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Abstract
Accurate and cost-effective sea state measurements, in terms of spatio-temporal distribution of
water surface elevation (water waves), is of great interest for scientific research and various
engineering, industrial, and recreational applications. To this end, numerous measurement
techniques have been developed over the years. None of these techniques, however, are
universally applicable across various ocean and laboratory conditions and none provide
near-real-time data. We utilized the latest advances in polarimetric imaging to develop a new
remote sensing method based on machine learning methodology and polarimetric reflection
measurements for inferring surface waves elevation and slope. The method utilizes a newly
available, inexpensive polarimetric camera providing images of the water surface in a high
spatio-temporal resolution at several linear polarization angles. Algorithms based on artificial
neural networks (ANNs) are then trained to obtain high-resolution reconstructions of the water
surface slope state from those images. The ANNs are trained on laboratory-collected supervised
datasets of prescribed mechanically generated monochromatic wave trains and tested on a
stochastic wave field of JONSWAP spectral shape. The proposed method, based on inferring the
surface slope from polarimetric images, provides a dense estimate of the water surface. The
results of this study pave the way for the development of accurate and cost-effective
near-real-time remote sensing tools for both laboratory and open sea wave measurements.

Keywords: water waves, instantaneous water surface elevation and slope, polarimetric imaging,
machine learning, artificial neural networks (ANNs), spatio-temporal near-real-time reconstruction,
energy density and directional spectra

1. Introduction

Water surface waves propagate across large distances,
transfer energy, induce water motion and sediment trans-
port, and interact with shores and marine structures. Hence,
understanding water waves phenomena is essential for

∗
Author to whom any correspondence should be addressed.

engineering, environmental sciences, and safety applications.
Most water wave fields are excited by wind, and propagate and
evolve in time and space under the wind forcing. Research of
this complex and stochastic phenomenon requires the capa-
city to produce measurements of wave fields across a large
range of spatial dimensions, wave heights, and propagation
speeds [1].

To produce a directional wave field energy density spec-
trum and enable accurate, near-real-time monitoring and
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short-time projections of waves’ motion and induced forces,
a high spatio-temporal resolution sensing method is required.
To this end, wave gauge probes (WGs) have been used broadly
in laboratory setups to obtain instantaneous water surface
elevation fluctuations measurements. Such probes provide a
reliable temporal point measurement of the water surface
elevation fluctuations. When several WGs are deployed in
a spatial array, with additional processing, one can obtain
spatio-temporal water surface elevation data [2–4]. However,
WGs’ inherent shortcoming is that they produce point meas-
urement only; and thus, obtaining dense spatial information
requires sophisticated processing techniques, which are com-
putationally heavy to undertake and are limited in accuracy.
Further, thesemethods are sensitive tomechanical damage and
electrical interference.

Acoustic techniques include pressure sensors and acous-
tic Doppler current profilers. These techniques have limited
frequency response and produce only low temporal resolution
point measurements of waves [3]. Radar techniques are used
formapping the sea state from shores, ships, or even planes and
satellites, enabling sea state assessment over large areas. How-
ever, radar techniques are expensive to implement and gener-
ally suffer from low spatial resolution [5]. Available photomet-
ric techniques include light detection and ranging sensors and
visible-light stereo imaging. The use of these techniques for
waves mapping requires complex calibrations and costly data
processing [6]. Moreover, the main inherent complexity of ste-
reo imaging arises from the need to find corresponding fea-
tures in images that consist of similar periodic patterns, such
as water waves [5, 7].

Most of the above shortcomings can be effectively
addressed by a polarimetric approach, introduced by Zappa
et al [8], using a single camera equipped with linear polar-
ization filters. The basic principal of this approach is that
unpolarized light, when reflected from the water surface, is
polarized with high correlation to the local wave’s slope. To
deduce the functional relationship between local slope and the
reflected light polarization, Zappa et al proposed a simplified
physical model leading to closed-form analytical expressions
of the slope. The simplifying assumptions include inter alia,
high water turbidity, and purely unpolarized skylight condi-
tions. The former assumption suits some coastal areas, shal-
low lakes, and rivers, while in deep water the turbidity is gen-
erally very low. Sun light, unpolarized at its source, reaches
the earth surface by passing through the atmosphere. On its
way, it is scattered by air molecules, suspended particles,
and aerosols. The scattering particles are small compared to
the light wavelengths and therefore the scattering follows the
Rayleigh scattering principle. The positioning of the scatter-
ing elements is random, making the scattering from the vari-
ous elements incoherent. As a result, the skylight reaching
the water’s surface is partially polarized, a combination of the
unpolarized sun light with the addition of a linearly polar-
ized component [9]. Therefore, assuming purely unpolarized
light also does not hold in a wide range of natural conditions.
Hence, in a variety of general conditions, the solution can-
not be achieved analytically as the full system of equations
describing the polarization-to-slope transfer is over-defined.

Moreover, it is important to note that Zappa et al [8] demon-
strated measurement of only the shortest waves in the spec-
trum, with wavelengths in the order of 10 cm.

Several laboratory and open sea studies have shown the
effectiveness of the polarimetric approach [8, 10–12]. How-
ever, the physical models have been shown to be of low accur-
acy and their use in various open sea and lighting conditions
has been shown to be limited. Furthermore, due to technical
limitations and the discontinuity of the water level slope dur-
ing waves breaking, the nature of collected polarimetric data
in a complex wave field is expected to be incomplete or
imprecise. This poses an additional difficulty for the physical
model solutions, and the challenge to resolve the full spec-
trum of wave lengths still stands. To cope with these issues,
we describe here a machine learning (ML) methodology to
infer the polarization-to-slope transfer in generalized condi-
tions that fully resolves the surface waves spectrum.

The use of ML methodologies for sea waves analysis is
not new, and the approach shows good applicative potential.
Cannata et al [13] reported the use of statistical analysis and
ML random forest methodology to infer the wave heights from
ubiquitous seismic noise, generated by energy transfer from
the ocean to the solid earth. Shao et al [14] demonstrated wave
data retrieval by recorded synthetic aperture radar images. The
core of their methodology was a numeric wave model, which
simulated a wave field, to which recorded waves were com-
pared through random forest and decision tree ML methodo-
logies. In a similar fashion, James et al [15] used ML regres-
sion and classification methodologies to infer the formation
of sea waves generated by a physical model. These three stud-
ies presented capabilities for obtainingmeasurements of larger
wave lengths with coarse spatial resolution. Duan et al [16]
used artificial neural networks (ANNs) for describing phase-
resolved wave forecasts for long-crested waves. The ANN-
based wave prediction, which was developed in that study,
showed immense potential, as ANNs are most suitable for
learning complex patterns, considering nonlinear relationships
between the explained and the dependent variables. Further-
more, ANNs are capable of generalizing in noisy environ-
ments, which makes them the tool of choice in the presence
of incomplete or imprecise data [17].

In our method, we capitalize on both polarimetric sensing
and ML methodology by utilizing the latter for inferring the
non-trivial association between the reflected light polarization
and the sea surface state. This allows for the recovery of the
instantaneouswater surface slope and subsequently the surface
elevation fields. Moreover, benefitting from recent improve-
ments in image processing technology and polarimetric ima-
ging, the system used in the current study is more accessible
and affordable than those used in the above-mentioned recent
studies. Specifically, the ANN is solving the slope vs. polari-
metric data relation for each spatio-temporal point separately
and independently, as elaborated in sections 2.2 and 2.4. The
methodology and the selection of training sets were driven by
the fact the waves of various lengths and steepness generate an
ensemble of local slopes, while the polarimetric properties of
the reflected light are a function of the local slope regardless
of the waves parameters. Here we demonstrate the ability to
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reconstruct the slopes ensemble from polarimetric data alone,
while using a sufficient training dataset of slopes obtained
from simple monochromatic wave (MW) trains. Once trained,
the ANN is used as aML tool, producing near-real-time accur-
atemeasurements of complexwave fields in a laboratory setup.

2. Methodology

2.1. Wave field reflected light polarization

Water surface waves are typically described by instantaneous,
two-dimensional surface elevation functions in the examined
space. Let η (x,y, t) and ∇η (x,y, t) be the instantaneous sur-
face elevation and slope, respectively, at point x, y in space at
time t. Due to wave field’s complexity, statistical representa-
tions are also used to describe it. Often, a directional waves
energy density spectrum is used, achieved by the orthogonal
decomposition of the wave field into individual components,
each characterized by its frequency, f, or wavenumber vector,
k, and by its respective energy and energy propagation direc-
tion. Thus, the wave field is described by a superposition of
2D vectors in the f− θ or k− θ planes, representing energy
density and the directional spread of its propagation [18].

Polarimetric slope sensing (PSS) of water waves exploits
polarimetric properties of the skylight scattered from the air–
water interface to recover the instantaneous two-dimensional
field ∇η (x,y, t) [8]. A camera equipped with linear polariza-
tion filters is used to collect water surface polarimetric images,
and a physical model is used to describe the ∇η (x,y, t) map
inferred from these images [8]. The PSS principle is schem-
atically depicted in figure 1. The light hits the water surface
at an incident angle α (measured from the water surface nor-
mal) and is reflected toward the image plane. As described by
Zappa [8], the incident angle α and the index of refraction n
determine the degree of linear polarization, DOLP, defined by:

DOLP(α,n) =

√
(I0 − I90)

2
+(2 · I45 − (I0 + I90))

2

(I0 + I90)
2 (1)

where I0, I45 and I90 are the light intensities at 0, 45 and 90◦

linear polarization angles, as detailed in section 2.2. Calculat-
ing α from the DOLP is also possible in ideal conditions.

Thewater surface normal is a negative rotation of the reflec-
ted light vector by the angle α, within the plane of reflection.
The inclination angle, ϕ, of the plane of reflection is known
from the polarization angle Φ= 90◦ +ϕ, which can be writ-
ten as

Φ=
1
2
tan−1

(
(2I45 − (I0 + I90))

(I0 + I90)

)
(2)

and completes the specifications of the surface normal [8].
Note that the reflected light vector is specified by the (x,y)
coordinates of the point of reflection, obtained with the help
of the image geometric calibration process. Therefore, (α,ϕ)
and the (x,y) coordinates together specify the orientation of the
water surface normal and the associated water surface slope.

Figure 1. The geometric relationship between the surface normal,
incidence angle relative to the water surface (α), polarization
orientation (ϕ), and water surface slopes in x and y directions.
Reproduced from [8]. © IOP Publishing Ltd. All rights reserved.

Figure 2. (a) The polarizing filter passes the beam that is aligned to
the angle of the slits, and blocks the beam aligned perpendicular to
them. (b) Each individual pixel has its own polarizing filter.
(c) Zoom in image of the polarimetric image (Reproduced with
permission from Teldyne FLIR).

In this work, we construct a learnable estimator that
receives the light intensities filtered at four linear polarizations
in each spatio-temporal image point, as well as the spatial
coordinates of that point, while providing the corresponding
local water surface slope.

2.2. Setup

The raw data was acquired by a polarimetric camera (Sony
IMX250MZR, 2448× 2048 pixels, Polar-Mono), equipped
with a matrix of linear polarization filters (figure 2(a)) fitted
over the camera sensor. The filters are arranged in periodical
order, such that each individual pixel has its own polarizing
filter. In each 2× 2 pixel matrix the filters are oriented at 0◦,
45◦, 90◦ and 135◦, as depicted in figure 2(b).

For each polarimetric image, a region corresponding to the
reflection of the light source was selected. The ANN receives
as an input a quadruple of pixel intensities corresponding to the
four polarimetric pixel light intensities, hereafter denoted as I0,
I45, I90, and I135, respectively. These light intensities are aug-
mented by the x, y coordinates corresponding the 2× 2 pixels
matrix.

The experiments were conducted in the Technion Sea-
Air Interactions Research Laboratory wave basin. Flap-type
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Figure 3. Experiment layouts of supervised data collection in the
wave basin of polarized imagery of (a) ArL and (b) AmL reflection
on water surface waves generated by wave flap.

mechanical wavemakers4 (Edinburgh Designs®) were used to
generate propagating waves in the form of MW trains and
irregular wave fields of a JONSWAP [19] prescribed power
density spectral shape, hereafter denoted as SW. The latter
served as an approximator of wind-driven waves in the open
sea (figure 3(a)). For the SW synthesis, Edinburgh Designs’®

wave-generating software5 was used.
Accurate measurements of the water surface elevation fluc-

tuations were collected by an array of five resistance-type
WGs. The WGs array geometry was prescribed by the meas-
ured wave field: due to the unidirectionality of the wave trains
generated in the wave basin, the five WGs were deployed
in-line along the basin x axis (waves propagation direction),
assuming wave field uniformity along the y axis. The distance
between each WG was set at 9 cm, as depicted in figure 3(a),
and the sampling frequency was set at 128 Hz.

As the generated waves are characterized by smooth water
surface and do not include breaking waves, we can assume sur-
face elevation and slope continuity. The water surface eleva-
tion η (x, t), and slope∇η (x, t) in any of the points between the
WGs were inferred using spline interpolation of water surface
elevation point measurements at the WG locations. Using uni-
formity along the y axis, the splines were then translated into

4 Edinburgh Designs—Wave Generator www.edesign.co.uk/product/ocean-
flap-wave-generator/.
5 Edinburgh Designs—Wave generating software www4.edesign.co.uk/
product/wave-generating-software/.

η (x,y, t) and ∇η (x,y, t) 3D maps. As mentioned earlier, the
slope maps constituted the target datasets used in the ANN’s
training. The elevationmapswere used as an additional ground
truth data for further ANN performance evaluation, as detailed
in section 2.7.

Two different light sources were used in this study: an artifi-
cial light source and an ambient natural light, hereafter denoted
as ArL and AmL, respectively. The ArL source was an in-
house made array of nine incandescent lamps fitted with a
light diffuser fabric. The WG array was positioned in prox-
imity to the ArL reflection on the water surface (figure 3(b))
to provide an accurate representation of η (x,y, t) at the illu-
minated area. η (x,y, t) and ∇η (x,y, t) 3D maps at a given
time t were coupled with the corresponding image synchron-
ously captured by the camera equipped with polarization fil-
ter. Using the AmL provided illumination of the full field of
view of the camera. The data provided by the WGs, recor-
ded at 128 Hz, was down-sampled to match the image acquis-
ition rate of each experiment by window averaging sets of
data points corresponding to a single frame time span. The
camera position was set at a 35◦ yaw (arbitrarily selected), to
the propagation direction of the waves and a −21.7◦ pitch. A
25 mm focal length lens was used.

2.3. Spatial calibration of the camera field of view

The goal here was to infer the wave field in the real-world
coordinate system (RWCS) from polarized light images in the
camera’s coordinate system (CCS). Thus, the mapping from
CCS to RWCS was required. For the calibration, let U and V
be the axes of the CCS, with the origin located at the upper-left
pixel of the image (figure 4), and let x and y define the RWCS,
with its origin set at the lower left corner of the water basin
on the mean water level (MWL) as shown in figure 3(b). An
affine transformation, T : {U,V}→ {x,y}, is then required to
calculate the orientation of the water surface normal relative
to the horizontal. This was obtained by traditional geometric
calibration using a floating checkerboard on the water surface
providing ground control points (figure 4).

Once the calibration was obtained, a matrix was formed
containing matching x, y coordinates for every pixel. This
enabled transformation of polarimetric data from the camera
domain, CCS, to infer the surface slopes in the real-world
domain, RWCS. Once the latter was completed, each pixel in
the image was assigned into a matrix with the corresponding
elevation and slope values.

2.4. Data selection

The polarimetric camera captures the polarized light source
reflection from the water surface. The light intensity of each
polarized pixel is presented by an integer value in the 0− 255
range, with zero representing a completely dark pixel and 255
representing light saturation. When a pixel is completely dark,
it means it is not reflecting any light, whereas when a pixel
undergoes light saturation, the light intensity function reaches
its maximal value and the information concerning the actual
light intensity fluctuations is lost. In the ArL setup, the training

4
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Figure 4. Image of the checkerboard placed on the MWL of the
wave basin, RWCS X–Y plane, with the markings of 50 fixed points
used for the camera’s geometrical calibration.

data sets were selected in areas of the image in which the pixels
showed no light saturation nor complete darkness.

2.5. Pre-processing

The supervised datasets intended for the ANN training, both
inputs and targets, were pre-processed to assure best results.
All the measured signals were visually and statistically inspec-
ted, and grossly erroneous data were screened out. Next, to
reduce noise and neglect small spatial variations, regions of
pixels, denoted as cell s, were manually delineated for spa-
tial averaging. The selected cell area was required to be small
enough in comparison with the wavelengths to ensure suffi-
cient spatial resolution in view of the expected water surface
slope variations. Here, the cell size was set to non-overlapping
40× 40 pixels, which correspond to about 4 cm2 in RWCS.

Once the cell size and location were selected, the input and
target datasets were averaged over it. The spatial calibration
provided the cell’s real-world coordinates and enabled us to
also spatially average the target wave slopes. These inputs and
targets, over consecutive time frames, constituted the available
dataset. Thus, the input and output lie in R6 and R2 respect-
ively, with #Cells x #Frames input-output pairs.

2.6. ANNconfiguration and training

For estimating ∂η
∂x ,

∂η
∂y , a multilayer feed-forward fully con-

nected neural network was used. The input to the ANNwas the
four averaged intensities (spatially averaged over the dimen-
sions of each cell) filtered at the different linear polarization
angles and the x, y center coordinates of each cell. The ANN
architecture and the hyperparameters were determent exper-
imentally as described below. The network was trained on
MW (MW train) data. The training process relied on the back-
propagation algorithm and adjusted the weights and biases of

Figure 5. Polarimetric reflection under the ArL, with cell selection
and spatial averaging of 40 × 40 pixels for ANN training.

the network’s neurons by minimizing the mean square error
(MSE) loss function for each prediction-target pair i

MSE=
1
n

n∑
i=1

(πi−πi)
2
. (3)

Here πi denotes the ANN output estimation and πi the
ground truth targets of the water surface slopes provided by
the WGs.

To increase generalization, a standard L2 regularization
term was added to the net objective function:

min
w∈R

MSE+λ∥w2∥ , (4)

where λ is the regularization hyperparameter and w are the
network weights.

The MATLAB shallow neural networks toolbox [20] was
used to construct and train the networks. The datasets were
partitioned into training, validation, and test sets by randomly
allocating different cells to each of the three sets (without over-
lap) as demonstrated in figure 5. The training set was used for
the backpropagation process. The validation set was used for
estimating the test error and regularizing the network using
early stopping if the network overfitted the training data. The
test sets were then used for evaluating the trained ANNs per-
formance, as described in detail in section 2.7.

To search for preferred hyperparameters, first a standard
random search was performed, within a manually selected
range for each hyperparameter. After which an additional finer
grid search was conducted around the initially obtained values
for fine tuning and validity testing [21]. The search procedure
was performed to identify preferred number of hidden layers,
number of neurons in each layer and λ L2 regularization factor.
In addition, an exploratory analysis was performed to identify
the preferable activation function and optimization algorithm.
The procedure yielded eventually the ANN’s architecture and
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Table 1. Supervised data sets for ANN training, validation, and test.

Experiment
Lighting
conditions

Mechanically
generated
waves #Cells #Frames

Image frame
rate [Hz]

Recorded
light intensity
mean std

ANN
architecture

L2
regularization
factor (λ)

ANN used
for test data
reconstruction

MWexp1 Artificial
light source
(ArL)

Mono-
chromatic
(MW)

30 900 64 40.57 10 hidden
layers of 42
neurons

10−4 Net1

MWexp2 Ambient
light (AmL)

Mono-
chromatic
(MW)

315 300 16 9.31 7 hidden
layers of 58
neurons

0 Net2

SWexp Ambient
light (AmL)

JONSWAP
spectral
shape (SW)

495 1800 16 9.58 7 hidden
layers of 58
neurons

0 Net2

hyperparameters corresponding to the highest Pearson correla-
tion coefficient,R, between the ground truth slopes and the net-
work estimates. As the MSE and R cover two different aspects
of the net’s reconstruction capabilities, training on the MSE
and validating on the R optimizes the net’s performance on
both aspects [22]. This experiment was conducted under ArL
and AmL conditions to account for the effect of light and dif-
ferent configurations. These are detailed in table 1.

Once trained, the ANN became a parametric description of
the approximated connections between the optical water sur-
face light reflection properties as sensed by polarimetric ima-
ging and the water surface waves properties.

2.7. Trained ANN evaluation and post processing

The ANN’s wave slope reconstruction capabilities were eval-
uated in several different configurations. In the first experi-
ment, we tested the slope estimation on the MW train. The test
samples were taken from the same set of data used for training
and validation, but naturally were not included in the training
process (see figure 5). This evaluation was repeated for both
artificial and ambient lighting conditions.

While the training was held on MW, it was expected that
light polarization would not be affected by the irregularity
of the slope variations in wave fields of finite spectral width.
Thus, the same trained network should be able to infer irreg-
ular wave fields as well. To challenge this hypothesis, the
trained network capabilities were next evaluated on additional
polarimetric images taken from supervised data sets of SW.

The third set of evaluations were done in terms of
reconstructing the energy density spectrum of the SW. The
ANNs provided the surface slopes, however, to estimate the
energy density spectrum, we needed to obtain the elevation
maps η (x,y, t). Therefore, the estimated 2D surface slopes
∇η (x,y, t)were integrated numerically, and a singleWG point
measurement served as the integration constant in each time
step, t,

η (x,y, t) =
¨

∇η (x,y, t)∂x∂y+ ηwg (x0,y0, t) . (5)

To obtain a unique solution of equation (5) a regu-
larized least-squares surface reconstruction from gradient

fields algorithm was implemented, which solves the Sylvester
equations with additional form of regularization [23, 24]. Once
the η (x,y, t) maps were obtained, they were processed to
obtain the energy density spectrum and compared with the
spectrum obtained by the WG measurements.

Data availability covering a much larger spatial region
under theAmL conditions led to higher wavenumber resolution
in the spectral domain. This made producing the directional
spectrum possible. No direct comparison to ground truth was
possible in this case as no other directional measurement tech-
nique was available for these experiments. Instead, the qual-
ity of the reconstructed waves directional energy density spec-
trumwas validated by examining knownwave field parameters
set by the mechanical wavemaker operation, the camera view-
ing angle, and the measurements of the WGs.

3. Results and discussion

In our study, three laboratory experiments were conducted
for supervised data collection, as detailed in table 1. In all
the training of the ANN, the optimization algorithm found
to yield the best performance was the gradient descent with
momentum and adaptive learning rate. The activation function
that returned the lowestMSEwas the hyperbolic tangent, tanh.

3.1. Monochromatic propagating wave train under artificial
light source experiment—MWexp1

In MWexp1, the simple case of an MWwith the controlled ArL
reflection measurements was examined. A propagating MW
train of 1 Hz frequency and 2.1 cm amplitude was generated.
This resulted in a 1.55 m wavelength, with kh= 2.837 and
steepness of ak= 0.085. 900 image frames were collected at
a 64 Hz framerate. The 30 selected cells over the 900 frames
(table 1) yielded a dataset of 2.7× 104 samples. Next, the data-
set was split into training, validation, and test sets, as detailed
in section 2.6 and demonstrated in figure 5.

The exploratory analysis for preferred network hyperpara-
meters architecture yielded a net architecture of 10 hidden lay-
ers with 42 neurons in each and an L2 regularization factor of
λ= 10−4 (see table 1). The ANN training process evaluation
on the preferred architecture can be seen in the scatter plots
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Figure 6. MWexp1 linear regression R of Net1 outputs vs targets in
training, validation, test sets, and overall.

(figure 6) of the network’s output vs. the targets on the training,
validation, and test sets and overall. R= 0.9676 was reached.

The results of the slope reconstruction by the trained
MWexp1 net of cell test data vs. the WGs’ measurements is
shown in figure 7. TheWGs’ measurements and the network’s
estimates are marked in continuous and broken lines, respect-
ively. The MWexp1 net, denoted as Net1 (see table 1), captured
the overall wave period well, while the reconstruction accur-
acy of the instantaneous slope fluctuations varied. Both the
positive and negative maxima values of the slope variations
were slightly underestimated. However, as the extreme values
of the slope correspond the surface elevation instances close
to the MWL, such reconstruction results can be considered
largely satisfactory.

3.2. Monochromatic propagating wave train under ambient
light experiment—MWexp2

The MWexp2 was conducted to further evaluate the robust-
ness of the ML-aided reconstruction method by increasing the
complexity of the polarimetric data. Thus, a setup similar to
the MWexp1 experiment was implemented, except for remov-
ing the ArL source and producing the polarimetric reflection
measurements under AmL (Table 1). Examining the variations
of the recorded light intensity revealed lower signal standard
deviation, std. This indicated the need to increase the light
intensity variations range captured in each pixel. To this end,
longer exposure time was selected, and the image collection
frame rate was reduced to 16 Hz (table 1). Alleviating the con-
straint of the small area reflecting the ArL, all the data in the
WGs measurements, under the assumption of wave uniform-
ity along the Y axis, was considered as the training dataset.

Figure 7. MWexp1 tan−1 (∂η/∂x) of representative test set time
series, ANN output vs. targets.

Figure 8. MWexp2 image of AmL polarimetric reflection, with a cell
selection and spatial averaging of 40 × 40 pixels for ANN training.
The area between the lines is the supervised data area covered by
the WGs’ measurements.

Hence, a much larger training dataset was constructed, consti-
tuting 315 fixed cells over 300 frames (see table 1), yielding
an overall data set of 9.45× 104 samples. Figure 8 presents
the selected cell split for training, validation, and test, cover-
ing the maximal available spatial information bounded by the
area covered by the WGs measurements. The black squares
represent the train set, the white squares represent the valida-
tion set, and the gray squares represent the test set.

Once again, an exploratory analysis was performed to find
the best network’s hyperparameters and architecture. The fol-
lowing parameters were found to provide the best results: a
net architecture of 7 hidden layers of 42 neurons each and no
L2 regularization factor, meaning λ= 0. The trained MWexp2
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Figure 9. MWexp2 linear regression R of Net2 outputs vs targets in
training, validation, test sets, and overall.

net, denoted as the Net2 (see table 1) evaluation, reached
R= 0.93694, as depicted in figure 9.

Figure 10 presents the MWexp2 Net2, in AmL conditions.
The reconstruction capabilities of cells are not included in
the training process vs. the WGs’ measurements. The WGs’
measurements and the network’s estimates are marked in con-
tinuous and broken lines, respectively. The results suggest a
less accurate performance in the net’s capability to reconstruct
∇η (x,y, t)when compared to the results of the set usingArL in
MWexp1. However, despite the obvious reconstruction accur-
acy reduction, the net still captures the overall wave period
well and produces comparable underestimation of the slope
variations maxima, in a less controlled experiment and over a
much larger reconstruction area.

3.3. JONSWAP spectrum wave field under ambient light
experiment—SWexp

For SW reconstruction, the Net2 network that was trained on
MWexp2 under the AmL was used without further modification
(table 1). The test set in SWexp was obtained by creating a
supervised set of an irregular wave field corresponding to the
JONSWAP spectral shape, formulated by

S= αp · g2 ·ω−5 · exp
[
−5
4
·
(ωp

ω

)4
]
· γ

exp

(
− (ω−ωp)2

2σ2·ω2
p

)
. (6)

The spectral parameters were the peak time period
Tp = 0.66 sec, peakiness coefficient γ = 3.3, and central fre-
quency fP = 1.5 Hz, with frequency components of significant
energy in the range between 1.2 Hz and 2 Hz, as presented in
figure 13. This resulted in significant wave height Hs = 3 cm,
calculated by

Figure 10. MWexp2 tan−1(∂η/∂y) representative test set time series,
ANN output vs. targets.

Figure 11. SWexp image of AmL polarimetric reflection and the
selected cells. The area between the lines is the supervised data area
covered by the WG measurements.

Hs = 4 ·

 ∞̂

0

S( f)∂f

0.5

. (7)

495 fixed cells over 1800 frames were selected (table 1),
yielding a test dataset of 8.91 × 105 samples. The cells selec-
ted for reconstruction by the trained ANN, using themaximum
available spatial information bounded by the area measured by
the WGs, are marked between the two grey lines in figure 11.

The net outputs of ∇η (x,y, t) were then integrated numer-
ically, solving equation (5) [23, 24], to obtain the η (x,y, t)
maps in each time frame. The integration coefficient was
provided by WG1 (figure 3(b)) measurements, sampled at
16 Hz identical to the camera frame rate. This resulted in
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Figure 12. SWexp region of interest, representative example of the
instantaneous η (x,y), wave gauge measurements vs Net2
reconstruction.

a reconstructed η (x,y, t) maps of about 2×2 cm2 spatial
resolution sampled at 16 Hz. A representative example of one
frame reconstructed η (x,y, t) is shown in figure 12. To mitig-
ate the effects of the observed higher noise-to-signal ratio of
the net’s output, the reconstructed slopes were spatially aver-
aged in 6× 6 cells, with 50% and 83% overlap in the x and y
axes, respectively, and integrated in the same procedure. This
resulted in reconstructed η (x,y, t) maps of about 12× 12 cm2

spatial resolution sampled at 16 Hz.
The acquired averaged η (x,y, t) maps were then further

processed to examine the quality of reconstruction in terms of
the waves energy density spectrum and the energy propagation
direction and spread. A comparison between the reconstruc-
ted energy density spectrum and the ground truth spectrum
calculated from the surface elevation fluctuations obtained by
WGs is shown in figure 13. The reconstructed spectrum shape
compares favorably with the ground truth. The peak energy,
the long waves side of the spectrum, and the second har-
monic (located at 2.4 Hz) match almost perfectly, whereas the
spectrum high frequency side reconstruction is somewhat less
accurate.

After validating the trained ANN ability to faithfully recon-
struct the slopes and the waves energy density spectrum at
selected locations, the ANN performance in reconstructing the
wave field over the entire image was examined next. Solving
equation (5) [23, 24], the net outputs were similarly integrated
to obtain η (x,y, t) maps, and the directional energy density
spectra of those maps were produced. The resulting spectrum,
averaged over the full-time span, is presented in figure 14.
Within the camera-covered area, the spectral wavenumber res-
olution is dkx = 0.095 cm−1 and dky = 0.101 cm−1 in the
x and y directions, respectively. Energy peak is situated at
1.5Hz and the wavenumber |k| ranges between 0.1386 cm−1

and 0.2773 cm−1, within the confidence interval, as estim-
ated from the linear theory calculations: 1.5 Hz dominant fre-
quency and k = 0.0905 cm−1. The energy propagation direc-
tion is noted to be in the range between 28◦ and 64.8◦ (the
range bounds set by the dk), again in correspondence with

Figure 13. SWexp energy density spectrum of a point at the center
of reconstructed area, wave gauge measurement vs reconstruction.

Figure 14. SWexp 2D directional energy density spectrum of whole
image area reconstruction.

the expected 35◦ main direction of propagation relative to the
camera point of view. The wavenumber resolution, limited by
the current experimental setup in the small wave basin, does
not allow the exact evaluation of the reconstruction perform-
ance in terms of the energy propagation directional spread.
However, the energy propagation direction spread is narrow,
as expected for the examined mechanically generated uni-
directional wave field. The energy density and the directional
spectra validate the developed approach and thus render it as
suitable for wave energy density distribution reconstruction in
laboratory conditions under AmL.

Finally, to quantitively evaluate the trained nets’ overall
performance, the root mean square (RMS) of the entire test
sets were reconstructed and the target-slope variations were
calculated for the above-mentioned three experimental condi-
tions (table 1). In addition, these results were compared with
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Figure 15. Slope variation RMS, trained net outputs vs targets for
the test sets in all experiments for the entire spectrum of
wavelengths, compared with Zappa et al [8] reconstruction of only
the shortest wavelengths.

the laboratory results presented in Zappa et al [8]. These are
reported in figure 15. Zappa et al reported R= 0.98 for only
very short wavelengths of about 5 Hz. In the results presented
here, R= 0.991 was obtained for a smaller slope RMS values
range, while the major advance offered by the new methodo-
logy is reconstructing the slopes of all wavelengths, resolving
the full spectrum of wavelengths.

4. Conclusions

The new methodology presented here incorporates ML tools
to solve the water surface slope to the reflected light polariz-
ation relationship, effectively implementing the PSS concept
[8] with the aid of ANNs. We aimed at demonstrating the abil-
ity of the new methodology to produce spatio-temporal meas-
urements of water waves in a laboratory environment under
both artificial and ambient lighting conditions. We achieved
two-dimensional waves slope field reconstruction by remote
sensing of polarimetric imaging and ANN training, without
enforcing simplifying assumptions on reflected light polar-
ization or water turbidity, while resolving the full spectrum
of wave lengths. While resulting in a finite accuracy recon-
struction of waves slope variations at single point measure-
ments, the ANN reconstruction products were shown to pro-
duce accurate estimations of both the one-dimensional energy
density spectrum and the directional energy density spectrum
in the k− θ domain.

The current methodology utilizes the understanding of light
reflection geometry change at different locations in the meas-
ured wave field, an effect neglected in Zappa et al [8] that
aimed to reconstruct only the very short waves of the spectrum.
Here we incorporate the (x,y) coordinates in the set of ANN
input parameters to achieve the demonstrated quality of per-
formance, reconstructing the surface elevation fluctuations’ of

spectral components of all lengths with significant accuracy
as depicted in figure 15, and not only the shortest waves of the
spectrum, as demonstrated by spectral shapes comparison and
quantified by reconstructed slope fluctuations’ RMS.

Examining the reconstruction capabilities ofNet1 (figure 7)
and of Net2 (figure 10) a systematic errors in inner period
phase perturbation in themaximum andminimum slope values
can be observed. Nevertheless, resulting in satisfactory recon-
struction of the instantaneous surface elevations. The source
and mechanism responsible for the observed systematic error
are yet to be determined and are beyond of the scope of the
current feasibility study.

The results and open questions provide a strong incentive
for further research to further mature the methodology with
additional supervised datasets and increased complexity of the
ML tools to improve its robustness. The current methodology
is based on learning the local slope-polarimetric data rela-
tion, hence a viable option would be the use of convolutional
neural networks to incorporate neighbors’ data, such networks
will receive as an input and target a finite size spatial area
or the full image, learning the spatial variations. Moreover, a
combined spatio-temporal convolutional neural network can
be considered, by inputting a set of consecutive images. Fur-
thermore, to enhance the ANN reconstruction capabilities in
follow-up studies, we propose the use of one of the exist-
ing remote sensing spatial techniques to measure the ground
truth for the ANN. targets, which will significantly increase
the quality, variety, and spatial availability of data for train-
ing. The latter modifications of the systemwill aid in progress-
ing towards the goal of developing the capacity to accurately
reconstruct the instantaneous phase variations. Which in turn
will facilitate the obtaining the wave field spectral components
celerity vectors directly by near-real-time monitoring.

The success of an artificial network trained on a simplistic,
MW train to reconstruct an irregular JONSWAP-prescribed
power density spectral shape field, set the path for upscaling
from a laboratory setup tool to an open sea application for
research, monitoring, and the short-time forecast of waves.
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