence is attained. We present each of these
steps in the following subsections.

3.1.1. Evaluation of the right-hand-sides

The finite-difference approximations to the spatial derivatives in the equations are
done in such a way that the truncation error in each term of the equations should lead to
errors of order higher than O( u*), assuming that A x = O(h,) so that kA x = O( w).
Notice that the momentum Eq. (48) contains first order time derivatives of T in I'.
These time derivatives are evaluated in conjunction with the predictor—corrector itera
tion scheme (presented later) by using a finite difference approximation with values of {i
attimes(j, j—1, j—2, j—3, j —4) At in the predictor stage and (j+ 1, j, j— 1,
i—2, j—3, j—4 At in the corrector stage. The formulas for the time derivatives at
each of those j locations were obtained by expanding the variables in Taylor series
around each j, multiplying each expansion by a coefficient and solving the system of
equations resulting from setting the combination of coefficients of the higher derivatives
of t to zero. The formulas are

4= %At(—sﬁg + 1601 — 3602 + 480/ 3 — 250;’*4) +O(AtY), (49)
i = ﬁ(ﬁ; — 60/~ 4 18072 — 100/ 3 — 30;‘*4) +O(AtY), (50)
ag—2=ﬁ(—ﬁ§+803‘1—8ﬁg‘3+ﬁ§‘4)+O(At4), (51)
o= %At(sa; + 100~ — 1802 + 60 3 - 159*4) +O(AtY), (52)
ol = ﬁ(zsﬁg’ — 4801/~ + 360/ "2 — 160)° + 30/ ~*) + O(At*), (53)
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for the predictor stage, and
| 1 ‘ | | . |
b4 = (12uJ+l 75} + 2000~ — 30001/ 2 + 3008 3 — 137111‘4)
" 60At
+ O(At?), (54)
073 = ———(—30/** + 2001) — 608 ~* + 12002 — 650/~ — 121 ¢
" 60At
+ O(AtY), (55)
02 = ——— (20} ~ 150 + 608 ~* — 2082 — 300 ~* + 30 ¢
" 60At
+ O(At®), (56)
07t = ———(—30/** + 30 + 200/ ~* — 6082 + 150 3 — 2} ~*)
' 60At
+O(AtY), (57)

F_’.

- == ———(1201)* + 650i) — 1200} ~* + 60T} ~2 - 20~ + 30/ |

+O(At%), (58)

. 1 . . . . .
Gitl= (137u’+1 300&{+3OOG{‘1—ZOOG{‘2+7563‘3—12111‘4)
" 60At

+ O(AtY), (59)

for the corrector stage.

For Eqg. (47) all but the boundary points (that is, i = 1,...,N — 1) are evauated. After
the time integration is done (see Section 3.1.2), a boundary condition 1, = 0 is applied
a i=0andi=N.A 7-point off-centered derivative of 7 is used and n{** and n}**
can be obtained as:

. 1 . . ) )
TI(J),Jer 147 (3607Ii+|\11— 1= 450715\11— 2t 400715\11— 37 225”74{,T\11—4 + 7277%,?\11— 5

—10md\L6) + O(AX). (60)

For Eg. (48), we only evaluate the terms at points i =2,...,N— 2. The remaining
points do not need to be evaluated since at those points, the values of i are determined
by boundary conditions. This is done when we evaluate T from U, defined in Eq. (43),
and the procedure will be explained later.

The formulas for the spatial derivatives in Egs. (47) and (48) are given in Appendix
A.

3.1.2. Time integration
The integration method used is a 5th order predictor, 6th order corrector, Adams—
Bashforth—Moulton scheme. Once the dependent variables are known at times (j — 4
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i—3,i—2,j—1,j) At, and the right-hand-sides of the equations have been evaluated,
estimates of both n and U at time (j + 1) At are made using the predictor step

. At . . . . .
vt = 0] + = (1901 — 2774V~ ! + 2616V % — 1274V 3 + 251V )
P 720

+ O(At®), (61)
where index p stands for predictor. v/ is either U or 0, and V) is the right-hand-side of
the respective equation, at X =1A X and t =jAt. With the estimate U'+1 we evaluate
fil** (see Section 3.1.3) then estimate the right-hand-sides of the equatlons a tite

VJ *+1 and iterate the corrector stage where the predictor variables are the first estimates
for the variables at iterative step k:

At ) . )
vitt =)+ —(475v1+1 + 1427V — 798V~ 1 + 482V~ 2 — 173V, 3
1440
+27V)74) + O(At'), (62)
until the error between v/*! and »)** (where, again, v applies to both n and U) is
small. We define an error estimate for the iteration process as:

1/2 . 1/2
Y _(n']kirll — n'Jk+l)2 " (u']kti uij: 1)2 (63)
|ter = i+1 o uJJrl 2 !
(ﬂrhk ) ( 03 )

and require that E;,, be smaler than an arbitrary tolerance T,. In al our computations
we used 1079 < T, < 10712,

3.1.3. Evaluation of & from U
Once U has been evaluated at t =(j + 1) At for x=iAx,i=23,...,N—3,N— 2,
a system of algebraic equations can be written as

Anmln=U,, m=N-3 (64)
where
c, d, e, 0 0 0
b, ¢ d, e, 0 0
a, b, Cy d, e, 0 0
A,n=10 . 0 |, (65)
0 an-s by_s Cnos dyos ey
0 0 ay-3 byg Cyvsz dys
o ... 0 0 ay_, by_s Cy_z

U, and U,, are the vectors containing the unknowns fiand U a i =2,...,N — 2. Each
row of the system represents the finite difference approximation for the definition of
u(d. a, b, ¢, d, e are the coefficients appearing in front of {i after the 5-point
derivatives are substituted into Eq. (43), except for rows 2, 3, N — 3, N — 2, where these
coefficients are modified to accommodate the boundary conditions given by @, , = {i= 0.
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After solving the system for i at i =2,...,N— 2, we use these conditions (with an
off-centered 5-point finite-difference approximation) to obtain

U\ =0, (66)

Nj+l _i N+l ~Nj+1 Nj+1

0L, = 104(114u2,N,2 560\ 5 + 1104 4). (67)
The justification for using the boundary conditions @, = i = 0, = 0 is to guarantee that
the mass flux

M=h
2 4 3 6 30

1 1 .1 B D 1)\ _
TSP B

vanishes at the walls, which can be verified exactly by substituting @,,={=7,=0
into the linearized flat bottom momentum equation:

D 1
B2—B— — + —

+
g7 6 ' 6

1 1
U+E(B—1)h UXX+Z

h4fjxxxx} =0, (69)
t

and obtaining that { =0, and therefore that M = 0 at the boundary.

XXXX

3.1.4. Convergence and stability

No stability analysis for the present numerical formulation of the FN4 model was
done, due to the complexity of the model as well as the numerical scheme. To attain the
desired accuracy in the model with relatively fast convergence, the Courant number used
in all cases was never larger than 0.3. The numerical implementation for the linearized
model proved to be stable for all cases tested. For some cases, it was necessary to filter
the solution as high frequency oscillations appeared near points where the bottom slope
was discontinuous. This is due to the fact that the FN4 model contains terms propor-
tional to high (up to fourth) derivatives of h with respect to x, and, for discontinuous
bottom slopes, these factors become singular and can introduce spurious high frequency
waves to the solution. When necessary we used a Shapiro (1970) filter with either nine
or 17-point (Shapiro’'s n=4 and 8, respectively) average, and the filter was applied
every N, time steps where 50 < N; < 500, depending on the case. Ideally, as the number
of points used in the average tends to infinity, this filter only affects the Nyquist
frequency. In practice, for the cases studied, we verified that our use of the filter did not
affect the solutions in any significant way, except to remove extremely high frequency
noise.

In most cases where nonlinear effects become important (very steep, high waves), the
iteration process tends to become slow, or even to diverge. To correct this problem we
adopted a relaxation technique in the iteration process, as follows: if with two iterations
the error tolerance is not met, we assume that the corrector is overshooting the desired
solution and apply the following formula to both & and 7:

flrt=(1-R)fI* T +RA*T (70)

ler1?
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where the relaxation coefficient R ranges from 0 to 1. i1 is the estimate in the
previous iteration, and fJ+1 is the estimate in the current iteration, which is replaced by
the relaxed values fJ+ 1 The optimal value of R strongly depends the type of problem.
For all the cases studled in this paper, we used 0.2 < R < 1. The number of iterations
necessary for convergence within the desired accuracy was typically between 1 and 6.

3.2. Source function for wave generation inside the domain

Using sponge layers near the boundaries rules out the possibility of any type of wave
generation at the boundary. It is therefore necessary to introduce a source term inside the
domain to generate the desired waves, which will propagate towards the boundaries, and
be damped at the sponge layers. Thisis the role of the last term in Eq. (47), f(x,t). The
first attempt to include such terms in Boussinesq models was made by Larsen and
Dancy (1983), in which mass is added and subtracted from the domain along a single
line (or point, in the case of a one-dimensiona model). Wei (1997) found that this
approach, which worked well with the staggered grid of Larsen and Dancy (1983), did
not work well in his non-staggered grid, where spurious noise appeared around the
source point. It was necessary therefore to distribute the source function around a certain
neighborhood of the source. In the present formulation, we closely follow the approach
of Wei et a. (1999), in which the source function is assumed to be distributed as a
Gaussian shape, making the appropriate modifications to account for the added complex-
ity of the model. The formulation for the source function presented next is one-dimen-
sional, but can be extended to two dimensions in a straightforward manner.

If the local water depth at the source region is constant, h, and we want to generate
regular waves with angular frequency w, the source function can be written as

f(x.t) = Dyexp| — By x = x,)*| sin( wt), (72)

where x; is the center of source function, B, determines how focused the source
function is, and D, is the magnitude of the source function. Assuming that the generated
wave has small amplitude, we can use the linearized version of the FN4 model and
derive an analytical expression for D, using Green's functions (see Appendix B), to
obtain

ing
wAg 13| 1+ Cy(kh)* + Cy(kh)|

S

(72)

where Kk is the model wave number and C;, C,, Ag and I, are given in Appendix B.

Although the Gaussian shape parameter B, is arbitrary, in practice its value has great
influence on how well the source function can generate the desired waves. Ideally, B
should be as large as possible, so that the source function would be more localized.
However, it turns out that if the source region is too narrow (large B,), the waves
generated can be quite distorted and noise may also appear when they have finite
amplitudes. Defining the width of the source region W, to be the distance between two
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coordinates (equidistant from the source center) where expl — B{x — x.)?] is equal to
e~ 5, we can write

W =25/ - (73)

By trial and error, it was found that, for regular waves, a source with width W,
approximately equal to the wave length gives satisfactory results for waves within a
wide range of amplitudes and wavenumbers. When the incident wave nonlinearity is
very high (O(1)) the source function method fails to generate the waves properly.
Sensitivity tests for W, using several wave amplitudes were performed and yielded
results which are similar to those shown of Wei et al. (1999). Results of these tests may
be found in (Gobbi, 1998).

4. Comparisons with laboratory measurements

It is well known that regular waves decompose into higher frequency free waves as
they propagate past a submerged bar, as shown in experimental work by Beji and Battjes
(1993), Luth et a. (1994), and Ohyama et al. (1994). The basic mechanism is as
follows. as the waves propagate onto the front slope of the bar, nonlinear interactions
transfer energy from the leading wave component to higher harmonics, causing the wave
to become steeper. The waves take on a negatively asymmetric, pitched-forward shape,
which is a direct signature of the rapid transfer of energy to higher harmonics. After the
peak of the bar is reached and the bottom slope becomes negative, the nonlinear
coupling of the higher harmonics with the fundamental wave becomes progressively
weaker, and, from higher to lower harmonics, each of the Fourier components are
released as free waves with their own bound higher harmonics. Of course, since the
waves after the bar travel with different speeds, the process can be fairly complicated. It
is clear therefore that wave propagation over a submerged bar is a quite demanding test
for Boussinesg-type models, as it requires that the model predict the nonlinear harmonic
generation well, and also that the released shorter waves behind the bar have an accurate
speed, which may not happen even if the model predicts well the speed of the primary
waves before they reach the bar.

Comparisons between several weakly nonlinear Boussinesg-type models and experi-
mental data by Beji and Battjes (1993) and Luth et al. (1994) of waves propagating over
a submerged bar were presented by Dingemans (1994). In general, the models per-
formed relatively well for the longer, lower amplitude waves, but al were fairly
inaccurate for the shorter, more nonlinear waves, especially behind the bar.

Comparisons between the extended Boussinesq model of Nwogu (1993) and experi-
mental data, also for waves passing over a submerged bar, were presented by Ohyama et
al. (1994), and the results were similar to the comparisons made by Dingemans (1994);
that is, the model poorly predicted waves behind the shoal for the shorter, higher wave
cases.

In this section, we compare the FN4 model with two laboratory experimental data
sets of regular waves propagating in a one-dimensional wave flume and over a
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submerged bar: Luth et a. (1994), and Ohyama et al. (1994). We also show comparisons
of the WKGS model with the same data sets. The models' comparisons with the data are
done in three different manners: plots of free surface time series at fixed locations,
spatial plots of Fourier components of the time series, and a quantitative estimation of
accuracy defined by:

Ny

~ [v(i) = va(D]°

i=n

d=1-— , (74)
Y [y = 5el + | vaC) = %ll®

i=m

where d; is an index of agreement proposed by Wilmott (1981) for the ith wave gauge,
and where n, and n, cover a full wave period in the time series.

y4(j) are the measured data to be compared with, y(j) are the predicted values from
the model, and Y, is the mean value of y,(j). A perfect agreement between data and
model corresponds to d; = 1, while a complete disagreement resultsin d, = 0. In all the
numerical simulations we used A x = 0.025 m and kept the Courant number below 0.3.
The sponge layer strength and width used were S= 30 and X, — Xxg= 3 L, respectively.
The width of the source function used was W, = L, where L is the incident wave length.
The details of the experiments and comparisons with the models are presented in the
sections below.

4.1. The Ddlft Hydraulics experiments

The experiments performed by Beji and Battjes (1993) and Luth et al. (1994) have
the same geometric characteristics, except for the length scale in (Luth et al., 1994),
which is twice as large as in (Bgji and Battjes, 1993). In Luth et al. (1994) all gauge
locations used in (Beji and Battjes, 1993) were repeated, and another run of measure-
ments was performed with the gauges at different locations. For the sake of consistency
with the study by Dingemans (1994), we re-scale all measurements to the scales used in
(Bgji and Battjes, 1993). The layout of the experimental set-up with the locations of the
measurement stations (to which we refer by their location, e.g., gauge 2.0 m, gauge 15.7
m, etc.) and the geometry of the flume are illustrated in Fig. 1. In the present work we

Gage locations

20 4.0 57 10.5 125 135 145 157 173 19.0 21.0 230
I | [ T IR I N S B O
1 I I | 1 | I I | ! T

Wave
Wave
generator 1:10 04 absorbe
| T
0 6.0 12.0 14.0 17.0 23.0

Fig. 1. Sketch of wave flume of Delft experiments. All dimensionsin (m).
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use the data from Luth et al. (1994), since in that experiment active wave absorption was
used at the end of the flume and both reflection and bound long waves were monitored
during the experiment.

Three sets of data were collected using different incident wave conditions. We refer
to these data sets as cases (@), (b), and (c). In case (b), wave breaking occurred on the
crest of the shoal, and therefore these data were disregarded, since the present model
does not include any breaking mechanism. It is worthy mentioning an important point
about the data set (c). For this case, the available data did not cover the entire time range
which would ensure a permanent form periodic wave behind the shoal (only the first 46
s of data were provided). We, therefore, show comparisons between the data and the
models' calculations at approximately the same time window in relation to the first
waves in the time series; that is, for this case, we do not wait for the model to reach a
periodic solution behind the bar. Of course this is not a straightforward task, since the
model generates incident waves inside the domain in a peculiar manner, and the
transient at the very start of the wave generation process can be quite different from that
of awave paddle.

The incident wave characteristics for cases (a) and (c) are given in Table 1. In all
cases, the data from gauges at 2.0 m or 4.0 m (remember these are two experiments
combined) were used to synchronize the data with the models.

Figs. 2 and 3 show comparisons with data from the Delft experiments for case (a) of
the models WKGS and FN4. Notice that at station 5.7 m, there is a phase mismatch in
the data. This systematic error is because the gauge is actually at a different location (5.2
m) than that provided with the data and for which the computations were done. We,
however, preferred not to alter the original information and leave this as a note. Also, no
data was available for station 23.0 m. Both the FN4 and WKGS models perform quite
well for al the gauges up to the crest of the bar, but as the waves pass the back slope of
the bar, the WKGS model shows some discrepancies with the data. This is due to the
aforementioned decoupling of the higher harmonics from the primary longer wave
which are released as free waves propagating with a larger value of w which are more
susceptible to inaccuracies. The FN4 model remains quite accurate even for the gauges
located after the bar. To illustrate the inaccuracies due to higher harmonic decoupling,
Fig. 4 shows a representation of the linear dispersion relationship where the nondimen-
sional wave speed is plotted against the wave frequency. The vertical dotted lines
indicate the location of the frequency of the fundamental wave in case (a), of which the
period is T, = 2.02 s, and its harmonics with periods T, =T, /2, T, =T, /3, etc. Notice

Table 1
Incident wave characteristics for the Delft experiments

Case (a) Case(c)
Wave amplitude (m) 0.01 0.0205
Wave period (s) 2.02 1.01
n=kohg 0.67 1.69

s=ay/h, 0.025 0.051
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Fig. 2. Comparisons of free surface displacement with case () of Delft experimental data at several gauge
locations. WKGS (dash—dot), data (solid).

that the phase speed error in the primary wave (T,) is small for both the FN4 and
WKGS models. As the bound waves are released as free waves they travel with their



M.F. Gobbi, J.T. Kirby / Coastal Engineering 37 (1999) 57-96 75

2.0m 14.5m
0.02 0.04
R ' 0.02
0 /\/\
0 , ,
-0.02 -0.02
4.0m 15.7m
0.02 0.02
£ d '
= ’ N ’ f\/\_/\/\,
-0.02 —0.02
5.7m 17.3m
0.02 — 0.04
- 0.01 0.02
£ o
=4 0 .
4
-0.01 ~0.02
10.5m 19.0m
0.02 0.02
= “ v 0.01F\
: 0 g / 0
-0.01
-0.02
12.5m 21.0m
0.04
E 0.02 0.02 \ ‘\'
=3 0 0
~0.02 -0.02
13.5m 23.0m
0.04 0.0
g 0, ' ! N\ PN
= 0 . \._.—"' : N ,,'/A
0 \ ./ \'_// - \.
~0.02 -0.02
0 1 2 3 4 0 1 2 3 4
i(s) t(s)

Fig. 3. Comparisons of free surface displacement with case () of Delft experimental data at several gauge
locations. FN4 (dash—dot), data (solid).

own speed, which, in the linear limit, are represented by the intersection of the vertical
lines T,, Tj, etc., with each model’s dispersion curve. Notice that the errors in the speed
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Fig. 4. Linear dispersion relationship as (nondimensional) wave speed vs. wave frequency. Present Model
(dash), WKGS (dash—dot), exact (solid). Dotted vertical lines are waves with periods T, = (2.02/n)s.

of the released higher harmonics starting from T, for WKGS are considerably larger
than for the FN4 model.

Similarly to Figs. 2, 3, Figs. 5 shows plots for the WN4 model (the present model
with the assumption & = O( «?) and neglecting terms of O(8%u?, du?,...)). Apart from
dlight phase differences, the comparison is about as good as for the FN4 model, which
indicates that for this case, the improvement in the dispersion effects of the FN4 and
WN4 models over the WKGS model is more important than the fully nonlinear effects
accounted for in WKGS and FN4, but not in WNA4.

Figs. 6-8 are analogous to Figs. 2, 3 and 5, but for case (c) (see Table 1). Firstly, we
do not know how much the aforementioned transient problem in case (c) affected the
comparisons shown below. In this case the incident wave has twice the amplitude and
about 2/5 of the wavelength of case (a). Before the waves reach the back slope of the
bar, FN4 and WKGS perform quite similarly, although some phase differences are
apparent. Model WN4 does not perform as well in this case due to its weak nonlinearity
assumption. As the waves pass over the bar, the higher harmonic decomposition
combined with nonlinear effects are strong enough in this case to make the three models
give very different results, with FN4 being the most accurate, giving very good
agreement except for dlight phase differences. WN4 also performs qualitatively worse
than the WK GS (accurate to O( u2), but fully nonlinear) for al gauges up to 15.7 m.
This result is a strong indication that the improvement in linear dispersion is not always
more important than the fully nonlinear effects, contrary to the generalizing conclusion
of Dingemans (1994). Referring back to Fig. 4, again, after the waves pass the bar, the
higher harmonics are released as free waves. For case (c) the primary (incident) wave is
indicated by the vertical dotted line labeled T,, and its second and third harmonics are
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Fig. 5. Comparisons of free surface displacement with case () of Delft experimental data at several gauge

locations. WN4 (dash—dot), data (solid).

represented by the even indexes, that is, T, and T, respectively. Notice that the error in
the speed of the primary wave is negligible for the WKGS model. In the second
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Fig. 6. Comparisons of free surface displacement with case (c) of Delft experimental data at several gauge
locations. WKGS (dash—dot), data (solid).

harmonic (T,) the error for WKGS is fairly high, and for FN4, although not negligible,
is considerably smaller, and the same being the case of the released third harmonic (Ty).
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Fig. 7. Comparisons of free surface displacement with case (c) of Delft experimental data at several gauge
locations. FN4 (dash—dot), data (solid).

Fig. 9 shows comparisons of the absolute value of the amplitudes of the Fourier
transform of one wave period of the time series, between both FN4 and WKGS, and the
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Fig. 8. Comparisons of free surface displacement with case (c) of Delft experimental data at several gauge
locations. WN4 (dash—dot), data (solid).

data points at each gauge location for both cases (a) and (c). Fig. 10 shows similar plots
for FN4 and WN4, where FN4 results are identical to those in Fig. 9. Also shown are
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Fig. 9. Comparisons of the spatial variation of the Fourier components of the free surface displacement with
cases (@) and (c) of Delft experimental data. Bottom panels show the free surface elevation. FN4 (solid),
WKGS (dash—dot), data (circles).

snapshots of the free surface elevation and the position of the bar (out of scale). In both
cases (a) and (c), the WKGS model tends to overpredict the higher harmonics after the
crest of the bar. For case (a) the FN4 and WN4 models give very similar results, with
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some slight underpredictions by WN4 of the amplitudes of the released third and fourth
harmonics after the bar crest. In case (c), WN4's inability to generate higher harmonics
accurately due to the weak nonlinearity assumption is evident in the underprediction of
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Table 2
Index of agreement d;
Gauge location (m) Case(a) Case(c)
WKGS FN4 WN4 WKGS FN4 WN4
20 0.998 0.998 0.998 0.997 0.996 0.998
4.0 0.996 0.996 0.996 0.997 0.997 0.984
105 0.995 0.995 0.995 0.982 0.986 0.997
125 0.999 0.999 0.998 0.997 0.995 0.927
135 0.996 0.995 0.987 0.996 0.996 0.990
145 0.995 0.997 0.993 0.979 0.971 0.883
157 0.995 0.996 0.980 0.973 0.993 0.977
17.3 0.975 0.995 0.972 0.880 0.973 0.934
19.0 0.973 0.982 0.943 0.968 0.987 0.970
210 0.927 0.993 0.962 0.948 0.965 0.931

the decomposed higher harmonics. Notice the modulation present in the fundamental
wave before the bar, shown by al three models, caused by partial wave reflection from
the front of the bar. Notice also that for case (c) the FN4 model dlightly overpredicts the
third and fourth modes around the toe of the front face of the bar. This is due to
numerical error introduced by the high order derivative terms, which are undefined
functions at that location. When necessary, the solution was filtered (see Section 4) to
avoid high frequency contamination problems. In genera, as in the case of the time
series plots, the FN4 agrees with the data much better than WKGS and than WN4 for
case (c).

Table 2 shows the index of agreement d, defined by Eq. (74) of the models FN4,
WN4, and WKGS, with both cases (a) and (c) of the Delft experiments for all gauges
except 5.7 m and 23.0 m. Of course, the differences in d; between the models should
only have significance when they are larger than d; for the incident wave (gauges 2.0 m
and 4.0 m). Theresults confirm that the best performance is from the FN4 model, with
only one case where WK GS gave a dlightly better result (case (c), gauge 14.5 m) due to
a dightly larger phase mismatch in FN4. It is clear that the WKGS model outperforms
the WN4 model around the bar crest (gauges 12.5 m through 14.5 m), but as the waves
reach deeper water (importance of nonlinearity and dispersion switch), WKGS loses
accuracy. Although WN4 has much more accurate dispersion relationship in deeper
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Fig. 11. Sketch of wave flume of the Ohyama experiment. All dimensionsin (m).
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Table 3
Incident wave characteristics for the Ohyama experiment

Case (2) Case (4) Case (6)
Wave amplitude (m) 0.025 0.025 0.025
Wave period () 1.341 2,012 2.683
pn=kh 1.299 0.769 0.555
d=ay/hg 0.050 0.050 0.050

water than WKGS, since it was not capable of generating higher harmonics properly
while the waves were shoaing, the overall solution becomes inaccurate after the bar.
This confirms the importance of the full-nonlinearity assumption made in the WKGS
derivation but not in the WN4.

4.2. The Ohyama experiment

In this section, we show comparisons between the FN4 and WK GS models with the
experiment by Ohyama et al. (1994) (referred here as simply the Ohyama experiment).
Computations with the WN4 model were not performed for this case. A sketch of the
wave flume with the gauge locations is shown in Fig. 11. We now summarize the

Station 3 - (a) Station 5 - (b)
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002}
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Fig. 12. Comparisons of free surface displacement with case (2) of the Ohyama experimental data at stations 3
and 5. FN4 (upper panels—a,b), WKGS (lower panels—c,d), data (circles).
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experimental setup. The wave flumeis 65 m long and 1.0 m wide. The total depth of the
flume is 1.6 m. The location of the center of the bar was 28.3 m from the piston-type
wavemaker. All other relevant dimensions can be seen in Fig. 11. The measurements
were performed before the point when waves reflected from the bar reached the
wavemaker.

At the right end of the flume, waves were absorbed by the presence of coarse
materials to dissipate the energy. A total of six tests were performed with three different
incident wave periods (1.34 s, 2.01 s, 2.68 s) each for two different wave amplitudes
(0.0125 m, 0.025 m). No wave breaking occurred in any of the tests. The data was
obtained by digitization of the plots from the original article. The only time series
available for comparisons were the ones at stations 3 and 5, for all three wave periods,
and the highest of the two amplitudes (0.025 m). Fourier amplitudes were available for
the same wave conditions but at all measurement stations. Time series were synchro-
nized at station 3.

It is not clear from Ohyama et al., 1994 that the measurements shown in the paper
were performed after the waves had reached a permanent form, but we are assuming this
is the case. The models' results were taken after a steady wave was reached at station 5.

We refer to the three tests as cases (2), (4), and (6), as in Ohyama et al. (1994). The
incident wave conditions are summarized in Table 3. The incident wave conditions are
similar in the Ohyama and Delft experiments. The mgjor difference between the two

Station 3 - (a) Station 5 - (b)
0.1 0.1
0.05 0.05
E
=
0 0
-0.05 -0.05
Station 3 - (c)
0.1 0.1
0.05 0.05
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0 O}y
-0.05 -0.05
0 1 2 3 4 0 1 2 3 4
t(s) t(s)

Fig. 13. Comparisons of free surface displacement with case (4) of the Ohyama experimental data at stations 3
and 5. FN4 (upper panels—a,b), WKGS (lower panels—c,d), data (circles).
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experiments is that the bar in the Ohyama experiment is much shorter and with much
steeper slopes than the one in the Delft experiments, more reminiscent of a submerged
rubble mound structure. The steep slopes add extra difficulty for the models' perfor-
mance, since: (i) the models' dispersion properties are optimized assuming constant
depth; (ii) the assumption that the vertical velocity is O( u?) times the horizontal
velocity is violated at steep slopes. Smoothing of the corners of the bar, besides filtering
every 100 time steps was necessary to prevent spurious high frequency noise to
contaminate the solutions. To smooth the corners of the bar we applied a 3-point average
by Shapiro (1970) five times. Since the waves are progressively longer from cases (2)
through (6), we expect that the Boussinesq models will perform best in case (6), and
worst in case (2). We also expect higher mismatches between models and data at station
5 than at station 3, due to increasing errors in the phase of the decomposed higher
frequency bound waves as they reach the deeper water behind the bar.

Figs. 12-14 show comparisons of the FN4 and WKGS models with data for cases
(2), (4), and (6), respectively. Notice that for cases (2) and (4) the FN4 model shows a
mismatch in the phase speed at station 5, and an underprediction of the wave crests and
troughs, an indication that even the fully nonlinear, O( u*) model has limited ability to
predict waves past a submerged bar with very steep slopes, if the waves are short
enough. For case (6) the FN4 model agrees very well with the data. For al three cases,

Station 3 - (a) Station 5 - (b)
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Fig. 14. Comparisons of free surface displacement with case (6) of the Ohyama experimental data at stations 3
and 5. FN4 (upper panels—a,b), WKGS (lower panels—c,d), data (circles).
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the WKGS model has poor qualitative agreement with the data at station 5, mostly due
to phase errors and overprediction of higher harmonics behind the bar.

x 1072 Fourier amplitudes, case (2)
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Fig. 15. Comparisons of the spatial variation of the Fourier components of the free surface displacement with
case (2) of the Ohyama experimental data. Bottom panel shows the free surface elevation. FN4 (solid), WKGS
(dash—dot), data (circles).
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x 10 Fourier amplitudes, case (4)
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Fig. 16. Comparisons of the spatial variation of the Fourier components of the free surface displacement with
case (4) of the Ohyama experimental data. Bottom panel shows the free surface elevation. FN4 (solid), WKGS
(dash—dot), data (circles).
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Figs. 15-17 show comparisons of the Fourier amplitudes along the flume between
both FN4 and WKGS, and the data points at each station for cases (2), (4), and (6),

x 1072 Fourier amplitudes, case (6)
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Fig. 17. Comparisons of the spatial variation of the Fourier components of the free surface displacement with
case (6) of the Ohyama experimental data. Bottom panel shows the free surface elevation. FN4 (solid), WKGS
(dash—dot), data (circles).
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Table 4
Index of agreement d;
Station Case (2) Case (4 Case (6)

WKGS FN4 WKGS FN4 WKGS FN4
3 0.994 0.998 0.991 0.994 0.991 0.991
5 0.921 0.914 0.927 0.880 0.945 0.976

respectively. In all cases, the models predict well the Fourier amplitudes before the back
face of the bar. For case (2), WKGS gives dightly better prediction of the second
harmonic at stations 4 and 5 than FN4, but once again strongly overpredicts the third
and fourth harmonics at those stations. For case (4), the FN4 model gives better
prediction than WKGS for all but the third harmonic, which WKGS agrees dlightly
better with the data. For case (6), both models agree reasonably well with the data, with
FN4 having a better prediction of the third harmonic at station 5 and the WKGS model
matching the fourth harmonic dightly better at that same station. For this case, the
deviations from the data in the time series computed by WKGS at station 5 are probably
due to phase errors, which is not detected by the Fourier amplitudes comparisons.

Table 4 shows the index of agreement between WKGS and FN4, and the data from
the Ohyama experiment for cases (2), (4), and (6), stations 3 and 5. Notice that for cases
(2) and (4), the results indicate a better agreement with the data by WKGS than by FN4.
By inspecting time series in Figs. 12 and 13, it is clear that the better agreement index
for WKGS is only due to a systematic phase error by FN4, which, overall has a better
qualitative agreement.

5. Conclusions

A Boussinesg-type model (FN4) with O(1) nonlinearity and O( u*) dispersion and
vertical dependence was developed for surface water wave propagation over uneven
beds in two horizontal dimensions. The model is the extension of Gobbi et al. (1998b) to
include variable bottom topography.

A numerical implementation of the 1-D version of the model was used to simulate
wave evolution over arbitrary bottom topography. The numerical model included
absorbing sponge layers to simulate radiation boundary conditions, and generation of
waves inside the domain by the inclusion of a source function in the system of
equations. In comparison with O( u?) models, the extra computational cost of the FN4
model is mostly due to the much greater number of terms. We believe that an
optimization of the code for parallel processing machines would make it only marginally
less efficient than O( u?) models. This and a 2-D numerical implementation of the
model are the author’s goals for future work.

Computations with FN4 and WKGS were compared to several laboratory measure-
ments of waves propagating over submerged sills, and FN4 generally gave better
agreement with the data. The weakly nonlinear version of the model, WN4, was also



M.F. Gobbi, J.T. Kirby / Coastal Engineering 37 (1999) 57-96 91

compared to some of the data. The results showed that the nonlinear terms neglected in
WN4 are essential for accurate prediction of the generation of higher harmonics of
shoaling waves.

Results from the present study are compared to results from several levels of the local
polynomial approximation (LPA) method of Kennedy and Fenton (1997) in Gobbi et al.
(1998a). FN4 is found to perform as well or better than LPA models with a similar
degree of polynomia approximation over the water column, and compares favorably
with LPA with n=7 (corresponding to a sixth degree polynomia in the vertica
direction) in many cases.
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Table 5
Coefficients in the finite difference formulas for the spatial derivatives

Y Kizs Kizz Kizy Ki Kiia Kiz2 Kiyg Error
oD
Uy +(60A %)L -1 9 -45 0 45 -9 1 0oax®
Uiz +(60AX) "1 2 —24 -35 80 -30 8 -1 OoAx®
Ui +(60AX)"t  -10 -77 150 —100 50 —15 2 0(Ax®)
Oyi (180Ax%)~ 1 2 -27 270  —490 270 —27 2 0(Ax®)
Oyyiza (180Ax?)~"! -13 288 —420 200 15 -12 2 0O(Ax®)
O3, (180Ax%)1 137  —147 -255 470 -285 93 —-13 0O(Ax®)
o(u?)
Oy +(12Ax)71 - 1 -8 0 8 -1 - 0O(Ax%
Uiy 1 +(12Ax)71 - -3 -10 18 -6 1 - 0O(Ax%
Oy (12ax?)71 - -1 16 -30 16 -1 - o(axY
Oyt (12ax?)71 - 11 -20 6 4 -1 - 0o(Ax®
Oy i +(8AXx3™L 1 -8 13 0 —-13 8 -1 oAxY
Ognizy +BAXHT? -1 -8 35 —48 29 -8 1 oaxY
Ognizo +BAXDH™T  —15 56 -83 64 -29 8 -1 OoAxY
o u*)
Oy +(2Ax)? - - -1 0 1 - - 0(AXx?)
Oyyi (Ax»)~?t - - 1 2 1 - - 0(AX?)
Oy +(2Ax%) 1 - -1 2 0 -2 1 - 0(AXx?)
Ogyuizs +QRAXDTT - -3 10 -12 6 -1 - 0(Ax?)
Oy i (AxH~? - 1 -4 6 -4 1 - 0(AXx?)
Uyxxxi 71 (axH~t = 1 -4 6 -4 1 - O(AX)
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Appendix A. Numerical spatial derivatives

The spatial derivatives appearing in Egs. (47) and (48) are evaluated according to the
condition that the errors be smaller than O( u*) when we assume kA x = O( w), which
amounts to the use of schemes such that the O( wP) terms contain truncation errors of
O(A x®~P) or higher. The finite difference formulas for the spatial derivatives of say T
can be written as:

i+m
oh=y L K, (75)
n=1—m
where 2, are derivatives of {i with respect to x at location | (i—m+1<l<i+m
—1), | =i are centered derivatives, and | +#i are off-centered derivatives (near the

boundaries). m can be either 1, 2, or 3, depending on the truncation error, and yK,, are
the coefficients of . Table 5 shows the values of y and K, for the 9, derivatives
appearing in the O(1), O( u?), and O( u*) terms (first column). The + and F signs are
used so that the formulas for the off-centered derivatives can be applied to both
near-the-left and near-the-right boundaries. The coefficients in boldface indicate the
point where the derivatives are computed. The numerical truncation errors are shown in
the last column.

Appendix B. Derivation of source function

Here we derive the x-direction source function for regular waves. The linearized
versions of the mass and momentum equations for ¢ over a flat bottom, including the
source function is given, in dimensional form, as:

n,+hV2%h—C,hV2V 24+ C,h°V2V2V 24 =1f(x,y,t), (76)
¢+ gn— C;h2V 2, + C,h*V2V 24, =0, (77)
where coefficients C,, C,, C;, C, are given by
1
C=-5(B-1/3), (78)
1
C,= Z(B2 —-B/3-D/6+1/30), (79)
1
Cy=—5(B-1), (80)
1
C4=Z(BZ—B—D/6+1/6). (81)

Taking the t derivative of the momentum equation and eliminating n from Egs. (76)
and (77), gives:

by —ghV2¢+C,gh’V2V 24— C,gh®V 2V 2V 2¢p— C,n2V 24,
+C,h V2V 24, = —gf(x,y.1). (82)



M.F. Gobbi, J.T. Kirby / Coastal Engineering 37 (1999) 57-96 93

We introduce the following transformations:

dxyit) = (i)2/+wf+m$(x)e”‘ye‘i”“d/\dw (83)
27) J_w_a
F(x,yit) = (i)zjwfwf( x)eMewtdrdw. (84)
27w ) J_w Vw
Substituting Egs. (83) and (84) into Eq. (82), we have:
ad® + b + cd? + de = o, (85)
where the numbers in brackets denote order of x derivatives, and
a=C,gh°, (86)
= —C,gh®*+ C,h'w? — 3C, gh°® A?, (87)
c=gh— C;h’w? + 2C, gh®? — 2C,h* A%w? + 3C, gh® A%, (88)
d= w?—ghA? + C;h? A2 w? — C, gh®* A* + C,h* A* w? — C, gh® A°. (89)

Now we multiply Eqg. (85) by a Green's function G( &, x), and integrate the product with
respect to &, from —oo to 40, which gives:

+ o0 A A ~ ~
[ (aG'® +bG! + cGI? + dG) dd¢ + a[ G — GHG + GG

— GG 4 Gl 4 G[51$] Ty b[GJ)B] — GlUS 4 glagH

+ o

—G[3]($]i:+c[6$[11—6[”$] m=gf+waAd§’ (90)

where the numbers in brackets denote order of ¢ derivatives. Notice that ¢ is a dummy
variable and x is now an arbitrary fixed point in the ¢ coordinate. Following the
traditional Green’s function theory, we seek a solution such that:

aG® + bGl + cG? + dG = 5( £ — ), (1)
with boundary conditions such that all boundary terms in Eq. (90) are eliminated:
G > (£i1)"G, 1" - (£i1)"; n=1,..5 x- £, (92)

where §( ¢ — x) isthe Dirac delta function at £ = x. We are interested in solutions where
a=+ 0. By integrating Eq. (91) just across £=Xx, from x—e to X+ € (e —0), and
requiring continuity of G, G!, G, GBI, G, we are left with:

X+ €

aGel,_ . =1. (93)
Away from &= x we, can write:
G+ a,G* + a,G? + a,G = 0, (94)

where a, =b/a, a,=c/a, a;j=d/a Seeking a solution of the form:
G~ €', (95)
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we obtain the characteristic polynomial:
oc®—ao*—a,0?—a,=0. (96)

For the case in which we are interested, the roots of Eg. (96) can be written as:

o=—0,=1, (97)
o,= —o5=IiL,, (98)
o= —og=Il,, (99)

where |, L,, L, are positive real numbers, and can be obtained from the roots of the
bi-cubic polynomial Eq. (96). We now write the solution for the source function:
G,=Age"'¢ M + Bgelé™0) + Coellé 0 if  g<x,

G(g'x) = G_ZAGeil(X—f)+BGeL1(X_§)+CGeL2(X_§) if §>X (100)

Continuity of G, G/, G*! are satisfied automatically, as are the boundary conditions at
+ 0. Continuity of GY, GB, and substitution of Eq. (100) into Eq. (93) gives three
equations for the three unknowns Ag, Bg, and Cg, the solution being:

Ao (P )17+ ) (101)
1
B (P ) (1) (102)
1
o= 2P B)(B-13) (103)
Eqg. (101) can be rearranged to give:
—il
Ao~ i —altay) (104)
From Eq. (90), we can write:
300 = [ e(ex i )de= [ 6 (£x)0f(£)de
+ [ (g0 0f(£)de. (105)
We arbitrarily choose:
f(x) = Deexp( — B x2). (106)

For sufficiently large values of x (progressive wave traveling to greater values of x),
and using Eq. (104):

J’( X) = f:oG—( &,X) ng( £)dé= gDs[ Agl,€" + Bglye™ "+ Cglae” LZX] )
(107)
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where
I1=f+mexp(—,85x2—ilx)dx=1/1exp(—i), (108)
—® Bs 4Bs
I2=f+mexp(—Bsx2+le)dx= 1exp(L—21), (109)
—%® :85 465

™ L3
\/;Sexp(rﬁs) (110)

Terms involving 1, and 1; become negligibly small as x — 0, so:
H(X) = gD, Agl,€"™. (111)

We here are interested in waves propagating in the x direction. The desired progressive
wave solution (waves propagating in x) of Egs. (76) and (77) away from the source
region (x - ) is;

l,= fj:exp( —Bs X+ Ly x)dx

n = 1€, (112)
(Z — $Oei(kxfwt)' (113)
~ igno

= - 114
%o |1+ Cy(kn)* + C,(kn)*| (124)

1+ Cy(kh)? + C,(kh)*
w?=gk’h d )2 o )4 . (115)
14 C4(kh)” + C,(kh)
Setting A =0 (no y dependence) and | = k we can write:
B(X,y,t) = gD Ag l,e*~ @V, (116)
Substitution of Egs. (113) and (114) into Eq. (116), gives the relationship between the
source function amplitude D, and the desired wave amplitude 7,:

|
D, = To_ T (117)
wAG 1,1+ Cy( k) + Cy(kh)']
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