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Surface gravity waves at equilibrium with a steady wind 
Roman E. Glazman 
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Abstract. Observations of wave fields' spatial evolution and of gravity wave spectra 
S(w) are analyzed on the basis of the data reported by several research groups as well 
as on a 2-year data set of wind and wave measurements by stationary National Oceanic 
and Atn-lospheric Administration buoys near the Hawaiian Islands. We seek to clarify 
the role of the wave energy advection (with the wave group velocity) in the overall 
energy balance. This advective transfer appears to be no less important than the local 
(breaking wave induced) dissipation as a factor of wind-wave equilibrium. The 
advection is found to manifest itself in the shape of wave spectra by reducing the rate 
at which the spectral density of the wave energy, S(w) • w -p , falls off as the 
frequency increases away from the spectral peak. This and other conclusions are 
derived by comparing the field observations with theoretical predictions of the weak 
turbulence theory for a spatially inhomogeneous, statistically stationary, wave field. 
The observations also indicate that the typical wave age • = Co/U in the open ocean 
is much greater than the limiting value 1.2 attributed to the "fully developed sea." 
Although the observed spectra can be approximated by a power law with a single 
"effective" exponent, this apparent exponent, p, is found to depend on the wave age. 
At high • and at frequencies below the generation range, -p tends to -3 rather than 
the value of -11/3 predicted by the Zakharov-Zaslavskii theory. This deviation is 
interpreted as pointing to a nonconservative nature of the inverse cascade, the latter 
including a leakage of energy to low-wavenumber modes. Dependence of the overall 
effective exponent on • is shown to be responsible for variation in the coefficients b, B, 
c, C appearing in empirical fetch laws, such as • = C• c and e = B• b where g and e 
are the dimensionless fetch and wave energy, respectively. 

1. Introduction 

One of the outstanding issues in dynamics of the upper 
ocean is the physical mechanism through which energy and 
momentum are transferred from wind to various components 
of ocean circulation. Air-sea interaction involves generation 
of surface gravity waves, which may play an important role 
in air-sea exchanges on larger scales. The present, primarily 
experimental, study is focused on weakly nonlinear wave- 
wave interactions and wave dispersion as possible factors of 
energy and momentum exchanges between the wave field 
and larger-scale oceanic motions. In particular, we shall 
stress that at a sufficiently high degree of sea development, 
characteristic to open ocean waves, the regime of air-sea 
interaction is markedly different from that observed for a 
poorly developed sea state in which the wave energy is 
dissipated locally. 

In general, dissipation of the wave energy can occur 
through a variety of mechanisms effective in different spec- 
tral bands. However, the main dissipation mechanism cur- 
rently assumed in most wave studies and in wave models is 
the breaking of short gravity waves. The source functions 
parameterizing this mechanism are essentially empirical. 
The same is true with respect to the wind input source 
function. One particular requirement used in wave models' 
design is the convergence to the fully developed sea (FDS) 
as the wind fetch and duration grow. The FDS state param- 
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eterized by the Pierson-Moskowitz (P-M) spectrum [Pierson 
and Moskowitz, 1964] is characterized by a limiting wave age 
• (defined in equation (1)) of about 1.2, which means that the 
phase velocity of the spectral peak waves cannot noticeably 
exceed the characteristic wind velocity (at a height of, say, 
10 m). The FDS state (a statistically stationary and spatially 
homogeneous wave field) is believed to be a result of local 
balance between wind input and high-frequency dissipation 
of wave energy. 

The view presented above was recently challenged 
[Glazman, 1991b], and in the present work we provide 
experimental data and theoretical arguments indicating sig- 
nificant problems with the FDS concept in its present form. 
In particular, we suggest that under open ocean conditions, 
the breaking wave dissipation may actually play only a 
secondary role in the overall energy balance. More effective 
mechanisms extracting energy and momentum from waves 
should be sought at low frequencies at which the waves 
interact with larger-scale motions (such as internal waves, 
Langmuir circulations, mesoscale eddies, etc.) through the 
radiation stress and, possibly, mean sea level gradient. In 
other words, the balance between the wind input and wave 
dissipation is essentially nonlocal. Furthermore, we demon- 
strate that characteristic wave age values as high as 3 are not 
only feasible but are rather common to wind-driven waves in 
an open ocean, and the P-M spectrum, while appropriate 
under certain specific conditions, does not represent any 
fundamental limit on the wave evolution process. Our dis- 
cussion of these conceptual issues, presented in sections 
5-7, is based on the following experimental approach. 
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Limiting our consideration to a special case of a statisti- 
cally stationary wave field at equilibrium with a steady wind, 
we carefully selected situations characterized by relatively 
simple wave generation conditions that can be described in 
the framework of the time-independent equations for energy 
and action transfer in a spatially evolving wave field (this 
framework is presented in the next section). This allowed us 
to avoid as much as possible various adjustable parameters 
and empirical source functions. The experimental data em- 
ployed came from different sources' the spatial evolution of 
the wave field is analyzed on the basis of field observations 
reported by several independent groups (summarized in 
Table 1), and the shape of wave spectra is studied based on 
the Hawaiian buoy data procured from the National Oceanic 
and Atmospheric Administration (NOAA) (section 3). 

Analyzing jointly the shape of the wave spectrum (section 
4) and the spatial evolution of the wave field (section 5), we 
were able to express various coefiScients appearing in fetch 
laws (9)-(11) as functions of "external" parameters of the 
wave spectrum (sections 5 and 6) and thus interpret the 
experimental data on the basis of the equations for energy 
and action transfer. Moreover, we found that many empiri- 
cal results, including the dependence of the spectrum shape 
on the wave age, can be explained rather consistently based 
on the integrated transfer equations with a single "adjust- 
able" parameter, the (constant) coefiScient for the wind 
input, C q. Experimental data on this coefifcient are re- 
viewed in Appendix B. 

Owing to the intrinsic slowness of tetrad wave-wave 
interactions, the characteristic spatial scale for the wave 
field evolution is of the order of 100 km. Therefore experi- 
mental studies of the processes addressed in the present 
work cannot be conducted in wave tanks, lakes, or other 
confined basins. Moreover, being interested in deep-water 
gravity waves, one must make sure that the characteristic 
depth is at least of the order of the dominant wave length. 
The latter, as our data show, attains a few hundred meters. 

In the next section, the necessary background information 
on equilibrium wave spectra is reviewed. 

2. Basic Relations for Developed Sea Spectra: 
An Overview 

The wave age • is defined as the ratio of the phase velocity 
Co of waves corresponding to the spectral peak frequency 
to o to the mean wind above the sea level (e.g., at 10 m 
height): 

• = Co/U = 9/Uto o (1) 

The data presented in section 3 cover a broad range of sea 
development stages from that of moderate degree, • • O(1), 
to a very well developed sea, • >> 1. This range can be 
treated in the flamework of the weak turbulence theory 
(WTT) for surface gravity waves [Zakharov and Filonenko, 
1966; Zakharov and Zaslavskii, 1982, 1983], which accounts 
for wave-wave interaction in resonant wave tetrads [Hassel- 
mann, 1962]. Let us summarize a few relevant concepts 
which facilitate the interpretation of the data. 

For a statistically stationary and spatially homogeneous 
wave field, WTT predicts two possible regimes of wave 
energy and action flow through the spectrum: the direct 
inertial cascade, in which the wave energy flux Q is con- 

served, and the inverse cascade, in which the wave action 
flux P is conserved [Zakharov and Filonenko, 1966; Za- 
kharov and Zaslavskii, 1982] while the energy flux is zero. In 
the course of the wave field's evolution, the inverse cascade 
of the wave action is accompanied by a nonconservative 
flow of energy to low wavenumbers [Hasselmann, 1962; 
Hasselmann et al., 1973]. The inverse cascade causes a 
gradual decrease of the spectral peak wavenumber k 0 with 
an increasing wind fetch (distance along the wind vector) and 
duration (time from the start of the wind). Thus at a given 
wind U, the nondimensional spectral peak frequency &0 = 
Utoo/9 represents a measure of wave development. In the 
present work, we consider only the cases with an infinite 
wind duration. Hence the degree of sea development de- 
pends only on the wind fetch, and the wave field is spatially 
inhomogeneous. Kolmogorov-type spectra can still be used 
in this situation for crude estimates, as was demonstrated by 
Zakharov and Zaslavskii [1983] and Glazman and Srokosz 
[1991], although certain refinements, as discussed in the 
following sections, are necessary. 

For moderately developed waves (• -< 1), the relative 
extent of the wavenumber subrange corresponding to the 
inverse cascade is negligible in comparison with that of the 
direct cascade. Then the "equilibrium" range in the (energy) 
spectrum is dominated by [Zakharov and Filonenko, 1966] 

F(k) = Otq9-1/2Q1/3k -7/2 S(to) = 2Otq#Q1/3to -4 (2) 

where F(k) is the wavenumber spectrum and S(to) is the 
frequency spectrum. The to-4 equilibrium range was also 
discovered by Toba [ 1973] on the basis of field observations. 
The nondimensional constant a e plays a role similar to that 
of the Kolmogorov constant in turbulence. Q is the spectral 
flux of energy toward high wavenumbers. In a statistically 
anisotropic wave field, the two-dimensional wavenumber 
spectrum includes an angular distribution factor Y•(0), 
which is assumed here to be normalized to yield unity upon 
integration over all angles 0. Although we shall omit this 
factor in the subsequent equations, its significance will be 
discussed in sections $ and 7. The rate Q of the energy 
transfer down the spectrum is given in terms of the energy 
flux per unit surface area and per unit mass of water. Earlier 
it was shown [Phillips, 1985; Glazman, 1992] that Q does not 
have to be constant in frequency in order to yield power law 
S(to) "• to-4. Actually, Q is a slowly growing function of k, 
consistent with the Miles mechanism of wave generation. 

At high degrees of wave development (•e >> 1), when the 
inverse cascade range has become broad in comparison with 
the direct cascade range, the spectrum is controlled primar- 
ily by two factors: the wave action cascade toward low 
wavenumbers and, as discussed in sections 5 and 6, the 
advective energy transfer in a spatially inhomogeneous wave 
field due to the wave group velocity, If the latter is dis- 
carded, a simplified theory [Zakharov and Zaslavskii, 1982] 
assuming a spatially homogeneous wave field yields a Kol- 
mogorov spectrum determined by the inverse conservative 
cascade of wave action: 

F(k) = app1/3k -10/3 (3) 
This corresponds to S(to) --• to- 11/3. 

One can further idealize the situation by assuming that the 
wind energy input is concentrated at wavenumbers (the 
"generation range") separating the two inertial subranges. 



GLAZMAN: SURFACE WAVES AT STEADY WIND 5251 

11=1/3 
t generation 

i• range 
=1/4 

i I !! x% •2dissipatio n 
! % •' range 

g/tj2 : r ..' 

k o ku k h Log k 
inverse cascade direct cascade 

Figure 1. Wavenumber subranges in an equilibrium spec- 
trum of developed seas. Thin solid straight lines represent 
power law approximations, in the form k -4+2•, for the 
specific wavenumber subranges: /x decreases with an in- 
creasing distance away from the spectral peak wavenumber 
k 0. The thick-dashed line represents a power law approxi- 
mation for the entire equilibrium range' the "effective val- 
ue" of/x is determined by the relative extent of the constit- 
uent subranges. 

As is discussed in the following sections, the forms (2) and 
(3) are not very useful, for we do not know in advance how 
the input fluxes, Qu and P u, are related to the inertial fluxes 
Q and P through the spectrum. On dimensional grounds, P 
and Q can be expressed in terms of the mean wind speed U 
as 

pcr g-2U4 Q oc U 3 (4) 

of the exponent and a wave-age-dependent value of the 
Phillips constant/3 in the power laws (5). This "effective" 
exponent yields an apparent fractal (Hausdorff) dimension of 
the surface: DH = 2 + /x [Glazman and Weichman, 1989]. 
Being a function of the relative extent of the idealized 
subranges (2), (3), and (6), the apparent "codimension"/x is 
determined by the wave age. Theoretical dependencies for 
the effective /x and /3 as functions of s c are presented in 
section 4. 

The low-wavenumber cutoff (the "outer scale" of the 
spectrum) is steep and can be approximated by a smeared 
unit step function H(k/ko - 1). A commonly accepted form 
of H( ) is given by exp [-(k/ko)-2]--as follows from the 
empirical P-M spectrum. Thus the energy-containing range 
is approximated by 

F(k) = [3(U2/9)2tXk -4+2Ix exp [-(k/ko) -2] (7) 

Using the dispersion relation for gravity waves, the low- 
frequency cutoff is related to the wave age (equation (1)) by 

k 0 = (#/U2)s c-2 (8) 

Typical values of s c for open ocean waves lie in the range 
1.5-3 [Glazman and Pilorz, 1990]. The limiting wave age for 
the "fully developed" sea still remains unknown, and the 
existence of the FDS state hypothesized by Kitaigorodskii 
[1962, 1970] has been questioned on both theoretical and 
experimental grounds [Glazman, 1991b] along with the em- 
pirical P-M spectrum which claims to represent FDS [Pier- 
son, 1991]. 

Analyzing the spatial evolution of stationary wave fields, 
we shall examine in sections 5 and 6 the well-known empir- 
ical relationships between the wave age, the nondimensional 
wind fetch œ (œ = #x/U 2 , where x is the dimensional fetch), 
and the nondimensional wave energy, e: 

Then the entire equilibrium range can be presented in the 
form 

F(k) = [3(U2/9)2tXk -4+2Ix 
(5) 

S(to) = 213#2(U/#) 4• to -5+4• 

which reduces to (2) or (3) by setting/x = 1/4 or/x = 1/3 for 
s c -< 1 and s c >> 1, respectively. Furthermore, /3 is the 
generalized Phillips constant whose value can be expressed 
in terms of the Kolmogorov constants. In general, /x is a 
slowly decreasing function of the wavenumber [Glazman et 
al., 1988; Glazman and Weichman, 1989; Glazman and 
Srokosz, 1991]:/x = /x(k) (Figure 1). Its maximum lies in the 
subrange associated with the inverse cascade. At frequen- 
cies above the generation range, /x passes through 1/4 and 
reaches zero in the Phillips "saturation" range [Phillips, 
1977] (if the energy input is sufficiently high for such a range 
to occur). In the Phillips range the spectrum tends to 

F(k) = •k -4 (6) 

This corresponds to a non-Gaussian field of the surface 
height variation characterized by cusped wave crests. WTT 
is not applicable to the strongly nonlinear waves described 
by (6). The drop of/x below 1/4 (i.e., from weak turbulence 
to stronger nonlinearity) can be described on the basis of a 
heuristic theory of multiwave interactions [Glazman, 1992]. 

Experimentalists usually report an overall apparent value 

• = Ae a (9) 

e = Bg ø (10) 

• = Cœ c (11) 

Sometimes these are called fetch laws. Of particular interest 
are variations in the values of A, B, C, a, b, and c revealed 
by comparing reports of different experimentalists. The 
dimensionless wave energy (called alternatively the general- 
ized nondimensional fetch [Glazman, 1991b]) is defined as 

f F(k) dk f S(to) dto 
e = -- (12) 

(U2/9) 2 (U2/9) 2 

Since only two of the three equations (9)-(11) are indepen- 
dent, we shall consider only (9) and (11). Experimental data 
on the parameters of the fetch laws are summarized in Table 
1. Conditions characterizing individual experimental setups 
are highly diverse. As is explained in section 5, the differ- 
ences in atmospheric boundary layer stratification, in the 
range of the wind speed and fetch values covered, and in 
other factors including local depth and hydrography have 
effects on the parameters reported in Table 1. 

Fetch laws (9)-(1 !) also follow from the action and energy 
transfer equations [Zakharov and Zaslavskii, 1983; Glazman 
and Srokosz, 1991]. The derivation involves certain simpli- 
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Table 1. Field Observations 

•= Ae a e = B• l' •= C• c 
Data 

Source A a B x 10 -7 b C 

Dobson 5.62 0.29 12.7 0.75 0.094 0.24 
JONSWAP 7.94 0.33 1.6 1.0 0.045 0.33 
Do nelan 5.98 0.30 8.4 0.76 0.086 0.23 

Phillips 1.6 1.0 0.089 0.25 
Ross 1.2 1.1 0.084 0.27 
Walsh 1.9 1.0 0.069 0.29 
Kahma 0.050 0.33 

Mitsuyasu 2.89 1.0 0.051 0.33 
Glazman 7.65 0.31 

Abbreviations of data sources are as follows: Dobson, Dobson et al. [1989]; JONSWAP 
(Joint North Sea Wave Project), Hasselmann et al. [1973]; Donelan, Donelan et al. [1985]; 
Phillips, Phillips [1977], Ross, Ross [1978] and Liu and Ross [1980]; Walsh, Walsh et al. 
[1989]; Kahma, Kahma [1981]; Mitsuyasu, Mitsuyasu et al. [1971]; Glazman, Glazman 
[1991a]. 

fying assumptions regarding the wind input in a developed 
sea state. By a developed sea we understand a wave field 
having a broad wavenumber spectrum, such that a short- 
range asymptotic of the structure function D(r) =- ([ •(x + r) 
- •(x)] 2) for the surface elevation field •(x) due to gravity 
waves reduces to [Glazman and Weichman, 1989] 

D(r, O)• L2•(/x, O)r 2-2• (13) 

where the dimensional coefficient L (called the "topothesy") 
is independent of the spectral peak wavenumber ko: L 2• = 
[3(U2/#)2lxf(Ix, 0). Since D(r, O)is evaluated for small 
spatial lags r, (13) pertains to the high-wavenumber range of 
the gravity wave spectrum dominated by the direct energy 
cascade. In particular, one can use/z = 1/4 and express/3 in 
terms of the Kolmogorov constant aq. In general, (13) is 
valid if [Glazman and Weichman, 1989]. 

(kor/2) 2• <</x F(/x )/( 1 -/x ) 2F( 1 -/x) (14) 

Under this condition, the field •(x) exhibits "fractal geome- 
try" characterized by a pattern of continuously "nested" 
wavelets of a monotonically decreasing size. The wave slope 
variance, estimated as ,/2 • D(A)/A2, where A is the 
relevant (short) spatial scale of interest, becomes indepen- 
dent of the dominant wavelength 2 rc/ko. As a result, neither 
wind fetch nor wave age can appreciably influence ,/2. 
Owing to the exclusive role of the wave slope for the induced 
air pressure and shear stress fields [Phillips, 1977, chapter 
4.2], we anticipate the wind-wave coupling to be indepen- 
dent of the wind fetch. Hence in a developed sea, the mean 
wind U becomes the only external parameter of the wind 
input, and at scales satisfying (14) we assume a universal 
regime of air-sea interactions. 

The wind input may be envisioned as occurring in the 
fashion of the Miles mechanism, i.e., being proportional to 
F(k) and attaining its spectral maximum at wavenumbers 
above #/U 2. The integral fluxes of wave action and energy 
take the form 

Pu = • P +(k) dk = Eg;#-2S 4 (15) 

Qu = • q +(k) dk = ER;U 3 (16) 

where p + (k) is the spectral density of the action input flux 
(per unit surface area and per unit mass of water), q + (k) is 
the spectral density of the energy flux, and E is the ratio of air 
and water densities. Both p + (k) and q + (k) are confined to 
the high-wavenumber range. In the wave-modeling litera- 
ture, these are called the wind source functions. For a 

developed sea, the bulk transfer coefficients, R• and R•, 
are assumed to be independent of the wind fetch. If, how- 
ever, one considers a broad range of sea development 
stages, as is covered in Table 1, the assumption of constant 
R• and R • has to be relaxed to allow for a (relatively weak) 
dependence of these "constants" on the nondimensional 
fetch. Accounting for wind-wave interaction at lower fre- 
quencies (e.g., for the feedback flux of momentum from fast 
moving long waves to the atmosphere) would also result in a 
dependence of R• and R• on additional parameters. 

3. Buoy Observations of Developed Seas 
at Equilibrium With a Steady Wind 

The present empirical knowledge on the wave field evolu- 
tion is based largely on observations at limited wind fetches 
and relatively small depths, conditions encountered in the 
Great Lakes, North Sea, and other closed or semiclosed 
basins convenient for field experiments [e.g., Toba, 1973; 
Donelan et al., 1985; Dobson et al., 1989]. These observa- 
tions consistently show /a • 1/4 and support the FDS 
concept with the limiting wave age scFr>s about 1.2. The cases 
characterized by much greater values of the wave age are 
usually discarded as allegedly irrelevant to wind-driven seas. 
For example, in their study of fully developed seas, Ewing 
and Laing [ 1987] used quantitative criteria to eliminate from 
their data set all observations contradictory to the FDS 
concept and to the P-M spectrum. For instance, one of their 
tests required that the wave age not exceed 1.45. Observa- 
tions in open ocean regions with stable winds and large wind 
fetches are relatively rare and report • >> •Fr>s [G!azman 
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and Pilorz, 1990; Glazman, 1991a] and a different power law 
S(oo) •- w -v , where p can reach 3 [Grose et al., 1972]. 

We examined a 2-year series of wind and wave observa- 
tions by autonomous NOAA buoys operated by the National 
Data Buoy Center (NDBC). Most of the observations se- 
lected for our data set are from the Pacific trade wind zone 

near the Hawaiian Islands (Figure 2). This region is charac- 
terized by large values of wind fetch and duration. A number 
of observations were added also from NDBC buoys in the 
North Atlantic to cover cases of moderate sea states with • 
near 1. 

Only the buoys of the Nomad type were used. These 
buoys' hulls are boat shaped, 6 m long, and 3 m wide. The 
accuracy of spectrum measurements by these buoys was 
estimated by Murphy [1979], who derived a reliable hull 
power transfer function and found that at frequencies up to 
0.36 Hz the relative error, AS(f)/S(f), does exceed 9.4% 
while the average error for the frequency range from 0.12 to 
0.5 Hz is only 4.2 percent. 

The anemometer height is 5 m. Assuming neutral stratifi- 
cation of the marine boundary layer, we referenced the mean 
wind to a standard height of 10 m. (Accounting for actual 
stratification would yield only an insignificant correction to 
the mean wind U.) The mean wind represents an 8.5-min 
average. The size of the buoys as well as the accuracy of 
spectral estimates allowed us to analyze the range of wave 
frequencies fi from 0.03 Hz to 0.35 Hz with the Af step of 
0.01 Hz. Since the buoys provide only the frequency spec- 
tra, the directional properties of the wave field remained 
beyond the scope of the present work. The buoys report data 
on an hourly basis, with a few exceptions when the interval 
is 3 hours. 

Our consideration was limited to steady wave fields at 
equilibrium with the observed statistically stationary wind. 
The data set was prepared by browsing through thousands of 
continuous wave and wind observations in order to discard 

cases in which the dominance of a given wind as the main 
factor determining the observed spectrum could be ques- 
tioned. With practically no limitations on the length of the 
(hourly) records, we were able to check time histories for 
wind speed and direction, wave spectra, and wave age, as 
illustrated in Figures 3-5. The cases with appreciable linear 

trends and, generally, all cases with relative variations of 
wind speed in excess of 15% of the mean values (calculated 
for each 6-hour interval) were eliminated. The wind direction 
was required to remain within plus or minus 15 ø of the mean 
direction. Also we eliminated cases in which wave spectra 
showed appreciable temporal evolution (third panel from the 
top in Figures 3-5). A few typical cases in which wave 
spectra were classified as stationary (Figures 3 and 4) or 
nonstationary (Figure 5) are illustrated. Finally, we ensured 
that the wave field contained no significant swell. By swell 
we understand a wave system generated in a remote location 
by a wind field whose speed and direction are noticeably 
different from the local wind. To eliminate such cases, we 
checked the shape of wave spectra for occurrences of 
multiple peaks and other conspicuous features identifying 
mixed seas. This procedure proved successful in an earlier 
study by Glazman and Pilorz [1990], to which the reader is 
referred for details and additional illustrations. The total 

number of "ideal" steady state cases retained for the sub- 
sequent analysis was 629. 

The data employed in this analysis did not permit checking 
the degree of spatial inhomogeneity in the wind field. There- 
fore our data set is likely to contain some cases in which a 
local wind speed upwind of the buoy location may be 
considerably lower or higher than that observed at the buoy. 
Such variations should contribute to the scatter of experi- 
mental points in Figure 8 and complicate data interpretation. 
However, the wind's spatial inhomogeneity represents an 
intrinsic property of wind fields and is encountered in any 
field observations. Therefore the notion of the wind fetch 

may have to be revised to account for (at least some type of) 
the wind field's spatial inhomogeneity. This issue is dis- 
cussed further by Glazman [1991b]. 

The wave age • was estimated using the spectral peak 
frequency f0 and mean wind U. The effective fractal codi- 
mension /x and the generalized Phillips constant /3 were 
derived from the observed spectra $(f) as follows. We 
integrated $(f) and f-•S(f) numerically from a certain 
fmin > f0 to the high-frequency cutoff fmax = 0.35 Hz to 
obtain estimates of wave energy E and action N for this 
"equilibrium" range. Requiting that E and N coincide with 
the energy and action obtained by integrating the analytical 
wave spectrum (equation (5)) yields two equations for/x and 

213'g2(U/g) 4• ffm•xf --5+4• df = E 
-/fmin 

2/3'g2(U/g) 41a •fmax f -6+4/x df : N 

(17) 

/3 = (2•r)4(1-tz)/3' (18) 

The integration limit fmin must lie sufficiently above the 
spectral peak frequency f0 in order to obtain/x representa- 

The prime in/3' distinguishes this quantity from/3 appearing 
in (5) and (7), where angular frequency •o is used. Equations 
(17) have been solved by iterations consideringfmin/fmax as a 
small parameter. Only the cases with fmin/fmax • 0.7 were 
used in these calculations, and only the spectra containing at 
least 10 frequency points within the selected range were 
considered. The relationship between/3' and/3 is 
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Figure 3. Time history of wind vector, wave spectrum, and wave age observed at buoy 51002, 
illustrating a steady state wave field at equilibrium with a given wind. Top to bottom: wind vector, wind 
speed in meters per second, contour plot of the wave frequency spectrum evolving in time, and wave age 
estimated using (1) where U and to o are based on hourly buoy reports. The total number of cases taken 
from this record is 15. 

tive of the "equilibrium range." Practically, we selected fmin 
to be a multiple off0: fmin -- 1.5f0. It was found that in the 
logarithmic coordinates, the typical shape of wave spectra in 
the given rangefmin,fmax is convex, i.e., d2(log S)/d(logf) • 
< 0. Figure 6 illustrates a few typical cases. An interpreta- 
tion of this observation is offered in section 4. 

A more traditional way of estimating the spectral exponent 
and the Phillips constant is to plot the observed spectrum in 
logarithmic coordinates and then fit a straight line to all the 
points within the selected frequency range. Unfortunately, 
this procedure does not guarantee correct values of E and N. 
Besides, the /x and/3 so derived are sensitive to the high- 
frequency range of the wave spectra which may be affected 
by the buoy hull characteristics. In Figure 7 we illustrate the 
agreement between the observed spectra and the fitted 
power law forms. 

In Figures 8 and 9,/x and/3 obtained using (17) and (18) are 
plotted versus wave age. The plots show that • can exceed 3, 
which is well above the limit for the fully developed sea. 
Evidently, a wave age greater than 2 is a typical feature of 
open ocean waves. Furthermore, the plots exhibit a mono- 
tonic growth of/x as the wave age increases, tending to about 
0.5 at sufficiently large •. As is suggested in sections 5 and 6, 
such large values of/x (noticed first by Grose et al. [1972]) 
are associated with the advection of the wave energy in a 
spatially inhomogeneous wave field. 

The 0.35-Hz frequency cutoff and the prevalence of well- 
developed sea states in our data set do not permit obtaining 
reliable trends for/x and/3 at small values of the wave age, 

i.e., at s • -< 1. Furthermore, the high values of s • and /x in 
Figures 8 and 9 may not be the largest possible in an open 
ocean. When preparing our "ideal" data set, we may have 
unjustifiably eliminated some legitimate cases with particu- 
larly large s •. Indeed, our requirements on the wind history 
were very rigid. However, this conservative choice reduces 
the well-known conceptual difficulty regarding the separa- 
tion of swell from a wind-driven sea. 

4. The Shape of the Wave Spectrum 
The observed trends in/x and/3 provide important clues 

regarding the energy balance. To better understand the 
connection we shall first derive the trends theoretically on 
the basis of the results of WTT for an isotropic wave field. 

As was suggested earlier [Glazman and Srokosz, 1991], 
one can approximate the actual spectrum F(k) characterized 
by a gradually decreasing value of/x by a composite spec- 
trum, Fc(k): 

Fc(k ) = •p(U2/g)2/3k -10/3 
Fc(k) = t• q( U2/g) 1/2k-7/2 

exp [-(k/k o) 2] O<k-< ku 

ku<k<o• 

(19) 

The two equations (19) correspond to two basic regimes of 
the energy and action flow, as was mentioned in section 2. 
Here,/3q,p are universal constants which can be expressed 
in terms of the Kolmogorov constants (they play only an 
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Figure 4. The same as Figure 3, for buoy 51001. The total number of cases taken from this record is 9. 

intermediate role in this derivation). The spectral peak 
wavenumber k0 is given by (8), and the spectral maximum in 
the energy flux from wind to waves is assumed to occur at 

ku = (glU2)•7-2 (20) 

where •/-2 > 1 is a constant. Equation (20) is a simple 
consequence of the Miles theory which yields the spectral 
density of the energy flux from wind to waves being linearly 
proportional to the wave spectrum: q(to) oc to•b(tI)S(to). 
Here, II = w/tot:, ton = g/U, and •b can be presented as 
•b(II) = H(fl - 1)(II - 1) n where n = 1 in the case of the 
Snyder et al. [1981] parametrization, n = 2 in the case of 
Hsiao and Shemdin [1983] and other authors' parametriza- 
tions (see Appendix B) and H( ) is a (smeared) unit step 
function which expresses the shadowing effect (waves mov- 
ing faster than the wind do not receive energy from wind): 
H • 0 for fl < 1 and H • 1 for II >- 1. As a result, for the 
"energy generation range" (i.e., for II >> 1), one finds 
(omitting all constants that are not important for this discus- 
sion): q(to) oc to-4+4/x(to/to U - 1) n. Obviously, the fre- 
quency at which this function attains its maximum is inde- 
pendent of too and is linearly proportional to ton. In the 
wavenumber domain, this is expressed by (20) in which the 
"correction factor" •/-2 is actually about 2. 

The requirement that the two branches of (19) meet at k = 
ku yields a relationship between the universal constants: 

•p '- •q•l 1/3 (21) 
Since the actual spectral shape (7) with/x = IJc(k/ko) is not 
known, and because the experimental data provide only the 
overall, effective exponent, we shall again estimate the 
apparent/x for the entire equilibrium range. A requirement 

that the composite spectrum (19) yield the same integrated 
energy and action as would follow from (7) with a constant/x 
yields two equations for/x and/3: 

BF(1 -/.6)f 4(1-/z) - F(2/3, 1/3 Jr- (4/3)•/3 (22) 

BF(5/4-/x)s eS(1-•) = F(11/12, 'r)f 11/3'r/1/3 -'1'- 'r/4 (23) 

where 

B = t3(f)/t3q r = (,//se) 2 (24) 

Here F(a, b) is the incomplete gamma function. In the 
derivation of (23) we used the dispersion relation to = (k#) 
to eliminate to from the spectral density of the wave action, 
N(k) = F(k)/to. The system (22) and (23) has a simple 
solution, B and Ix, derived in Appendix A. 

Functions B(0 and tt(O are plotted in Figure 10 for 
several values of •/. In Figure 11 we plot the result for the 
value •/= 0.75, which agrees best with the trends observed 
in Figures 8 and 9. Apparently, at • near 1, B(O can be 
approximated (through a least squares fit) by a power law 

sf -s (25) 

which allows one to compare the theoretical prediction with 
the empirical data of Donelan et al. [1985]. As can be seen 
from Figure 11, the agreement is quite good. Finally, we 
should emphasize that the wave-age-dependent /3 and Ix 
should be viewed as ad hoc parameters, a consequence of a 
decrease in the actual value of Ix(k/ko) with an increasing 
distance from the spectral peak. 

Apparently, within the appropriate range of the wave age 
values, the predicted trends are in reasonable agreement 



5256 GLAZMAN' SURFACE WAVES AT STEADY WIND 

Wind Vector 

310 320 330 

Wind Speed 
2O 

E •0 

• 5 
0 . , 

310 320 330 

Power Spectro Contour 

-.• •or• -- 

0.05 • •" 0.00 

310 320 330 

Wave Age 
lO 

8 

6 

4 

2 
o 

.310 320 330 

time, hr 

Figure 5. Example of an unsteady sea state. See caption for Figure 3. 

with the observations in Figures 8 and 9, while at too small 
and too large • these WTT-based predictions disagree with 
the observations. At low • the value of/x approaching zero 
can be explained by incorporating the Phillips range (equa- 
tion (6)) into the composite spectrum model. A dynamical 
model describing the transition from the weak turbulence 
regime to a regime of stronger nonlinear wave-wave inter- 
actions is offered by Glazman [1992]. The large values of/x 
approaching 1/2 at • >> 1 are interpreted in the next two 

I I 

I I 

-' .5 -1 -0.5 0 

Log(f) 

Figure 6. Typical shapes of statistically stationary wave 
spectra S(f) observed near the Hawaiian Islands. 

sections, along with their implications for air-sea interac- 
tions. 

5. Spatially Inhomogeneous Wave Field 
Conservation of the wave action flux in the inverse cas- 

cade is consistent with the traditional understanding of the 
local wind-wave equilibrium as attained as a result of energy 

• 40 

0 0.1 0.2 0.3 

f, Hz 

Figure 7. Empirical fit to the equilibrium range of wave 
spectra in the form of (5) for which the effective values of/x 
and /3 are calculated using (17). Solid curves are the ob- 
served wave spectra at wind speed 9 m/s and wave age 1.9 
(curve 1) and at wind speed 12 m/s and wave age 2.2 (curve 
2). The dashed curves are the empirical fit (equation (5)). 
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Figure 8. The apparent "fractal codimension" /z versus 
wave age • calculated from (17) and (18) for 629 spectra. 

dissipation at high wavenumbers. Indeed, according to the 
model of Zakharov and Zaslavskii [1982, 1983] (hereinafter 
referred to as Z-Z), the inverse energy cascade is zero;hence 
the entire energy flux from wind goes toward high wavenum- 
bers. (General discussion on the direction of spectral fluxes 
is given in chapter 3 of Zakharov et al. [1992].) In what 
follows we show that for a developed sea state, such a simple 
and attractive picture is inconsistent with both the observed 
wave spectra and the observed wave field evolution: the 
large values of/z and the high values of A, a, and c in the 
fetch laws (9)-(11) reported in Table 1 point to a nonconser- 
vative spectral flux of wave action accompanied by a con- 
siderable leak of energy to the low-wavenumber range. 

The Z-Z model for the spatial evolution of a wave field 
provided the first theoretical explanation of the power law 
(11). The spatial evolution of a statistically stationary wave 
field is due to an intrinsic anisotropy of wave spectra. It is 
well known that the two-dimensional wave spectra F(k) are 

ß [II ,I, ,l II II II ll ll Ill I lll II ll Ill I lll I III lll, ill i i 

0 ........ I ......... I ...... I I I I ......... I .... iii i i 
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Figure 9. The "generalized Phillips constant" /3 versus 
wave age • calculated from (17) and (18). 
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Figure 10. Analytical solution of (22) and (23) for three 
values of 9. Solid curves, • = 0.7; short-dashed curves, • = 
0.9; long-dashed curves, ,/= 0.8. 

characterized by a rather narrow angular distribution with 
the dominant wave propagation in the direction of the mean 
wind. Apparently, a preferential direction of wave propaga- 
tion should result in an advective flow of the wave energy 
and action. The transfer of the wave action spectral density, 
N = F(k)/•o, is described by 

V ß (cgN) + Vk' T(k) = p (26) 

where cg = 0•o/0k, Vk' T(k) is the interaction (collision) 
integral for gravity waves, and p is the source function for 
the spectral density of the wind input. Z-Z assumed that the 
advective term in the left-hand side has no appreciable effect 
on the shape of the wave spectrum, except for the value of 
k0. In other words, at k > k0 the wave action flux is 

1.1 

1.0 

0.9 

0.8 I I I 

0.5 1.0 1.5 2.0 2.5 

Wave age, 

Figure 11. Solution of (22) and (23) at • = 0.75 for B(O. 
The dashed curve is a regression curve approximating B(O 
by (25) for a range of s e from 0.9 to 1.2. This empirical fit, 
characterized by s • 0.5, agrees with Donelan et al.'s [1985] 
s • 0.55. 
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conserved: $ V k' T(k) dk = 0 and equation (3) remains 
approximately valid for most of the wavenumber range. 
Then integrating (26) over all wavenumbers yields a crude 
model for the wave field spatial evolution 

V. • caN dk = Pu (27) 
where P u -- J' p dk is the total input flux, which is cascaded 
toward low wavenumbers. Assuming no variations normal to 
the wind vector, the spatial evolution occurs only along the 
fetch x. Then substituting (7) with/2 = 1/3 into (27) yields an 
equation for the spectral peak wavenumber: 

0 apP u k -10/3 exp [-(ko/k) 2] dk Pu (28) 
Ox 2 

For a developed sea state, in which (14) holds, P u depends 
only on the mean wind' 

-2U4 Pu = err,# (29) 

where • is the ratio of the air and water densities and R e is 
the (constant) bulk coefficient of action transfer from wind to 
waves. Equation (29) can be obtained not only on dimen- 
sional grounds but also from a spectral model of wind input 
as shown in Appendix B. The nondimensional wind fetch is 
defined as 

œ = #x/U 2 (30) 

Using (8) and (29), an exact solution of (28) takes the form of 
equation (11) with [Zakharov and Zaslavskii, 1983] 

c = 3/14 C = [4(•Rt,)2/3/at, F(7/6)]3/14 (31) 
Expressions (9) and (10) for the nondimensional wave energy 
e are derived by substituting (7) with/2 = 1/3 into the integral 
(12) and using (11) and (31). Thus we arrive at 

a = 3/8 A = [at,(•Rt, ) 1/3F(2/3)/2]-a (32) 
Comparing the exponents a and c with the data in Table 1 

we find appreciable discrepancy with all experiments. 
Partly, this is because most of the observations in Table 1 are 
dominated by cases of moderately developed seas with • -< 
1. For such cases, the direct energy cascade dominates wave 
dynamics, and the assumption $ Vk ß T(k) dk = 0 must be 
replaced with the corresponding statement for the spectral 
energy flux: $ V& ß T(k)to dk = 0. However, an additional, 
more interesting, source of the discrepancy, as is suggested 
in the following sections, is due to the fact that the Kolmog- 
orov spectra (2) and (3) ignore the advective transfer of the 
wave action. Hence they would not be fully appropriate even 
if the inverse cascade did dominate the wave dynamics. 

In the absence of ambient currents and sea level varia- 

tions, the integrated energy balance, provided that the 
spectral energy flux in the direct cascade is (approximately) 
conserved, can be described by [Glazman and Srokosz, 
1991] 

V. f caF(k, x) dk = AQ (33) 
where A Q -- $ (q + + q-) dk is the net integrated input of 
the wave energy (wind input minus small-scale dissipation). 

Assuming AQ to be proportional to U 3, one arrives ulti- 
mately at 

Ox 2 • -- #3/2(U2/#)2tz •i k-7/2+2tx 
ß exp [-(ko/k) 2] dk = t•RqU 3 (34) 

where the general form (7) was used for the wave spectrum, 
and R q is the bulk coefficient of the net energy input. For the 
wind input, the form eR•U 3 is confirmed by empirical 
source functions (as shown in Appendix B), while the 
breaking wave dissipation term $ q - (k) dk oc U 3 is justified, 
for instance, by Phillips [1985]. In this formulation the 
integral energy balance is controlled both by the advective 
transfer due to the wave group velocity and by the growth of 
the dominant wavelength with fetch due to nonlinear wave- 
wave interactions. 

Integrating (34) over relatively short segments of x, over 
which Rq can be assumed constant [Glazman and Srokosz, 
1991], one finds the solution in the form (11) with 

c = 1/(5 - 4/2) C = [4eRq/13F(5/4 -/2)]c (35) 

Using (7), equations (9) and (12) yield 

a = 1/(4 - 4/2) 

For/2 = 1/4 this is 

A -- [/3 F(1 -/2)/2] -a (36) 

a = 1/3 A = (0.613/3) -1/3 (37) 

and equations (35) become 

c = 1/4 C = [4eRq/13] TM (38) 
Evidently, these values are closer to the data of Table 1 than 
are the values given by (31) and (32). 

Variations of the coefficients in Table 1 can be explained 
on the basis of (35) and (36) as a result of variations in the 
effective value of/2. In Figures 12 and 13 the data of Table 1 
are plotted as points on the planes {c, C} and {a, A}. To 
compare these with the predicted trends, we also plot 
functions C = fl(c) and A = f2(a) derived from (35) and (36) 
by eliminating /2. The values of parameters /3 and R q that 
provide the best fit to the experimental points are/3 • 3 x 
10 -3 and Rq • 4 x 10 -5. While this value of /3 is in 
agreement with the data, the coefficient R q is not known 
from direct measurements. In Appendix B the present esti- 
mate of R q is shown to be consistent with empirical data on 
the wind input spectral flux q +(to). The varying/2 required 
for the explanation of the observed trends is associated with 
a (relatively weak) dependence of/2 on s e as predicted in 
section 4. Hence the trends found in Table 1 are explained by 
the fact that different experiments covered different (al- 
though overlapping) ranges of the wave age. This was so not 
only because of the different wind fetch and wind speed 
ranges covered by different observations but also because of 
differences in atmospheric boundary layer stratification (in 
different regions and seasons), which affects the values, of R q 
and R e. Indeed, coefficients R q and R e can be included in 
the fetch to highlight their role as a scaling factor in equa- 
tions (28) and (34). 

In conclusion, let us note that the main results (35) and 
(36) can be further refined. Specifically, one can account for 
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Figure 12. Parameters in equation (11). The solid curve 
shows C as a function of c obtained by eliminating/x from 
equations (35). Numerical constants providing the best fit to the 
data points are /3 = 3 x 10 -3 , R• - 4 x 10 -5 . Diamonds 
denote experimental data from Tab]e-•. The diamond marked 
by "W" represents the data of Walsh et al. [1989], who claim 
to have observed the fully developed sea state. 

a possible effect of a wave-age-dependent /3 on the fetch 
laws' coefficients. Such a correction is relevant only for 
moderate sea states with • near 1. While allowing/3 to be a 
function of the wave age (and hence of the wind fetch x) in 
the left-hand side of (34), we do not have to worry about a 
corresponding refinement of the wind-wave interaction co- 
efficient in the right-hand side of this equation. Indeed, as is 
suggested at the end of section 2, the wind input can be 
treated approximately as being independent of the fetch. 
According to both the observed and the predicted trends 
(Figures 9 and 11), the range of • in which /3 experiences 
most of its variation ends at about • • 1.5. In this regime of 
moderately developed seas, /3 can be approximated by a 
power law (25) where s • 0.5 and S • 1. Then, equation (34) 
yields 

10 
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Figure 13. Parameters in equation (9). The solid curve 
shows A as a function of a obtained by eliminating/x from 
equations (36). Diamonds denote experimental data from 
Table 1. See also the caption for Figure 12. 
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Figure 14. Theoretical dependence of c and C on/x (equa- 
tion (35)). Note the range of 

c = 11(5 - 4ix - s) C = [4eRq/13or(5/4 -/x)] c (39) 

and in place of (36) we obtain 

a = 1/(4 - 4/x - s) A = [/3oF(1 -/x)/2] -a (40) 

6. Effect of Energy and Action Advection 
on the Spectral Shape 

Evidently, the simple theory presented above explains 
many features of the wave field spatial evolution. However, 
the assumption that the term V ß (caE) in the energy transfer 
equation (or term V. (caN) in (26)) has no influence on/x is 
not always justified. Indeed, the values of/x yielding best 
agreement with the data are generally greater than those 
obtained with Kolmogorov-type spectra. In Figure 14 we 
plot c and C, given by (35), versus/x in order to show that 
the range of/x implicit in Figures 12 and 13 overlaps but does 
not coincide with that based on the purely inertial spectra (2) 
and (3). This is also evident from our direct observations 
(Figure 8). Greater values of/x called for by these compari- 
sons can be explained as follows. 

The group velocity term in (26) (and a similar term in the 
spectral energy balance) describes a loss of wave action 
(energy) from a given spectral band due to the advective 
transport. The effect is stronger at lower frequencies for 
which c a is greater. Therefore the lower-frequency spectral 
components lose wave action (energy) at a faster rate than 
do the higher-frequency components. This should lead to a 
flattening of the spectral density function and hence to an 
increase of the apparent/x. Let us assess the effectiveness of 
this mechanism. 

The characteristic time t c associated with the action (or 
energy) advective transfer is found by scaling the advective 
term in the transfer equation (26). This yields 

t• -• oo/2kx, (41) 

where x. is the characteristic spatial scale of the problem, 
which we associate with the wind fetch. The characteristic 

time for the action (or energy) spectral transfer due to 



5260 GLAZMAN: SURFACE WAVES AT STEADY WIND 

nonlinear wave-wave interactions in the resonant wave 

tetrads is given by [e.g., Kitaigorodskii, 1983] 

t• -1 --- oo(ak) 4 (42) 

where ak is the steepness of the wavelets on the scale k. The 
ratio 

tc/t n --- 2(ak) 4kx, (43) 

provides a measure of the relative importance of the nonlin- 
ear four-wave resonant interactions as compared to the 
advective transfer. The wave steepness is higher at high 
wavenumbers than at low wavenumbers owing to the statis- 
tical self-affinity of the wave profiles [Glazman and Weich- 
man, 1989]. Hence the dynamics of short gravity waves is 
strongly affected by the collision integral, while the advec- 
tive transfer can be disregarded. Provided that x, is suffi- 
ciently large, the advective transfer can be neglected also for 
longer waves. The wave-wave interaction process is slow for 
these waves; hence they will receive input from shorter 
waves (through the inverse cascade) at a very low rate. At 
wavenumbers of the order of II/U 2 i.e. below the genera- 
tion range, (43) is estimated as 23,4•. Therefore with the 
characteristic wave slope variance 3, 2 of these waves of the 
order of 10 -3 , it would take • --- 10 6 to maintain this spectral 
range at equilibrium with a given wind through the spectral 
cascade mechanism. This is why such an equilibrium is a 
highly nonlocal process. At the wavenumbers at which (43) 
is of the order of unity, the wave spectrum is controlled by 
both the nonlinear wave-wave interactions and the advective 

transfer. For this range, the Kolmogorov spectra (2) and (3) 
become inappropriate. 

7. Conclusions 

We found that for a wide range of sea development stages, 
the observed spatial evolution of a stationary wave field can 
be approximately described by fetch laws (9)-(11) in which 
the parameters are not constant but vary as functions of sea 
maturity. Consistent with these variations, the effective 
exponent, -p, for the equilibrium range of the wave spec- 
trum, $(•o) --- •o -•' , is found to exhibit a growth from -5 to 
about -3. For a limited range of wave age values, the 
dependence of p on • (expressed in terms of 
discovered in the experimental data is confirmed by the 
theoretical predictions based on the energy and action 
transfer equations. Empirical dependence of the Phillips 
constant/3 on the wave age shown in Figure 9 is consistent 
with the previous findings and (for a limited range of • is also 
explained in the WTT framework. Simple analytical formu- 
lae presented in sections 4 and 5 and the appendices allow 
one to express parameters of the fetch laws and wave 
spectrum in terms of "external" factors, such as wind 
speed, wind fetch, and the energy transfer coefficient C q. 

Results of sections 3 and 5 also demonstrate that the 

dependence of tz and /3 on • is a consequence of artificial 
approximations of the actual spectrum by a power law with 
a single exponent. In reality, the spectral "exponent" is a 
monotonically decreasing function of the wavenumber and 
frequency. Furthermore, a majority of open ocean observa- 
tions yield wave age values and spectral exponents that 
disagree with the "fully developed sea" spectrum. The 
limiting shape and wave age for well developed seas are still 

unknown, although we found that wave age values as high as 
3 are rather common to open ocean waves at equilibrium 
with a constant wind. At a large wave age (• -> 2), when ta 
tends to 1/2, the present theoretical understanding of non- 
linear wave dynamics is insufficient. Analysis of these re- 
sults presented in section 6 leads us to the following conclu- 
sions. 

While WTT (even in its present "naive" form) explains, at 
least qualitatively, many phenomena of wind-generated 
waves, a number of important issues remain open. These 
include the limiting shape of the wave spectrum as the fetch 
tends to infinity and the relationship between the angular 
width of the spectrum and the wave age (or, the nondimen- 
sional wind fetch). Anisotropy of the wave field plays a 
special role. By providing the necessary condition for the 
advective transfer of energy in the direction of the dominant 
wave propagation, it modifies the energy balance. In place of 
a purely inertial inverse cascade of the wave action with a 
zero spectral flux of energy (as follows from WTT for an 
isotropic steady state wave field [Zakharov et al., 1992]), a 
nonconservative energy flux to the low-wavenumber range 
becomes possible. Ultimately, the energy is advected away 
from the wave generation region. One consequence is that 
the local dissipation by breaking waves and molecular vis- 
cosity acting at high frequencies is not the only, and proba- 
bly not even a major, mechanism of energy loss. Indeed, the 
bulk coefficient R q for the net energy input (wind input 
minus high-frequency dissipation), estimated indirectly in 
section 5, does not appear to be noticeably smaller than the 
coefficient R • for the wind input alone, estimated in Appen- 
dix B. Other, essentially nonlocal, mechanisms (wave inter- 
actions with internal waves, Langmuir circulation, mesos- 
cale eddies, ocean currents, etc.) may be equally or even 
more important for the energy extraction from the wave 
field. Accounting for such mechanisms requires inclusion in 
the momentum transfer equation of terms like pt/(d + h) X7h, 
where h is an averaged (over the dominant wave cycle) 
surface height and d may be the depth of the upper mixed 
layer. In the energy transfer equation, the terms like X7(FU) 
and S(k):X7U, where S(k) is the spectral density of the excess 
momentum flux tensor (including the radiation stress tensor) 
and U is the velocity field associated with ambient and 
wave-induced currents, are required [Phillips, 1977, chapter 
3.6]. Depending on the nature of the "large-scale" fields h 
and U, various coupled problems can be studied to identify 
effective mechanisms of wind-wave equilibrium. The ability 
of a wave field to induce larger-scale motions may have 
important implications for ocean-atmosphere coupling. The 
inclusion of an appropriate mechanism of low-frequency 
dissipation might also resolve the controversy related with 
the FDS concept. 

Appendix A: Solution of (22) and (23) 
Dividing (23) by (22), multiplying the result by •, and 

denoting the fight-hand side of the resultant equation by •(•, 
•), we have the following transcendental equation for ta: 

F(5/4- tz)/F(1 - tz)= •(•, •7) (A1) 

The left-hand side can be simplified by expanding it in Taylor 
series about ta = 0 and neglecting terms higher than ta 2. 
Alternatively, one can fit a quadratic polynomial to this 
function to find 
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2 
F(5/4 - g)/F(1 - g) • 0.9058 - 0.3022g - 0.2295g 

(A2) 

Then the solution of (22) and (23) is found in a closed form as 

/• • -0.6584 + (4.3801 - •(s •, •/)/0.22951) 1/2 (A3) 

Once/x has been found, B(O can be obtained directly from 
either (22) or (23). 

Appendix B' Empirical Data on R• 
+ 

Experimentalists usually measure the spectral density q 
of the energy flux from wind to waves and denote it by Sin. 
Unfortunately, such measurements, conducted in coastal 
regions, are available only for poorly developed sea states 
(wave age well under 1). Let us employ first an empirical 
form of Sin(tO) due to Snyder et al. [1981] and compare its 
integrated value with the net integrated energy flux Q in (34). 
Thus we use 

Sin = H(Uto/g- 1)eCqto(Uto/g- 1)gF(k) (B1) 

where H( ) is the unit step function and Cq • 0.25. 
Replacing to with (kg)•/2 and using (7), the integration over 
all wavenumbers yields 

Qin = • Sin dk- eR;U 3 
where the bulk coefficient of the wind energy input is 

Rq =/3Cq[(1 - 2•)(3 -4•)] 1 

(B2) 

(B3) 

At the low degree of wave development characterizing 
Snyder et al.'s [1981] observations, the appropriate value of 
g is near zero and/3 • 10 -2. Therefore R• - 10-3 which 
is much greater than the value of R q predicted in section 5. 
Apparently, under such conditions, the high-frequency- 
dissipation component of R q is very important. The Snyder 
et al. [1981] observations were conducted in the Bay of 
Abaco with the local depth of 9 m and wind fetch within 10 
km. Under such conditions the waves are generally steeper 
than those in a developed sea, which explains why these 
observations show large input flux. 

In the observations by Hsiao and Shemdin [1983] in the 
North Sea the wave field was more mature and the corre- 

sponding empirical source function was found to be 

Sin = H(Uto/t7- 1)eCqto(Uto/t7- 1)2t7F(k) (B4) 

where the empirical coefficient Cq is 0.12. The local depth, 
18 m, in this experiment was still insufficient, although the 
fetch was greater than that in Snyder et al.'s [1981] experi- 
ments. Al-Zanaidi and Hui [1984] used (B4); however they 

found that the appropriate value of Cq varies between 0.04 
and 0.06. It can be shown also that the empirical data 
summarized by Plant [1982] are equivalent to Cq • 0.03. 
Phillips [1985] demonstrated that Cq of this magnitude is 
consistent with certain other semiempirical constants char- 
acterizing wind-wave interactions, whereas larger values 
would lead to considerable discrepancy. 

Recently, an exact regime of tetrad wave-wave interaction 
in the direct energy cascade, given wind input (B4), was 
established theoretically [Glazman, 1992]. The maximum 

value of C q compatible with this regime follows from equa- 
tion (6.12) of Glazman [1992]' 

Cq =/3 2/• (B5) 
With e • 10 -3 and/3 • 5 x 10 -3 as found from Figure 9 

at s e • 1, we estimate C q • 2.5 x 10 -2. This small value 
lends further credibility to the suggestion that for deep-water 
waves considered in the present work, the correct values of 
Cq lie in the range 0.02-0.04, yielding R • • R q of section 5. 
In other words, the negative (high-frequency dissipation) 
component of the net integrated energy flux AQ in (33) 
seems to be negligible in comparison with the integrated 
wind input flux. 
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