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[1] Fluid flow interacts with sedimentary beds forming waves of different kinds, which
are of considerable practical importance since they influence significantly the near-bed
flow, both over and below the bed, sediment transport, and wave height attenuation. We
focus here on steep bed forms capable of producing flow separation. In this case, the large-
scale vorticity generated in the phenomenon of separation rules the process of friction,
which appears to be practically unaffected by sediment motion. Under the crests of the bed
forms, the mean shear force due to friction is balanced by the force that bed forms exert on
the flow via pressure, which can be calculated from the work of Giménez-Curto and
Corniero [2002]. Bed forms grow until they have a height such that friction at their
troughs is negligible, thus ceasing the motion of fluid and sediment. This condition leads
to a very simple expression for the limiting steepness, which compares favorably with
existing observations on bed form geometry under steady open channel flow as well as
under oscillatory flow. INDEX TERMS: 4558 Oceanography: Physical: Sediment transport; 4546
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1. Introduction

[2] A conspicuous property of movable beds consists in
their deformation under fluid flow forming quite rhythmic
features that, in general, move. In nature this phenomenon
occurs in water surfaces, where the wind generates waves;
in sedimentary beds, where the flowing air or water builds
ripples, dunes, antidunes, and bars; and also in vegetated
surfaces, like grass, crop fields, forests under wind; or
submerged algae fields (where the waving motion is termed
‘‘monami’’ [see, e.g., Ghisalberti and Nepf, 2002]).
[3] We are concerned here with the bed forms produced

in sandy beds by water flows, a kind of interfacial waviness
which ranges from small ripples (a few centimeters in
wavelength and some millimeters in height) to tidal sand
banks (with wavelengths of a few kilometers and tens of
meters height [Dyer and Huntley, 1999]).
[4] From observation, we know that the bed form steep-

ness h/l (where h represents the height of the features, from
trough to crest, and l their spacing or wavelength) can
hardly exceed 0.10 or 0.12 in steady flow. In oscillatory
flow higher values can be observed, although not exceeding
0.20 or 0.25. Clearly, if the maximum steepness of the bed
forms were determined by the angle of repose, f, of the bed
material, the limiting form would be symmetrical and its
steepness would be 0.5 tan f, i.e., about 0.31 for natural
sand. Since figures comparable to this value have never
been observed, it appears that under fluid motion there must

exist some dynamic limiting condition, which until now
remains unexplained.
[5] Most empirically based formulae proposed so far (see,

for example, van Rijn [1984] for steady flow and Mogridge
et al. [1994] for oscillatory flow) show a maximum in the
bed form height trying to reflect the well-known fact that a
ripple, or a dune, first increases its height, in response to an
increase in the flow velocity, and finally decreases until its
disappearance. Unfortunately, empirical formulae permit at
the best only interpolation (and at the worse extrapolation).
Explanation and prediction requires some kind of theory.
[6] From a theoretical point of view, we have gained

some insight into the knowledge of the first stages of
growing of the bed forms by investigating the instability
of the fluid-bed interface to small disturbances [Kennedy,
1963; Engelund, 1970; Richards, 1980; Blondeaux, 1990;
Vittori and Blondeaux, 1990]. However, little is known
about the precise mechanism that limits the growing of
natural bed forms.
[7] Giménez-Curto and Corniero Lera [1996] (herein-

after GCCI) have studied the fluid flow over irregular
surfaces by introducing spatially averaged Reynolds equa-
tions, which consider the variation of the fluid domain of
averaging. These equations allow the treatment of the flow
between the roughness elements of the bed and are therefore
particularly suitable for the investigation of the phenomena
related with bed forms, especially under flow separation
conditions. We shall use these equations throughout this
paper as the basic theoretical framework.
[8] Perhaps the most fundamental result in the work by

Giménez-Curto and Corniero [2002] (hereinafter GCCII) is
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the evaluation of the amplitude of the pressure disturbances
generated in the near-bed flow when it undergoes separation
from the bed features. This result can be expressed simply as:

p̂b � reU2
0 ; ð1Þ

where U0 is a typical velocity representing the global flow, r
is the fluid density, and

e ¼ k =Λ 0 ð    Þ1 =3 ð2Þ

represents a small parameter characterizing the phenomena
associated with flow separation. Here k is the height of the
bed features (h throughout this work) and �0 = rU0

2/G0

represents the basic length scale of the flow, G0 being a
typical value of the driving force per unit volume (see below
for a formal definition of this force). Expression (1) was
obtained in the context of oscillatory flow; nevertheless, the
argument is very general and can be applied directly to
steady flow.
[9] Very notably, the pressure variations (equation (1)) do

not either depend on viscosity or on turbulence character-
istics and this result remains valid regardless of the kind of
flow near the bed (whether laminar, smooth turbulent, rough
turbulent or jet), provided only that flow separation from
boundary features does occur. In the work of GCCII, we
provided empirical evidence of the validity of equation (1)
for oscillatory flow over a flat bed whose features are
simply the sediment grains (in which case the height k
represents the mean diameter, D). This led to the explan-
ation of the phenomenon of incipient motion of sediment.
Here we apply the fundamental result (1) to the case of bed
forms under both, steady and oscillatory flow, and show that
this leads to an absolute limit for their height.

2. Theoretical Considerations

[10] Let us consider the situation in Figure 1a, i.e., a near-
bed flow in the x direction, which can be inclined with
respect to the horizontal and varies, in general, with time.
This flow carries sediment partially as suspension load with
negligible relative velocity between fluid and sediment, and
also as bed load with a significant relative velocity.
[11] The spatially averaged Reynolds equations intro-

duced in the work of GCCI are valid for fixed irregular
boundaries. In the case of moving contours, the problem can
be treated also by means of the general method described
there. The extension is straightforward and as a result some
new terms emerge due to the motion of the solid boundaries.
Fortunately, these new terms can be shown to be negligibly
small if the motion of the boundaries produces only small-
time variations in the fluid area of the averaging domain, Aw.
In fact, in the problem of sediment motion near a natural
bed, Aw varies much more slowly than the flow itself with
time and space (except for the z direction). In this context,
and neglecting also the convective terms, since we are now
considering a nearly flat bed, the mean longitudinal com-
ponent of the equation of motion can be written as:

r
@U

@t
¼ � @P

@x
þ rgx þ

1

Aw

@ Awtxzð Þ
@z

þ fvx þ fpx; ð3Þ

where (x, z) are the longitudinal and perpendicular to the
bed coordinates; t is the time; (U, P) are the mean velocity

and pressure (‘‘mean’’ signifies Reynolds and then spatial
plane averaging, i.e., the Reynolds averaged value inte-
grated over the fluid region, with area Aw, of a large plane
domain parallel to the bed, divided by Aw); txz is the mean
shear stress; gx is the x component of the acceleration of
gravity vector; and ( fvx, fpx) represent the x component of
the mean forces that sediment grains exert on the fluid per
unit of fluid volume through viscous friction and pressure.
[12] The driving force, which is given by

G z; tð Þ ¼ � @P

@x
þ rgx ð4Þ

will depend, in general, not only on t but also on z, since it
can easily be shown, using the z component of the equation
of motion, that Aw@P/@x cannot vary in a direction normal to
the bed. Although equation (3) describes quite general flows
in the vicinity of mobile beds, at least to a first approxima-
tion, we shall consider here, to be more specific, two
particular types of flow, the steady open channel flow (for
which the left hand side of equation (3) as well as @P/@x are
zero and the z derivative becomes an ordinary one) and
oscillatory, horizontal flow (in which gx = 0). The
appropriate values of the global flow velocity, U0, and
driving force, G0 are as follows: (1) for open channel flow,
U0 is the mean velocity and G0 = rgx; (2) for the oscillatory
flow, U0 = as is the maximum exterior velocity and G0 =
ras2 is the maximum pressure gradient (in this case, a
represents the amplitude of motion and s its angular
frequency).
[13] In a general near-bed flow, the left hand side term in

equation (3) is at most O(G0) far from the bed and its
magnitude reduces downward as the mean velocity does. In
the outer region the sediment moves as suspension load in
small concentrations; therefore Aw can then be taken as
nearly constant and furthermore the force exerted by the
grains can be neglected. To a first approximation, equation
(3) behaves then like in the case of a clean flow without
sediment. This permits an estimation of the thickness of the
friction layer as h = t0/G0 = �0 f; where t0 represents the
mean shear stress at the specific level and time where it is
maximum, and f = t0/(rU0

2) represents a dimensionless bed
shear stress, also called friction coefficient.
[14] In the inner region of the friction layer, where bed

load occurs, the mean shear stress decreases rapidly down-
ward and the leading order balance of forces reduces to

1

Aw

@ Awtxzð Þ
@z

þ fvx þ fpx ¼ 0: ð5Þ

Here the grain force will be dominated usually by the
pressure term since the grains will produce flow separation.
The viscous term will enter the balance only in the case of
very small grains. We observe that the left hand side sum in
equation (5) is not exactly zero, but it must be O(G0). It
should be pointed out that if fvx is negligible, the flow just
described behaves like a rough flow with an enhanced
roughness, as compared to the fixed bed case, since the
roughness height must be interpreted as the length scale in
which Aw (or equivalently the porosity or the concentration)
changes significantly normally to the bed (see Appendix A
for a formal definition of roughness).
[15] If we consider now a slightly undulated bed with

forms of small amplitude, the mean flow (averaging only
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the disturbances introduced by the grains) becomes nonuni-
form. Equation (3) must then be completed with the con-
vective terms and the longitudinal variation of the normal
stress. These new terms would represent only small correc-
tions to the fundamental flat bed balance if the steepness of
the bed forms were very small. The magnitude of the main
convective term, measuring the flow nonuniformity, can be
estimated as rU0(hU0/h)/l which becomes comparable to
the driving force, G0, when h/l � f. Natural bed forms,
even of small amplitude, under nonseparated flow manifest
the flow nonuniformity; therefore, we expect their steepness
to be at least comparable to the friction coefficient.

[16] When the amplitude of the bed forms increases, the
opposing force due to friction becomes eventually unable to
decrease the flow velocity at the rate required by the
geometry of the bed form in its lee side. Giménez-Curto
and Corniero Lera [2000] have shown that this leads to
flow separation and it occurs under the condition

h
l
> g

ffiffiffiffi
f0

p
ð6Þ

in turbulent flows. Here f0 represents the friction coefficient
which would produce a uniform shear flow with the same
thickness and velocity as the actual flow, running over a flat

Figure 1. The total shear force (fluid area times the shear stress) in the flow over a mobile bed first
increases downward but it must decrease abruptly in the lower region in order to balance the force that the
bed load on a plane bed (a) or the bed forms (b) exert on the flow. The fluid area, Aw, of a fixed plain
domain parallel to the bed varies with z as a consequence of the variation in the concentration or in the
bed form geometry.
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bed with the same characteristics; g is a coefficient
depending on the bed form geometry, which has been
estimated to be between 1.0 and 2.0 for fixed, two-
dimensional beds.
[17] The dynamical situation changes substantially when

flow separation from the bed forms occurs. In such a case,
which we represent in Figure 1b, it is convenient to perform
a new spatial averaging of the equations of motion to obtain
a new mean, uniform flow. This can be done, following the
method described in the work of GCCI, by integrating over
plain domains that, as shown in Appendix A, must have a
large longitudinal dimension as compared with e�0. As a
result, there emerge new large mean forces in the flow
region between the crest and the trough of the forms, where
the leading order balance is

1

Aw

@ AwTxzð Þ
@z

þ Fpx ¼ 0: ð7Þ

Here Fpx represents the mean force that bed forms exert on
the flow via pressure (the mean force due to the grains, i.e.,
the mean value of fvx + fpx must be small when compared
with Fpx as it indicates the very occurrence of separation);
Txz is the new averaged shear stress, and Aw represents now
the area of the fluid region of the new averaging domain.
The total mean stress Txz has a viscous component, which
usually will be negligible, a turbulent component, and the
so-called form stress, the mean momentum flux due to
velocity disturbances introduced by the bed forms (the flow
disturbances associated with the grains are small).
[18] Clearly, the force balance (7) represents a conven-

tional (free of sediments) rough flow, whether rough turbu-
lent or jet, with roughness height h (see Appendix A). This
provides justification to the fact that when the flow under-
goes separation from the bed forms it can be considered as a
flow over a fixed bed, ignoring the direct effects of sediment
grains in motion within the fluid.

[19] We have presented empirical evidence of this result
in the work of GCCI for oscillatory flow, where the
common situation corresponds with the so-called jet regime.
In this case, the total friction can be calculated by means of
the following friction coefficient:

f ¼ 0:36e2 ð8Þ

for fixed artificial as well as for naturally formed rippled
beds.
[20] It is worthwhile to provide also empirical evidence

for steady open channel flow, because the flow scale �0 is
usually much longer than in oscillatory flow, and therefore
the common situation represents a rough turbulent flow. In
this respect, we consider herein the 232 laboratory obser-
vations on bed forms collected by Guy et al. [1966] and the
38 experiments by Mantz [1992] with very fine sediments.
In order to select the observations with flow separation, we
first disregard those having a Froude number greater than
unity, which very likely correspond to antidunes and do not
produce separation. Condition (6) was derived for fixed bed.
Although we expect this condition to be formally valid also
for mobile bed, unfortunately neither do we have informa-
tion about g nor can we estimate with accuracy the friction
coefficient f0 for such bed conditions. Therefore since

ffiffiffiffi
f0

p

must exhibit a rather small variation, we will adopt a
constant and quite conservative value of 0.05 as the mini-
mum steepness capable of producing flow separation from
the bed forms.
[21] Figure 2 represents the friction coefficient f as a

function of �0/h for the 73 observations by Guy et al.
[1966] and 25 by Mantz [1992] with bed form steepness
greater than 0.05 and Froude number less than unity. In this
figure, we have represented also the friction coefficient
corresponding to fixed bed with forms of height h, see the
work of Giménez-Curto and Corniero Lera [2000], which is
given by

f ¼ 0:52e2 ð9Þ

for the jet regime (very large roughness), and the following
expression for fully rough turbulent flow:

1ffiffiffi
f

p ¼ 1

k
ln

h

ks

� �
þ B; ð10Þ

where ks � h represents the equivalent sand roughness; k =
0.40 is the Von Karman’s constant and B = 4.5 Clearly,
Figure 2 provides empirical support for our above argument
that when flow separation occurs the friction coefficient can
be calculated as if the bed were fixed, using h as the
roughness height.

3. The Maximum Bed Form Height

[22] We first note that during the evolution of a specific
bed form, it is possible that its steepness never attains the
condition of separation (equation (6)). The complete grow-
ing, decay, and disappearance of the bed form under a
gradual increase of flow velocity may occur entirely in the
absence of separation. Nevertheless, it is clear that for a

Figure 2. The friction coefficient in steady open channel
flow over natural bed forms generated in the laboratory with
steepness greater than 0.05. Observations by Guy et al.
[1966] (crosses) and Mantz [1992] (triangles). The solid
lines represent the friction for fixed bed conditions (without
sediment in motion) as given by equations (9) and (10).
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given wavelength, the absolute maximum possible bed form
height will be reached under the occurrence of flow sepa-
ration. Under such conditions, we have just argued that the
maximum total shear stress can be calculated by means of
the friction coefficient f given by formula (8) or (9) for
oscillatory and steady flows, respectively, in the jet regime
(�0/h less than 100–200), and by equation (10) in the case
of rough turbulent flow.
[23] On the other hand, we assume that bed forms adjust

to the pressure disturbances generated by themselves. From
the work of GCCII, we know the magnitude of these
disturbances to be given by equation (1), with k � h and
this permits us to calculate an estimate for the mean force
that bed forms exert upon the fluid flow as:

Fpx � r
eU2

0

l
: ð11Þ

Balance (7) indicates then that the decrease in total shear
force that is produced between the level of the bed form
crests and that of their troughs is

AwTxzð Þ � reU2
0

h
l
Aw: ð12Þ

[24] Consider now naturally formed undulations on a
granular bed producing flow separation. The fluid flow
over the crests of the bed forms exerts a total shear force
Awt0 upon the lower region, therefore expression (12) is
bounded by this value. If the decrease in the shear force
approached this bound, the force at the troughs level would
become insignificant, the flow there would cease, and the
grains cannot be moved. This sets up an absolute limit for
the growing of natural bed forms, which can be obtained
easily by equating expression (12) to Awt0. Since t0 = rfU0

2

the limiting steepness must be O( f/e), and realizing that this
order of magnitude estimate cannot depend on any other
parameter, we can write:

h
l

� �
lim
¼ b

f

e
; ð13Þ

where b is an O(1) constant.

4. Comparison With Observation

4.1. Steady Flow

[25] Taking into account that when the flow undergoes
separation from bed forms, the friction coefficient (9) or
(10) only depends on h/�0 and that e = (h/�0)

1/3 expression
(13) represents a single line on axes (h/�0, l/�0). Therefore
if we represent the observations on bed form geometry on
those axes, this line must define a limit so that no observa-
tions with h greater than that given by equation (13) must
exist.
[26] In Figure 3, we show the entire set of observations by

Guy et al. [1966] and Mantz [1992] on axes (h/�0, l/�0),
where �0 = U0

2/gx appropriate to steady, uniform open
channel flow, together with expression (13) with b = 1
and f as given by equation (10). Clearly, the line that
represents equation (13) defines almost perfectly a limiting
condition for all the bed forms. It gives the maximum height

for given �0 and l, or conversely, the minimum length for
given �0 and h.

4.2. Oscillatory Flow

[27] In the lower region of flow, where bed forms occur,
the local acceleration term is small. This is the reason why
problems like friction, bed forms, and transport can be
treated for oscillatory flow much in the same way as for
steady flow. The basic length scale �0 corresponds now
with the amplitude of motion, �0 = a which in general has a
value much less than in steady open channel flow. This
means that unlike steady flow, which exhibits commonly a
rough turbulent regime, in oscillatory flow the near-bed
flow under separation will be usually in the so-called jet
regime and the friction coefficient will be given by expres-
sion (8) as shown in the work of GCCI.
[28] Figure 4 represents the complete series of the most

widely cited observations on bed form height and length
under oscillatory flow: Manohar [1955] (319 obs.), Ken-
nedy and Falcon [1965] (25 obs.), Horikawa and Watanabe
[1967] (27 obs.), Carstens et al. [1969] (42 obs.), Mogridge
and Kamphuis [1972] (161 obs.), Nielsen [1979] (90 obs.),
Lofquist [1980] (10 obs.), Ribberink and Al-Salem [1994]
(25 obs.), Rankin and Hires [2000] (10 obs.), Faraci and
Foti [2001] (36 obs.), and O’Donoghue and Clubb [2001]
(35 obs.). It can be appreciated that expression (13), with
b = 1 and f as given by equation (8), represents again a very
good approximation for the maximum bed form height.
[29] A small number of observations in Figure 4 appear to

exhibit bed form steepness greater than that given by the
limiting condition (13). At first glance, this fact seems to
indicate a higher value for b in equation (13), however,
further analysis of these observations reveals that they
correspond with flume experiments in which the flow is
not a pure oscillatory one, but it exhibits harmonic compo-
nents of large amplitude or significant mean flows.
Although the theoretical arguments that lead to equation

Figure 3. Dimensionless height and length of the bed
forms under steady open channel flow. The complete series
of observations by Guy et al. [1966] (crosses) and Mantz
[1992] (triangles) as compared with the limiting height
given by expression (13) with b = 1 and f from equation
(10).
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(13) remain valid in such cases, the estimate of the repre-
sentative velocity, U0, and driving force, G0, which produ-
ces the length �0, could be in error. This is explicitly
recognized by Kennedy and Falcon [1965] for their three
observations with fine sand and large values of the max-
imum bed velocity and orbital diameter, which correspond
precisely with the three crosses with smaller l/�0 appearing
on the right side of the line which represents equation (13)
in Figure 4.

5. Conclusions

[30] We have investigated the dynamics of the flow over
steep sand bed forms producing flow separation. Our theo-
retical arguments lead to the following main conclusions:
1. When separation occurs, the large-scale vorticity

associated with this phenomenon becomes the most
important mechanism generating friction. In this respect,
other mechanisms like skin friction, small-scale roughness,
and sediment transport, albeit present, appear to be of minor
importance.
2. The mean force balance under the crests of the bed

forms, equation (7) or (A1), introduces formally, in a natural
way, an important parameter which in past treatments
entered the problem in an ad hoc manner, the roughness
height.
3. This fundamental balance expresses that the mean

shear force due to friction is equilibrated by the force that
bed forms exert on the fluid via pressure. The bed forms

grow until they have a height such that friction at their
troughs becomes negligible, since in that situation the
motion of fluid and sediment at the troughs would cease.
4. Previous calculation by the authors, GCCII, of the

pressure difference between the front and the rear faces of
the bed irregularities when the flow undergoes separation,
permits the prediction of the absolute limit for the growing
of natural bed forms. This limit is given by equation (13),
which is compared with observations in Figures 3 and 4
showing an excellent behavior for steady open channel flow
as well as oscillatory flow.

Appendix A: On the Structure of Rough Flows

[31] Rough flows can be defined as those flows near an
irregular boundary in which friction does not depend on
viscosity, but depends primarily on the geometrical proper-
ties of the boundary irregularities from which the flow
separates. In such flows, the viscous stress is negligible
and the actual frictional stress may have a turbulent nature
(in the so-called rough turbulent flows) or it may be a form
stress, in cases with very high roughness. In this latter case
(see the work of GCCI), there is one single layer in the
region over the crests of the irregularities, representing an
equilibrium between the driving force, G, and the form
stress variation, entering also the mean local acceleration.
In the case of a rough turbulent flow, the well known
three-layer structure can be observed: an outer layer in
which G is balanced by the Reynolds stress variation ( plus
local acceleration); an overlap layer in which the Reynolds
stress is nearly constant, the form stress term balancing
approximately the driving force; and an inner layer in
which the Reynolds stress decreases abruptly downward,
this force being balanced by an equivalent increase in the
form stress.
[32] Although in the works of GCCI and GCCII, we have

investigated mainly the flow over flat granular beds, the
method of spatially averaging is generally applicable, and
has already been used for the study of friction in rippled
beds in GCCI and in the work of Giménez-Curto and
Corniero Lera [2000]. If there exist bed forms capable of
producing flow separation, we perform a spatial averaging
of the governing Reynolds averaged equations. As shown in
the work of GCCII, the largest scales of the flow distur-
bances introduced by the irregularities are O(e�0) which
represents also the magnitude of the length scale in which
we expect correlation between disturbances. As the smallest
disturbances are O(h), the domain of averaging must have a
large linear dimension as compared with h. On the other
hand, its longitudinal length scale must be large as com-
pared with e�0 in order to smooth out the entire spectrum of
disturbances. Clearly, as long as l is greater than h and
smaller than e�0, it does not affect significantly the mean
flow properties over the crests of the bed forms. This is the
reason why the friction coefficient depends only on h/�0 as
shown in the works of GCCI and Giménez-Curto and
Corniero Lera [2000] and in Figure 2. However, under
the crests of the bed forms, the operation of averaging itself
introduces a dependence on l.
[33] Nikora et al. [2001] have distinguished some layers

in order to clarify the structure of the mean flow in the
context of the spatially averaged equations introduced in the

Figure 4. Dimensionless height and length of the bed
forms under oscillatory flow. Observations by Manohar
[1955] (triangles); Kennedy and Falcon [1965], Horikawa
and Watanabe [1967], Carstens et al. [1969], Mogridge and
Kamphuis [1972], Nielsen [1979], and Lofquist [1980]
(crosses); Ribberink and Al-Salem [1994], Rankin and Hires
[2000], Faraci and Foti [2001], and O’Donoghue and
Clubb [2001] (circles). The solid line represents the limiting
height as given by equation (13) with b = 1 and f from
equation (8).
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work of GCCI. However, as they did not know the magni-
tude of the fundamental term due to the force that bed
irregularities exert on the flow, the flow structure under the
crests of the bed could not be considered fully understood.
In the work of GCCII, we have presented a very simple and
general estimation of that force, which permits the under-
standing of the flow region of the shear layer between the
roughness elements. Here we complete the investigation of
this flow region by considering the variation of the fluid
area Aw separately. Equation (7) can be written in the form:

1

Aw

@Aw

@z
Txz þ

@Txz
@z

þ Fpx ¼ 0 ðA1Þ

making explicit a well-known parameter of rough flows,
their roughness height, ks, which can be defined as

ks ¼
1

Aw

@Aw

@z

� ��1
" #

0

: ðA2Þ

This represents the length scale, normal to the bed, in which
the fluid area, Aw, varies significantly (the subscript 0
indicates a specific representative value).
[34] The first term in equation (A1) is O(t0/ks), which is

usually greater than Fpx. Therefore an ‘‘interfacial layer’’
can be distinguished, with a thickness O(ks), downward
from the crests of the bed irregularities. In this layer, the
shear force due to the variation of Aw , i.e., the first term in
equation (A1), must be balanced by an increase downward
of the shear stress. Consequently, in a rippled bed, for which
ks = O(h) although the total shear force, AwTxz, must always
decrease, the mean stress Txz increases downward from the
crest level unless the bed forms are of maximum height. In
the limiting condition (13), the magnitude of the pressure
force, given by equation (11), becomes comparable to t0/h,
which permits the reduction of the shear stress.
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