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Statistical Characterization of Sea Surface Geometry for a 
Wave Slope Field Discontinuous in the Mean Square 

ROMAN E. GLAZMAN 1 

Graduate School of Oceanography, University of Rhode Island, Kingston 

Statistics of two dimensional wave groups, of steep wave events, and of a cascade pattern manifested in 
the surface geometry in a developed sea state are derived. However, mathematical theories used to 
parameterize these as well as many other features of random surfaces have very limited ranges of validity. 
For example, high-order moments of wave spectra appearing in the calculations of wave slope statistics 
cannot be evaluated because of divergence of the corresponding integrals. In the present paper the 
restrictions are reviewed and the difficulties are shown to be due to a pseudo-fractal geometry of the sea 
surface whose spectrum is known only within a limited range of frequency (characterized by either the 
resolution of a measuring technique or the constraints of a theoretical model). An approach is presented 
that solves the problem: treating the surface elevation field as specified on a spatial (temporal) running 
grid, an averaging procedure is developed employing the Ta_ylor microscale as the mesh size. The 
technique is illustrated by first exposing errors in direct calculations of the effective surface impedance for 
a coherently reflected L band radio wave. The errors arise from the use of wave spectra whose high- 
frequency tail is identified with the Phillips saturation range. The technique is then employed in the study 
of wave groups and steep waves for a Gaussian, two-dimensional, time-varying surface. In particular, it is 
found that wave groups are not observable in a developed sea. Finally, the theory is applied to estimating 
breaking wave statistics. A comparison with field observations is presented. 

1. INTRODUCTION 

A number of statistical characteristics of the rough sea sur- 
face have been studied by Longuet-Higgins [-1957, 1962']. 
Many new results on the geometry of random fields have been 
obtained in recent years [-Nosko, 1969; Belyaev, 1970; Belyaev 
and Nosko, 1974; Adler, 1981; Fanmarcke, 1983]. Some of 
these results appear to be useful in various geophysical appli- 
cations and particularly in wave studies, remote sensing, and 
acoustics. The present work uses recent achievements of 
random field theory to study geometrical features of a two- 
dimensional, moving sea surface. Among our goals is the de- 
velopment of statistical theories for wave group and wave 
slope (surface's vertical acceleration) fields. This development 
requires generalization of certain results available in the 
theory of random fields. We also provide instructive interpre- 
tation of many mathematical relationships, emphasizing their 
physical meaning. 

So far, most results of random field theory remained largely 
unemployed despite their high practical value. This is so 
partly because many important characteristics are expressed 
via spectral moments Mi 

;o © Mi = S(co)co i do (1) 

Starting from some i, this integral will not converge unless the 
spectrum S(co) decays sufficiently fast. For example, all spectral 
moments of order i>_ 4 diverge in the case of wave spectra 
with Phillips' equilibrium range. Wave spectra with a less 
rapid decay in the high-frequency range, e.g., the spectrum 
•,,co -4 proposed by Zakharov and Filonenko [-1966] (also 
Toba [19733, Kawai et al. [1977], and Phillips [1985]) yield 

•Permanently at Jet Propulsion Laboratory, California Institute of 
Technology, Pasadena. 

Copyright 1986 by the American Geophysical Union. 

Paper number 6C0071. 
0148-0227/86/006C-0071 $05.00 

infinite spectral moments starting from i = 3. Moments L i de- 
fined with respect to two-dimensional, spatial spectra diverge 
at even smaller i. Some of the difficulties have recently been 
resolved by redefining several statistical characteristics of the 
sea surface so as to avoid diverging integrals [Longuet- 
Higgins, 1983, 1984]. However, this approach does not help 
when the high-order moments constitute an essential feature 
of the problem. Examples are given by problems of acoustic 
wave and radio wave reflection from a random sea surface 

treated in the so-called stochastic Fourier transform approach 
[Brown, 1982, 1985], where the mean square continuity of the 
surface slope V• and of higher-order derivative fields Vn• is an 
essential requirement. Another example is the parame- 
terization of breaking wave statistics, when values of Mi have 
to be found for i from 4 [Snyder and Kennedy, 1983; Ochi and 
Tsai, 1983] up to 8 [Glazman, 1985]. Usual means of handling 
problems involving high-order spectral moments include the 
use of a frequency cutoff in which the upper limit in (1) is 
replaced with some finite value. However, such a treatment 
has serious theoretical deficiencies and leads to inconsistent 

quantitative results. 
One of the goals of the present work is to develop a general 

approach to problems involving spectral moments so as to 
make results of random field theory accessible for use in prac- 
tical applications and particularly in wave studies. In what 
follows we present a systematic view of the spectral moment 
problem, highlight its physical meaning, and show its relation- 
ship with the theory of random fields. This is done in sections 
2 and 3. A solution of the problem that is appropriate to the 
case of wind-generated surface waves is suggested in sections 4 
and 5. The standpoint assumed in the present work, and orig- 
inally proposed by Vanmarcke [1983] in the context of 
random field theory, relates the divergence of integrals like 
equation (1) to the fact that actual, either theoretical or experi- 
mental, spectra are fundamentally inadequate in the high- 
frequency domain and require low-pass filtering. The filtering 
technique developed in sections 4 and 5 generalizes the Van- 
marcke approach to be applicable in the case of arbitrary 
order derivatives of a random field. Estimates of "filtered" 
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spectral moments and spectral width measures are given in 
section 6 for the case of wave spectra characterized by the 
Phillips equilibrium range. 

As an illustration of the inadequacy of the "raw" spectra, we 
investigate errors in the coherent reflection coefficient for ver- 
tically polarized L band radio waves, which arise when an 
unfiltered wave spectrum is employed, in section 7. Further 
applications of the filtering technique are presented (as a vital 
part of the theoretical development) when deriving statistical 
characteristics of the spatial and temporal variations of the 
wave envelope (section 8 and Appendix A) and wave slope 
(section 9 and Appendix B) fields. The present theory of the 
envelope statistics represents an extension to a spatial case of 
the corresponding one-dimensional theory developed by 
Longuet-Higgins [1957, 1962, 1984] (who also stressed 
I-Longuet-Higgins, 1984] the necessity of low-pass filtering in 
studies of wave groups, although on different grounds). 

The wave envelope and wave slope statistics are important 
in connection with mathematical modeling of breaking wave 
occurrence. A sample prediction of steep wave rates is present- 
ed and compared with field observations in section 9. 

The consideration of the wave slope field allows one to 
expose a fractal pattern appearing in the sea surface when 
similarity laws like the Phillips saturation spectrum are em- 
ployed without due regard for their applicability range. Thus 
in section 9 we also consider a cascade nature of sea surface 

geometry and illustrate the notions of the mean square differ- 
entiability and continuity of random fields by direct calcula- 
tions. 

Finally, in appendices A and B a simple interpretation of 
certain mathematical relationships appearing in modern 
theory of random fields is presented to facilitate their use and 
highlight their physical meaning. 

2. COVARIANCE FUNCTIONS AND MEAN SQUARE 
CONTINUITY 

In order to facilitate the subsequent analysis, some basic 
relationships are summarized in this section. For details the 
reader is referred to Monin and Yaglom [1975], Kinsman 
[1965], Phillips [1977], Adler [1981], Rytov [1976], and Rytov 
et al. ['1978]. 

The surface is considered to be statistically stationary and 
homogeneous, which permits presenting it as (the real part of) 
the Fourier-Stieltjes integral: 

c(r, ,) = f f f exp •i(tot + kr)] dZ (to, k) (2) 
R3 

where the vertical displacement • is reckoned from the zero- 
valued mean level z = 0; to and k designate the temporal fre- 
quency and the spatial wave number vector, respectively, for 
wave components with orthogonal (complex) amplitude in- 
crements dZ. Vector r = (x•, x2) fixes a position on the plane 
z = 0. The integration in the three-dimensional space R 3 
implies that to and (k•, k2) vary from -c• to + c•. Properties 
of dZ can be described by the following symbolic formula: 

quantities introduced possess an imaginary part.) The angular 
brackets denote an operator of ensemble averaging, 6( ) is a 
three-dimensional Dirac delta function, A is a vector with 
components to, k•, k2; and W(A) is a (real) three-dimensional 
spectral density function related to one- and two-dimensional 
spectra by 

•to) = ;f W(to, k) dk (4a) 
X(k) = • W(to, k) dto (4b) 

Where not indicated otherwise, the limits of integration are 
infinite. 

Employing (2) through (4), one can relate the (complex) co- 
variance functions U and W to the one- and two-dimensional 

wave spectra: 

U•(z) = (•(r, t)•*(r, t + z)) = f exp (ito0q•(to) dto (5a) 
W•(p) = (•(r, t)•*(r + p, t)) = ff exp (ikp)X(k) dk (5b) 
Furthermore, differentiating (2) and its complex conjugate 
with respect to either time or space coordinates, one finds 
covariance functions for the field's derivatives. In particular, 
the covariance function of the wave slope field becomes 

Wv•(p) = (V•(r, t)V•*(r + p, t)) 

= f• k2X(k) exp (ikp) dk = -AW•(p) (6) 
where A = V ß V. Similar calculation leads to a generalization 

Wv<(p ) = ff k2nX(k) exp (ikp) dk = (- 1)nAnW•(p) (7a) 
For time derivatives we have 

U•½n,(•;) -- f to2n(I)(to) exp (itoz) dto = (- 1)n•2nu•(•;)/•; 2n (7b) 
Here •(n) denotes an nth-order time derivative of •, and the 
subscripts in (5)-(7) point at a field with respect to which a 
given covariance function is defined. 

Owing to the statistical stationarity and homogeneity of •, 

Ww•(p)=fo•fo•k2nG•(k)exp(ikp)dk (8a) 
Io © U•½nl(T) = to2ns•(to) exp (ito'c) dto (8b) 

and for standard deviations we have 

2 k2nG<(k) dk = (-l) n lim AnW•(p) -- L<.2n (9a) 

(dZ (A,,) dZ* (At,)) = J(A,, - At,)W(A,,) dA,, dAt, (3) 

in which the asterisk denotes a complex conjugate quantity. 
(The usefulness of extending the surface displacement field 
onto the complex plane is realized mainly when deriving sta- 
tistics of the wave envelope (see section 8 and Appendix A). 
Until then the reader may ignore the fact that some of the 

O'•(n) 2 --' to2ns•(to) dto = (- 1)n lim 02nu•(T)/OT 2n = m•,2n (9b) 
r-q.O 

Here Mc,i is a spectral moment defined with respect to a "one- 
sided" spectral density function So(to) = 2•(to), where subscript 
• denotes the field whose spectrum is implied. Lc,i is a similar 
property for a one-sided two-dimensional spatial spectrum 
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Fig. 1. (a) The surface elevation profile •(x). (b) The surface's deriva- 
tive profile Y(x) - c•U3x. 

Gc(k•, k2) = 4X(k•, k2) of •(x•, x2; t). Both So(co) and Gc(k•, k2) 
are assumed to be zero for negative values of their arguments. 

If improper integrals in (9) are finite, then so are the inte- 
grals in (8), and as is shown by (9), the finite spectral moments 
guarantee the existence of mean square derivatives (i.e., a with 
appropriate subscripts) of a random field. The mean square 
differentiability of a random field ensures continuity, in the 
mean square sense, of a field obtained by differentiating. The 
mean square continuity, in turn, is necessary for the existence 
of the Fourier-Stieltjes representation for the derivative field. 
If, for instance, L;, 2 is infinite, the wave slope field V• has 
neither representation in the form of (2) nor continuous spec- 
trum density functions of the type given by (4). 

Let m be the dimension of a spectrum defined for field •, 
and let n be the order of •'s derivative. Then the rate of decay 
of the spectrum as A • c• (A is the m-dimensional generalized 
frequency) must be greater than A -2n-m to ensure the mean 
square continuity of the nth-order derivative field. Particu- 
larly, for (l¾•l 2) to exist, G½(k) must decay faster than k -'• as 
k--• c•, and for <l•"U&"12> to exist, S<(co) must decay faster 
than co- 5. 

Concluding this summary, we relate a one-dimensional fre- 
quency spectrum with a two-dimensional wave vector spec- 
trum. From (4) it follows that 

•O(co) dco=•;X(k)dk=;o•kdkfo'•/2G(k,•) d• 

where k is presented in polar coordinates, and a dispersion 
relation k = k(co) is assumed to exist. Equation (10) means that 

So(co) = k(co) dk/dco G(k(co), O) dO (11) 

In many applications, G(k, 0) is approximated by a product of 
a directionality factor ¾(O) and a wave number modulus 
factor z(k). The commonly used, although not very accurate, 
form of ¾(O) is given by 

¾(O) = (4/•) cos20 for 0 _< O _< •/2 
(12) 

¾(O) = 0 otherwise 

thus allowing one to obtain rough estimates of many statis- 
tical properties of surface geometry when only S•(co) is known. 
The scaling coefficient in (12) assures $0 

3. ILL-POSED PROBLEMS OF SEA SURFACE STATISTICAL 

GEOMETRY 

Starting from some frequency value, any wave spectrum, 
either theoretical or experimental, becomes invalid. An illus- 
tration is provided by common spectral models whose high- 
frequency tail is identified with Phillips' equilibrium range. 

In the course of reaching an equilibrium, the spectrum 
width increases, and the surface ceases to be a well-behaved 
function with finite high-order derivatives. A limiting shape of 
the sea surface corresponding to the energy supply-dissipation 
equilibrium is characterized by sharp crests whose local curva- 
ture radii tend to zero (Figure 1). Such crests are ubiquitous 
(see section 9), and the resulting discontinuity (in the mean 
square sense) of the wave slope field represents a basic proper- 
ty of the developed sea. Kitaigorodskii et al. [1975] even take 
this property as a starting point for deriving one-dimensional 
frequency spectra corresponding to particular types of disper- 
sion relationships. Hence (in order to violate the mean square 
differentiability conditions of section 2) the spatial spectrum of 
a developed sea must fall off' at large wave numbers at least as 
slowly as k -'• (a law originally obtained on dimensional 
grounds [Phillips, 1958]). 

Though appropriate for gravity waves, a k -'• spectrum is 
not realistic at very high wave numbers. For instance, infi- 
nitely small radii of curvature at wave crests are unrealistic 
because they require an infinitely large capillary pressure. 
Being interested in large-scale features, one is reluctant to 
complicate a spec,trum model by adding capillary-gravity, vis- 
cocapillary and other higher-frequency subranges. The fact 
that (5)-(9) call for such information, even for rather small n, 
means that the problems of statistical geometry have to be 
treated as ill-posed problems whose solution is unstable with 
respect to small perturbations in input data. This statement 
can be readily formalized by substituting into equation (9b) 
S.(co) = So(co) + 6S(co), where S. is the spectrum actually avail- 
able, So is the "true" spectrum, and tSS(co) is the error which, 
unlike So(co), does not necessarily decrease as the frequency 
increases. Therefore the inadequacy of actual spectra at high 
frequencies in conjunction with a high sensitivity of the inte- 
grals in (5)-(9) to the high-frequency content of wave spectra 
necessitate special treatment. 

One approach, that of Vanrnarcke [1983], reduces to em- 
ploying a low-pass filter, (22) or (14), which suppresses small- 
scale oscillations, thereby making the result of integration in- 
dependent of the indetermina•te component. A different ap- 
proach was undertaken by Belyaev and Piterbarg [1972], who 
studied overshoot statistics for a random field that does not 

. 

satisfy the mean square diff.erentiability requirement. The re- 
sulting infinitely large local density of overshoot events was 
forced by these authors to become finite by introducing a 
procedure that in effect combines a cluster of multiple over- 
shoots into a single isolated event. Another approach was 
formulated by Adler [1981], who treated "erraticism" of 
random fields by employing the Hausdorff. ("fractal" in Man- 
delbrot's [1982] terminology) dimension concept. 

The approach proposed in the present work extends the 
filtering technique to arbitrary order derivatives by treating 
the surface elevation field as specified on a spatial (temporal) 
running grid. A mesh size, entering the calculations, represents 
a "yardstick" (Mandelbrot's term) that makes the statistical 
description consistent in terms of limitations of the (physical) 
theory that has yielded a given (spectral) model of sea waves. 
This yardstick is determined as an intrinsic property of a given 
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theoretical model of sea waves. It characterizes a high- 
frequency bound of the model's validity. 

4. PARTIAL AVERAGING AND SPECTRAL MOMENTS 

The use of filters, including the "perfect" filter given by (14) 
and (22), in obtaining spectrum estimates has a long history 
[e.g., Tukey, !959]. However, until Vanmarcke's [1983] work 
the filtering was not used as a means for dealing with mean 
square nondifferentiability of random fields. We shall call the 
procedure of applying a loW'Pass filter "partial averaging", 
thereby emphasizing that the wave field for which a model 
spectrum is available is viewed as a macroscale component • 
of the actual field' 

•=•+•' (•3) 

4.1. Spatial Averaging 

Suppose we have a two-dimensional spectrum X(k) as the 
model of a random field. The macroscale component is de- 
fined as 

•(xx, x2; t) = (1/AxA2) f l •(Xx', X2'; t) dxx' dx2' (14) 
•Xl,X2 

Field •' will be referred to as microscale. Surface area •x•.x2 
represents a running rectangular window with coordinates (x• 
+_ A•/2, x2 _ A2/2), where A•, with i = 1, 2, are such that all 

spectral components with wave numbers k• < 2•r/A• pertain to 
the large-scale field whose spectral model X(k) is specified. 
Substituting (2) into (14), one derives a Fourier-Stieltjes repre- 
sentation for the averaged field' 

t) 

= •;f V(k•AOV(k2A2) exp [i(•ot + kr)] dZ (co, k) (15) 
where 

V(a) = sin (a/2)/(a/2) (16) 

The calculations that previously led to (5) now yield 

U•(•) = (•(r, t)(*(r, t + •)) 

= fexp (icoz)dco f•tP(to, k)V2(k•A•)V2(k2A2)dk (17) 
[•/•(p) -- ;;f tP(o), k)V2(k•A•)V2(k2A2) exp (ikp) ak am 
In (18) and below, an overbar signifies that the quantity per- 
tains to the macroscopic field. Defining the macroscopic spec- 
tra by 

X(k) = X(k)V2(k•A•)V2(k2A2) (19a) 

Ul)(o9) = f• tP(o9, k)V2(k•AOV2(k2A2) dk (19b) 
it is easy to show that they are related to the corresponding 
covariance functions by the Wiener-Khinchine relationships, 
and an equation analogous to (4) holds 

= f f k) dk (20a) 
where 

oF(to, k) = tP(to, k)V2(k•A•)V2(k2A2) (200) 

Macroscopic analogs of (10) and (11) also follow in a straight- 
forward way: all spectral functions simply acquire a bar. In 
particular, one finds 

- G(k, O)V2(k•A•)V2(k2A2) dO 

= k • G-(k, 6})dO (21) 
However, derivation of macroscopic analogs for (7)-(9) re- 
quires additional effort. This will be described later in this 
section, when we introduce the finite difference representation 
of a field's derivatives. 

Obviously, the function V given by (16) has only a small 
effect on the macroscale, energy-containing portion of the 
spectra. However, when k•A• >> 2, spectrum G falls off as 
G(k)k -'•. Hence the contribution of the high-frequency portion 
becomes unimportant, and moments of wave number spec- 
trum G(k) exist up to order (n + 3), where n = 4 in the case of 
the Phillips spectrum. This makes possible estimation of spa- 
tial covariance functions for the wave slope ¾• and the surface 
"curvature" A• fields. The question arises as to the higher- 
order moments' existence. Intuitively one may anticipate that 
the spectral moments of a smoothed field should remain finite 
to an arbitrary order. This, however, is not confirmed by 
straightforward computations using (19a). Later in this section 
we shall clarify this important matter by constructing a gener- 
al method of partial averaging. 

4.2. Time Averaging and High-Order 
Spectral Moments 

In many applications the wave statistics are expressed via 
one-dimensional frequency spectra because such spectra are 
best studied. Let us present the procedure for the evaluation of 
arbitrary order spectral moments for this particular case. 
However, this development can be readily extended to higher- 
dimension fields. For the sake of convenience we continue 

denoting the macroscopic quantities by an overbar, though a 
new notation ought to be introduced to distinguish time- 
averaged quantities from the space-averaged ones. 

The one-dimensional version of (15) and (17) is derived by 
using time averaging 

t+ T/2 

•(t) = (l/T) y C(t') dr' 
t- T/2 

(22) 

along with a one-dimensional version of (2) and (3). The final 
results are 

•(t) = f V(coT) exp (loot) dZ (co) (23) 
[7•(r) -- f V2(coT) exp (icor)(I)(ro) dco (24) 

Obviously, the one-dimensional macroscopic spectrum must 
be defined as 

U:I)(ro) = (I)(ro) V2(co T) = «S•(co) V2((D T) (25) 

in order to satisfy the Wiener-Khinchine relationships. One 
can readily prove the existence of macroscopic analogs for (4) 
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and (10)-(12), wherein the time-averaged version of the three- 
dimensional spectrum is now 

cp(co, k) = W(co, k)V2(coT) (26) 

The first five moments of a wave spectrum characterized by 
the Phillips equilibrium range (co-5), averaged in accord with 
equation (25), can be easily computed' 

Io © J•r½, i = V2(co T)coiS•(co) dw (27) 

The sixth-order moment computed in such a straightforward 
way tends to infinity. However, as was noted by Glazman 
[1985], direct application of (27) for i _> 4 is inconsistent with 
the essence of the partial averaging. Let us, recalling (9), 
obtain even order spectral moments as Variances of the • de- 
rivatives. Apparently (Leibnitz's rule), the definition of the 
averaging process (equation (22)) is equivalent to 

1 

O•lOt = y [•(t + TI2) - •(t - T/2)] (28) 
In other words, the derivative of the averaged process is relat- 
ed to variation over a finite time period T. For this reason, for 
example, an equation 

does not represent the second-order derivative of the averaged 
process, for it involves derivatives OUOt which carry infor- 
mation about the variations of the (unfiltered) process •(t) over 
an infinitesimal time interval. A consistent definition of the 
second-order derivative of the averaged process is 

= T-2[•(t + T)- 2•(t) + •(t- T)] (30) 

Thus we in effect explicitly introduce a (temporal) "yardstick" 
and discard all oscillations with time scales under T. 

The Fourier-Stieltjes representation of the derivatives can 
now be obtained using the finite-difference formulae, equa- 
tions (28), (30), etc. After a little algebra, one arrives at 

OOOt = i f co exp (icot)V(coT) dZ (co) (31a) 
0200t 2 = __• co2 exp (icot)V2(coT) dZ (co) (3lb) 

And in general, 

O'•/Ot' = i' f co' exp (icot)V'(coT) dZ (co) (31c) 
Using (3) and (31), the macroscopic analogs of (7b), (8b), and 
(9b) can now be obtained for all n > 1. Specifically, 

- (n) ,(n) Uc,,( 0 = (• (t)• (t + •)) 

= • co2nV2n(wT)4•(co) exp (icor) dco (32) 
A macroscopic analog of (9b) yields 

;0 © 1•,2n = o02nv2n(coT)S•(co) dco (33) 

Hence the variances ae•, 2 = •c.2n of the macroscopic field de- 
rivatives differ in the power of the averaging function V. It is 
easy to see that the even order moments given by (33) exist for 
all n provided that the spectrum Sc decays faster than w-•. 
Therefore the ultimate limitation imposed on the • field is the 
requirement of its continuity in the mean square sense. 

We define odd order moments, to be consistent with (32), as 

(34) 

where 

S'•,,,(co) = V2•(coT)Sc,,,(co) (35) 

is the macroscopic spectrum of the n-order derivative process. 
Unlike M2•, the odd order moments cannot be presented as 
statistical properties of linear transforms of a random process. 
They emerge only when nonlinear transformations (e.g., a 
wave envelope) are introduced. 

In a similar manner, the averaging procedure can be ex- 
tended to two-dimensional quantities to obtain spectral mo- 
ments of G•(k). Apparently, the finite difference representation 
of a random field (equation (30) and the like) provides a con- 
venient formalism generalizing the "running" average (equa- 
tions (14) and (22)). 

Having shown that the fundamental relationships of section 
2 hold for macroscopic spectra as well, we can employ (4) 
through (12) in the subsequent development. 

5. INTRINSIC MICROSCALES 

In some applications the averaging scales are clearly indi- 
cated by the problem under consideration. For instance, 
studying acoustic wave or radio wave reflection in the frame- 
work of a two-scale model [Kur'yanov, 1962], one separates 
large-scale surface features • from small-scale roughness •' on 
the basis of the acoustic wavelength or radio wavelength and 
incidence angle. The values of Ai may then be related to the 
axes of the first-order Fresnel zone on the mean surface or in 

some other fashion [e.g., Bahar et al. [1983]). 
As was noted in section 3, actual wave spectra become inad- 

equate in the high-frequency domain. A question arises as to 
the limitin g frequency value (2n/T), characterizing an individ- 
ual spectrum, beyond which the inadequate spectral infor- 
mation is to be discarded. Specifically, one is tempted to select 
T (or Ai) as corresponding to a low-frequency boundary of an 
additional range spanning frequencies higher than those under 
primary consideration. For instance, being interested in wind- 
generated gravity waves, one tends to relate T to a character• 
istic period of the longest ripples affected by surface tension. 
Then the T and thereby all subsequent (averaged) properties 
will contain a parameter (surface tension coefficient) irrelevant 
to the given problem. Alternatively [Glazrnan, 1985], the 
averaging scale can be introduced as an intrinsic property of a 
given spectral model. Indeed, the characteristic period of the 
most rapid oscillations parametrized by a spectral model is 
determined by the rate of change of the corresponding auto- 
correlation coefficient b(r)= U(O/U(O) in the vicinity of the 
origin. Owing to the assumption of statistical stationarity, 
I-db/d•]•=o = O, this rate is fully characterized by [d2b/d•:2]•=o, 
which yields T as 

T = I'-(d2b/d•2) - 1It=01/2 --' [-- U(•)/(d2U/d'•2)]r=o 1/2 

= (Mo/M2) TM (36) 
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Fig. 2. Dimensionless JONSWAP spectrum. The solid line repre- 
sents the original spectrum, and the dashed line represents the spec- 
trum averaged in accord with (14). 

Now, the "yardstick" T is extracted from the autocorrelation 
function. We shall call it a Taylor microscale. This equation 
(and, generally, a Taylor microscale of any random field) is 
meaningful only if function • is mean square differentiable. 

Thus we have formally expanded the definition of the 
Taylor microscale to encompass not only spatial but also tem- 
poral variations, and we have applied it to the • rather than 
fluid velocity field. In place of usual hydrodynamical argu- 
ments underlying the Taylor microscale concept [e.g., Batchel- 
or, 1953], we have employed formal properties of random 
functions. Hence the present approach can be viewed as rather 
heuristic. 

The direct spatial analog of (36) is the surface area of the 
averaging Window Z =- W•(0)/AW•(0)= Lo/L 2. If X(k) falls 
off as k -4 or slower, this quantity equals zero, which signifies 
that for a developed sea the •(r) field is not mean square 
differentiable. Technically, the absence of a Taylor microscale 
means that the inertial subrange extends to infinitely large 
frequencies. Since this is impossible, we have to redefine the 
spatial microscales Ai and E so as to avoid calculation of the 
spatial derivatives of •. To this end, note that although E = 0 
for the Phillips spectra, T remains finite. This happens because 
!as we find again later, in sections 8 and 9) for gravity water 
waves, spatial variations of surface vertical displacement are 
much more erratic than temporal variations. For capillary 
waves the situation is reversed because the phase speed in- 
creases with the wave number. 

We will consider T as a well-defined microscale and obtain 

values of Ai as its products. This task reduces to employing 
dispersion relationship to express Ai via T, and is straightfor- 
ward if the spectrum can be represented as a wave number 
modulus factor Z(k) times a directionality factor ¾(O). If, how- 
ever, the spectrum is more complex, we can only determine E 
(equal to A• x A2) , setting it equal to (gT2/2•) 2. 

A remarkable feature of the averaging scales identified with 
the Taylor microscale is that the macroscopic spectra preserve 
self-similarity. An example is given in Figure 2, where the 
"raw" and macroscopic Joint North Sea Wave Project (JONS- 
WAP) spectra are plotted in a normalized form (equation 
(38b)). For a Gaussian process, the T is 1/2n times the mean 
period of • zero upcrossings. 

6. EXAMPLES FOR GRAVITY WIND WAVE SPECTRA 

In practice, one deals with spectra S(co) of the real part of 
•(t), defined for co > 0. The correct relationship between S(co) 
and S•(co), which becomes important in section 8, is given by 
2S(co) = S•(co). Respectively, the Spectral moments Mi defined 
for $(co) are found from 

2Mi = M½,i (37a) 

In particular, 

Me, o = o'• 2 -' 2•72 (37b) 

Let us consider the Pierson-Moskowitz (P-M) and the 
"mean" JONSWAP spectra. Introducing a dimensionless fre- 
quency fl = w/co o, one has 

S(co) -- •g2co 0 - 55(•) (38a) 
where 

s(fi) = E(fi)fi- s (38b) 

is the dimensionless spectral density function, • is the Phillips 
constant, coo is the spectral peak frequency, and E(FI)-• 1 for 
fl >> 1. For the P-M spectrum 

E(FI) - exp (- 1.25f1-4) 

and for the mean JONSWAP spectrum 

E(fl) = exp (- 1.25•-•)p e'v[-(n- •),•/2•,•] 

with the peak-enhancing factor p = 3.3, q = 0.07 for fl _< 1, 
and q = 0.09 for fl > 1. Finally, we define dimensionless spec- 
tral moments rn• as follows' 

Mi = 0tg2cooi-•mi (39a) 

© m, = s(fi)fi' dfi (39b) 

and a dimensionless averaging scale z = (mo/m2)l/2; z is relat- 
ed to T (equation (36)) by T = z/coo. The dimensionless spec- 
tral moments of the averaged record (note that (33)-(35) do 
not change their form when the real part of • is implied) will 
be denoted by rh•. Calculations yield z = 0.710 and z = 0.777 
for the P-M and the JONSWAP spectra, respectively. In 
Table 1, numerical values for moments of order 0 to 8 are 
presented. One finds that the zero-order moments of the 
averaged spectra differ from their raw counterparts by only 
7.62% and 7.65% for the P-M and JONSWAP spectra, re- 
spectively. As the order of the moment increases, the discrep- 
ancy grows. 

Longuet-Higgins [1952] and Cartwright and Longuet- 
Higgins [1956] defined the spectrum width measures 6 and e: 

6 = (1 - m 12/more2)1/2 (40a) 

e = (1 - m22/mom•) 1/2 (40b) 

Values of these measures, based on the data of Table 1, are 
presented in Table 2 for the raw spectrum S(co) and for the 
spectrum of the averaged record ,q(co). In Table 2 these mea- 

TABLE 1. Values for Nondimensional Spectral Moments 

P-M Spectrum JONSWAP Spectrum 

Order i m i tfii m• tfii 

0 0.2000 0.1848 0.3050 0.2816 
1 0.2591 0.2316 0.3656 0.3279 
2 0.3963 0.3263 0.5046 0.4196 
3 0.8572 0.5389 0.9679 0.6192 
4 0.7998 0.8255 
5 1.7420 1.6079 
6 2.9284 2.4465 
7 7.9703 6.0465 
8 14.2859 9.8784 
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TABLE 2. Spectral Width Measures (Equation (40)) 

P-M Spectrum JONSWAP Spectrum 

Raw Averaged Raw Averaged 

0.391 0.332 0.363 0.300 
1 0.529 1 0.493 

sures are given based on the data of Table 1. The averaging 
produces only a small effect on the 6 measure, whereas the e 
measure changes from an uninformative 1 (corresponding to a 
white noise spectrum) to physically meaningful values. Owing 
to the peak enhancement factor, the JONSWAP spectrum is 
narrower than the P-M spectrum. The averaging does not 
change the difference, since it does not affect the energy- 
containing portion of the spectra. Moreover, it is due to the 
averaging that the bandwidth difference between the P-M and 
the JONSWAP spectra becomes apparent not only in terms of 
the 6 measure but also in terms of the e measure. 

In the following sections we shall illustrate the effect of 
averaging for several cases where the order of spectral mo- 
ments spans the entire range of our Table 1. 

7. COHERENT REFLECTION COEFFICIENT EVALUATION 

In this section we demonstrate that although the corre- 
sponding integrals of the raw spectrum may be finite, the 
averaging is still necessary in order to ensure the consistency 
of the result with respect to a theoretical model selected. 

In a small perturbation approximation the complex reflec- 
tion coefficient for the coherent part of a specularly reflected, 
vertically polarized radio wave at shallow grazing incidence is 
given [Bass and Fuks, 1979] by R = (sin ½- r/e)/(sin ½ + /]e), 
where ½ is the grazing angle and % is the effective impedance 
of the rough surface. For a statistically isotropic surface 

© % = rl + (k/16rc)x/2(i- 1) r-3/2(dW(r)/dr) dr (41) 

where r/is the component due solely to dielectrical properties 
of seawater, k = 2re/it with it being the radio wavelength, and 
the second term in (41) describes the "geometric part" of the 
surface impedance parameterizing the loss of energy into an 
irregularly scattered field. W(r) is the spatial covariance func- 
tion for the statistically isotropic sea. 

The problem of estimating a coherent reflection coefficient 
arises in remote interferometric measurements of dielectrical 

and geometrical properties of reflecting surfaces [e.g., Tanq et 
al., 1977; Glazman, 1982a, b] as well as in analysis of satellite 
communication links involving ocean surface reflection [e.g., 
Fung et al., 1982; Karasawa and Shiokawa, 1984]. 

In addition to a small-perturbation assumption, (41) pre- 
sumes that it << A, where A characterizes the length scale of 
the surface spatial variation. That is, small-length-scale surface 
roughness is ignored in this theory. For L band systems this 
means that the subject of interest is the impact of dominant 
wind waves, while the effect of ripples on the coherent reflec- 
tion is insignificant. 

Reducing the geometric term in (41) to an integral over the 
sea wave frequency [see Glazman, 1982a]) one finds that 

kX/2F(1/4) •o © /'/e = /'/ nt- (i- 1) 8(2•) F(7/4) (ro2/g)3/2S(ro) &o (42) 3/2 

The third-order spectral moment can be evaluated by a 
straightforward integration if the wave spectrum decays faster 

than w -4. However, Table 1 shows that m 3 is greater than rh 3 
by about 60%. Therefore if the raw spectrum is employed, the 
impact of gravity wind waves on the coherent reflection will 
be greatly exaggerated as a result of inadequacy of the raw 
spectral models. 

8. WAVE GROUP STATISTICS ON THE PI. ANE 

The knowledge of wave group size and time duration is 
important in many problems [Longuet-Higgins, 1984]. In this 
section we extend to a two-dimensional spatial configuration 
the treatment of wave group statistics presented by Longuet- 
Higgins [1957, 1984] for a one-dimensional case. This exten- 
sion demonstrates that even with a "lower-order" definition of 

the length of a wave group, employed by Longuet-Higgins to 
avoid the infinite fourth-order moment (appearing in the case 
of Rice's [1945] definition), consideration of the M4 moment 
is unavoidable when studying a spatial wave field. 

A wave group is determined using the mean rate and length, 
or area, of excursions by the envelope R of a random process 
(or field) beyond some fixed level H (Figure 3). For a one- 
dimensional case the basic result of Rice is given by (see, for 
example, Longuet-Higgins [1984]) 

Nx = rc-i• [,MR,o/ MoX/2 exp -- • (43) 
where N x is the mean number of excursions by R(t) beyond 
level H in unit time. M•, 0 is defined as ((•R/•t)2), and 
MR, o = {R•). For a Gaussian process, M•,0 = 6•M•,o, where 
Me, o = ((•/•t) •) = Me, • = 2M2' 5 is the spectral width mea- 
sure defined by (40a). Within the framework of section 2, the 
envelope R of a surface elevation field can be defined as 

R:(r, t)= •* = •: + r/: (44) 

where real functions • and r/appearing in the decomposition 
• = • + it/are related by a pair of Hilbert transforms. A defi- 
nition of the Hilbert transform for two-dimensional random 

fields is given by Adler [1978]. Equations (2)-(5) and (37), 
employed with the first equality in (44), readily yield basic 
statistics of R' (R 2 ) = 20 '2, (R/•) = 0, and (R•3R/•3xi) = O. 

However, much more complicated analysis is necessary in 
order to obtain a two-dimensional generalization of Rice's 
envelope equation (43) [Adler, 1978]. For high levels of H 
(H 2 >> MR,o), the Adler result takes the form 

N 2 -- exp - (45) 
• MR,o M0 

The 2 x 2 matrix (/•) is given (see Appendix A) by (A10) so 
that 

fo I •/2 21ao = (kx - kox)'(k2 - ko2)•G{k, O)k dk dO (46a) 
do 

z 

UUUtl iluuuuuu 

Fig. 3. The envelope of a random process crossing a constant level 
H; only three upcrossings occur during the time interval (0, tx). 
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with i + j = 2, where the elements are ordered as 

#ij= #:o #• (46b) 

and k• = k cos 0, k: = k sin 0. 
According to Adler, vector k o = (ko•, ko: ) represents a two- 

dimensional (spatial) frequency corresponding to the spectrum 
peak, whereas the two-dimensional spectrum G<(k•, k:) is as- 
sumed to be symmetric about the peak. The latter limitation, 
however, can be relaxed (see Appendix A), provided that the 
spectrum is sufficiently narrow. As a result, k o becomes the 
"mean" frequency, defined as 

ko=fykG<,k, dk/••G<,k, dk ,47, 
Now the theory is fully compatible with traditional treat- 
ments, and the speed of envelope translation can be shown to 
coincide with wave group velocity [Longuet-Higgins, 1957]. 
Matrix {#} appears to be nearly diagonal (see Appendix A), 
and its determinant is approximately 

Il- #20#02 = L2(1)L2 (2)A2 (48) 

where A = •J•2 denotes a product of "directional" spectral 
width measures. 

•Ji = (1 - [Ll(i)]2/[L2(i)Lo])l/2 (49) 

and the marginal spectral moments are given by 

© 2Ln (i)= G;(k l, k2)ki n dk• dk 2 (50) 

Obviously, Lo (•) = Lo (2) = L o = M o = a 2. 
If G;(k) decays at large k as k -½ or slower, the second-order 

spectral moments L2 (ø tend to infinity, and the familiar prob- 
lem of the mean square discontinuity of the field V• arises. 
Formally, the envelope level-crossing rate, (equation (45)) for 
an unfiltered field becomes infinitely large, while (43) still 
yields a finite temporal rate. Therefore spatial variations of the 
field R are more erratic than its temporal oscillations recorded 
at a fixed location. 

Now we can estimate the ratio Q2 '-v<,2/N2 of the mean 
excursion rate v•,2 of the surface elevation field to the mean 
excursion rate N 2 of the wave envelope field. This ratio is 
interpreted as the mean number of waves in a wave group (i.e., 
the clump size in Vanmarcke's [1983] terminology or the run 
of high waves in Longuet-Higgins' [1984]). In Appendix B an 
asymptotic expression for v•,: is presented. For high levels of 
H the clump size becomes (see also Lyon [1961] and Van- 
marcke [ 1983]): 

Q2(H) = v•'2/N2 = (2•)'/2A H 
For a cos: © dependence on wind direction (equation (12)), 
and the deep water dispersion relationship, equations (11), 
(49), and (50) yield (we omit the calculations, as they are 
simple although rather lengthy) 

256 M2 2 
2 1 (52a) tS• = 27•t 2 MoM½ 
2 1 64 M2 2 t• 2 "- (52b) 

9/t 2 MoM 4 

The result is now presented via the well-known wave spectrum 
moments. Assuming that the moments entering (52) pertain to 
the macroscopic field, one can employ the data of Table 1. 
Specifically, for the averaged P-M spectrum we get Q2(H)= 
1.036x//Mo/H, and for the JONSWAP spectrum we get 
Q2(H) = 1.134x/-•oo/H. Therefore the observer whose eye dis- 
tinguishes only waves of significant height (H • 2x//Mo) will 
not see wave clusters on the surface: the fully developed sea is 
too erratic to exhibit a group structure. For wave groups to 
appear, the spectral width product A must be noticeably 
smaller than 1/(2x•). This may be the case in the initial 
stages of wave field development. 

For a one-dimensional wave record one can readily es- 
tablish, using the Rice theory, that (51) reduces to 

1 x•o (53) Q•(H) = v•,•/m• - (27t)•/23 m 
where •J is given by (40a) and subscript 1 designates temporal 
(one-dimensional) rates. Employing values in Table 2, one 
finds that the mean clump size for a point record is nearly the 
same as that for a two-dimensional wave field. This agreement 
can be viewed also as a credit to the averaging period T 
selection made in section 5. Without the averaging, A = 1 
although •i < 1. 

9. STEEP WAVE OCCURRENCE AND FRACTAL GEOMETRY 

OF THE SURFACE 

Occurrence of waves whose steepness exceeds a certain 
specified value 7 is of great interest. For example, such waves 
are commonly associated with events of large-scale wave 
breaking [Longuet-Higgins and Smith, 1983]. Here a theory of 
steep wave occurrence proposed by Glazman [1985] is revised, 
and further insight into the statistical geometry of the sea 
surface is offered. 

For deep water waves in the absence of currents, the wave 
slope field V• is statistically similar to the field of the local 
vertical acceleration Y = -c•:•/c•t:. Indeed, employing (2)-(4) 
along with the dispersion relationship co: = kg, one finds 

Wr(p) = k t3t2 t3t2 

= g2 ff k2 exp (ikp)X(k) dk 
= •]2Wv•(V ) ---• --•]2AW•(v) (54) 

Also, Ur(r) = g2Uvg(r). Consequently, if the wave slope (modu- 
lus) is assigned a critical value 7 (equal to ak), the correspond- 
ing threshold for the downward acceleration becomes 7g. 
Then one can identify the temporal frequency of steep wave 
events with the mean rate vr, • of excursions by the process 
Y(t) beyond level F- 7g. (Actually, a small correction ought 
to be introduced into the value of 7 to account for the impact 
of hydrodynamic nonlinearity on the dispersion relationship.) 
The final result, based on the Rice [1944] solution of the level 
crossing problem, is given by 

vr,•(I' ) = (1/2It)(M6/M4) •/2 exp (-F2/2M4) (55) 

If the spectrum is narrow, the factor Pr,•(F)= exp 
2M4) can be interpreted [Glazman, 1985] as the probability of 
encountering in the Y record an oscillation whose amplitude 
exceeds the threshold value F, whereas factor •r = 
(2It)(M4/m6) •/2 can be viewed as the amount of space allo- 
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(a) 

(b) 

Fig. 4. A qualitative illustration of a surface elevation profile 
when the surface can be envisioned as a fractal: (a) the profile present- 
ed as a cascade of similar "elementary" wave shapes characterized by 
sharp crests and shallow troughs, and (b) the same surface after par- 
tial averaging. 

cated to the mean Y wave in the time domain. In other words, 

Vr, l(F) = Pr.•(F)/rr, which affords an additional insight into 
the geometrical meaning of the slope field mean square dis- 
continuity. Namely, a wave spectrum decaying as to-5 yields 
Pr,•(F)--} 1 for arbitrarily high values of F, while rr--} 0. In 
the language of fractal geometry, the plane (t, Y) is completely 
filled by the function Y(t), and therefore Y's fractal (Haus- 
dorff) dimension is 2. Pfeifer [1984] gives a more formal way 
of evaluating the fractal dimension for cases similar to ours, 
and his formula leads to the same value 2. 

Equation (55) with Mi of the averaged wave record allows 
one to estimate the mean number of wave crests per "basic" 
wave (Figure 4). Apparently, this number can be defined as the 
ratio of the mean period of a full wave cycle r< to the mean 
period of a full Y(t) cycle. The former is found as the mean 
period of zero upcrossings by •(t). Ultimately, 

nl = r•/rr = vr,•(O)/v•,•(O)= (MoM6/M2M4) •/2 (56) 
For the "mean" JONSWAP spectrum, Table 1 yields n• = 
1.41, and it is easy to show that the "raw" spectra would yield 
n• going to infinity. 

A two-dimensional generalization of the Rice formula is 
sketched in Appendix B, and an interpretation is given to the 
factors determining v2. Raising the order of all the spatial 
spectrum moments entering (B3) by 2 ['as is dictated by (54)], 
one arrives at the surface density of steep wave events' 

1 'A' •/2 F ( F2 ) _ - (57) V¾'2(I") (271:) 3/2 Lr,o Lr,0 •/2 exp 2Lr,o 
where by steep waves we imply again waves whose local 
downward acceleration at the crest exceeds F. Matrix {A} 
consists of elements A u 

_ c32Wr(0, O) _ g2 fl k2k•ik2JX(k• k2) dk• dk 2 2Aij cgx 1 i t•X 2 J 
(58a) 

ordered similarly to the elements in (46b), and 

ff 2 (58b) 2Lr, ø = q2 k2X(k) dk = g L•, 2 

The diagonal elements of {A} can be presented in the form 
2Aij = Lr,2 (ø, where 

IoIo © 2Ly.2(i) = •/2 G•(k•, k2)k2ki 2 dk• dk 2 i= 1, 2 (59) 

The mean surface area occupied by a full, two-dimensional 
cycle of the Y(x•, x2) field (a Y wave) is obtained as the 
product of orthogonal wave lengths (see Appendix B for 
detail)' 

(2zc)2Lr'ø ( 4zc2Lr'ø'• Z¾ = [L¾,2(1)L¾,2(2)]l/2 -- iAi•/2 j (60) 

The number of wave crests per basic wave on the surface, 
obtained in the fashion of (56), is 

n 2 = Z•/Z¾ L•,o IAul t/2 - L¾,o I,•-•'jJ œfi 
(61a) 

where Y,c is given by (B 1). 
In a developed, "theoretical" sea the •(x•, x2) field is not 

differentiable at any point on the surface, which is the first 
sign of a surface's fractal geometry [Mandelbrot, 1982]. One 
then envisions the •(x•, x2) as a random field characterized by 
cusps whose spatial frequency of occurrence is infinitely large. 
This can appear only as a cascade pattern wherein each sur- 
face wave carries smaller-scale waves and each of those is 

again a carrier of yet smaller waves and so on. At each scale a 
wave is characterized by a sharp crest, and higher-order waves 
are similar to their carrier (Figure 4a). As a result, the mean 
square discontinuity of the Y(r) field is due to irregular Y 
jumps taking place with probability of 1 within any arbitrarily 
small domain. Such behavior is peculiar to a Brownian sheet 
[see Adler, 1981]. The power form (i.e., k -e) of X(k), together 
with the fact that the exponent p of the spectrum decay re- 
mains unchanged as k increases, results in a self-similarity of 
wave shapes at different scales. In the Phillips case, p = 4, 
which determines the shape of the "generator" (i.e., sharp 
crests). 

In order to estimate the quantities expressed by (57)-(61a), 
one may employ (11) and (12) to reduce the spatial spectral 
moments to the frequency spectrum moments. After rather 
lengthy calculations one arrives at 

n 2 = MoMs/M4 2 

1 x/•M• F ( F•4 ) v¾, 2 --(2/1:)3/2 8Q 2 M4 M41/2 exp - 

(6lb) 

(62) 

Using dimensionless moments of the averaged spectra (section 
6), one finds that for the P-M spectrum case, n 2 = 4.13 and for 
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Fig. 5. Temporal rate of steep wave occurrence as a function of 
wind speed and fetch. The values of the wind fetch (in kilometers) are 
plotted on the right of each curve. The limiting slope 7 = 0.3. 
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Fig. 6. Spatial rate of steep wave occurrence as a function of wind 

speed and fetch. The values of the wind fetch (in kilometers) are 
plotted on the right of each curve. The limiting slope 7 = 0.3. 

the mean JONSWAP spectrum, n 2 --4.08. The role of the 
partial averaging (equations (14) and (22)) is to truncate the 
infinite cascade of sharp-crested waves and to round off the 
crests of the retained waves, as in Figure 4b. Reducing the 
value of T would increase both n• and n2, making them infi- 
nite in the limit of T--• 0. 

Furthermore, (62) can be written in terms of the Phillips 
constant 0• and the spectral peak frequency COo if the wave 
spectrum satisfies (38). Equations (38) and (39) yield 

flcoo•rn87 ( 72 ) - - (63) vv,• g: rn• (o•rn4) •/• exp 2•rn½ 
where fl = x//•/[8(2z03/•], and an overbar is omitted although 
(temporal) averaging is implied. The factors that determine the 
probability of steep waves include, in this particular case, only 
the Phillips constant •. A departure from the k -½ behavior (as, 
for example, that proposed recently by Phillips [1985]) would 
bring about additional parameters (including COo) in the prob- 
ability of steep wave occurrence. Therefore the Phillips [1958] 
equilibrium (co-5 or k -4) represents an approximation that in 
a certain sense is consistent with the principles of the breaking 
wave statistics models (briefly reviewed by Glazman [1985]) 
based on a wave steepness (or vertical acceleration) threshold. 

In Figures 5 and 6 the temporal and spatial frequencies of 
steep wave occurrence are plotted for different wind velocities 
and fetch lengths. The mean JONSWAP spectrum was em- 
ployed along with empirical laws for • and coo as functions of 
wind speed and fetch, suggested by Hasselmann et al. [1976]. 
The 0.3 value of slope was selected as a guess for a "criterion" 
of wave breaking. The guessing was based largely on Longuet- 
Higgins' [-1985] analysis of the distribution of the vertical ac- 
celeration along the wave profile and also on the fact that the 
averaging procedure employed leads to a reduction in the 
slope (and vertical acceleration) of the macroscopic field: such 
a reduction is greater at the crests than at the troughs. In 
Figure 7 the temporal frequency is presented for a fixed value 
of fetch roughly corresponding to the conditions of Thorpe 
and Humphties' [1980] observations in Loch Ness. Three dif- 
ferent values of the limiting slope are used. The comparison 
with the observations suggests that by appropriately adjusting 
7 one may be able to forecast breaking wave statistics by 
identifying them with statistics of the waves whose steepness 
exceeds 7. The adequacy of such an approach depends on 

whether the "critical" 7 is a "universal constant" (for the sea at 
equilibrium). 

The discrepancy with the experimental data, shown in 
Figure 7, is mainly due to the fact that the measurements 
account not only for the breaking events commencing at the 
moment of the measurement but also for the breaking events 
that started within the preceding t s, where t is the (mean) 
duration of the wave breaking process. 

10. CONCLUSIONS 

Sea surface geometry is amenable to statistical 
characterization, although the spectral models supplied by 
physical theories or direct measurements are valid only within 
a limited range of frequencies. The approach developed in 
sections 4 and 5 is in a sense opposite to that of fractal geome- 
try: we explicitly introduced into the statistical description a 
temporal/spatial scale ("yardstick") characterizing the "resolu- 
tion" of a given physical theory or observational technique. 
Upon transforming to the macroscopic quantities, all basic 
relationships among various spectra remain in force. Therefore 
one can apply recent achievements of random field theory to 
problems of sea surface statistical geometry, remote sensing, 
acoustics, etc. 

In a developed sea the "raw" spectra yield a greatly over- 
estimated (although converging) spectral moment M 3, which 
may lead to considerable errors in applications. Hence the 
averaging may be necessary not only as a means of dealing 
with diverging integrals but also as a way of making quantita- 
tive estimates consistent with respect to the assumptions of an 
underlying physical theory. 

The Adler [1978, 1981] theory for the envelope of a Gaus- 
sian random field, extended to the case of an asymmetric spec- 
tral density function (Appendix A of the present paper), al- 
lowed us to develop a statistical description of wave groups on 
the two-dimensional sea surface. In particular, it was found 
that in a developed sea the wave groups are not observable: 
the surface displacement field is too erratic to exhibit the 
group structure. 

On the basis of Nosko's [1969] asymptotic rates of high- 
level excursions, we have derived statistics of a two- 
dimensional field of sea surface vertical acceleration (that pro- 
vides an estimate of wave slope). This permitted in particular 
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Fig. 7. Temporal rate of steep wave occurrence as a function of 
wind speed and limiting slope, at a fixed fetch of 10 km. The values of 
the limiting slope ? are plotted on the right of each curve. Marks 
represent Thorpe and Humphties [1980] measurements of breaking 
wave (triangles) and bubble cloud (squares) occurrence rates. 
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an evaluation of the mean number rt 2 of "secondary waves" 
per "primary wave". Note that for a temporal case, an analo- 
gous quantity n•, given by (56), can be easily (almost visually) 
inferred from an actual wave record. Furthermore, the tempo- 
ral and spatial rates of steep wave occurrence, given by (55), 
(57), and (62), may be useful in predicting basic statistics of 
large-scale breaking waves. However, more work must be 
done, especially in the area of breaking wave observations, in 
order to see whether there exists a universal value of F ef- 

fectively quantifying wave breaking conditions (for a devel- 
oped sea). Such an effort appears to be worthwhile, in view of 
the fact that dynamically based theories involve considerable 
difficulties and may need much elaboration before yielding 
working formulas for engineering applications. 

We have noted that high-level excursions of both the wave 
envelope and the wave slope fields, being Poisson processes, 
have a statistical prototype in the occurrence of gas molecules 
within a specified volume. An asymptotic theory for excursion 
rates also allowed us to illustrate the notion of mean square 
discontinuity of a random surface and to quantify a cascade 
pattern appearing in the surface topography. We hope that 
the techniques presented in this work may be useful in analy- 
ses of other random fields encountered in ocean and atmo- 

sphere studies. 

APPENDIX A 

Here the Adler result on the two-dimensional envelope ex- 
cursion rates is extended to the case of an asymmetric wave 
number spectrum. Also, an instructive interpretation of the 
quantities entering (45) is given. 

The derivation of the excursion set statistics for the en- 

velope R(r) field requires statistical independence between the 
real a and imaginary b parts of a slowly varying complex 
amplitude field A(r) = a(r) + ib(r): 

A(r) = 2 f• exp [i(k - k0)r] dZ (k) (A1) 
Adler [1981] has shown that the a(r) field is statistically simi- 
lar to the field R(r) defined by (44). More precisely, 

(•ia(-•r)•3Ja(r+P) I (•iR(r)•3JR(r+P) I (A2) C•Xl i c•x2 i -' c•'• • c•x2 i 
where i + j = 2. The field A is related to the basic field • by 

•(r) = exp (ikor)A(r) (A3) 

where exp (ikor) can be viewed as a carrier surface, and the 
integration in (A1) (and in (A4)) is done over an upper half 
plane of k, which provides a properly defined Hilbert trans- 
form r/(r) for the •(r) field [Adler, 1978]. The cross correlation 
for the Hilbert transform pair is found, as usual, to be 
B,•(r) = (•(p)r/(p + r)) = • sin (kr) X (k) dk, with B,•(-r)= 
--B,•(r). These results are necessary in order to obtain 

aa0(r ) = (a(p)b(p + r)) = ;f sin [-(k - ko)r]X(k ) dk (A4) 
['Adler, 1981]. Obviously, Ba0(r ) becomes zero if the spectral 
density function X(k) is symmetric about the peak (spatial) 
frequency k o. This determines the choice of ko in (A1) and 
(A3), and the desired result is at hand (since the absence of 
correlation in this particular case leads to statistical indepen- 
dence) [-Adler, 1978]. A much simpler, heuristic, derivation of 
the envelope excursion statistics has been proposed by Van- 

marcke ['1983]. It does not require the symmetry of X(k) about 
the peak frequency. However, Vanmarcke's argument contains 
a flaw leading to an erroneous final result. 

The ocean wave spectra are essentially asymmetric, and the 
Adler theory is not applicable. However, for a sufficiently 
narrow spectrum the statistical independence between a and b 
can be obtained as an asymptotic property by an appropriate 
redefinition of k0. Assume that the spectrum falls off in all 
directions away from the spectrum peak frequency so rapidly 
that the sine factor in (A4) can be replaced by the first two 
terms in its Taylor expansion about this frequency: 

2Bab(r ) • •; sin [(kt, - k0)r]G•(k ) dk 
+ ;• cos [(kp - k0)r]r(k - kp)Gc(k) dk (AS) 

Here we have employed the one-sided spectral density func- 
tion Go(k) and, consequently, the integration is carried out 
over the first quadrant of the k plane. The spectrum peak 
frequency is denoted by kv, whereas the "carrier" frequency k0 
is yet to be determined. Naturally, one anticipates that ko is 
very close to kv, which would permit replacing the sine and 
cosine factors in (A5) by the Taylor expansions about the 
infinitesimal phase. Neglecting 0([r(kv - k0)] 2) compared with 
1, which is permissible to do for all r within the radius of 
correlation, (A5) reduces to 

2Ba•(r) • (kp- ko)r •• G•(k)dk +r •• (k - kp)G•(k)dk (A6) 
It is now evident that the desired result, 

Bab(r ) = 0 (A7) 

is obtained as an asymptotic formula (the more accurate, the 
narrower the wave spectrum) by selecting k o as is indicated in 
(47) (which becomes equivalent to Adler's formulation in the 
special case of a spectrum symmetric about ko: ko = kv). 

The spatial covariance function of the real amplitude field 
a(r) has been shown by Adler to be 

2aa(r ) = f; cos [(k - k0)r]G½(k) dk (A8) 
Furthermore, it is easy to show that the covariance matrix of 
a(r)'s spatial derivatives is given by: 

((c•ia/c•XliXc•Ja/c•x2J)) = --c•2Ba(l')/c•xlic•x2 j (A9) 

Obviously, i + j = 2. The matrix of spectral moments, /.t o, is 
obtained as 

(•2Ba(0, 0) #o = - •x,,•x2 j = •x-•. • •x2J/, ] (A10) 
The last equality has been written on the basis of (A2) as a 
reminder that the determinant [lt[ plays in (45) a role similar to 
that of M a, 0 in (43). Upon substitution of (A8) into (A10), one 
arrives at (46). 

The geometrical meaning of [#[ emerges when calculating a 
zero-level (U = 0) excursion rate for the two-dimensional field 
a(r), or equivalently, for field R(r). This rate has been shown by 
Adler to be 

N•(O) = r•- Xl#lX/2/MR,o (A11) 

Therefore the covariance matrix determinant is inversely pro- 
portional to the mean area occupied on a horizontal plane by 
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an individual two-dimensional oscillation cycle of field a(r). 
Consequently, the factors multiplying Ns(O) in equation (45) 
yield a relative number of the a(r) waves crossing simulta- 
neously the (high) level H. This interpretation is tightly con- 
nected with the assumption of Poisson behavior of the field's 
high excursions (see, for example, Belyaev [1970] and Van- 
marcke [1983]): each such excursion can be likened to a gas 
molecule (in a two-dimensional space) that either occurs or 
does not occur within a specified area independently of all 
other particle positions at a given instant. 

Equation (A7) makes the matrix {#) diagonal. Its determi- 
nant, and thereby (the reciprocal of) the mean surface area 
occupied by an a field wave, is obtained as a product of two 
marginal spectral moments of order 2, each moment 
characterizing the mean spatial oscillation frequency of an 
envelope defined for a one-dimensional random function •(xi). 
Thus the relations between (45) and a spatial (one- 
dimensional) version of (43) become apparent, facilitating gen- 
eralizations to higher dimensions, for example, in the manner 
of Vanmarcke's [1983] heuristic treatment. However, the spa- 
tial frequency matrix (#) should be determined in the fashion 
shown above and not as was erroneously proposed by Van- 
marcke. 

Now we have to check the applicability of the narrow- 
spectrum assumption, introduced when deriving (A7)-(AS) and 
(47)-(48), to the commonly accepted spectral models of sea 
waves. One finds that (46) and (47) yield #ij = L2{•L2(2•#o ø, 
where 

]2ij 0 = 

with 6 i given by (49), and 

1•12 
]•1• 12 •2 2 

(A12) 

]•2 : [Lll(12)]2/L2(1)L2(2) (A13) 

(A14) 1•122 : 1 -- L•(•)L•(2)/LoL•i {•2) 

(12) ;.[k,k2Gc(k) dk (A15) 2Lll = 

As usual, we express all spatial spectral moments L via mo- 
ments M of the one-dimensional wave spectrum, employing 
again (11) and (12) along with the deep water dispersion re- 
lationship. After rather lengthy calculations one arrives at the 
following numerical values obtained for the averaged P-M 
spectrum case using Table 1: 

0.308 0.01l (A16) #øø= 0.018 0.48 
This demonstrates that the contribution of nondiagonal ele- 
ments is indeed negligibly small, even for such a relatively 
broad spectrum as the P-M, and that (46)-(48) provide a good 
approximation. 

density, i.e., the mean number of events per unit area oc- 
curring simultaneously. Suppose that the wave spectrum is 
sufficiently narrow to make the •(r) field appear as a set of 
individual waves characterized by a (two-dimensional) spatial 
period and wave crest elevation h. The mean two-dimensional 
spatial period Y•c for these waves is determined as a product of 
two mean one-dimensional spatial periods (wavelength com- 
ponents) of the • field variations in orthogonal directions: 

4•r2Lo 
Y•; = [L2(•)L2{2)]•/2 (B1) 

where the one-dimensional spatial periods are defined as the 
zero-upcrossing mean periods. (A form invariant with respect 
to the rotation of coordinate axes involves the determinant of 

the spectral moments matrix I,l [e.g., Vanmar&e, 1983].) Let 
the probability density function for wave maxima, observed 
simultaneously on the sea surface, be p(h). Then the relative 
number of the waves surpassing level H is given by Pc,2(H) = 
•n © p(h) dh. For high H (practically, H _> 2a) the excursion 
events behave as a Poisson process, and therefore their surface 
density can be presented as 

V(, 2 = P<,2(H)/Y•< (B2) 

where 1/Y•c can be identified with the total number of waves 
per unit surface area. 

Although v•,2 is usually derived in a direct way (while Pc,2 is 
extremely difficult to get even for the large H), the heuristic 
argument leading to (B2) is useful. For instance, comparing 
the known formula for v2 [e.g., Adler, 1981, Theorem 5.4.1] 
with (B2), one can immediately arrive at an asymptotic ex- 
pression for p(h), which is more accurate the greater the value 
of h and the smaller the spectral width measure A. 

The asymptotic formula for vc,2 at high H is 

I ]•]1/2 m ( m•o ) vc'2 -- (2•r) 3/2 Lo Lo •/2 exp - (B3) 
Here 

E •2 W•(0, 0•)= •,[ klik2JX(k)dk (B4) 2•ij = _ •X1 i •X2 j 
with the infinite integration limits, and i + j = 2. The matrix 
elements are ordered similarly to those in (46b). For a spatially 
homogeneous random field, nondiagonal elements can be 
made zero. Taking this into account and comparing (B1), (B2), 
and (B3), one infers 

1•l X /2 /( 27r)2 M o -- 

The probability of an excursion event is 

(B5) 

P<,2(H)= Mo•/2 exp -- (B6) 

APPENDIX B 

A two-dimensional version vc,2 of Rice's level-crossing rate 
v<,• is presented here employing the results reported by Nosko 
[1969] (see also Belyaev and Nosko [1974], Adler [1981], and 
Vanmarcke [1983]). We set forth an interpretation of factors 
that determine v<,2 in the special case of high-level excursions 
when the excursion events occur in the manner of a Poisson 

process. As in all previous cases, the surface is treated as a 
Gaussian homogeneous random field. 

The two-dimensional rate v<,2 can be viewed as a surface 
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