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Recent analyses of wind speed measurements by the Geosat altimeter showed that the radar cross 
section is affected by oceanographic factors, particularly by the degree of sea development, which are 
not directly accounted for in the geophysical model functions (GMF). In the present work, two new 
GMFs which account for the effects of the actual degree of sea development are proposed. Along with 
the radar cross section, these models use significant wave height information. One particular version 
is recommended for applications in oceanographic and climate studies where wind speed (or wind 
stress) data have to be binned (i.e., averaged over time and/or space intervals). The accuracy of this 
GMF (overall bias of 0.1 m/s and rms error of about 1.6 m/s) is higher than the accuracy of commonly 
employed GMFs, while the wave-age-related trend is reduced to a geophysically insignificant level. 
Finally, the wind speed histograms for the collocated data set are derived and compared with the 
ground truth data as well as with the histograms yielded by presently known GMFs. It is also shown 
that the accuracy of altimeter measurements could be increased even further if some additional 
information on the wave field were available from independent sources (e.g., the dominant wavelength 
from synthetic aperture radar images). 

1. INTRODUCTION 

In recent years the influence of sea maturity on satellite 
measurements received considerable attention: satellite 

scatterometer, altimeter, and microwave radiometer mea- 
suremenls of surface winds were reexamined (see Glazman 
[ 1991 a ] for a review) and the sea state bias was investigated 
on the basis of Geosat altimeter data [Fu and Glazman, 
1991]. These studies revealed the existence of an error trend 
which is related to the sea maturity and is present, to a 
greater or smaller degree, in all satellite microwave measure- 
ments. For wind speed measurements by an altimeter, the 
wave-age-related trend is especially important: it could 
result in systematic regional distortions of wind fields by 
more than 2 m/s. In the present work, geophysical model 
functions (GMFs) which greatly reduce this error trend and 
improve the overall accuracy of wind speed measurements 
are proposed. Two fundamentally different approaches are 
tested, and the approach based on the use of a classifier is 
recommended as yielding the best results in terms of both 
the measuring accuracy and the computational efficiency. 

The rms ("standard") error of satellite measurements is 
the most commonly used characteristic of the measuring 
accuracy. However, depending on the specific application, 
other characteristics may also be important. For instance, if 
the wind speed measurements are used to prepare maps of 
wind stress over the ocean, the absolute mean error becomes 
highly important. Indeed, the wind stress is usually deter- 
mined as r = CDU 2 where C D is the drag coefficient. The 
satellite-reported wind Us contains random error e: Us = 
Utrue + e. Therefore the wind stress is 

•' CD ( 2 = Utrue + 2e Utrue + e 2) 

Both the rms error (e 2) 1/2 and the mean absolute error (e) 
contribute to an error in the estimated wind stress. (The 
angle brackets denote averaging of the data within appropri- 
ate bins.) Equation (1) allows one to formulate the require- 
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ments to the accuracy of wind speed measurements in terms 
of the mean error (e). Suppose the lowest rms error achiev- 
able by satellite measurements is 1.7 m/s. We shall demand 
that the mean error (e) remain near or below (e2)/2U, which 
limits the contribution of the second term in the right-hand 
side (r.h.s.) of (1) to that of the third term. Take Utrue • 7 
m/s and (e 2) 1/2 = 1.7 m/s. Apparently, in order to neglect 
the contribution of the second term in the r.h.s. of (1) 
compared with that of the third term, the condition (e) << 
0.2 m/s must hold. Thus a requirement that the mean error 
(e) be below 0.2 m/s can be viewed as a criterion of 
applicability of altimeter (as well as other instruments') wind 
speeds as input to wind-driven circulation models. With (e) 
as large as 0.5 m/s, the wind stress would be biased by about 
15%. 

We can also impose a limit on the wave-age-related trend 
in wind measuring errors. Suppose that this trend can be 
crudely quantified by a linear function e = Co + C1 •, where 
• is the pseudo wave age (equations (2) and (3) below) and C1 
is the "trend coefficient" in meters per second per unit • (see 
the following sections for more detail). Then if the range of 
• variation within a given region and/or period is about 2, the 
&related error trend will result in a false trend of about 2C1 
m/s in the (spatial and/or temporal) distribution of the 
altimeter-reported wind. Evidently, limiting the value of C1 
to 0.5 m/s per unit • reduces this false trend to the level 
which is well below the random error, while a value of C• as 
high as 1 m/s makes this trend prominent even on the random 
background. 

In section 3 we provide statistical characterization of three 
currently employed GMFs, and in section 5 we demonstrate 
that an approximate knowledge of the wave age (based on 
some auxiliary measurements) could facilitate a dramatic 
improvement of wind speed measurements, not only in 
terms of the rms error but also in terms of the mean error and 

higher-order statistics such as the third-order statistical 
moment {e3). The wave age effects could be accounted for 
on the basis of the dominant wavelength obtainable from 
synthetic aperture radar (SAR) images, or using collocated- 
buoy measurements of the dominant wave period. In the 
absence of such auxiliary information, effects of the wave 
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age can still be quantified, and wind speed measurements 
can be improved, although the task is more difficult. In 
sections 4-6 the corresponding GMF is developed utilizing 
information on the significant wave height (SWH) extracted 
from altimeter wave forms. Although the accuracy gain is 
not as dramatic as in the case of more reliable, buoy- or 
SAR-supplied wave information, it leads to a considerable 
improvement of satellite data and reduces the wave-age- 
related error bias to an acceptable level. 

Sea maturity characterizes the degree of wave develop- 
ment with respect to a given wind. For an intuitive under- 
standing of this notion, consider two extreme situations: a 
sea arising under a strong local wind of short duration, and a 
well-developed sea dominated by waves arriving from a 
remote location, observed at a low local wind. The "young 
sea" of the first example has a small wave age •, where • is 
defined as the ratio of the phase velocity of the dominant 
waves, Co, to the mean speed of the local wind, U: 

• = Co/U (2) 

The "old" sea of the second example may have very large •. 
A less controversial term for this case is "pseudo wave 
age," which remains meaningful even when the sea is 
contaminated by swell [Fu and Glazman, 1991]. The wave 
age was found to influence geometrical properties of the sea 
surface; hence its remote sensing signature [Glazman, 
1991a]. One of the factors yielding large values of s • is the 
weakly nonlinear wave-wave interactions resulting in the 
growth of long waves (due to a spectral flux of wave action 
towards low wavenumbers). Such interactions are slow, and 
they require a large distance for the waves to exchange 
energy in the course of their propagation. Hence the wind 
fetch is an important parameter determining the wave age. 
Other factors include stratification of the marine boundary 
layer, the wind duration, ambient currents, etc. The notion 
of the wave age is not free of some controversy [Pierson, 
1991]. Theoretical background on this topic along with 
implications of the theory and its use in the context of ocean 
remote sensing are provided by Glazman and Weichman, 
[1989], Glazman [ 1990, 1991 a, b], and Glazman and Sro- 
kosz [1991]. 

As before [Glazman and Pilorz, 1990], we shall estimate 
the wave age based on the buoy-supplied wind speed UB and 
significant wave height HB. To this end, we shall use an 
empirical relationship 

• = A(gH/U2) 2•' (3) 

where A • 3.24 and •, • 0.31. This relationship can be also 
derived theoretically [Glazman and Srokosz, 1991]. A more 
direct way of estimating the wave age is based on the 
equation • = #/woU, where w0 is the dominant wave 
frequency. Although these two equations give similar re- 
sults, (3) has an advantage of being easier to interpret under 
complex conditions of wave generation, when the dominant 
wave frequency is difficult to define. Then • of (3) should be 
called more appropriately the "pseudo wave age" [Fu and 
Glazman, 199i]. Equation (3) is especially useful when the 
wind speed and SWH are the only parameters available from 
direct measurements. However, the accuracy of (3) drops 
rapidly as the errors in U increase above a certain level. 
According to Gilhousen [1987], the rms error of wind speed 
measurements by National Data Buoy Center (NDBC) 

buoys is within 10% of the wind speed (or 1 m/s, whichever 
is greater). It can be readily shown that this accuracy 
corresponds to a 10% error in the determination of • by (3) 
and is comparable to the error of the direct determination 
based on s e = #/woU (see also Glazman [1991b] for addi- 
tional discussion of this issue). 

2. COLLOCATED MEASUREMENTS BY NDBC BuoYs 

AND GEOSAT ALTIMETER 

A collocated set of autonomous buoy (of the National 
Data Buoy Center) and Geosat altimeter measurements for 
the period November 1986 through July 1989 was compiled 
at the Jet Propulsion Laboratory (JPL) from Geosat geo- 
physical data record (GDR) and NDBC data. (This data set 
is presently available through the JPL Physical Oceanogra- 
phy Distributed Active Archive Center.) One-second aver- 
ages of altimeter measurements were used, which tentatively 
correspond to footprint spacing of about 7 km. The colloca- 
tion procedure and characteristics of the data are described 
by Glazrnan and Pilorz [1990], who employed a 1-year 
subset of this data set. Being interested only in a special case 
of equilibrium sea state, Glazman and Pilorz eliminated 
observations characterized by complex conditions of wave 
development. The entire data set containing all observations 
for 2.6 years was employed later by Glazrnan [199 l a], who 
found that the error trend discovered earlier under idealized 

conditions remained prominent under general conditions of 
wave generation. The data set employed in the present work 
is slightly smaller than the data set employed by Glazrnan 
[1991a]: we include here only the cases for which the 
satellite attitude angle ATT did not exceed 0.82 ø, whereas 
Glazrnan [1991a] included cases with ATT up to 0.85 ø. The 
0.82 ø had been found earlier [Glazrnan and Pilorz, 1990] as 
the critical attitude which, if surpassed, leads to an appre- 
ciable drop in the quality of Geosat altimeter measurements. 
Also, the spatial collocation window is only 0.5 ø , as opposed 
to 1 ø in the Glazrnan [1991a] study. The temporal colloca- 
tion window is reduced to 45 min. 

For the stage of the algorithm development, the data set 
was further cleaned in order to increase the reliability of the 
data. We applied a slight amount of low-pass spatial filtering: 
a running averaging along the track, covering three consec- 
utive points, was applied to the radar cross section and the 
significant wave height. Finally, a few obvious outliers were 
also eliminated. These were defined as points with the radar 
cross section above 25 dB, below 6 dB, and outside the range 
of 2.5 times the standard deviation from an empirical curve 
for cr0(U). Points with SWH exceeding 11 m and those with 
SWH outside the range of 2.5 standard deviations from the 
best fit between H B and H s were also deleted as outliers. 
When the development of the GMFs (described below) was 
completed, we used original unfiltered data to estimate 
errors and other statistics of our GMFs as well as of the 

GMFs developed by other authors. 
The following buoy measurements were used: wind speed 

UB (averaged over an 8.5-min interval), significant wave 
height H B (based on the integrated wave spectrum), and 
anemometer height for each buoy (used to reference all wind 
speed measurements to the standard height of 10 m). The 
Geosat altimeter data employed are the radar cross section 
cr 0, in decibels; the attitude angle of the satellite, ATT, in 
degrees (to eliminate faulty observations); and the SWH, 
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Hs, which we corrected using equation (4) below. The wind 
speed Us was obtained from % by means of the Brown 
GMF [Brown et al., 1981]. Other GMFs were also tested: the 
modified Chelton-Wentz (tabular) GMF [Witter and Chelton, 
1991] and the "smoothed" Brown algorithm [Dobson et al., 
1987]. For each buoy record (made on hourly or 3-hour 
basis), we used up to eight (1-s averaged) Geosat observa- 
tions along the satellite track; the actual number depends on 
the length of the track segment within the spatial collocation 
window. The total number of independent buoy measure- 
ments retained in the collocated data set was 865. The total 

number of altimeter data points was 5682, which yields an 
average of 6.6 altimeter observations per each buoy mea- 
surement. 

Carter et al. [1992] showed that SWH is systematically 
underestimated by the Geosat altimeter. To eliminate possi- 
ble adverse effects of the error trend in the altimeter SWH, 
we developed a simple empirical algorithm 

Hs = 0.113 + 1.0278 H q- 0.0124 H 2 (4) 

where H is the SWH from Geosat altimeter original records. 

3. ALTIMETER WIND SPEED MEASUREMENTS 

BASED ON THE RADAR CROSS SECTION 

According to Dobson et al. [1987], the most accurate GMF 
for altimeter wind speed is due to Brown et al. [1981]. Like 
other known GMFs, it relates the radar cross section o'0 to 
the mean wind U at 10-m height. Earlier [Glazman and 
Pilorz, 1990], the actual relationship between U and o- 0 was 
found to be ambiguous: at a given wind speed, the observed 
o- 0 may vary depending on the wave age s c. Since the 
influence of s c is pronounced only at relatively small s c, we 
quantify this error trend by means of the coefficient C 1 in the 
linear regression model: e = Co + C1 s c for the range of s c 
from 0 to 4. The trend of the Brown GMF was estimated to 

be about 0.7 m/s per unit s c [Glazman, 1991a]. For the 
present data set, the mean error of the Brown GMF is found 
to be (e) • 0.17 m/s, the error trend C• • 1.0 m/s per unit s c, 
while the rms error is 1.69 m/s (see Table 1 and Figure 1). 
Therefore if the wave age in two geographic regions differs 
by 3, the corresponding false difference in wind speed 
measurements will attain 3 m/s, which is well above the rms 
error of the Brown GMF. From Figure 1 it is also clear that 
if the wave-age-related trend could be reduced, it might help 
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Fig. 1. Wind speed error e = (Us - UB), in meters per second, 
versus pseudo wave age, s e. The latter is based on buoy data and 
equation (3). Us is the altimeter wind speed by the Brown GMF; UB 
is the buoy-supplied wind speed. 

decrease the overall rms error as well. Of course, the rms 
error and the trend coefficient C• are not the only important 
criteria by which to evaluate the performance of the GMFs. 
Additional criteria are listed in Table 1. Specifically, the 
absolute mean error (e) and the third moment (e 3) are 
important: the former characterizes the overall mean bias 
(see the discussion in section 1), and the latter quantifies the 
skewness of the error distribution and is affected by large 
errors bordering with statistical outliers. In section 7 we 
discuss histograms of wind speed distributions, which leads 
us to an additional (more precisely, alternative) constraint on 

TABLE 1. Characteristics of GMFs 

Root-Mean- 

Mean Error Square Error Third Moment Skewness Error Trend 
Wind Speed GMF (e), m/s (e 2) 1/2 (m/s) (e3), (m/s) 3 T C1, m/s 

Brown 0.17 1.69 0.63 0.13 1.01 

Smoothed Brown -0.06 1.70 -2.21 -0.45 1.01 
MCW 0.44 1.70 0.64 0.13 0.35 

Equation (6) -0.04 1.63 0.48 0.11 0.81 
Equation (7) with (10) 0.01 1.70 -0.10 -0.02 0.43 
Equations (7)-(9) and 0.11 1.63 0.13 0.03 0.50 

Figure 7 
j-resolved 0.02 1.43 0.23 0.08 0.24 

Notation is as follows' Error, e, of wind speed measurements by altimeter is defined as e = Us - 
UB. Angle brackets denote averaging over the data set. The skewness, % of the error distribution is 

3 2 3/2 
(e)/(e ) . The error trend is defined as the coefficient C1 in the linear regression model: e = Co + 
C • s e for the range 0 < s c < 4, and s e is estimated on the basis of (3) using buoy data. 
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Fig. 2. Altimeter radar cross section cr 0 (decibels) and significant 

wave height Hs (meters), corrected using equation (4). 

a GMF. This constraint concerns the smoothness of the 

model functions U = f(cr 0) or U = f(rr0, Hs). 
We compared the Brown GMF with the most recent GMF 

proposed by Witter and Chelton [1991]. The latter represents 
a modification of the Chelton-Wentz tabular GMF [Chelton 

and Wentz, 1986] and hence is called the modified Chelton- 
Wentz (MCW) function. When MCW was applied to our 
(unfiltered) data set, it was found to produce a very low wave 
age trend: C1 • 0.35 m/s per unit s c. This feature would 
make MCW highly useful for certain applications. Unfortu- 
nately, its other characteristics, as listed in Table 1, are less 
favorable: the mean bias, (e) = 0.44 m/s, is considerably 
worse than that of the Brown GMF. In view of our earlier 
comments related to (1), we conclude that the original 
Brown GMF remains to be the best available algorithm by 
which to judge the progress in this field. 

Apparently, in order to improve altimeter wind speed 
measurements in the sense of all the parameters employed in 
Table 1, it is not sufficient to use the radar cross section 
alone. As was mentioned earlier, the pseudo wave age s c can 
be estimated based on H and U; and since s c influences the 
radar cross section, an empirical GMF can be sought as a 
function of two variables 

U = F(o' o, H) (5) 

4. A CONTINUOUS GMF i 
Function (5) should be interpreted as a solution for U of 

the physically based relationship % = f(U 0 The only 0 ' ' 
known empirical attempt [Monaldo and Dobson, 1989] to 

derive (5) was inconclusive. We believe that the main 
obstacle here is a relatively low sensitivity of the radar cross 
section cr 0 to variations in •:. As a result, random errors in H 
and cr 0 obscure the effects of wave age. The volume of the 
collocated Geosat/buoy observations employed by Monaldo 
and Dobson (236 data points) was too small, which further 
complicated the analysis. 

Employing a much larger data set, we were able to derive 
a continuous function F(cr 0, H) based on orthogonal Cheby- 
shev polynomials Ti(H) and Tj(•r0): 

M N 

U= Z Z CijTi(I•)Td(•o) (6) 
i=Oj=O 

in which the tilde over the variables H and rr 0 signifies that 
the SWH and radar cross section were normalized to vary 
within the interval (-1, 1). The normalization rule is H = 
[2H- (Hma x + Hmin)]/(Hmax - Hmin)and cr 0 = [2or 0 - 
(Cr0max + Cr0min)]/(Cr0max -- Cr0min), where Hma x = 4.565, 
Hmi n = 1.118, Cr0max = 21.567, and O'0min = 7.367. Equation 
(6) rapidly loses its accuracy outside the "normal" range for 
cr 0 (which extends from 7.5 dB to 13.0 dB and covers more 
than 95% of all cases). For cr 0 outside this range, additional 
empirical dependencies had to be derived: at cr 0 < 7.5 a 
linear approximation is sufficient, U = 43.559 - 3.4430'0, 
and at tr 0 > 13 dB the power law U = 7.244 x 106tr• -5'775 
gives good results. 

The empirical determination of the coefficients C ij re- 
quires binning the values of one of the variables (we created 
six bins for the values of H). The distribution of data points 
in the tr0-H plane is highly nonuniform (Figure 2), and the 
binning inevitably results in a considerable smoothing of the 
functional dependence. Consequently, some information on 
the influence of H becomes lost. Having tried various 
combinations of M and N in (6), we selected M = 1 and N = 
3 as giving the best performance. In Table 2 the values of Cij 
are provided as found using the NAG routine E02CA. 

The (two-dimensional) Chebyshev polynomial expansion 
was chosen here for the same reasons for which it is used in 

many other engineering applications' fast convergence and 
wide availability as a standard routine in popular software 
packages. 

The performance characteristics of the GMF (equation (6)) 
are given in Table 1. Evidently, this two-dimensional func- 
tion represents a step forward with respect to the Brown 
GMF. However, in terms of the •-related error trend C • and 
the third moment (e 3), this approach yields only a moderate 
improvement over the Brown GMF. The plot of this GMF 
for three values of H is given in Figure 3. The main 
advantages of (6) are a continuous dependence of the esti- 
mated wind speed on the altimeter SWH for at least 95% of 
all cases, a very low mean error (e), and a reduced rms 
error. The main drawback is the still significant •-related 

TABLE 2. Coefficients Cij in Equation (6) 

0 1 2 3 

30.50 -11.30 13.70 -0.763 
2.64 4.49 2.72 2.44 
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error trend. An approach that decreases the error trend and 
the third moment even further is presented in the next 
section. 

5. A CLASSIFIER-BASED GMF 

The detrimental effect of the measurement noise in the 

variables o.0 and H can be reduced by recognizing the fact 
that a continuous function approach is inherently flawed 
when one of the factors (SWH) has a relatively small 
influence on o.0. Reviewing the physical mechanism respon- 
sible for the effect of • on the radar cross section [Glazrnan, 
1990; Glazrnan and Pilorz, 1990], a classifier-based approach 
appears more promising. It is based on breaking all obser- 
vations down into several subsets corresponding to different 
regimes in the sea surface's geometry (quantified by limited 
subranges of •, and then determining an individual relation- 
ship U = F•(o.0) for each gradation. The wind speed 
dependence of the radar cross section will be different for 
such subsets, and this difference may be quite appreciable if 
the separation is done at properly selected boundaries. The 
simplest version of this approach is implemented by identi- 
fying just two subsets separated by a critical wave age, •cr- 
According to our previous studies (see also Figure 1 of the 
present paper), the wave age dependence is rather weak for 
data points with • >• 2 and stronger for • •< 2. Therefore it is 
natural to select •cr near 2. Then in the first approximation, 
the effect of H could be taken into account as a factor 

influencing the separation of the data into the subsets. Since 
the wave age variability is much smaller within each subset 
than in the whole data set, we expect to obtain rather 
unambiguous relationships U - F•(o.0) for these two 
groups. 

Instead of using a sharp boundary, • = •cr, we separated 
the data into two slightly overlapping subsets: subset 1 with 
• < •cr + A • and subset 2 with • > •cr - A •. The values 
•cr = 1.89 and A • = 0.03 were found empirically as yielding 
the best endpoint results. Respectively, two empirical func- 
tions Fj(o.o) with j = 1 and 2, were derived. Each function 
is presented analytically by a set of smoothly merging 
curves. 

For j = 1 this set consists of three curves: 

TABLE 3. Coefficients in Equation (7) 

j 

1 -64.22 30.81 -3.63 0.13 
2 106.58 - 18.74 1.11 -0.02 

If • > •cr, J = 2. The units of U and cr 0 are meters per second and 
decibels, respectively. 

U (•) = 38.53 - 2.86o.0 o-0<7.5 

3 

U(1) Z ,,(1),,,.n 7 5 < O.O < 12 0 --' 'On •0 ' • • ø 

n=0 

U (1) 2.54 x 103o.•-2'5 = o.o > 12.0 

For j - 2 this set consists of two curves' 

(7) 

3 

U (2) Z$(n 2) n -- O.0 
n---0 

U (2) = 24.18o.• -ø.96 

o.o < 15.0 

o.o -• 15.0 

For both j = 1 and j = 2, the cubic polynomials 

(8) 

3 

vU> = 5; 
n---O 

(9) 

play the main role: more than 90% of all experimental points 
fall within the range of their applicability. The coefficients 
S n •j) are summarized in Table 3. In Figure 4 the functions 
Fj(o. o) are plotted for both gradations j. As we expected, 
these functions are very different. Within their proper do- 
mains, they yield much more accurate estimates of the wind 
velocity than would be possible with a single function that 
ignores wave age gradations. 

Assume for a moment that a crude information on the 

actual wave age is provided based on some independent 
measurements (for example, from a SAR). This information 
would help us select j = 1 or 2. With the value ofj resolved, 
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Fig. 5. Neural "feed forward" network (2-6-20-6-2) employed 
to develop a classifier (Figure 6) of the wave age gradations. Arrows 
illustrate the input-output flows (for external layers only). The 
endpoint output represents the value of j for equation (9). Each 
circle symbolizes the nonlinear transfer function ("sigmoid"), 9 
(ut,), which uses a weighted sum of input signals, uk = •'•Wkn73n, to 
produce its output. The "training" of the network consists in 
selecting the weights w kn which yield the desirable output from the 
network. 

equations (7)-(9) yield much more accurate estimates of the 
wind speed than does the Brown GMF. To test this model, 
we used the NDBC data to determine the actual wave age 
and thus resolve j, and then we estimated altimeter wind 
speed using (7)-(9). The rms error and other statistics of this 
algorithm are given in Table 1 as the "j-resolved" GMF. 

In the absence of auxiliary information on the degree of 
wave development, determining the appropriate gradation of 
the wave age is a difficult problem. An empirical classifier 
which solves this problem is described in the next section. 

6. DETERMINATION OF THE WAVE AGE GRADATION 

BASED ON ALTIMETER DaTa 

In Figure 2 the altimeter data are plotted as points on the 
plane rr 0 - H. Our task is to find the best empirical curve 
(demarcation line) dividing this plane into two regions: j = 1 
with • < •cr and j = 2 with • > •cr. Of course, such 
separation can be neither complete nor unambiguous, for the 
altimeter-supplied rr 0 and H yield at best only a crude 
estimate of the wave age; hence some points will be on the 
wrong side of the demarcation line. However, our GMF is 
partly protected from the identification failures because the 
curves Fj(rr0) (equations (7)-(9)) have been derived for 
slightly overlapping gradations of • (see section 5). In other 
words, for the points close to the demarcation line, either 
curve is more or less suitable. The problem exists mainly for 
the far away points, and it is those "bad" points which have 
the most adverse effect on the statistics of the wind speed 
error. 

In order to determine the demarcation line, we used the 
entire set of rr 0, Hs values together with the buoy-reported 
pseudo wave age (equation (3)) and trained a simple (five 
layer) neural network (sketched in Figure 5) to select the 
correct gradation of •. Success of neural nets in selecting 
best candidates has been demonstrated by Badran et al. 
[1991] for the removal of directional ambiguity in scatterom- 
eter measurements of vector winds. A general introduction 
to this technique is given, for example, by Lippmann [1987]. 
The ability of neural nets to deal with highly correlated 

inputs is important for our application. Upon training, the 
neural network allowed us to plot a continuous function Hs 
versus rr 0 as shown in Figure 6. Ultimately (since neural 
networks are not easily transferable to other users), we 
approximated this function by a cubic polynomial 

3 

H= • b io' 0 
i=0 

(10) 

using a least squares fit. The coefficients of the fit are b i = 
[894.361, -244.596, 22.511, -0.696]. This procedure cor- 
rectly identifies 83% of the data points; the points that are 
identified incorrectly are plotted in Figure 6. This classifier 
yielded excellent statistics of wind speed errors (see Table 1) 
including the wave-age-related trend. However, the rms 
error remained on the level of the Brown and MCW models. 

The neural network approach brings us to two important 
conclusions' (1) a large majority of all points can be correctly 
resolved on the basis of SWH and rr 0, and (2) a general trend 
for the demarcation line H(rr0) is given by a decreasing 
function of rr 0. 

Analyzing Figure 4, one can see that certain subranges of 
rr 0 have a greater adverse effect on wind error than other 
subranges. For example, misidentification of the points 
whose rr 0 is within 10 to 17 dB range results in greater wind 
speed errors (up to 2 m/s) than misidentification of other 
points (the errors are basically within 1 m/s). An exception to 

10 15 20 25 

Fig. 6. The demarcation line drawn by the neural network. 
Points represent the subset of altimeter measurements from Figure 
2 which have been incorrectly resolved by the neural network (17% 
of all cases). 
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Fig. 7. The "optimal" classifier (see section 6 for detail). Coor- 
dinates of break points are as follows' for point A, H - 3.10 m, rr 0 
- 10.25 dB, and for point B, H = 3.10 m, rr 0 - 11.05 dB. Points 
represent the subset of altimeter measurements from Figure 2 which 
have been incorrectly resolved by this identifier. 

this rule is the range cr 0 < 7.5 dB. However, in this range 
almost all points belong to the low wave age gradation: 
hence a misidentification is extremely unlikely. This com- 
mon-sense argument points at a possibility of deforming the 
demarcation curve so as to optimize certain desirable fea- 
tures of the GMF. Specifically, instead of requiring the 
absolute maximum number of correct identifications, we can 
demand only that the points resulting in larger wind speed 
errors be identified most effectively, while the points whose 
misidentification has little effect on the error can be ignored. 
This should reduce the rms error of the wind speed measure- 
ments and can be accomplished, for example, by selecting a 
sharp curve characterized by a small set of parameters, 
followed by varying these parameters until the desirable 
result is achieved. The procedure is empirical: we deform 
the curve and calculate the result (i.e., the rms error, etc.) 
after each deformation. The simplest such curve is a piece- 
wise straight line shown in Figure 7. The coordinates of the 
break points, A and B, were taken as adjustable parameters 
(three independent numbers). Their "best" values are found 
as follows: point A, 3.10 m, 10.25 dB, and point B, 3.10 m, 
11.05 dB. The resulting "optimal" classifier reduces the 
error trend (in terms of C•) to an acceptable level of 0.5 m/s 
and keeps other error statistics within acceptable bounds, as 
shown in the fourth row of Table 1. The rms error is now 

reduced as compared to the classifier (10). However, as is 

discussed in section 7, this classifier has a drawback that 
may have an adverse effect in certain applications. 

The choice of a classifier should be based on specific 
requirements for the problem at hand. Evidently, the "neu- 
ral net" classifier appears most advantageous for climate 
studies and global circulation modeling, in which the wave- 
age-related error trend, the mean error bias (e), and the error 
skewness (e 3) must all be small. If, however, the rms error 
is of predominant importance (which may be the case when 
the data available for taking averages are limited), the 
"optimal" classifier has an advantage. 

7. WIND SPEED HISTOGRAMS 

The goal of the present work was to increase the accuracy 
of wind speed determination for individual measurements. 
We sought to minimize the rms error of the wind speed 
algorithm and, additionally, introduced two more constraints 
on the measaring error. However, in some oceanographic 
applications, the accuracy of individual measurements in 
terms of the rms error is not important. For instance, for 
studies of wind speed statistics (for an ocean region or 
season, etc.), the only feature required for a GMF is its 
ability to minimize the mean error (e) within the desired 
wind speed gradations. 

It has been noted [Dobson et al., 1987] that the Brown 
algorithm [Brown et al., 1981], regardless of its low rms 
error, results in distortions of wind speed histograms if the 
wind speed gradations are narrow. This happens because the 
Brown GMF includes three curves U = f(cr 0) matching at cr 0 
= 10.12 and cr 0 = 10.9 dB and yielding a discontinuous 
derivative dU/dcr o at the junctions. The discontinuity yields 
singularities (spikes) in the probability density function. To 
rectify the problem, a "smoothed Brown" GMF was sug- 
gested in the form of a fifth-degree polynomial, U = Y. an cry, 
which approximates the original Brown algorithm [Dobson 
et al., 1987] in the range 8 dB< cr 0 < 15 dB. Within the 
corresponding wind speed interval, 1.54 to 15 m/s, the 
smoothed GMF is claimed to have an advantage over the 
original Brown GMF because it yields unimodal wind histo- 
grams, whereas the original Brown GMF may produce false 
peaks. 

Actually, all presently available GMFs yield singularities 
at some point (or points) and distort the histograms to a 
greater or lower degree. The Brown smooth GMF, if ex- 
tended beyond the range 1.54-15 m/s, may yield singularities 
at the junctions. The MCW function discussed in section 3 
has singularities at all points for which it is given in the 
tabular form because this GMF involves a linear interpola- 
tion between the points; hence it has discontinuous d cro/dU 
at each such point. The GMFs developed in the present work 
would also yield singularities' the "continuous" GMF of 
section 4 yields singularities at points cr 0 = 7.5 dB and cr 0 = 
13 dB, while the "optimal classifier" of section 6 would yield 
singularities at points cr 0 =10.25 dB and cr 0 = 11.05 dB 
(because the line in Figure 7 is not differentiable). The 
"neural net" classifier approximated by (10) also distorts the 
probability distribution because it involves branching. 
Hence the question arises as to whether and how one should 
use these algorithms for wind speed statistics. 

The short answer is that all algorithms mentioned above, 
including the original Brown and the tabular GMFs, can be 
used in statistical problems. However, the choice of a 
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Fig. 8. Histograms of wind speed distributions. Solid line his- 
tograms represent altimeter wind speeds obtained with the original 
Brown algorithm; the gradation width is set to 2 m/s. Dashed 
histograms show wind speeds measured by NDBC buoys; the 
gradation width is set to 1 m/s. The vertical axis represents relative 
frequency. 

specific GMF depends on the problem at hand. If the wind 
speed gradations were arbitrarily narrow, a GMF would 
have to possess continuous derivatives. However, in prac- 
tice, the gradations have finite width. Hence by an appropri- 
ate adjustment of wind speed gradations, the impact of 
singularities and branching can be controlled or eliminated. 
To illustrate this point, we present wind speed distributions 
for our collocated measurements, using wind gradations 2 
m/s wide. The original Brown, Smoothed Brown, modified 
Chelton-Wentz, and classifier-based (equation (10)) GMFs 
are illustrated in Figures 8, 9, 10, and 11. Evidently, all four 
GMFs disagree with the "ground truth" histogram in some 
ranges. However, the Brown smooth GMF is definitely not 
the best to use for wind speed statistics. 
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wind speed, U, m/sec 

Fig. 10. The same as Figure 8, except that solid histograms 
represent the modified Chelton-Wentz GMF. 

8. CONCLUSIONS 

Actual wave dynamics and surface roughness regimes are 
highly diverse and are much more complex than those 
implied in our preceding theoretical analyses [Glazman and 
Weichman, 1989; Glazman, 1990; Glazman and Srokosz, 
1991]. However, the success of the present experimental 
effort indicates that the idealized notion of the degree of sea 
development (quantified by the pseudo wave age) is a viable 
concept which remains practically useful under realistic 
conditions. The present work, in particular the "j-resolved" 
algorithm analyzed in the bottom row of Table 1, also 
indicates that there exists a potential for further improve- 
ment of the accuracy of altimeter measurements. 

The increased accuracy of the wind speed determination 
achieved by the wave-age-dependent algorithms makes it 
theoretically possible to further improve estimates of the sea 
state bias for sea level measurements, for example following 
the procedure suggested by Fu and Glazrnan [1991]. 

The use of only two gradations of the wave age (sections 
5 and 6) was dictated here by the relatively small number of 
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Fig. 9. The same as Figure 8, except that solid histograms repre- 
sent the smoothed Brown GMF. 
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Fig. 11. The same as Figure 8, except that solid histograms 
represent the classifier-based GMF using equation (10). 



GLAZMAN AND GREYSUKH: ALTIMETER MEASUREMENTS OF WIND 2483 

data available for analysis. New satellite missions, ERS-1 
and TOPEX, will eventually yield more accurate and volu- 
minous data, which will permit a more detailed stratification 
of the wave age gradations, leading to more accurate wind 
speed and sea state bias algorithms. 

The classifier-based GMFs can be successfully used for 
constructing histograms of wind speed distribution. How- 
ever, we recommend that the width of wind speed gradations 
for such analyses be greater than 1 m/s. 
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