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Abstract

Ž .4A Boussinesq model accurate to O m , msk h in dispersion and retaining all nonlinear0 0

effects is derived for the case of variable water depth. A numerical implementation of the model in
one horizontal direction is described. An algorithm for wave generation using a grid-interior
source function is derived. The model is tested in its complete form, in a weakly nonlinear form

Ž 2.corresponding to the approximation dsO m , dsarh , and in a fully nonlinear form accurate0
Ž 2. w Ž .to O m in dispersion Wei, G., Kirby, J.T., Grilli, S.T., Subramanya R. 1995 . A fully

nonlinear Boussinesq model for surface waves: Part 1. Highly nonlinear unsteady waves. J. Fluid
xMech., 294, 71–92 . Test cases are taken from the experiments described by Dingemans

w Ž .Dingemans, M.W. 1994 . Comparison of computations with Boussinesq-like models and labora-
x wtory measurements. Report H-1684.12, Delft Hydraulics, 32 pp. and Ohyama et al. Ohyama, T.,

Ž .Kiota, W., Tada, A. 1994 . Applicability of numerical models to nonlinear dispersive waves.
xCoastal Engineering, 24, 297–313. and consider the shoaling and disintegration of monochro-

matic wave trains propagating over an elevated bar feature in an otherwise constant depth tank.
Results clearly demonstrate the importance of the retention of fully-nonlinear effects in correct
prediction of the evolved wave fields. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Great strides have been made in the recent past to extend the range of applicability of
Boussinesq-type equations for surface water wave propagation and bring them into the
family of operational coastal wave prediction models. Most of the initial recent work in
this area has centered on the notion that the primary avenue of improvement would be to
correct the model’s apparent linear dispersion characteristics by means of a reorganiza-

Ž Ž 2 . .tion of dispersive or O m , where m denotes the water depth to wavelength ratio
terms, thereby extending the range of water depths in which a wave of a given frequency

Ž .could be modelled with reasonable accuracy. Madsen et al. 1991 and Madsen and
Ž .Sørensen 1992 achieved this goal in a depth-integrated model by simple rearrangement

Ž .of dispersive terms, while Nwogu 1993 achieved a similar result by redefinition of the
dependent velocity variable. Either approach led to models with linear dispersion
relations which can be written in the form

1 21y aq khŽ .ž /32 2v sgk h 1Ž .21ya khŽ .
Ž .where the choice asy2r5 produces the 2,2 Pade approximant of the full dispersion´

relation. Models of this type have been extensively tested for their applicability to the
prediction of nearshore wave height and wave-induced circulation, as detailed in a recent

Ž . Ž .series of papers by Madsen et al. 1997a,b and Sørensen et al. 1998 .
Ž .Subsequently, Kirby and Wei 1994 argued that models based on such an extension

to the linear formulation may not be producing a better nonlinear model in the extended
region, since the absence of dispersive modifications to nonlinear terms destroyed the
consistent ordering of coefficients in Stokes-type expansions of the model equations.
The results indicated that models retaining nonlinear effects to all orders resulting from
a direct application of the form of the velocity field obtained at any order in the
dispersion parameter msk h would produce a more consistent picture of nonlinear0 0

behavior both in the long wave limit and in the intermediate depth range being
Ž 2 .investigated. Models of this type would drop the standard scaling assumption dsO m ,

where dsarh denotes a height-to-depth ratio characterising nonlinear effects. Such a0
Ž 2 .model, retaining dispersion to O m and all corresponding nonlinear effects, was

Ž .developed by Wei et al. 1995 and shown to be a much more accurate predictor of
Ž .solitary wave shoaling than the weakly-nonlinear model of Nwogu 1993 . The accuracy

Žof that model as a predictor of Stokes-type solutions is documented in Kirby and Wei,
.1994 as well as in the companion paper to the present contribution, Gobbi et al.

Ž .1998b , hereafter referred to as GKW98. These earlier results demonstrate the defects
in corresponding Stokes wave solutions for weakly nonlinear models in the asymptotic

Ž 2 .approach to the shallow water limit. Models in the O m , fully-nonlinear formulation
have also been extensively tested for their applicability to the modelling of nearshore

Ž .waves and currents; see a recent example by Chen et al. 1999 .
Recently, GKW98 have extended the formulation of the fully-nonlinear Boussinesq-

Ž 4.type model to O m , using a model based on kinematic flow-field information to the
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same order of approximation. The model has been tested both in the intermediate-depth,
Stokes-wave regime and in the shallow water, solitary wave regime, where convergence

Ž .to the full solution of Tanaka 1986 was demonstrated with increasing level of
approximation in powers of m2.

Ž 4.In the present paper, we present a numerical solution technique for the O m

GKW98 model and apply it to the study of wave propagation and harmonic decomposi-
tion over an isolated shoal. Particular attention is paid to the question of whether the
most important feature retained in the final model is the fully-nonlinear property
Ž Ž 4..relative to a weakly nonlinear model at O m , or the incorporation of enhanced linear

Ž 2 . Ž .dispersion going from the O m fully-nonlinear model of Wei et al. 1995 to the
Ž 4.O m fully-nonlinear model of GKW98. Laboratory data is taken from two sets of

Ž .experiments, one Dingemans, 1994 describing wave propagation over a gradual shoal
Ž .mimicking a natural bar formation, and one Ohyama et al., 1994 describing wave

propagation over an abrupt feature reminiscent of an artificial submerged breakwater. A
detailed comparison between model predictions and laboratory data is given for each
case.

2. Derivation of fourth-order fully nonlinear model

In this section, we derive a fully nonlinear Boussinesq-type model based on a 4th
order vertical polynomial for the velocity potential, extending the work of GKW98 to
the variable depth case. A set of equations for a velocity-type variable is then given. We
assume the fluid is inviscid and incompressible, and the flow is irrotational, so that a
velocity potential f exists and the velocity field can be written as

us= f , 2Ž .3

Ž .where the fluid velocity vector u' u,Õ,w , and f are functions of the spatial Cartesian
coordinates x,y,z and time t, and = is the three dimensional gradient operator3

Ž .= ' ErEx, ErE y, ErEz .3

The full boundary value problem for potential flow is given in terms of nondimen-
sional variables by

f qm2= 2fs0, yhFzFdh ; 3Ž .z z

f qm2= hP=fs0, zsyh; 4Ž .z

1 12 2
hqf q d =f q f s0, zsdh ; 5Ž . Ž . Ž .t z22 m

1
h qd=fP=hy f s0, zsdh ; 6Ž .t z2m

x and y are the horizontal coordinates scaled by a representative wave number
k s2prL , where L is a wave length, z is the vertical coordinate starting at the still0 0 0

water level and pointing upwards and h is the water depth, both scaled by a typical
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depth h . h is the water surface displacement scaled by a representative amplitude a .0 0
2 Ž .2Two dimensionless parameters are apparent: dsa rh and m s k h . Time t is0 0 0 0

Ž Ž .1r2 .y1 Ž .1r2scaled by k gh , and f, the velocity potential, is scaled by d h gh . g is0 0 0 0

the acceleration due to the gravitational field, and = is the two-dimensional horizontal
Ž .x,y gradient operator.

Ž . Ž . Ž .Integrating Eq. 3 over the water column and using Eqs. 4 and 6 , we obtain a
mass conservation equation

dh

h q=PMs0, Ms =fd z . 7Ž .Ht
yh

Ž .We now proceed to derive model equations for waves over an arbitrary bottom h x,y ,
Ž . Ž 2 .and assuming dsO 1 and O m <1. We assume an Nth degree polynomial

approximation for f in the z coordinate
N

nfs z f x , y ,t , 8Ž . Ž .Ý n
ns0

where

zs hqz , 9Ž . Ž .
and f are functions of the horizontal spatial coordinates and time. By taking the limitn

Ž .of Eq. 8 as z™0, it is clear that f is the velocity potential at the bottom zs0.0
Ž . Ž .Substituting Eq. 8 into Eq. 4 , we obtain an expression for f in terms of f1 0

f sym2 G= hP=f , 10Ž .1 0

Ž 2 < < 2 .y1where G' 1qm = h . Since we are seeking an asymptotic approximation for f

in terms of the small parameter m2, it would be consistent if we expanded G in a
binomial expansion around m2 s0. However, we choose not to do this in order to
maintain the positive definiteness of this quantity as the bottom slope becomes steep.

Ž . Ž .Substituting Eq. 8 into Eq. 3 , and equating coefficients of like powers of z to zero,
we obtain the following recursion formula

22 2nq2 nq1 f qm nq2 nq1 = h f q nq1 = hfŽ . Ž . Ž . Ž . Ž .nq2 nq2 nq1

2q2 nq1 = hP=f q= f s0. 11Ž . Ž .nq1 n

Ž . Ž .We now use Eqs. 10 and 11 to obtain the f in terms of f . The series is truncatedn 0

at ns4, yielding

1
2 2 2fsf ym G= hP=f zq G= f z0 0 0ž /2

1
4 2 2 2qm G = h= hP=f qG= hP= G= hP=f zŽ .0 0½ 2

1 1 1
2 2 2 2 2 3q G = h= f q G= hP= G= f q G= G= hP=f zŽ .Ž .0 0 06 3 6

1
2 2 4q G= G= f z . 12Ž .Ž .0 524
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Ž 4.Commensurate with the extension of the velocity potential to O m , we seek to derive
a set of model equations having a corresponding dispersion relationship in the form of a
Ž .4,4 Pade approximant representing the approximation´

tanhm 1q 1r9 m2 q 1r945 m4Ž . Ž .
6f qO m . 13Ž .Ž .2 4m 1q 4r9 m q 1r63 mŽ . Ž .

Following GKW98, we define a new dependent variable

f̃sbf q 1yb f 14Ž . Ž .a b

where f and f are the velocity potentials at elevations zsz and zsz , and b is aa b a b

weight parameter. Relationships between these parameters to give the appropriate
dispersion relationship were obtained by GKW98 and are given by

1r21r2 1r21 8b 8
z s y q y1, 15Ž .a ½ 5 ½ 59 567 1yb 567b 1ybŽ . Ž .

1r21r21 8b
z s y y1, 16Ž .b ½ 59 567 1ybŽ .

with 0.018FbF0.467. Although the free parameter b can be calibrated to give better
linear shoaling characteristics, we found that variations of b within the limits above had
little effect on the actual fully nonlinear numerical solution, at least for the cases tested,
and we used the value bs0.2 throughout this work.

˜ Ž .f may be written in terms of f using Eq. 12 yielding0

1
2 2 2f̃sf ym AhG= hP=f q Bh G= f0 0 0ž /2

1
4 2 2 2qm Bh G = h= hP=f qG= hP= G= hP=fŽ .0 0½ 2

1 1 1
3 2 2 2 2 2qCh G = h= f q G= hP= G= f q G= G= hP=fŽ .Ž .0 0 06 3 6

1
4 2 2q Dh G= G= f , 17Ž .Ž .0 524

where

1
A' b hqz q 1yb hqz , 18Ž . Ž . Ž . Ž .a bh

1 2 2B' b hqz q 1yb hqz , 19Ž . Ž . Ž . Ž .a b2h
1 3 3C' b hqz q 1yb hqz , 20Ž . Ž . Ž . Ž .a b3h
1 4 4D' b hqz q 1yb hqz , 21Ž . Ž . Ž . Ž .a b4h
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˜Ž .Inverting Eq. 17 gives a formula for f in terms of f which is substituted into Eq.0
˜Ž .12 , leading to an approximation to the full velocity potential in terms of f

2 2 2 4˜ ˜ ˜ ˜fsfqm Ahyz F f q Bh yz F f qm Ahyz F fŽ . Ž .Ž .Ž . Ž . Ž .1 2 3

2 2 3 3 4 4˜ ˜ ˜q Bh yz F f q Ch yz F f q Dh yz F f , 22Ž .Ž . Ž . Ž .Ž . Ž . Ž .4 5 6

where

˜ ˜F f 'G= hP=f , 23Ž .Ž .1

1
2˜ ˜F f ' G= f , 24Ž .Ž .2 2

1
2 2˜ ˜ ˜F f '= hP= Ah= hP=f q = hP= Bh = f , 25Ž .Ž . Ž . Ž .3 2

1 1 1
2 2 2 2 2˜ ˜ ˜ ˜F f ' = Ah= hP=f q = Bh = f y = h= hP=fŽ . Ž . Ž .4 2 4 2

˜y= hP= = hP=f , 26Ž .Ž .
1 1 1

2 2 2 2˜ ˜ ˜ ˜F f 'y = h= fy = hP= = f y = = hP=f , 27Ž .Ž . Ž . Ž .5 6 3 6

1
2 2˜ ˜F f 'y = = f , 28Ž .Ž . Ž .6 24

Ž . Ž . Ž 6.By substituting Eq. 22 into Eq. 7 and neglecting terms of O m and higher, we
obtain the approximate mass flux

H
2˜ ˜ ˜MsH=fqm H Ay1 F f q2 Bhy F f = hŽ . Ž . Ž .1 2ž /½ 2

H H 2
2˜ ˜q Ahy = F f q Bh y = F fŽ . Ž .1 2ž / 5ž /2 3

2H H
4 2˜ ˜ ˜qm H Ay1 F f q2 Bhy F f q3 Ch y F fŽ . Ž . Ž . Ž .3 4 5ž /½ ž /2 3

3H H
3 ˜ ˜q4 Dh y F f = hq Ahy = F fŽ . Ž .6 3ž /ž /4 2

H 2 H 3 H 4
2 3 4˜ ˜ ˜q Bh y = F f q Ch y = F f q Dh y = F fŽ . Ž . Ž .4 5 6 5ž / ž / ž /3 4 5

29Ž .
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Ž . Ž . Ž 6.with Hshqdh. Substituting Eq. 22 into Eq. 5 and neglecting terms of O m and
higher, we obtain the approximate Bernoulli equation evaluated at zsdh

2 2 2 4˜ ˜ ˜ ˜hqf qm AhyH F f q Bh yH F f qm AhyH F fŽ . Ž . Ž .Ž . Ž . Ž .t 1 t 2 t 3 t

2 2 3 3 4 4˜ ˜q Bh yH F f q Ch yH F f q Dh yH F fŽ . Ž . Ž . Ž .Ž . Ž .4 t 5 t 6 t

d 2 2 2 2˜ ˜ ˜ ˜q =f q2=fP= m AhyH F f q Bh yH F fŽ . Ž .� 4Ž . Ž .½ 1 22
4 ˜ 2 2 ˜ 3 3 ˜qm AhyH F f q Bh yH F f q Ch yH F fŽ . Ž . Ž .� Ž . Ž . Ž .3 4 5

2
4 4 4 2 2˜ ˜ ˜q Dh yH F f qm = AhyH F f q Bh yH F fŽ . Ž . Ž .4 � 4Ž . Ž . Ž .6 1 2

2
2 4 2˜ ˜ ˜ ˜ ˜qm F f q2 F f q2m F f q2 HF f q3H F fŽ . Ž . Ž . Ž . Ž .1 2 3 4 5

3 ˜ ˜ ˜q4H F f F f q2 HF f s0. 30Ž .Ž . Ž . Ž . 56 1 2

Ž . Ž . Ž .The set of Eqs. 7 , 29 and 30 form a fully nonlinear Boussinesq-type model based
˜on a velocity potential f. We define a velocity vector

w x w xu x , y ,t sb =f q 1yb =f . 31Ž . Ž . Ž .˜ zsz zsza b

˜ Ž .The relationship between u and f can be found by inverting the gradient of Eq. 22 and˜
Ž .substituting into Eq. 31 , and is given by

2 4˜=fsuym = h Ay1 F q2 ByA hF ym = h Ay1 F qFŽ . Ž . Ž . Ž .˜ 21 22 41 43

2 3q2 ByA h F qF q3 CyB h F q4 DyC h F , 32Ž . Ž . Ž . Ž . Ž .42 44 45 46

where

F u 'G= hPu, 33Ž . Ž .˜ ˜21

1
F u ' G=Pu, 34Ž . Ž .˜ ˜22 2

2
F u 'y = h Ay1 = hPuq ByA h=Pu , 35Ž . Ž . Ž . Ž .˜ ˜ ˜41

1
2F u 'y = h Ay1 = hPuq ByA h=Pu , 36Ž . Ž . Ž . Ž .˜ ˜ ˜42 2

1
2F u '= hP= Ah= hPu q = hP= Bh =Pu , 37Ž . Ž . Ž . Ž .˜ ˜ ˜43 2

1 1
2 2 2F u ' = Ah= hPu q = Bh =PuŽ . Ž . Ž .˜ ˜ ˜44 2 4

1
2y = h= hPuy= hP= = hPu , 38Ž . Ž .˜ ˜

2
1 1 1

2 2F u 'y = h=Puy = hP= =Pu y = = hPu , 39Ž . Ž . Ž . Ž .˜ ˜ ˜ ˜45 6 3 6
1

2F u 'y = =Pu . 40Ž . Ž . Ž .˜ ˜46 24
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Ž . Ž .We then substitute Eq. 32 into the expression 29 for M, and into the gradient of the
Ž .Bernoulli Eq. 30 . The resulting set of evolution equations are the approximate

Ž .conservation laws using the velocity-type variable u, and is given by Eq. 7 with˜
2H H

2 2MsH uqm Ahy 2= hF q= F q Bh y = FŽ .˜ 22 21 22ž /½ ž /2 3

H
4qm Ahy 2= hF q= F q2= hF q= FŽ .42 41 44 43ž /2

H 2
2q Bh y = F q3= hF q= FŽ .42 45 44ž /3

3 4H H
3 4q Ch y 4= hF q= F q Dh y = F , 41Ž . Ž .46 45 46 5ž / ž /4 5

for mass conservation, and

d
2< <U sy=hy = u qG h ,u qG h ,u , 42Ž . Ž .Ž .Ž .˜ ˜ ˜t 1 t 22

for momentum conservation. U, G , and G are given by1 2

2 2U'uqm Ay1 h 2= hF q= F q By1 h = FŽ . Ž . Ž .˜ 22 21 22

4qm Ay1 h 2= hF q= F q2= hF q= FŽ . Ž .42 41 44 43

q By1 h2 = F q3= hF q= F q Cy1 h3 4= hF q= FŽ . Ž . Ž . Ž .42 45 44 46 45

4q Dy1 h = F , 43Ž . Ž .46

2 2 2 4G 'm = dhF q 2hdhqd h F qm = dh F qFŽ .Ž .1 21 t 22 t 41 t 43 t

q 2hdhqd 2h 2 F qF q 3h2dhq3hd 2h 2 qd 3h 3 FŽ .Ž . Ž .42 t 44 t 45 t

3 2 2 2 3 3 4 4q 4h dhq6h d h q4hd h qd h F , 44Ž .Ž . 45 t

2 2 2G 'ym d= uP AhyH = F q2= hF q Bh yH = FŽ . Ž . Ž .˜2 21 22 22½
1 2 4q F q2 HF ym d= uP AhyH = F q2= hF q= FŽ . Ž . Ž˜21 22 41 42 435 ½2

q2= hF q Bh2 yH 2 = F q= F q3= hF. Ž . Ž .44 42 44 45

3 3 4 4q Ch yH = F q4= hF q Dh yH = FŽ . Ž . Ž .45 46 46

1 22 2q AhyH = F q2= hF q Bh yH = FŽ . Ž . Ž .21 22 422
1

2 3q F q2 HF F q2 HF qF q2 HF q3H F q4H F .Ž . Ž .21 22 41 42 43 44 45 46 52
45Ž .
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Ž .Once u is known, the actual velocity field can be computed from substituting Eq. 32˜
Ž .into the gradient of Eq. 22 .

The resulting model is referred to below as the fully-nonlinear fourth-order model, or
Ž 4.FN4. To obtain a set of O m weakly dispersive, weakly nonlinear equations with

Ž 2 . Ž . Ž 2 2 .dsO m as in the standard Boussinesq approximation , terms of O d m and
smaller should be neglected. The resulting model is referred to below as the weakly-non-
linear fourth-order model or WN4. Finally, to recover the WKGS model, one must

Ž 4.neglect terms of O m while keeping all terms proportional to powers of d , and set
bs1. Nwogu’s parameter a is then related to A and B byN

'As B , Bs2a q1 46Ž .N

with u being replaced by WKGS’s u .˜ a

In the following, we restrict our attention to a one-dimensional version in x, obtained
by assuming u'u, and ='ErEx.˜ ˜

3. Numerical implementation

Ž .In this section we present the numerical implementation of the FN4 and WN4
model derived in Section 2. The philosophy behind the numerical scheme follows very
closely the one of WKGS, but extended to higher accuracy for consistency with the
higher accuracy of the model itself. The time integration is done using a high order
predictor–corrector scheme and the spatial derivatives are approximated with high order
finite differencing. The order of accuracy in all the discretized terms in the equations is
such that the truncation errors, which contain dispersive-type quantities, are always
smaller than the highest-order dispersive term in the equations. This was done to assure
that even when using relatively large grid spacing, the dispersion introduced by the error
due to the discretization will not overwhelm the dispersive terms in the equations

Ž 4.themselves. In WKGS, this is accomplished by making the truncation errors of O m

Ž .when combined with the term being discretized, assuming kD xsO m . Since the
Ž 4.present model contains O m dispersion, more accuracy in the approximate derivatives

Ž 4.is needed, so that the numerical truncation leads to errors of order higher than O m .
Among the several ways to implement the boundary conditions, we choose to use fully
reflective walls, with energy absorbing sponge layers used near the boundary in order to
implement a radiation condition. With this kind of formulation, it is necessary to include
some kind of wave generation inside the domain. The wave generation is implemented
by introducing a source function in the mass conservation equation acting on a limited
‘source region’ conveniently placed in the domain.

We rewrite the one dimensional equations with the source function and the sponge
layers as follows:

h syM q f x ,t , 47Ž . Ž .t x s

d
2U syh y u qG h ,u qG h , u yuf x , 48Ž . Ž . Ž . Ž .Ž .˜ ˜ ˜ ˜xt x 1 t 2 d2
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Ž .where M, U, G , G are the one-dimensional in x versions of the quantities defined in1 2
Ž . Ž . Ž . Ž . Ž .Eqs. 41 , 43 – 45 , and where f x,t represents the source function and uf x˜s d

represents a dissipation term acting in the sponge layers. The sponge layer formulation
Ž .used is given by Wei and Kirby 1995 .

3.1. Discretization and solution method

Ž .We discretize the spatial coordinate x by: x s iD x, is0,1,2, . . . , N and time t by:i
j Ž .t s jD t, js0,1,2, . . . , N . There are three basic steps in advancing the solution by D tt

Ž . Ž . Ž . Ž .in time: i the right-hand-sides of Eqs. 47 and 48 are evaluated, ii the equations are
Ž .integrated in time to solved for h and U, iii u is evaluated from U. Since we use a˜

predictor–corrector integration method and we have nonlinear terms containing time
Ž . Ž .derivatives on the right-hand-side of Eq. 48 , starting at the corrector stage of step i ,

Ž . Ž .steps i through iii are iterated until convergence is attained. We present each of these
steps in the following subsections.

3.1.1. EÕaluation of the right-hand-sides
The finite-difference approximations to the spatial derivatives in the equations are

done in such a way that the truncation error in each term of the equations should lead to
Ž 4. Ž . Ž .errors of order higher than O m , assuming that D xsO h so that k D xsO m .0 0

Ž .Notice that the momentum Eq. 48 contains first order time derivatives of u in G .˜ 1

These time derivatives are evaluated in conjunction with the predictor–corrector itera-
Ž .tion scheme presented later by using a finite difference approximation with values of ũ

Ž . Žat times j, jy1, jy2, jy3, jy4 D t in the predictor stage and jq1, j, jy1,
.jy2, jy3, jy4 D t in the corrector stage. The formulas for the time derivatives at

each of those j locations were obtained by expanding the variables in Taylor series
around each j, multiplying each expansion by a coefficient and solving the system of
equations resulting from setting the combination of coefficients of the higher derivatives
of t to zero. The formulas are

1
jy4 j jy1 jy2 jy3 jy4 4u s y3u q16u y36u q48u y25u qO D t , 49Ž . Ž .˜ ˜ ˜ ˜ ˜ ˜ž /t i i i i ii 12D t

1
jy3 j jy1 jy2 jy3 jy4 4u s u y6u q18u y10u y3u qO D t , 50Ž . Ž .˜ ˜ ˜ ˜ ˜ ˜ž /t i i i i ii 12D t

1
jy2 j jy1 jy3 jy4 4u s yu q8u y8u qu qO D t , 51Ž . Ž .˜ ˜ ˜ ˜ ˜ž /t i i i ii 12D t

1
jy1 j jy1 jy2 jy3 jy4 4u s 3u q10u y18u q6u y1u qO D t , 52Ž . Ž .˜ ˜ ˜ ˜ ˜ ˜ž /t i i i i ii 12D t

1
j j jy1 jy2 jy3 jy4 4u s 25u y48u q36u y16u q3u qO D t , 53Ž . Ž .˜ ˜ ˜ ˜ ˜ ˜ž /t i i i i ii 12D t
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for the predictor stage, and

1
jy4 jq1 j jy1 jy2 jy3 jy4u s 12u y75u q200u y300u q300u y137u˜ ˜ ˜ ˜ ˜ ˜ ˜t i i i i i iž /i 60D t

qO D t 5 , 54Ž . Ž .
1

jy3 jq1 j jy1 jy2 jy3 jy4u s y3u q20u y60u q120u y65u y12u˜ ˜ ˜ ˜ ˜ ˜ ˜t i i i i i iž /i 60D t

qO D t 5 , 55Ž . Ž .
1

jy2 jq1 j jy1 jy2 jy3 jy4u s 2u y15u q60u y20u y30u q3u˜ ˜ ˜ ˜ ˜ ˜ ˜t i i i i i iž /i 60D t

qO D t 5 , 56Ž . Ž .
1

jy1 jq1 j jy1 jy2 jy3 jy4u s y3u q30u q20u y60u q15u y2u˜ ˜ ˜ ˜ ˜ ˜ ˜t i i i i i iž /i 60D t

qO D t 5 , 57Ž . Ž .
1

j jq1 j jy1 jy2 jy3 jy4u s 12u q65u y120u q60u y20u q3u˜ ˜ ˜ ˜ ˜ ˜ ˜t i i i i i iž /i 60D t

qO D t 5 , 58Ž . Ž .
1

jq1 jq1 j jy1 jy2 jy3 jy4u s 137u y300u q300u y200u q75u y12u˜ ˜ ˜ ˜ ˜ ˜ ˜t i i i i i iž /i 60D t

qO D t 5 , 59Ž . Ž .
for the corrector stage.

Ž . Ž .For Eq. 47 all but the boundary points that is, is1, . . . , Ny1 are evaluated. After
Ž .the time integration is done see Section 3.1.2 , a boundary condition h s0 is appliedx

at is0 and isN. A 7-point off-centered derivative of h is used and h jq1 and h jq1
0 N

can be obtained as:

1
jq1 jq1 jq1 jq1 jq1 jq1h s 360h y450h q400h y225h q72hŽ0, N 1, Ny1 2, Ny2 3, Ny3 4, Ny4 5, Ny5147

y10h jq1 qO D x7 . 60Ž . Ž ..6, Ny6

Ž .For Eq. 48 , we only evaluate the terms at points is2, . . . , Ny2. The remaining
points do not need to be evaluated since at those points, the values of u are determined˜

Ž .by boundary conditions. This is done when we evaluate u from U, defined in Eq. 43 ,˜
and the procedure will be explained later.

Ž . Ž .The formulas for the spatial derivatives in Eqs. 47 and 48 are given in Appendix
A.

3.1.2. Time integration
The integration method used is a 5th order predictor, 6th order corrector, Adams–

ŽBashforth–Moulton scheme. Once the dependent variables are known at times jy4,
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.jy3, jy2, jy1, j D t, and the right-hand-sides of the equations have been evaluated,
Ž .estimates of both h and U at time jq1 D t are made using the predictor step

D t
jq1 j j jy1 jy2 jy3 jy4Õ sÕ q 1901V y2774V q2616V y1274V q251VŽ .i i i i i i ip 720

qO D t 6 , 61Ž . Ž .
where index p stands for predictor. Õ j is either U or h, and V j is the right-hand-side ofi i

the respective equation, at xs iD x and ts jD t. With the estimate U jq1, we evaluatep
jq1 Ž . jq1u see Section 3.1.3 then estimate the right-hand-sides of the equations at t ,˜ p

V jq1 and iterate the corrector stage where the predictor variables are the first estimatesi p

for the variables at iterative step k:

D t
jq1 j jq1 j jy1 jy2 jy3Õ sÕ q 475V q1427V y798V q482V y173VŽi i i i i i ikq 1 k1440

q27V jy4 qO D t7 , 62Ž . Ž ..i

jq1 jq1 Ž .until the error between Õ and Õ where, again, Õ applies to both h and U isi ikq 1 k

small. We define an error estimate for the iteration process as:
1r21r2 22 jq1 jq1jq1 jq1N N u yuh yh ˜ ˜Ž . ž /i ii i kq 1 kkq1 kE s q , 63Ž .Ý Ýiter 2 2jq1 jq1is0 is0h ũŽ . Ž .i ik k

and require that E be smaller than an arbitrary tolerance T . In all our computationsiter err

we used 10y9 -T -10y12.err

3.1.3. EÕaluation of u from U˜
Ž .Once U has been evaluated at ts jq1 D t for xs iD x, is2,3, . . . , Ny3, Ny2,

a system of algebraic equations can be written as

A u sU , msNy3, 64Ž .˜mPm m m

where

c d e 0 . . . 0 0° ¶2 2 2

b c d e . . . 0 03 3 3 3

a b c d e 0 04 4 4 4 4

A s , 65Ž .0 . . . . . . . . . . . . . . . 0mPm

0 . . . a b c d eNy4 Ny4 Ny4 Ny4 Ny4

0 . . . 0 a b c dNy3 Ny3 Ny3 Ny3¢ ß0 . . . 0 0 a b cNy2 Ny2 Ny2

u and U are the vectors containing the unknowns u and U at is2, . . . , Ny2. Each˜ ˜m m

row of the system represents the finite difference approximation for the definition of
Ž .U u . a , b , c , d , e are the coefficients appearing in front of u after the 5-point˜ ˜i i i i i

Ž .derivatives are substituted into Eq. 43 , except for rows 2, 3, Ny3, Ny2, where these
coefficients are modified to accommodate the boundary conditions given by u sus0.˜ ˜x x
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ŽAfter solving the system for u at is2, . . . , Ny2, we use these conditions with an˜
.off-centered 5-point finite-difference approximation to obtain

u jq1 s0, 66Ž .˜0, N

1
jq1 jq1 jq1 jq1u s 114u y56u q11u . 67Ž .˜ ˜ ˜ ˜Ž .1, Ny1 2, Ny2 3, Ny3 4, Ny4104

The justification for using the boundary conditions u sush s0 is to guarantee that˜ ˜x x x

the mass flux

1 1 1 B D 1
2 2 4Msh uq By h u q B y y q h u , 68Ž .˜ ˜ ˜x x x x x xž / ž /2 3 4 3 6 30

vanishes at the walls, which can be verified exactly by substituting u sush s0˜ ˜x x x

into the linearized flat bottom momentum equation:

1 1 D 1
2 2 4gh q uq By1 h u q B yBy q h u s0, 69Ž . Ž .˜ ˜ ˜x x x x x x xž /2 4 6 6 t

and obtaining that u s0, and therefore that Ms0 at the boundary.˜ x x x x

3.1.4. ConÕergence and stability
No stability analysis for the present numerical formulation of the FN4 model was

done, due to the complexity of the model as well as the numerical scheme. To attain the
desired accuracy in the model with relatively fast convergence, the Courant number used
in all cases was never larger than 0.3. The numerical implementation for the linearized
model proved to be stable for all cases tested. For some cases, it was necessary to filter
the solution as high frequency oscillations appeared near points where the bottom slope
was discontinuous. This is due to the fact that the FN4 model contains terms propor-

Ž .tional to high up to fourth derivatives of h with respect to x, and, for discontinuous
bottom slopes, these factors become singular and can introduce spurious high frequency

Ž .waves to the solution. When necessary we used a Shapiro 1970 filter with either nine
Ž .or 17-point Shapiro’s ns4 and 8, respectively average, and the filter was applied

every N time steps where 50-N -500, depending on the case. Ideally, as the numberf f

of points used in the average tends to infinity, this filter only affects the Nyquist
frequency. In practice, for the cases studied, we verified that our use of the filter did not
affect the solutions in any significant way, except to remove extremely high frequency
noise.

Ž .In most cases where nonlinear effects become important very steep, high waves , the
iteration process tends to become slow, or even to diverge. To correct this problem we
adopted a relaxation technique in the iteration process, as follows: if with two iterations
the error tolerance is not met, we assume that the corrector is overshooting the desired
solution and apply the following formula to both u and h:˜

f jq1 s 1yR f jq1 qRf jq1 , 70Ž . Ž .i i ir k kq1
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where the relaxation coefficient R ranges from 0 to 1. f jq1 is the estimate in thei k

previous iteration, and f jq1 is the estimate in the current iteration, which is replaced byi kq 1

the relaxed values f jq1. The optimal value of R strongly depends the type of problem.i r

For all the cases studied in this paper, we used 0.2-R-1. The number of iterations
necessary for convergence within the desired accuracy was typically between 1 and 6.

3.2. Source function for waÕe generation inside the domain

Using sponge layers near the boundaries rules out the possibility of any type of wave
generation at the boundary. It is therefore necessary to introduce a source term inside the
domain to generate the desired waves, which will propagate towards the boundaries, and

Ž . Ž .be damped at the sponge layers. This is the role of the last term in Eq. 47 , f x,t . Thes

first attempt to include such terms in Boussinesq models was made by Larsen and
Ž .Dancy 1983 , in which mass is added and subtracted from the domain along a single

Ž . Ž .line or point, in the case of a one-dimensional model . Wei 1997 found that this
Ž .approach, which worked well with the staggered grid of Larsen and Dancy 1983 , did

not work well in his non-staggered grid, where spurious noise appeared around the
source point. It was necessary therefore to distribute the source function around a certain
neighborhood of the source. In the present formulation, we closely follow the approach

Ž .of Wei et al. 1999 , in which the source function is assumed to be distributed as a
Gaussian shape, making the appropriate modifications to account for the added complex-
ity of the model. The formulation for the source function presented next is one-dimen-
sional, but can be extended to two dimensions in a straightforward manner.

If the local water depth at the source region is constant, h, and we want to generate
regular waves with angular frequency v, the source function can be written as

2f x ,t sD exp yb xyx sin v t , 71Ž . Ž . Ž . Ž .s s s s

where x is the center of source function, b determines how focused the sources s

function is, and D is the magnitude of the source function. Assuming that the generateds

wave has small amplitude, we can use the linearized version of the FN4 model and
Ž .derive an analytical expression for D using Green’s functions see Appendix B , tos

obtain

ih0
D s , 72Ž .s 2 4

v A I 1qC kh qC khŽ . Ž .G 1 3 4

where k is the model wave number and C , C , A and I are given in Appendix B.3 4 G 1

Although the Gaussian shape parameter b is arbitrary, in practice its value has greats

influence on how well the source function can generate the desired waves. Ideally, bs

should be as large as possible, so that the source function would be more localized.
Ž .However, it turns out that if the source region is too narrow large b , the wavess

generated can be quite distorted and noise may also appear when they have finite
amplitudes. Defining the width of the source region W to be the distance between twos
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Ž . w Ž .2 xcoordinates equidistant from the source center where exp yb xyx is equal tos s

ey5, we can write

W s2 5rb . 73Ž .(s s

By trial and error, it was found that, for regular waves, a source with width Ws

approximately equal to the wave length gives satisfactory results for waves within a
wide range of amplitudes and wavenumbers. When the incident wave nonlinearity is

Ž Ž ..very high O 1 the source function method fails to generate the waves properly.
Sensitivity tests for W using several wave amplitudes were performed and yieldeds

Ž .results which are similar to those shown of Wei et al. 1999 . Results of these tests may
Ž .be found in Gobbi, 1998 .

4. Comparisons with laboratory measurements

It is well known that regular waves decompose into higher frequency free waves as
they propagate past a submerged bar, as shown in experimental work by Beji and Battjes
Ž . Ž . Ž .1993 , Luth et al. 1994 , and Ohyama et al. 1994 . The basic mechanism is as
follows: as the waves propagate onto the front slope of the bar, nonlinear interactions
transfer energy from the leading wave component to higher harmonics, causing the wave
to become steeper. The waves take on a negatively asymmetric, pitched-forward shape,
which is a direct signature of the rapid transfer of energy to higher harmonics. After the
peak of the bar is reached and the bottom slope becomes negative, the nonlinear
coupling of the higher harmonics with the fundamental wave becomes progressively
weaker, and, from higher to lower harmonics, each of the Fourier components are
released as free waves with their own bound higher harmonics. Of course, since the
waves after the bar travel with different speeds, the process can be fairly complicated. It
is clear therefore that wave propagation over a submerged bar is a quite demanding test
for Boussinesq-type models, as it requires that the model predict the nonlinear harmonic
generation well, and also that the released shorter waves behind the bar have an accurate
speed, which may not happen even if the model predicts well the speed of the primary
waves before they reach the bar.

Comparisons between several weakly nonlinear Boussinesq-type models and experi-
Ž . Ž .mental data by Beji and Battjes 1993 and Luth et al. 1994 of waves propagating over

Ž .a submerged bar were presented by Dingemans 1994 . In general, the models per-
formed relatively well for the longer, lower amplitude waves, but all were fairly
inaccurate for the shorter, more nonlinear waves, especially behind the bar.

Ž .Comparisons between the extended Boussinesq model of Nwogu 1993 and experi-
mental data, also for waves passing over a submerged bar, were presented by Ohyama et

Ž . Ž .al. 1994 , and the results were similar to the comparisons made by Dingemans 1994 ;
that is, the model poorly predicted waves behind the shoal for the shorter, higher wave
cases.

In this section, we compare the FN4 model with two laboratory experimental data
sets of regular waves propagating in a one-dimensional wave flume and over a
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Ž . Ž .submerged bar: Luth et al. 1994 , and Ohyama et al. 1994 . We also show comparisons
of the WKGS model with the same data sets. The models’ comparisons with the data are
done in three different manners: plots of free surface time series at fixed locations,
spatial plots of Fourier components of the time series, and a quantitative estimation of
accuracy defined by:

n2
2

y j yy jŽ . Ž .Ý d
jsn1d s1y , 74Ž .ni 2

2
y j yy q y j yyŽ . Ž .Ý d d d

jsn1

Ž .where d is an index of agreement proposed by Wilmott 1981 for the ith wave gauge,i

and where n and n cover a full wave period in the time series.1 2
Ž . Ž .y j are the measured data to be compared with, y j are the predicted values fromd

Ž .the model, and y is the mean value of y j . A perfect agreement between data andd d

model corresponds to d s1, while a complete disagreement results in d s0. In all thei i

numerical simulations we used D xs0.025 m and kept the Courant number below 0.3.
The sponge layer strength and width used were Ss30 and x yx s3 L, respectively.L S

The width of the source function used was W sL, where L is the incident wave length.s

The details of the experiments and comparisons with the models are presented in the
sections below.

4.1. The Delft Hydraulics experiments

Ž . Ž .The experiments performed by Beji and Battjes 1993 and Luth et al. 1994 have
Ž .the same geometric characteristics, except for the length scale in Luth et al., 1994 ,

Ž . Ž .which is twice as large as in Beji and Battjes, 1993 . In Luth et al. 1994 all gauge
Ž .locations used in Beji and Battjes, 1993 were repeated, and another run of measure-

ments was performed with the gauges at different locations. For the sake of consistency
Ž .with the study by Dingemans 1994 , we re-scale all measurements to the scales used in

Ž .Beji and Battjes, 1993 . The layout of the experimental set-up with the locations of the
Žmeasurement stations to which we refer by their location, e.g., gauge 2.0 m, gauge 15.7

.m, etc. and the geometry of the flume are illustrated in Fig. 1. In the present work we

Ž .Fig. 1. Sketch of wave flume of Delft experiments. All dimensions in m .
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Ž .use the data from Luth et al. 1994 , since in that experiment active wave absorption was
used at the end of the flume and both reflection and bound long waves were monitored
during the experiment.

Three sets of data were collected using different incident wave conditions. We refer
Ž . Ž . Ž . Ž .to these data sets as cases a , b , and c . In case b , wave breaking occurred on the

crest of the shoal, and therefore these data were disregarded, since the present model
does not include any breaking mechanism. It is worthy mentioning an important point

Ž .about the data set c . For this case, the available data did not cover the entire time range
Žwhich would ensure a permanent form periodic wave behind the shoal only the first 46

.s of data were provided . We, therefore, show comparisons between the data and the
models’ calculations at approximately the same time window in relation to the first
waves in the time series; that is, for this case, we do not wait for the model to reach a
periodic solution behind the bar. Of course this is not a straightforward task, since the
model generates incident waves inside the domain in a peculiar manner, and the
transient at the very start of the wave generation process can be quite different from that
of a wave paddle.

Ž . Ž .The incident wave characteristics for cases a and c are given in Table 1. In all
Žcases, the data from gauges at 2.0 m or 4.0 m remember these are two experiments

.combined were used to synchronize the data with the models.
Ž .Figs. 2 and 3 show comparisons with data from the Delft experiments for case a of

the models WKGS and FN4. Notice that at station 5.7 m, there is a phase mismatch in
Žthe data. This systematic error is because the gauge is actually at a different location 5.2

.m than that provided with the data and for which the computations were done. We,
however, preferred not to alter the original information and leave this as a note. Also, no
data was available for station 23.0 m. Both the FN4 and WKGS models perform quite
well for all the gauges up to the crest of the bar, but as the waves pass the back slope of
the bar, the WKGS model shows some discrepancies with the data. This is due to the
aforementioned decoupling of the higher harmonics from the primary longer wave
which are released as free waves propagating with a larger value of m which are more
susceptible to inaccuracies. The FN4 model remains quite accurate even for the gauges
located after the bar. To illustrate the inaccuracies due to higher harmonic decoupling,
Fig. 4 shows a representation of the linear dispersion relationship where the nondimen-
sional wave speed is plotted against the wave frequency. The vertical dotted lines

Ž .indicate the location of the frequency of the fundamental wave in case a , of which the
period is T s2.02 s, and its harmonics with periods T sT r2, T sT r3, etc. Notice1 2 1 3 1

Table 1
Incident wave characteristics for the Delft experiments

Ž . Ž .Case a Case c

Ž .Wave amplitude m 0.01 0.0205
Ž .Wave period s 2.02 1.01

m' k h 0.67 1.690 0

d ' a rh 0.025 0.0510 0
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Ž .Fig. 2. Comparisons of free surface displacement with case a of Delft experimental data at several gauge
Ž . Ž .locations. WKGS dash–dot , data solid .

Ž .that the phase speed error in the primary wave T is small for both the FN4 and1

WKGS models. As the bound waves are released as free waves they travel with their
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Ž .Fig. 3. Comparisons of free surface displacement with case a of Delft experimental data at several gauge
Ž . Ž .locations. FN4 dash–dot , data solid .

own speed, which, in the linear limit, are represented by the intersection of the vertical
lines T , T , etc., with each model’s dispersion curve. Notice that the errors in the speed2 3
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Ž .Fig. 4. Linear dispersion relationship as nondimensional wave speed vs. wave frequency. Present Model
Ž . Ž . Ž . Ž .dash , WKGS dash–dot , exact solid . Dotted vertical lines are waves with periods T s 2.02rn s.n

of the released higher harmonics starting from T for WKGS are considerably larger3

than for the FN4 model.
ŽSimilarly to Figs. 2, 3, Figs. 5 shows plots for the WN4 model the present model

Ž 2 . Ž 2 2 4 ..with the assumption dsO m and neglecting terms of O d m , dm , . . . . Apart from
slight phase differences, the comparison is about as good as for the FN4 model, which
indicates that for this case, the improvement in the dispersion effects of the FN4 and
WN4 models over the WKGS model is more important than the fully nonlinear effects
accounted for in WKGS and FN4, but not in WN4.

Ž . Ž .Figs. 6–8 are analogous to Figs. 2, 3 and 5, but for case c see Table 1 . Firstly, we
Ž .do not know how much the aforementioned transient problem in case c affected the

comparisons shown below. In this case the incident wave has twice the amplitude and
Ž .about 2r5 of the wavelength of case a . Before the waves reach the back slope of the

bar, FN4 and WKGS perform quite similarly, although some phase differences are
apparent. Model WN4 does not perform as well in this case due to its weak nonlinearity
assumption. As the waves pass over the bar, the higher harmonic decomposition
combined with nonlinear effects are strong enough in this case to make the three models
give very different results, with FN4 being the most accurate, giving very good
agreement except for slight phase differences. WN4 also performs qualitatively worse

Ž Ž 2 . .than the WKGS accurate to O m , but fully nonlinear for all gauges up to 15.7 m.
This result is a strong indication that the improvement in linear dispersion is not always
more important than the fully nonlinear effects, contrary to the generalizing conclusion

Ž .of Dingemans 1994 . Referring back to Fig. 4, again, after the waves pass the bar, the
Ž . Ž .higher harmonics are released as free waves. For case c the primary incident wave is

indicated by the vertical dotted line labeled T , and its second and third harmonics are2
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Ž .Fig. 5. Comparisons of free surface displacement with case a of Delft experimental data at several gauge
Ž . Ž .locations. WN4 dash–dot , data solid .

represented by the even indexes, that is, T and T , respectively. Notice that the error in4 6

the speed of the primary wave is negligible for the WKGS model. In the second



( )M.F. Gobbi, J.T. KirbyrCoastal Engineering 37 1999 57–9678

Ž .Fig. 6. Comparisons of free surface displacement with case c of Delft experimental data at several gauge
Ž . Ž .locations. WKGS dash–dot , data solid .

Ž .harmonic T the error for WKGS is fairly high, and for FN4, although not negligible,4
Ž .is considerably smaller, and the same being the case of the released third harmonic T .6
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Ž .Fig. 7. Comparisons of free surface displacement with case c of Delft experimental data at several gauge
Ž . Ž .locations. FN4 dash–dot , data solid .

Fig. 9 shows comparisons of the absolute value of the amplitudes of the Fourier
transform of one wave period of the time series, between both FN4 and WKGS, and the
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Ž .Fig. 8. Comparisons of free surface displacement with case c of Delft experimental data at several gauge
Ž . Ž .locations. WN4 dash–dot , data solid .

Ž . Ž .data points at each gauge location for both cases a and c . Fig. 10 shows similar plots
for FN4 and WN4, where FN4 results are identical to those in Fig. 9. Also shown are
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Fig. 9. Comparisons of the spatial variation of the Fourier components of the free surface displacement with
Ž . Ž . Ž .cases a and c of Delft experimental data. Bottom panels show the free surface elevation. FN4 solid ,
Ž . Ž .WKGS dash–dot , data circles .

Ž .snapshots of the free surface elevation and the position of the bar out of scale . In both
Ž . Ž .cases a and c , the WKGS model tends to overpredict the higher harmonics after the

Ž .crest of the bar. For case a the FN4 and WN4 models give very similar results, with
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Fig. 10. Comparisons of the spatial variation of the Fourier components of the free surface displacement with
Ž . Ž . Ž .cases a and c of Delft experimental data. Bottom panels show the free surface elevation. FN4 solid , WN4

Ž . Ž .dash–dot , data circles .

some slight underpredictions by WN4 of the amplitudes of the released third and fourth
Ž .harmonics after the bar crest. In case c , WN4’s inability to generate higher harmonics

accurately due to the weak nonlinearity assumption is evident in the underprediction of
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Table 2
Index of agreement di

Ž . Ž . Ž .Gauge location m Case a Case c

WKGS FN4 WN4 WKGS FN4 WN4

2.0 0.998 0.998 0.998 0.997 0.996 0.998
4.0 0.996 0.996 0.996 0.997 0.997 0.984

10.5 0.995 0.995 0.995 0.982 0.986 0.997
12.5 0.999 0.999 0.998 0.997 0.995 0.927
13.5 0.996 0.995 0.987 0.996 0.996 0.990
14.5 0.995 0.997 0.993 0.979 0.971 0.883
15.7 0.995 0.996 0.980 0.973 0.993 0.977
17.3 0.975 0.995 0.972 0.880 0.973 0.934
19.0 0.973 0.982 0.943 0.968 0.987 0.970
21.0 0.927 0.993 0.962 0.948 0.965 0.931

the decomposed higher harmonics. Notice the modulation present in the fundamental
wave before the bar, shown by all three models, caused by partial wave reflection from

Ž .the front of the bar. Notice also that for case c the FN4 model slightly overpredicts the
third and fourth modes around the toe of the front face of the bar. This is due to
numerical error introduced by the high order derivative terms, which are undefined

Ž .functions at that location. When necessary, the solution was filtered see Section 4 to
avoid high frequency contamination problems. In general, as in the case of the time
series plots, the FN4 agrees with the data much better than WKGS and than WN4 for

Ž .case c .
Ž .Table 2 shows the index of agreement d, defined by Eq. 74 of the models FN4,

Ž . Ž .WN4, and WKGS, with both cases a and c of the Delft experiments for all gauges
except 5.7 m and 23.0 m. Of course, the differences in d between the models shouldi

Žonly have significance when they are larger than d for the incident wave gauges 2.0 mi
.and 4.0 m . Theresults confirm that the best performance is from the FN4 model, with

Ž Ž . .only one case where WKGS gave a slightly better result case c , gauge 14.5 m due to
a slightly larger phase mismatch in FN4. It is clear that the WKGS model outperforms

Ž .the WN4 model around the bar crest gauges 12.5 m through 14.5 m , but as the waves
Ž .reach deeper water importance of nonlinearity and dispersion switch , WKGS loses

accuracy. Although WN4 has much more accurate dispersion relationship in deeper

Ž .Fig. 11. Sketch of wave flume of the Ohyama experiment. All dimensions in m .
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Table 3
Incident wave characteristics for the Ohyama experiment

Ž . Ž . Ž .Case 2 Case 4 Case 6

Ž .Wave amplitude m 0.025 0.025 0.025
Ž .Wave period s 1.341 2.012 2.683

m' kh 1.299 0.769 0.555
d ' a rh 0.050 0.050 0.0500 0

water than WKGS, since it was not capable of generating higher harmonics properly
while the waves were shoaling, the overall solution becomes inaccurate after the bar.
This confirms the importance of the full-nonlinearity assumption made in the WKGS
derivation but not in the WN4.

4.2. The Ohyama experiment

In this section, we show comparisons between the FN4 and WKGS models with the
Ž . Ž .experiment by Ohyama et al. 1994 referred here as simply the Ohyama experiment .

Computations with the WN4 model were not performed for this case. A sketch of the
wave flume with the gauge locations is shown in Fig. 11. We now summarize the

Ž .Fig. 12. Comparisons of free surface displacement with case 2 of the Ohyama experimental data at stations 3
Ž . Ž . Ž .and 5. FN4 upper panels—a,b , WKGS lower panels—c,d , data circles .
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experimental setup. The wave flume is 65 m long and 1.0 m wide. The total depth of the
flume is 1.6 m. The location of the center of the bar was 28.3 m from the piston-type
wavemaker. All other relevant dimensions can be seen in Fig. 11. The measurements
were performed before the point when waves reflected from the bar reached the
wavemaker.

At the right end of the flume, waves were absorbed by the presence of coarse
materials to dissipate the energy. A total of six tests were performed with three different

Ž .incident wave periods 1.34 s, 2.01 s, 2.68 s each for two different wave amplitudes
Ž .0.0125 m, 0.025 m . No wave breaking occurred in any of the tests. The data was
obtained by digitization of the plots from the original article. The only time series
available for comparisons were the ones at stations 3 and 5, for all three wave periods,

Ž .and the highest of the two amplitudes 0.025 m . Fourier amplitudes were available for
the same wave conditions but at all measurement stations. Time series were synchro-
nized at station 3.

It is not clear from Ohyama et al., 1994 that the measurements shown in the paper
were performed after the waves had reached a permanent form, but we are assuming this
is the case. The models’ results were taken after a steady wave was reached at station 5.

Ž . Ž . Ž . Ž .We refer to the three tests as cases 2 , 4 , and 6 , as in Ohyama et al. 1994 . The
incident wave conditions are summarized in Table 3. The incident wave conditions are
similar in the Ohyama and Delft experiments. The major difference between the two

Ž .Fig. 13. Comparisons of free surface displacement with case 4 of the Ohyama experimental data at stations 3
Ž . Ž . Ž .and 5. FN4 upper panels—a,b , WKGS lower panels—c,d , data circles .
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experiments is that the bar in the Ohyama experiment is much shorter and with much
steeper slopes than the one in the Delft experiments, more reminiscent of a submerged
rubble mound structure. The steep slopes add extra difficulty for the models’ perfor-

Ž .mance, since: i the models’ dispersion properties are optimized assuming constant
Ž . Ž 2 .depth; ii the assumption that the vertical velocity is O m times the horizontal

velocity is violated at steep slopes. Smoothing of the corners of the bar, besides filtering
every 100 time steps was necessary to prevent spurious high frequency noise to
contaminate the solutions. To smooth the corners of the bar we applied a 3-point average

Ž . Ž .by Shapiro 1970 five times. Since the waves are progressively longer from cases 2
Ž . Ž .through 6 , we expect that the Boussinesq models will perform best in case 6 , and

Ž .worst in case 2 . We also expect higher mismatches between models and data at station
5 than at station 3, due to increasing errors in the phase of the decomposed higher
frequency bound waves as they reach the deeper water behind the bar.

Figs. 12–14 show comparisons of the FN4 and WKGS models with data for cases
Ž . Ž . Ž . Ž . Ž .2 , 4 , and 6 , respectively. Notice that for cases 2 and 4 the FN4 model shows a
mismatch in the phase speed at station 5, and an underprediction of the wave crests and

Ž 4.troughs, an indication that even the fully nonlinear, O m model has limited ability to
predict waves past a submerged bar with very steep slopes, if the waves are short

Ž .enough. For case 6 the FN4 model agrees very well with the data. For all three cases,

Ž .Fig. 14. Comparisons of free surface displacement with case 6 of the Ohyama experimental data at stations 3
Ž . Ž . Ž .and 5. FN4 upper panels—a,b , WKGS lower panels—c,d , data circles .
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the WKGS model has poor qualitative agreement with the data at station 5, mostly due
to phase errors and overprediction of higher harmonics behind the bar.

Fig. 15. Comparisons of the spatial variation of the Fourier components of the free surface displacement with
Ž . Ž .case 2 of the Ohyama experimental data. Bottom panel shows the free surface elevation. FN4 solid , WKGS

Ž . Ž .dash–dot , data circles .
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Fig. 16. Comparisons of the spatial variation of the Fourier components of the free surface displacement with
Ž . Ž .case 4 of the Ohyama experimental data. Bottom panel shows the free surface elevation. FN4 solid , WKGS

Ž . Ž .dash–dot , data circles .
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Figs. 15–17 show comparisons of the Fourier amplitudes along the flume between
Ž . Ž . Ž .both FN4 and WKGS, and the data points at each station for cases 2 , 4 , and 6 ,

Fig. 17. Comparisons of the spatial variation of the Fourier components of the free surface displacement with
Ž . Ž .case 6 of the Ohyama experimental data. Bottom panel shows the free surface elevation. FN4 solid , WKGS

Ž . Ž .dash–dot , data circles .
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Table 4
Index of agreement di

Ž . Ž . Ž .Station Case 2 Case 4 Case 6

WKGS FN4 WKGS FN4 WKGS FN4

3 0.994 0.998 0.991 0.994 0.991 0.991
5 0.921 0.914 0.927 0.880 0.945 0.976

respectively. In all cases, the models predict well the Fourier amplitudes before the back
Ž .face of the bar. For case 2 , WKGS gives slightly better prediction of the second

harmonic at stations 4 and 5 than FN4, but once again strongly overpredicts the third
Ž .and fourth harmonics at those stations. For case 4 , the FN4 model gives better

prediction than WKGS for all but the third harmonic, which WKGS agrees slightly
Ž .better with the data. For case 6 , both models agree reasonably well with the data, with

FN4 having a better prediction of the third harmonic at station 5 and the WKGS model
matching the fourth harmonic slightly better at that same station. For this case, the
deviations from the data in the time series computed by WKGS at station 5 are probably
due to phase errors, which is not detected by the Fourier amplitudes comparisons.

Table 4 shows the index of agreement between WKGS and FN4, and the data from
Ž . Ž . Ž .the Ohyama experiment for cases 2 , 4 , and 6 , stations 3 and 5. Notice that for cases

Ž . Ž .2 and 4 , the results indicate a better agreement with the data by WKGS than by FN4.
By inspecting time series in Figs. 12 and 13, it is clear that the better agreement index
for WKGS is only due to a systematic phase error by FN4, which, overall has a better
qualitative agreement.

5. Conclusions

Ž . Ž . Ž 4.A Boussinesq-type model FN4 with O 1 nonlinearity and O m dispersion and
vertical dependence was developed for surface water wave propagation over uneven

Ž .beds in two horizontal dimensions. The model is the extension of Gobbi et al. 1998b to
include variable bottom topography.

A numerical implementation of the 1-D version of the model was used to simulate
wave evolution over arbitrary bottom topography. The numerical model included
absorbing sponge layers to simulate radiation boundary conditions, and generation of
waves inside the domain by the inclusion of a source function in the system of

Ž 2 .equations. In comparison with O m models, the extra computational cost of the FN4
model is mostly due to the much greater number of terms. We believe that an
optimization of the code for parallel processing machines would make it only marginally

Ž 2 .less efficient than O m models. This and a 2-D numerical implementation of the
model are the author’s goals for future work.

Computations with FN4 and WKGS were compared to several laboratory measure-
ments of waves propagating over submerged sills, and FN4 generally gave better
agreement with the data. The weakly nonlinear version of the model, WN4, was also
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compared to some of the data. The results showed that the nonlinear terms neglected in
WN4 are essential for accurate prediction of the generation of higher harmonics of
shoaling waves.

Results from the present study are compared to results from several levels of the local
Ž . Ž .polynomial approximation LPA method of Kennedy and Fenton 1997 in Gobbi et al.

Ž .1998a . FN4 is found to perform as well or better than LPA models with a similar
degree of polynomial approximation over the water column, and compares favorably

Žwith LPA with ns7 corresponding to a sixth degree polynomial in the vertical
.direction in many cases.
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Table 5
Coefficients in the finite difference formulas for the spatial derivatives

g K K K K K K K Errori. 3 i. 2 i. 1 i i " 1 i " 2 i " 3

Ž .O 1
y1 6Ž . Ž .u " 60D x y1 9 y45 0 45 y9 1 O D x˜ x i
y1 6Ž . Ž .u " 60D x 2 y24 I35 80 y30 8 y1 O D x˜ x i. 1
y1 6Ž . Ž .u " 60D x y10 I77 150 y100 50 y15 2 O D x˜ x i. 2

2 y1 6Ž . Ž .u 180D x 2 y27 270 I490 270 y27 2 O D x˜ x x i
2 y1 5Ž . Ž .u 180D x y13 288 I420 200 15 y12 2 O D x˜ x x i. 1
2 y1 5Ž . Ž .u 180D x 137 I147 y255 470 y285 93 y13 O D x˜ x x i. 2

2Ž .O m
y1 4Ž . Ž .u " 12D x – 1 y8 0 8 y1 – O D x˜ x i
y1 4Ž . Ž .u " 12D x – y3 I10 18 y6 1 – O D x˜ x i " 1

2 y1 4Ž . Ž .u 12D x – y1 16 I30 16 y1 – O D x˜ x x i
2 y1 3Ž . Ž .u 12D x – 11 I20 6 4 y1 – O D x˜ x x i. 1
3 y1 4Ž . Ž .u " 8D x 1 y8 13 0 y13 8 y1 O D x˜ x x x i
3 y1 4Ž . Ž .u " 8D x y1 y8 35 y48 29 y8 1 O D x˜ x x x i. 1
3 y1 4Ž . Ž .u " 8D x y15 56 y83 64 y29 8 y1 O D x˜ x x x i. 2

4Ž .O m
y1 2Ž . Ž .u " 2D x – – y1 0 1 – – O D x˜ x i

2 y1 2Ž . Ž .u D x – – 1 2 1 – – O D x˜ x x i
2 y1 2Ž . Ž .u " 2D x – y1 2 0 y2 1 – O D x˜ x x x i

Ž 3.y1 Ž 2 .u " 2D x – y3 10 y12 6 y1 – O D x˜ x x x i. 1
4 y1 2Ž . Ž .u D x – 1 y4 6 y4 1 – O D x˜ x x x x i
4 y1Ž . Ž .u D x – 1 I4 6 y4 1 – O D x˜ x x x x i. 1
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Appendix A. Numerical spatial derivatives

Ž . Ž .The spatial derivatives appearing in Eqs. 47 and 48 are evaluated according to the
Ž 4. Ž .condition that the errors be smaller than O m when we assume kD xsO m , which

Ž p.amounts to the use of schemes such that the O m terms contain truncation errors of
Ž Ž5yp..O D x or higher. The finite difference formulas for the spatial derivatives of say ũ

can be written as:
iqm

DDu sg K u , 75Ž .˜ ˜Ýl n n
nsiym

Žwhere DDu are derivatives of u with respect to x at location l iymq1F lF iqm˜ ˜l
. Žy1 , ls i are centered derivatives, and l/ i are off-centered derivatives near the

.boundaries . m can be either 1, 2, or 3, depending on the truncation error, and g K aren

the coefficients of u . Table 5 shows the values of g and K for the DD derivatives˜n n l
Ž . Ž 2 . Ž 4. Ž .appearing in the O 1 , O m , and O m terms first column . The " and . signs are

used so that the formulas for the off-centered derivatives can be applied to both
near-the-left and near-the-right boundaries. The coefficients in boldface indicate the
point where the derivatives are computed. The numerical truncation errors are shown in
the last column.

Appendix B. Derivation of source function

Here we derive the x-direction source function for regular waves. The linearized
˜versions of the mass and momentum equations for f over a flat bottom, including the

source function is given, in dimensional form, as:

2 ˜ 3 2 2 ˜ 5 2 2 2 ˜h qh= fyC h = = fqC h = = = fs f x , y ,t , 76Ž . Ž .t 1 2 s

˜ 2 2 ˜ 4 2 2 ˜f qghyC h = f qC h = = f s0, 77Ž .t 3 t 4 t

where coefficients C , C , C , C are given by1 2 3 4

1
C sy By1r3 , 78Ž . Ž .1 2

1
2C s B yBr3yDr6q1r30 , 79Ž .Ž .2 4

1
C sy By1 , 80Ž . Ž .3 2

1
2C s B yByDr6q1r6 . 81Ž .Ž .4 4

Ž .Taking the t derivative of the momentum equation and eliminating h from Eqs. 76
Ž .and 77 , gives:

˜ 2 ˜ 3 2 2 ˜ 5 2 2 2 2 2 ˜f ygh= fqC gh = = fyC gh = = = fyC h = ft t 1 2 3 t t

4 2 2 ˜qC h = = f syg f x , y ,t . 82Ž . Ž .4 t t s
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We introduce the following transformations:
2

q` q`1
i l y yi v t˜ ˆf x , y ,t s f x e e dldv 83Ž . Ž . Ž .H Hž /2p y` y`

2
q` q`1

i l y yi v tˆf x , y ,t s f x e e dldv . 84Ž . Ž . Ž .H Hž /2p y` y`

Ž . Ž . Ž .Substituting Eqs. 83 and 84 into Eq. 82 , we have:

ˆ w6x ˆ w4x ˆ w2x ˆ ˆaf qbf qcf qdfsgf , 85Ž .
where the numbers in brackets denote order of x derivatives, and

a'C gh5, 86Ž .2

b'yC gh3 qC h4v 2 y3C gh5 l2 , 87Ž .1 4 2

c'ghyC h2v 2 q2C gh3l2 y2C h4 l2v 2 q3C gh5 l4 , 88Ž .3 1 4 2

d'v 2 yghl2 qC h2 l2 v 2 yC gh3 l4 qC h4 l4 v 2 yC gh5 l6 . 89Ž .3 1 4 2

Ž . Ž .Now we multiply Eq. 85 by a Green’s function G j , x , and integrate the product with
respect to j , from y` to q`, which gives:

q`
w x w x w x w x w x w x w x w x6 4 2 5 1 4 2 3ˆ ˆ ˆ ˆaG qbG qcG qdG fdjqa Gf yG f qG fŽ .H

y`

q`
w x w x w x w x w x w x w x w x w x w x3 2 4 1 5 3 1 2 2 1ˆ ˆ ˆ ˆ ˆ ˆyG f qG f qG f qb Gf yG f qG f

y`

q`q`q`
w x w x w x3 1 1ˆ ˆ ˆ ˆyG f qc Gf yG f sg Gfdj , 90Ž .Hy` y`

y`

where the numbers in brackets denote order of j derivatives. Notice that j is a dummy
variable and x is now an arbitrary fixed point in the j coordinate. Following the
traditional Green’s function theory, we seek a solution such that:

aGw6x qbGw4x qcGw2x qdGsd jyx , 91Ž . Ž .
Ž .with boundary conditions such that all boundary terms in Eq. 90 are eliminated:

n nw nx w nxˆ ˆG ™ "il G , f ™ "il f ; ns1, . . . ,5, x™"`, 92Ž . Ž . Ž .
Ž .where d jyx is the Dirac delta function at jsx. We are interested in solutions where

Ž . Ž .a/0. By integrating Eq. 91 just across jsx, from xye to xqe e™0 , and
requiring continuity of G, Gw1x, Gw2x, Gw3x, Gw4x, we are left with:

xqew5xaG s1. 93Ž .xye

Away from jsx we, can write:

Gw6x qa Gw4x qa Gw2x qa Gs0, 94Ž .1 2 3

where a sbra, a scra, a sdra. Seeking a solution of the form:1 2 3

G;e isj , 95Ž .
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we obtain the characteristic polynomial:

s 6 ya s 4 ya s 2 ya s0. 96Ž .1 2 3

Ž .For the case in which we are interested, the roots of Eq. 96 can be written as:

s sys s l , 97Ž .1 4

s sys s iL , 98Ž .2 5 1

s sys s iL , 99Ž .3 6 2

where l, L , L are positive real numbers, and can be obtained from the roots of the1 2
Ž .bi-cubic polynomial Eq. 96 . We now write the solution for the source function:

i l jyx L jyx L jyxŽ . Ž . Ž .1 2G sA e qB e qC e if j-x ,q G G G
G j , x s 100Ž . Ž .

i l xyj L xyj L xyjŽ . Ž . Ž .½ 1 2G sA e qB e qC e if j)x .y G G G

Continuity of G, Gw2x, Gw4x are satisfied automatically, as are the boundary conditions at
w1x w3x Ž . Ž ."`. Continuity of G , G , and substitution of Eq. 100 into Eq. 93 gives three

equations for the three unknowns A , B , and C , the solution being:G G G

yi
A s , 101Ž .G 2 2 2 22 al l qL l qLŽ . Ž .1 2

1
B s , 102Ž .G 2 2 2 22 al l qL L yLŽ . Ž .1 1 2

1
C s . 103Ž .G 2 2 2 22 al l qL L yLŽ . Ž .2 2 1

Ž .Eq. 101 can be rearranged to give:

yil
A s . 104Ž .G 6 42 2 l ya l qaŽ .1 3

Ž .From Eq. 90 , we can write:
q` x

ˆ ˆ ˆf x s G j , x g f j djs G j , x g f j djŽ . Ž . Ž . Ž . Ž .H H y
y` y`

q`

ˆq G j , x g f j dj . 105Ž . Ž . Ž .H q
x

We arbitrarily choose:

ˆ 2f x sD exp yb x . 106Ž . Ž .Ž .s s

Ž .For sufficiently large values of x progressive wave traveling to greater values of x ,
Ž .and using Eq. 104 :

x
i l x yL x yL x1 2ˆ ˆf x s G j , x g f j djsgD A I e qB I e qC I e ,Ž . Ž . Ž .H y s G 1 G 2 G 3

y`

107Ž .
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where
2q` p l

2I s exp yb x y ilx d xs exp y , 108Ž .Ž .H1 s ( ž /b 4by` s s

2q` p L12I s exp yb x qL x d xs exp , 109Ž .Ž .H2 s 1 ( ž /b 4by` s s

2q` p L22I s exp yb x qL x d xs exp . 110Ž .Ž .H3 s 2 ( ž /b 4by` s s

Terms involving I and I become negligibly small as x™`, so:2 3

ˆ i l xf x fgD A I e . 111Ž . Ž .s G 1

We here are interested in waves propagating in the x direction. The desired progressive
Ž . Ž . Ž .wave solution waves propagating in x of Eqs. 76 and 77 away from the source

Ž .region x™` is:

hsh e iŽk xyv t . , 112Ž .0

˜ ˜ iŽk xyv t .fsf e , 113Ž .0

igh0
f̃ s , 114Ž .0 2 4

v 1qC kh qC khŽ . Ž .3 4

2 41qC kh qC khŽ . Ž .1 22 2v sgk h . 115Ž .2 41qC kh qC khŽ . Ž .3 4

Ž .Setting ls0 no y dependence and lsk we can write:

˜ iŽk xyv t .f x , y ,t sgD A I e . 116Ž . Ž .s G 1

Ž . Ž . Ž .Substitution of Eqs. 113 and 114 into Eq. 116 , gives the relationship between the
source function amplitude D and the desired wave amplitude h :s 0

ih0
D s . 117Ž .s 2 4

v A I 1qC kh qC khŽ . Ž .G 1 3 4
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