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Abstract. An original method to quantify the amplitude of
inertial motion of oceanic and ice drifters, through the in-
troduction of a non-dimensional parameterM defined from
a spectral analysis, is presented. A strong seasonal depen-
dence of the magnitude of sea ice inertial oscillations is re-
vealed, in agreement with the corresponding annual cycles
of sea ice extent, concentration, thickness, advection veloc-
ity, and deformation rates. The spatial pattern of the magni-
tude of the sea ice inertial oscillations over the Arctic Basin
is also in agreement with the sea ice thickness and concen-
tration patterns. This argues for a strong interaction between
the magnitude of inertial motion on one hand, the dissipa-
tion of energy through mechanical processes, and the cohe-
siveness of the cover on the other hand. Finally, a significant
multi-annual evolution towards greater magnitudes of iner-
tial oscillations in recent years, in both summer and winter,
is reported, thus concomitant with reduced sea ice thickness,
concentration and spatial extent.

1 Introduction

The spectacular evolution of the Arctic sea ice cover over the
last few decades is not restricted to the shrinking of the ice
extent (Comiso et al., 2008; Stroeve et al., 2008), its thin-
ning (Rothrock et al., 2008; Kwok and Rothrock, 2009), or,
consequently, a continued decline of the ice volume (Lindsay
et al., 2009). Kinematics is affected as well, and its evolution
plays a central role in the changes currently taking place in
the Arctic Ocean. As observed from buoy drift data, the sea
ice mean speed over the Arctic increased at a rate of 9 %
per decade from 1979 to 2007, whereas the mean deforma-

tion rate increased by more than 50 % per decade over the
same period (Rampal et al., 2009). These two aspects of re-
cent sea ice evolution, i.e. strong decline in terms of ice ex-
tent and thickness, and accelerated kinematics, are strongly
coupled within the albedo feedback loop. Increasing defor-
mation means increasing fracturing, hence more lead open-
ing and a decreasing albedo (Zhang et al., 2000). As a re-
sult, ocean warming, in turn, favours sea ice thinning in sum-
mer and delays refreezing in early winter, i.e. strengthens
sea ice decline. This thinning should decrease the mechan-
ical strength, therefore allowing even more fracturing, hence
larger speed and deformation. A consequence is the acceler-
ation of the export of sea ice through Fram Strait, with a sig-
nificant impact on sea ice mass balance (Rampal et al., 2009,
2011; Haas et al., 2008), and ice age (Nghiem et al., 2007).
Moreover, sea ice mechanical weakening decreases the like-
lihood of arch formation along Nares Strait, therefore allow-
ing old, thick ice to be exported through this strait (Kwok
et al., 2010).

The principle of a strong interaction between the ice state
(concentration, thickness), on one hand, and the mechanical
behaviour of the cover and its strength on the other hand, al-
though rather intuitive, needs however to be quantified more
precisely. Beyond the trivial reduction of strength in propor-
tion to the thinning of an ice plate, one can expect a more
complex effect of the compactness of the ice cover on its
average strength, e.g. as in granular media (Rajchenbach,
2000; Aranson and Tsimring, 2006). This is the combina-
tion of these two effects that we aim to explore here. Ideally,
one would like to check whether the sea-ice cover responds
differently from year to year to the same mechanical forc-
ing. We here propose to tackle this problem by analysing
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its response, as deduced from ice drifter trajectories, to the
specific inertial forcing. The effect of the Coriolis force on
geophysical fluids dynamics has been studied for more than
a century. Interestingly, the first studies of oceanic inertial
oscillations (Ekman, 1905) were prompted by the observa-
tions of Nansen, made during the Fram’s journey along the
Transpolar drift, that sea ice was moving with a 20◦–40◦ an-
gle to the right of the wind direction (Nansen, 1902). Indeed,
as the Coriolis force acts perpendicularly to the particle ve-
locity, it induces a deviation of the trajectory to the right in
the Northern Hemisphere. This deviation generates inertial
oscillations, characterized by a frequency of

f0 = 2sinφ cycles day−1 (1)

whereφ is the latitude, i.e. close to a semi-diurnal frequency
(2 cyclesday−1) in the Arctic.

Within the ice-free ocean, these oscillations are trig-
gered by wind forcing events such as storms or moving
fronts (Price, 1983; Gill , 1984; D’Asaro et al., 1995). These
events generate inertial oscillations within a few hours,
which then decrease progressively with a characteristic time
scale of a few days (Park et al., 2009). This damping is es-
sentially due to the internal friction within the Ekman ocean
layer, as well as to the radiation of inertial waves toward the
thermocline.

On ice-covered oceans, we expect other processes to
strengthen the damping of these oscillations, such as fric-
tion at the ice/ocean interface or, more importantly, the inter-
nal ice stresses resulting from solid mechanical interactions
within the ice cover such as fracturing, friction between ad-
jacent floes and shearing of leads, or crushing during conver-
gent deformation and ridge formation, i.e. the “ice internal
friction” (Lepparanta, 2004; Colony and Thorndike, 1980).
These terms are apparent in the momentum balance of sea
ice dynamics:

DU i

Dt
+ (f0�k × U i) =

1

ρihi
(∇ · σ + τa+ τw) (2)

whereD/Dt = ∂/∂t + U i , 1 is the Lagrangian time deriva-
tive, ρi the ice density,hi the ice thickness,U i the ice ve-
locity vector expressed in Cartesian coordinates,σ the in-
ternal stress tensor,τa and τw respectively the wind and
oceanic “stresses” (forces per unit ice area). The last term
on the left hand side of Eq. (2) is the Coriolis force, withf0
the inertial oscillation frequency, expressed in cycles day−1,
� = 2π / 24 rad h−1 = 7× 10−5 rad s−1 the Earth rotation ve-
locity andk a unit vector aligned along the South to North
Pole axis.

Here, we neglect the contribution of the sea surface tilt to
the momentum balance, which is small compared to the other
contributions (Steele et al., 1997). In Eq. (2), the wind forcing
τa excites the oscillations, whereas the oceanic dragτw and
the internal stress term∇ ·σ damp those oscillations (Colony
and Thorndike, 1980).

We expect the response of sea ice to the Coriolis force in
the frequency domain to be within two following extremes.
A buoy moving in free drift, i.e. fixed on an ice floe that drifts
according to wind and ocean currents without any mechani-
cal interaction with other ice floes (the term∇ ·σ is then neg-
ligible compared to the others), is expected, in first order ap-
proximation, to follow the oceanic fluid parcel and thus to os-
cillate in a similar way, although another source of damping
of the oscillations might come from the friction between the
ice bottom and the ocean surface (Lepparanta et al., 2012). In
contrast, on a compact ice cover experiencing strong internal
stresses, the corresponding contribution∇ · σ will dominate
the other terms in Eq. (2) so that the oscillations are immedi-
ately damped out and thus become undetectable.

To measure the amplitude of the inertial oscillations of the
ice drifters is therefore to estimate the level of mechanical
dissipation within the ice cover, and therefore its degree of
cohesiveness. As such, its evolution and its spatial pattern
can highlight the changes in ice conditions and ice cover
mechanical behaviour. Internal ice stress measurements have
been performed directly from in situ sensors (Richter-Menge
and Elder, 1998; Richter-Menge et al., 2002). The seasonal
variations of these local stress measurements have shown an
increase of ice-motion induced stresses as the winter sea-
son progresses and the cohesiveness/compactness of the ice
cover develops (Richter-Menge and Elder, 1998). While of
major importance to analyze sea ice mechanical behaviour
and rheology (Weiss et al., 2007), these measurements are
however limited to the local scale and do not carry any infor-
mation about a possible large-scale, long-term trend of the
mechanical state of the cover. Our approach is thus comple-
mentary, as it allows a much better sampling, both in time
and space.

The idea to relate the amplitude of the inertial oscilla-
tions to the degree of consolidation of the ice cover was al-
ready formulated byMcPhee(1978) as well asColony and
Thorndike(1980). The latter studied the role of the mechan-
ical behaviour of the ice on the coherency of inertial motion
between different buoys, an approach different from what
is described below as we analyze trajectories individually.
More recently, from buoys trajectories near the Antarctic
Peninsula,Geiger and Perovich(2008) observed an increase
of inertial motion related to the degradation of the ice pack
during the spring breakup.Hutchings et al.(2012) also dis-
cussed the link between the degree of fragmentation of the
ice cover, the mechanical dissipation of energy, and the am-
plitude of inertial motion. These last authors based their dis-
cussion on the analysis of strain-rate records obtained from
a dense array of buoys in the Weddell Sea, i.e. they did not
analyze individual trajectories. However, although sea ice in-
ertial oscillations have been studied by several others au-
thors (Colony and Thorndike, 1980; McPhee, 1978; Hunk-
ins, 1967; Lammert et al., 2009), including recently on ice
strain-rate records (Kwok et al., 2003), this is the first time
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that a systematic analysis is performed at the Arctic Basin
and multidecadal scales.

In this paper, we propose a method to quantify the magni-
tude of inertial oscillations from Lagrangian (buoys) trajecto-
ries (Sect.3). We then apply this methodology to the Interna-
tional Arctic Buoy Program (IABP) dataset covering 30 yr of
data in the Arctic Ocean (Sect.4). As shown below, this anal-
ysis is in full agreement with the above expectations: inertial
oscillations are very weak or absent in a highly cohesive ice
cover, such as in winter within the central Arctic, but are well
developed in summer at the periphery of the basin, i.e. in re-
gions of less concentrated, loose ice. In addition, a signifi-
cant strengthening (on average) of these oscillations is ob-
served, suggesting a mechanical weakening of the Arctic sea
ice cover. This is confirmed inGimbert et al.(2012), where
a simple ocean-sea ice coupled dynamical model explains
these seasonal, geographical and multi-annual variations of
inertial oscillation magnitude in term of changes within sea
ice internal mechanical properties, through an associating de-
crease of sea ice internal friction in recent years.

2 Dataset

2.1 IABP buoy dataset

The sea ice drifting buoy dataset, provided by the Interna-
tional Arctic Buoy Program (IABP), consists of approxi-
mately 650 buoy tracks recorded from January 1979 to De-
cember 2008. These ice drifters are dropped every year at
the end of winter, mostly in April, and drift according to
the ice motion. Their positions are tracked by GPS receivers
or Argos transmitters with a position uncertainty of the or-
der of 100 m and 300 m, respectively. The raw buoy posi-
tions are irregularly sampled through time. Thus, in order to
get a regular sampling, the buoy positions provided by the
IABP result from a cubic interpolation of the raw positions
with a 3 h time re-sampling (see the IABP documentation at
http://iabp.apl.washington.edu/data.htmlfor further details).
This interpolation procedure acts as a low-pass filter, thus
most likely reducing the position error around 100 m or be-
low (Lindsay and Stern, 2003). Figure1 shows all the buoy
tracks on a polar stereographic map, where buoy locations
are defined asxe1+ye2, wheree1 ande2 are two orthogonal
unit vectors withe1 being along the Greenwich meridian and
(x,y) = (0,0) at North Pole.

2.2 Oceanic buoy dataset

In order to get an example of the amplitude of inertial oscil-
lations in the absence of sea ice, i.e. when the damping of
oscillations is mainly due to the internal friction of the Ek-
man layer without contribution from internal ice stresses, we
consider trajectories of buoys drifting in the North Atlantic,
along the northern Spanish coast (Fig.2).

Fig. 1. Map of the Arctic basin showing the buoy trajectories of the IABP dataset. The positions are
sampled every 3 h from January 1979 to December 2008 and plotted following a stereographic projection
centered on the North Pole. The Laptev sea is poorly covered by this dataset. The thick solid black and
grey lines define the Central Arctic basin and the Fram strait region, respectively.
figure

26

Fig. 1. Map of the Arctic Basin showing the buoy trajectories of
the IABP dataset. The positions are sampled every 3 h from Jan-
uary 1979 to December 2008 and plotted following a stereographic
projection centered on the North Pole. The Laptev Sea is poorly
covered by this dataset. The thick solid black and grey lines define
the central Arctic Basin and the Fram Strait region, respectively.

This oceanic buoy dataset, provided by the SHOM (Ser-
vice Hydrographique et Oceanographique de la Marine),
consists of 4 buoy tracks (B239, B241, B242, B245). These
buoys were deployed between 6 and 11 December 2006 in
the framework of the CONtinental GAScogne (CONGAS)
project (Le Cann and Serpette, 2009). The buoy positions
were tracked by GPS receivers with a position uncertainty
of the order of several tens of meters. The temporal sampling
was regular, equal to 1 h. Thus, the buoy positions do not re-
sult from any re-sampling or re-interpolation. Buoys B239
and B245 operated during 1 yr, whereas buoys B241 and
B242 operated only 1 month. For each latitude (φ)–longitude
(ϕ) buoy position, we define the orthogonal base (e′

1, e′
2) of

this coordinate system asx(φ,ϕ) = xe′
1+ye′

2 using a Lambert
projection centered in the coordinatesφ = 43◦ andϕ = 6◦.

3 Quantifying the magnitude of inertial oscillations

3.1 Observations

We analyze here several cases of inertial oscillations ob-
served over an ice-free ocean or over sea ice.

Figure3a shows 1 month of the trajectory of the oceanic
buoy B245. Inertial oscillations are noticeable during this
time period: being in the Northern Hemisphere, the buoy drift
trajectory exhibits cycloids in the clockwise direction. The
intermittent character of inertial oscillations is also clearly
visible. Periods of strong inertial oscillations, marked by cy-
cloidal loops (red boxes in Fig.3a), might have been trig-
gered by storms. Following these periods, the oscillations
are progressively damped out and the loops nearly disappear
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Fig. 2.Map of the Atlantic Ocean showing the oceanic buoy trajec-
tories deployed during the Congas project. The positions are sam-
pled every 1 h and plotted following a Lambert projection.

(green boxes in Fig.3a), before a new storm or moving front
can trigger new inertial oscillations.

We compute theux(x̃, ỹ, t̃ ) (along the x-axis) and
uy(x̃, ỹ, t̃ ) (along the y-axis) speeds as follows:

ux(x̃, ỹ, t̃ ) = (x(t + 1t) − x(t))/1t

uy(x̃, ỹ, t̃ ) = (y(t + 1t) − y(t))/1t
(3)

with 1t = 1 h and where the mid-points̃x, ỹ and t̃ are de-
fined asx̃ = (x(t +1t)+ x(t))/2, ỹ = (y(t +1t)+ y(t))/2
and t̃ = ((t + 1t) + t)/2. The Fourier transformÛb(ω) of
the buoy velocitiesux anduy for a selected buoy trajectory,
which starts at timet0 and ends at timetend, is defined as

Ûb(ω) =
1

N

tend−1t∑
t=t0

e−iωt (ux(x̃, t̃) + iuy(ỹ, t̃)) (4)

whereN is the number of velocity samples along the trajec-
tory andω = 2πf . This vectorial Fourier transform distin-
guishes negative and positive frequencies: peaks atf < 0 and
f > 0 are associated with clockwise and counter-clockwise
displacements, respectively.

Figure 3b shows the Fourier spectrum|Ûb(ω)| of the
buoy velocities associated with the trajectory plotted in
Fig. 3a. The Fourier transform reveals a peak of mag-
nitude 5.2 km day−1 at the inertial oscillation frequency
(f0 ≈ −1.35 cycles day−1 using the average latitudeφ =

1/N
∑

t φ(t) ≈ 42◦ in Eq. 1). This peak corresponds to the
component of the buoy motion associated with the Coriolis
force. The peak atf = 0 represents the advective compo-
nent of the buoy motion. Finally, the two peaks observed at
f = −2 cycles day−1 andf = 2 cycles day−1 are associated
with a semi-diurnal tidal oscillation. Unlike the inertial oscil-
lation, the tidal oscillation does not rotate and the associated
peak is therefore observed at positive and negative frequen-
cies.
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Fig. 3. (a)1 month sample of the trajectory of buoy B245 (25 May
to 25 June 2007). The trajectory is plotted in latitude-longitude co-
ordinates. Its beginning is marked by the red circle. The red and
green boxes outline periods with strong and low cycloidal loop ac-
tivity, respectively.(b) Fourier spectrum of the buoy velocity. The
velocity is computed following Eq. (3) with 1t = 1 h.

We now consider IABP ice drifters. A buoy moving in free
drift, i.e. fixed on an ice floe that drifts according to wind and
ocean currents alone, hence without any mechanical interac-
tion with other ice floes, is expected to oscillate in a way
similar to e.g. the oceanic B245 buoy of Fig.3 when sub-
jected to similar forcing conditions, although another source
of damping of the oscillations might come from the friction
between the ice bottom and the ocean surface.

Figure 4a shows an IABP buoy trajectory within the
Fram Strait during the summer period, where ice is highly
fragmented and loosely packed. The clockwise-cycloids are
clearly visible. We observe bursts in the inertial oscillation
intensity (red rectangles) followed by a period of decaying
intensity (green rectangle).

The velocity of the buoy is computed using Eq. (3), with
stereographic coordinatesx and y and with 1t = 3 h. The
inertial oscillations are evidenced by a strong peak observed
on the velocity Fourier spectrum (Fig.4b), at the inertial fre-
quencyf0 ≈ −1.97 cycles day−1 (calculated usingφ = 80◦

in Eq. 1). As the Arctic Basin lies between 70◦ and 90◦ of
latitude, the inertial oscillation frequency varies from−1.88
to −2 cycles day−1 at these latitudes and is thus merged with
the semi-diurnal tidal oscillation frequency. The differentia-
tion of these two types of oscillations can be done by look-
ing at the amplitude of the Fourier spectrum with respect to
signed frequencies: we assume the spectral peaks associated
with the semi-diurnal tidal oscillation to be roughly symmet-
ric at positive and negative frequencies (as a first order ap-
proximation, as bathymetry or ocean currents can regionally
affect this symmetry), and consider that the excess within the
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Fig. 4. (a)1 month sample of the trajectory of IABP buoy 1897 (30
August to 30 September 1987). The location of the buoy is indicated
by the red box in the inset of Fig.4a. The red boxes show periods
when cycloidal loops are best observed, whereas the amplitude of
the loops is much lower in the green boxes.(b) Fourier spectrum of
the buoy velocity. The velocity is computed following Eq. (3) with
1t = 3 h.

amplitude of the peak at the inertial frequencyf0 is likely
to represent the inertial component of the buoy motion. For
example, in Fig.4b, the tidal oscillation generates a small
peak atf = 2 cycles day−1, which means that most of the
amplitude of the peak observed atf0 comes from the inertial
oscillation of the buoy.

We now consider a buoy tethered to a strongly cohesive
multi-year ice pack: the internal stress term of the momen-
tum equation (Eq.2) is then expected to dominate over any
external forcing, including the Coriolis force. Consequently,
the inertial oscillations that might be generated by storms or
moving fronts are immediately damped and thus not visible.
Figure5a shows an example of such a trajectory within the
multi-year ice pack at the end of winter. The cycloids seen
in Fig. 4a do not appear anymore and the Fourier spectrum
plotted in Fig.5b does not show any peak at the inertial fre-
quencyf0. Conversely, we can notice thatKwok et al.(2003)
found significant oscillations in the same region but in a dif-
ferent time period. This points out the temporal variability
in the strength of inertial oscillations, which may depend on
both the storm activity and the sea ice state. In the following,
a simple method is proposed to quantify the strength of iner-
tial oscillations. Then, performing statistics on this quantity
will allow us to interpret space and time variabilities in terms
of dissipation of energy through mechanical processes that
takes place within sea ice.
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Fig. 5. (a)1 month sample of the trajectory of buoy 12825 (20 April
to 21 May 1992). The location of the buoy within the Arctic Basin is
indicated by the red box in the inset of Fig.5a.(b) Fourier spectrum
of the buoy velocity. The velocity is computed following Eq. (3)
with 1t = 3 h.

3.2 Methodology

We now define a parameterM that quantitatively accounts
for the time-dependent inertial oscillation magnitude.

The cycloids observed in the trajectories (Sect.3.1) result
from the superposition of an advection (f = 0) and a rota-
tion at the inertial frequency (f = f0). In Figs.3 and4, the
red boxes show parts of the trajectories characterized by cy-
cloidal loops: these loops indicate that the rotation velocity
is larger than the advection velocity. In contrast, no full loops
are observed within the green boxes, showing that the rota-
tion velocity is lower than the advection velocity.Lepparanta
(2004, p. 157) proposed a simple ratio of cycloidal rotation
velocity over the advection velocity to qualitatively estimate
the strength of inertial oscillations.

We here propose to evaluate in a quantitative way the time-
dependent oscillation magnitude using the Fourier spectrum
at the inertial frequencyf0. Since inertial oscillations are best
quantified by means of a spectral analysis, we here perform
such an analysis on a sliding time window. This will enable
us to define a time-varying quantityM that measures how
inertial oscillations evolve with time as a buoy drifts. For
a given buoy location defined by the coordinates (xpst, ypst,
tpst), where “pst” stands for “present”, we define a Gaussian
window functiongpst(t) centered ontpst with a characteristic
duration of the order of several inertial time periods:

gpst(t) = exp

(
−(t − tpst)

2

2(nTo)2

)
(5)

where To = −1/f0 is the inertial time period andn con-
trols the width of the window. In this analysis, we setn = 1,
i.e. a time interval aroundtpst that is long enough to really
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probe the inertial time scale, since it corresponds to 3 days,
and short enough to properly measure rapid time variations in
the inertial oscillation magnitude. Thus, 24 data points within
which about half the points carry significant weight are used
to compute Fourier transform calculations.

Gaps (missing data) are present in the IABP buoy records.
Their duration varies from one sample every few hours
(i.e. a time interval of 6 h between successive positions) to
several weeks. Therefore, we introduce in our calculations
a selection condition such that no gap of data is allowed for
values oft that verify gpst(t) > P , where we setP = 0.01.
No M value is thus computed at timetpst if one or more sam-
pling time t verifying this later condition is lacking. More-
over, since missing data even occurring far fromtpst (i.e. at
values oft such thatgpst(t) < P ) can play a non-negligible
role on the Fourier transforms, the Gaussian of Eq. (5) is trun-
cated at±1.5 days fromtpst.

Under these conditions, we can compute 1.3× 106 M val-
ues from the IABP dataset, which represents 83 % of the total
number of observations available.

We then compute the velocityWpst(t) as follows:

Wpst(t) = Ub(t)gpst(t) (6)

whereUb(t) = ux(t)e1 + uy(t)e2.
We compute the normalized Fourier spectrum at timetpst

of the velocity time seriesWpst(t) at the inertial frequency
f0, wheref0 is made to vary according to the buoy latitude
(Eq.1), as

Ŵpst(f0) = 1t

tend∑
t=t0

(ux(t) + iuy(t))gpst(t)e
−iω0t (7)

whereω0 = 2πf0 andt0 andtend are the starting and ending
times of the trajectory. This value is likely to represent the
amplitude of the inertial oscillations. We further normalize it
in order to define a non-dimensional parameterM that mea-
sures the magnitude (still attpst) of the inertial oscillation:

M =
|Ŵpst(f0)|

1.27
×

4

πWpst
(8)

where

Wpst =
1

1.27

tend∑
t0

dt |Wpst(t)|. (9)

is the (current, at timetpst) mean magnitude of the drift ve-
locity, and the value 1.27 is equal to

∫ tend
t0

gpst(t)dt .

3.3 Application to the buoy trajectories

Figure6 shows the values ofM computed using the different
trajectories plotted in Sect.3.1. LargeM values are obtained
for the oceanic buoy trajectory plotted in Fig.3, with an av-
erage of 0.56. For the ice drifter of Fig.4, we also get large

M values with an average of 0.8: theM > 1 values are all
associated with cycloidal loops observed in Fig.4a (red rect-
angles), followed by their decay as characterized by a de-
crease ofM (green rectangles). In contrast, for the ice drifter
of Fig. 6c, theM values are much lower: the meanM value
over the time period is only equal to 0.13, illustrating the rel-
ative absence of inertial loops.

As the raw buoy positions of the IABP ice drifters dataset
are irregularly sampled through time, then interpolated (cu-
bic interpolation) and re-sampled at a regular 3 h interval, we
investigated the effect of this procedure on the values ofM

computed for the IABP dataset. To do so, we artificially de-
graded the oceanic buoy dataset, which samples buoys po-
sitions every hour, by randomly removing a given % of raw
positions. A cubic interpolation followed by a re-sampling at
3 h is then performed on the degraded dataset, as done for
IABP data, and the associatedM values (notedMD) are re-
computed (Fig.7). The cubic interpolation alone, i.e. with-
out degrading the raw data, has almost no influence onM

(Fig. 7a). In Fig. 7b, we can see that the deviation of the
MD time series from theM time series becomes visible only
when more than 50 % of the raw buoy positions are missing.
For 50% of missing data, the error on individualM values is
lower than 5%. More importantly, as we focus in the follow-
ing onM values averaged over trajectories, the departure of
averagedMD values from the averageM value for increas-
ing missing data ratios is shown in Fig.7c. AverageMD val-
ues do not deviate significantly from the averageM value for
missing data ratios up to 60 %, which corresponds to an aver-
age time sampling of about 02:50 h and a time sampling max-
imum gap of about 6 h. Thus, for sampling times lower than
these threshold values, we can consider that the computed
M values are not affected by an irregular sampling through
time. While not shown here, similar results have been ob-
tained by considering ice drifters initially regularly sampled
at 1 h during the TARA field campaign (Gascard et al., 2008).
This indicates the robustness of IABP interpolation proce-
dure coupled to our estimation of the amplitude of inertial
oscillations.

These examples demonstrate that the parameterM is ap-
propriate to quantify the inertial oscillation magnitude. Small
average values ofM (say lower than 0.2) correspond to buoy
trajectories within a strongly cohesive ice pack, while large
values ofM (say greater than 0.6) correspond to buoy trajec-
tories that we can consider to be nearly in free drift condition.

4 Analysis of 30 yr of IABP data

In this section, we analyse the spatial and temporal patterns
of the inertial oscillation magnitudeM, and check whether
a significant trend can be observed over the Arctic Basin dur-
ing the 30 yr of the IABP dataset, which would reveal a sig-
nificant change in ice conditions. As previously explained in
Sect.3.1, inertial oscillations are caused by sudden changes
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Fig. 6. M values for(a) the trajectory of the oceanic buoy 255 plotted in Fig.3a, (b) the trajectory of the ice-tethered buoy 1897 plotted in
Fig. 4a and(c) the trajectory of the buoy 12825 plotted in Fig.5a. The red and green rectangles respectively correspond to those shown in
Figs.3 and4.
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Fig. 7. (a) M values for the trajectory of the oceanic buoy 255 plotted in Fig.3 (raw data: blue line, same as Fig.6a) and the trajectory
obtained after a cubic interpolation and a 3 h resampling of the raw positions (red line).(b) MD time series computed from the degraded
datasets of missing data ratio varying between 0 and 60 % (the red line is the same as ina). (c) MD values averaged over the whole trajectory
(1 month) as a function of the missing data ratio. 20 realisations have been done at each given value of missing data ratio. The grey dashed
line shows the average rawM value, equal to 0.56.

in external forces (strong wind), which then decay due to ki-
netic energy dissipation within the Ekman layer or friction
that takes place at the ice/water interface, or due to internal
ice stresses. Therefore, more frequent and stronger storms
over the years should imply largerM values on average.
Cyclonic activity over the Arctic Ocean shows a maximum
during summer that could partly explain an annual cycle of
the inertial oscillation magnitude (Serreze and Barrett, 2008)
(see below). On the other hand, no significant trend in cy-
clonic activity has been found over the last 50 yr (Serreze
and Barrett, 2008). Similarly, the average wind speed over
the Arctic Basin, as estimated from the ERA-40 reanalysis
dataset, does not show any significant trend over the period
1979–1999 (Rampal et al., 2009).

4.1 Seasonal variation

In this section, we computeM for buoys located within the
central Arctic Basin, as delimited by the thick black line in
Fig. 1, and then investigate intra-annual (monthly) variations
by groupingM values into monthly periods, i.e. one average
monthly valueM for all theM values occurring in January,

whatever the calendar year, etc. The central Arctic is here de-
limited by all buoy positions lying further than 150 km away
from the coasts and the Fram Strait. This way, we skip from
the analysis buoys possibly stuck on fast ice.

Figure 8 shows the monthlyM value averaged over the
30 yr of record. To estimate the associated error bars, we
checked using a bootstrap method (Rampal et al., 2009) that
the standard deviation1M indeed varies asM

√
NM

, whereNM

is the number ofM values used to calculate the monthly
meanM. Here,NM ranges from a minimum of 6.4× 104 in
February to a maximum of 1.1× 105 in May. The monthly
meanM value reaches a minimum of 0.168 in May and
a maximum of 0.294 in September, and exhibits an obvi-
ous annual cycle. We define the summer season by the three
months of July, August and September and the winter pe-
riod by the rest of the year. These results are consistent with
other observations: sea ice concentration, sea ice thickness
and sea ice deformation also describe an annual cycle (Ram-
pal et al., 2009; Rothrock et al., 2008). The annual cycle of
ice thickness within the Arctic Basin has a maximum on 30
April (Rothrock et al., 2008), in phase with our minimum
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M√
NM

,

whereNM is the number ofM values used to calculate the monthly
meanM. Here,NM ranges from a minimum of 6.4×104 in Febru-
ary to a maximum of 1.1× 105 in May.

M value in May. Being thinner and less concentrated in sum-
mer, sea ice is less cohesive and more deformable during this
time period. This leads, on average, to a lower damping of the
inertial oscillations, and therefore largerM values. However,
we cannot exclude that a stronger cyclonic activity during
summer (Serreze and Barrett, 2008) could reinforce the an-
nual cycle described by the averageM values by triggering
more oscillations.

4.2 Spatial pattern

The question arises as to whether the seasonal changes in the
M values evidenced in the previous section can be associ-
ated with a spatial pattern. In this section, we select values
of M associated to buoys located within the central Arctic
Basin and within the Fram Strait (thick black and grey lines
in Fig. 1). From theses values, we build a seasonalM dataset
by separating theM values computed in winter, i.e. all the
M values recorded for all the 30 winter seasons, from the
M values computed in summer. The seasonal spatial patterns
of M for both seasons are plotted in Fig.9. The spatially av-
eragedM value, denotedM(Xj ,Yj ), is computed for each
grid pointj of coordinates (Xj ,Yj ) as

M(Xj ,Yj ) =
1∑

i wij (xi,yi)

∑
i

wij (xi,yi)Mi(xi,yi) (10)

where the summation is performed over all the buoy posi-
tions(xi,yi) contained in a circle of radiusL = 400 km cen-
tered on the coordinates (Xj ,Yj ). The weightwij (xi,yi) is
defined as

wij (xi,yi) = e−d2/2L2
(11)

where d =

√
(xi − Xj )2 + (yi − Yj )2 is the distance buoy

position(xi,yi) and the grid point(Xj ,Yj ).
The patterns observed in Fig.9 are, at least qualitatively,

consistent with the observed distribution of the sea ice thick-
ness (Kwok and Rothrock, 2009) and concentration (http:
//nsidc.org/data/seaice/index.html) (Comiso, 1990, updated
2012). In summer, largeM values are observed at the edge of
the basin in the Beaufort, Chukchi and Laptev seas, i.e. in re-
gions where the multi-year ice cover has been progressively
disappearing during the last decade (Maslanik et al., 2011).
On the contrary, small values ofM can be observed along
the Canadian coasts, where the average ice thickness is at
its maximum (Kwok and Rothrock, 2009). Sea ice behaves
more as a strongly cohesive plate in this region, unsensitive
to the Coriolis force. This zone corresponds to the multi-year
ice still remaining nowadays. Large values ofM are also ob-
served south of Fram Strait, which is consistent with the buoy
trajectory plotted in Fig.4a, which we discussed in Sect.3.1.
In contrast, the winter pattern does not reveal any particu-
lar structure within the basin. The values ofM are small
over the whole basin, except relatively largerM values com-
puted north of Canadian coasts. These largerM values could
be attributed to buoys drifting along the “Circumpolar flaw
lead” that consists of a sheared, thus highly fragmented, zone
(Lukovich et al., 2011).

To further test the link between the state of the sea
ice cover and its cohesiveness, as expressed by the am-
plitude of the inertial oscillations, we perform a correla-
tion analysis between theM values and the open water
concentration 1− α, whereα is the sea ice concentration
dataset collected by NSIDC (http://nsidc.org/data/seaice/
index.html) (Comiso, 1990, updated 2012). This dataset has
a spatial resolution of 25 km and consists of ice concentration
values sampled every two days from 1979 to 1987 (SMMR),
and every day since 1987 (SSM/I). For each value ofM, we
search for the corresponding value of open water concentra-
tion as the closest sample in time and space: a 1− α value is
associated with a givenM value if we can find, for the same
day of record, within one day during the period 1979–1987,
a sample that is closer than 25 km. The corresponding corre-
lation coefficientR is equal to 0.245(±0.002). This positive
correlation is statistically significant asR is more than 120
times greater than the standard deviation obtained in the null
hypothesis at no correlation (numerically computed by ran-
domly reshuffling theM and 1−α values). This is consistent
with stronger oscillations characteristic of a less compact sea
ice cover.

In order to check whether this global correlation is, or not,
only due to the fact thatM and 1− α both describe an an-
nual cycle, we group together these values by months. We
then compute the cross-correlation coefficientR separately
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Fig. 9. Spatial pattern of inertial oscillation magnitude within the Arctic basin in summer (left) and in
winter (right). These two fields are computed from the seasonal M dataset. A spatially averaged value
of M values, denoted M , is computed following Eq. (10) for each point of a 25 km resolution grid. The
graphic representation is a linear interpolation of the gridded M -values. In order to not represent regions
with little data, an M value at a given grid point is plotted only if its associated weight is greater than a
minimum value we arbitrarily set to 1000.
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Fig. 9. Spatial pattern of inertial oscillation magnitude within the Arctic Basin in summer (left) and in winter (right). These two fields are
computed from the seasonalM dataset. A spatially averaged value ofM values, denotedM, is computed following Eq. (10) for each point
of a 25 km resolution grid. The graphic representation is a linear interpolation of the griddedM values. In order to not represent regions with
little data, anM value at a given grid point is plotted only if its associated weight is greater than a minimum value we arbitrarily set to 1000.

for each month of the year, over the 30 yr of record. While
not plotted here, the annual variation of the correlation co-
efficient is in phase with the annual cycle ofM plotted in
Fig.8: the correlation is larger in summer. The correlation co-
efficient is equal to 0.350(±0.005) in August, which means
that theM values are spatially correlated with the associated
open water concentration values. In winter, the correlation is
much less significant, which can be understood by the fact
that, during this period, the sea ice concentrations are equal
to 1 almost everywhere within the basin and therefore show
very little fluctuations.

Here, all the computed coefficients of correlation remain
small. This suggests that other factors than the ice concentra-
tion control theM values: we expect both the variability in
wind forcing materialized by storm activity and the ice thick-
ness to significantly depress the correlation betweenM and
1−α. We will see in Sect.4.3.2that the correlation between
M and 1−α is much improved when setting free of the influ-
ence of wind forcing variability, i.e. by considering averaged
M and1− α values.

4.3 Multi-annual variation

We have shown so far that theM parameter is a useful proxy
for the cohesiveness of the cover and, consequently, the level
of internal stresses. We now analyze whether theM values
have changed over the last three decades owing to a change
in ice conditions.

4.3.1 M time series

In this section, we use the central Arctic buoy dataset. The
temporal sampling of the IABP buoy dataset is heteroge-
neous, being characterized by variations of data density over
the period. Most notably, a larger number of observations are
available in the later years, as compared to the early 1980s

or during the late 1990s. To circumvent this problem, the
evaluation of the multi-annual variation ofM is done by
equally binning theM values in time. The summer and win-
ter datasets are both separately split into 10 successive bins,
all containing the same number of observations. For each bin,
an average value ofM, associated with an average value of
time, is computed.

Figure 10 shows the time seriesM(t) between January
1979 and December 2008 for the summer and winter sea-
sons. The error in the averageM value is computed using
a bootstrap method as explained inRampal et al.(2009). The
bootstrap method is performed individually for each bin, and
the deviation from the mean1M is represented by the er-
ror bars. We see on both plots that the most prominent fea-
ture is a significant increase of the inertial oscillation ampli-
tude through time. A linear fit gives a positive trend equal to
1.19 (± 0.34)× 10−5 yr−1 (i.e. a 16.5 % increase per decade)
for summer and 5.7 (± 1.9)× 10−6 yr−1 (i.e. a 11 % increase
per decade) for winter. Thus, the increase of inertial oscilla-
tions is relatively more marked in summer than in winter.

The use of GPS as the buoy positioning system has be-
come more common since the end of the last century. As
noted in Sect.2.1, this system is more accurate than ARGOS
positioning. We thus check whether the observed trend on
the mean time seriesM(t) could be a spurious effect caused
by reduced noise in recent years. To do so, noised mean time
seriesMN (t) are built by computingM values on buoy tra-
jectories over which Gaussian noise is added. Because the
increase in the averageM(t) values is particularly marked
from the beginning of the 21 century, Gaussian noise is only
added to buoy trajectories recorded during the period 2002–
2008. For each IABP position (xb, yb) of buoy trajectories
recorded from the year 2002 onwards, we define a noised
buoy position (̃xb, ỹb) asx̃b = xb+δx andỹb = yb+δy where
δx andδy are increments randomly picked from a centered
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Fig. 10.Time seriesM(t) from January 1979 to December 2008 computed using(a) the summer dataset and(b) the winter dataset. For each
season, the dataset is equally split into 10 bins over which the average is computed. One bin corresponds to approximately 3.1× 104 M values
in summer and 8.0× 104 M values in winter. The horizontal lines associated with each data point indicate the time period associated with
each bin. Vertical lines are error bars computed from a bootstrap method. Bold lines are linear fits: the trends are 1.19 (± 0.34)× 10−5 yr−1

(i.e. 16.5 % increase per decade) for summer and 5.7 (± 1.9)× 10−6 yr−1 (i.e. 11 % increase per decade) for winter.

Gaussian distribution with a standard deviationσ . Figure11
shows realizations of mean time seriesMN (t) built using
σ = 300 m andσ = 1000 m, along with the IABP time se-
riesM(t), as in Fig.10. From the year 2002, the mean time
seriesMN (t) deviate fromM(t), showing that noise on the
buoy positions has an influence on the parameterM. How-
ever, almost systematically, values ofMN (t) are larger than
M(t), showing that noise most generally acts to increase the
M values rather than to decrease them.

This can be explained as follows: noise increases the am-
plitude of the Fourier spectrum at high frequencies. This has
two competing consequences: (i) the norm of the drift ve-
locity Wpst slightly increases, which tends to decreaseM

(see Eq.9); and (ii) the amplitude at the inertial frequency
Ŵpst(f0) is increased, which tends to increaseM. The sec-
ond effect is particularly marked when the inertial motion
(so,M) is small, and, most of the time, dominates over the
first effect, so thatM is increased by noise. Consequently, the
evolution observed in Fig.10 is not the consequence of pos-
sible reduced position noise in recent years, as the difference
between the periods 1979–2001 and 2002–2008 would have
been even larger if the level of noise had remained the same
over the entire record. In other words, the observed trend in
M(t) is most likely an underestimation of the multi-annual
evolution of the inertial oscillation magnitude.

The same is also true for the annual cycle (Fig.7): as the
effect of noise is stronger for lowM values, winterM values
are, in average, more overestimated than summerM values.

In addition, Rampal et al.(2009) reported a significant
(9 % per decade) increase of sea ice speeds in the Arctic
Basin over the last three decades. Therefore, as increasing
advection velocities act to decreaseM (Sect.3.2), the multi-
annual positive trend on theM values reported here most
likely underestimates the associated decrease of the mechan-
ical energy dissipation within the ice cover in the later years.

4.3.2 Evolution of spatial patterns

The previous section demonstrated a strong evolution of the
average inertial oscillation amplitude, although it is more
strongly marked in summer. We here analyze the spatial con-
sequences of the observed multi-annual changes. To do so,
we split the whole IABP buoy seasonal dataset into two pe-
riods. A Student t-test performed on the winter and the sum-
mer M(t)-time series in Fig.10 shows that the most sig-
nificant changing point occurs in 5 averagedM values out
of the 10. More precisely, splitting the winter time series
{M1,M2, . . .,M10} into two distributions{M1, . . .,M5} and
{M6, . . .,M10}, the probability that these two distributions
have the same mean is only 0.92 %. We have verified that this
probability is indeed the lowest when splitting the time series
just afterM5. Similarly, we find the same optimal change-
point in summer, with an associated probability that the two
distributions share the same mean equal to 0.42 %. This leads
to define two distinct periods, with period 1 from 1979 to
2001 and period 2 from 2002 to 2008 (see Fig.10). We can
remark that, according to this periodic splitting, period 1 and
period 2 contain the same number of observations, i.e. 5 bins
each. As done in Sect.4.2, the spatial patterns of theM val-
ues for the summer and winter seasons associated with each
period are shown in Fig.12. As expected, the changes are
stronger in summer. They affect most of the Arctic, but are
more pronounced on the Siberian side: a drastic increase of
the peripheral ice zone area is observed in the later years.
Conversely, winter changes are milder north of Canada and
Greenland, where the thickest multi-year ice can be found
nowadays (Kwok and Rothrock, 2009).

To underline the link between the spatial repartition of
M values and open water concentration values 1−α, Fig.13
provides open water concentration maps obtained in summer
for both periods. Winter concentration maps are not shown
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as in Fig.10.
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Fig. 12. Spatial repartition of M within the Arctic basin in summer and winter computed using the
seasonal dataset of the period 1979–2001 and the seasonal dataset of the period 2002–2008. An average
mean value of M , denoted M , is computed following Eq. (10) for each node of a 25 km resolution grid.
The smoothing parameter L is equal to 400 km. In order to not represent regions with little data, an M
value at a given grid point is plotted only if its associated weight is greater than a minimum value we
arbitrarily set to 1000. 36

Fig. 12.Spatial repartition ofM within the Arctic Basin in summer and winter computed using the seasonal dataset of the period 1979–2001
and the seasonal dataset of the period 2002–2008. An average mean value ofM, denotedM, is computed following Eq. (10) for each node
of a 25 km resolution grid. The smoothing parameterL is equal to 400 km. In order to not represent regions with little data, anM value at a
given grid point is plotted only if its associated weight is greater than a minimum value we arbitrarily set to 1000.

here, since they correspond to 1− α values very close to 0
over the whole Arctic Basin. Sea ice concentration values
are sampled at buoy positions, as done in section4.2, and
averaged similarly toM values, i.e. following Eq.10. Com-
mon features evidenced byM in Fig. 9 (left) and Fig.12

(top) can also be recognized in spatially averaged open wa-
ter concentration values1− α. Low values of1− α are ob-
served along the Greenland and Canadian coasts, while large
values are observed in the periphery of the basin, i.e. in the
Beaufort, Chukchi and Laptev seas. Moreover, the evolution
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Fig. 13. Spatial repartition of open water concentration within the Arctic basin in summer computed
using the seasonal dataset of the period 1979–2001 and the seasonal dataset of the period 2002–2008.
An average mean value of open water concentration, denoted 1−α, is computed following Eq. (10) for
each node of a 25 km resolution grid. The smoothing parameter L is equal to 400 km. In order to not
represent regions with little data, an open water concentration value at a given grid point is plotted only
if its associated weight is greater than a minimum value we arbitrarily set to 1000.
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is computed following Eq. (10) for each node of a 25 km resolution grid. The smoothing parameterL is equal to 400 km. In order to not
represent regions with little data, an open water concentration value at a given grid point is plotted only if its associated weight is greater
than a minimum value we arbitrarily set to 1000.

from period 1 to period 2 is also similar to the one observed
onM, materialized by a slight migration of the pack zone to-
ward the south, and an increase of the peripheral zone area,
materialized by larger open water concentration values. The
correlation coefficient computed betweenM values shown
in Fig. 12 and values of1− α is equal to 0.57 for period 1
and 0.80 for period 2. These correlation coefficients are much
larger than the one obtained in section4.2. This is explained
by the fact that averageM and 1− α values are considered
here prior to compute the correlation coefficient, removing
like this the influence of wind forcing activity in the variabil-
ity of M. Thus, we expect the discrepancies that still remain
here betweenM and1− α to be mostly due to changes in
ice thickness and ice degree of fragmentation. The respective
role of ice concentration, ice thickness and ice degree of frag-
mentation on the inertial oscillation amplitude is thoroughly
examined inGimbert et al.(2012).

4.3.3 Is the observed evolution from the IABP buoy
dataset representative of the whole Arctic Basin?

In the two previous sections, care was taken to remove the
effect of temporal heterogeneities in the IABP buoy dataset.
However, the IABP buoy dataset is spatially heterogeneous:
changes in the spatial sampling by the buoys could affect the
overall trend. In order to check whether the results reported
in Fig. 10 truly indicate a significant increase of theM val-
ues, we investigate whether this trend could be an artefact of
changes in spatial sampling.

Following the procedure described inRampal et al.(2009)
for ice velocities, we formulate a null hypothesis: in this hy-
pothesis, there exists no temporal changes in M-maps over
the year, but the effect at spatially sampling these maps in

different ways at different periods will cause the M-time
series to evolve with time. To construct these M-maps, we
consider any buoy position associated with a givenM value
and recorded at a given year and a given season. For such
a position, we compute the meanM0 value for summer, re-
spectively winter, by considering all theM values recorded
in summer, respectively winter, and whatever the year, con-
tained within a circle of radiusL = 200 km, using Eq. (10).
This mean value is therefore year-independent, and corre-
sponds to our null hypothesis of no inter-annual changes.
Then, we calculate our null-hypothesisM0 time series as the
mean of the summer, respectively winterM values, using the
same bins as in Fig.10. Any inter-annual variation observed
in the time seriesM0(t) could only be explained by changes
in the spatial sampling rather than by an actual, global trend:
for example, a positive trend would be explained if IABP
buoy had a tendency to sample regions associated with large
M values more often in the later years as compared to earlier
years.

Figure14shows the mean time seriesM(t) andM0(t) over
the whole time period 1979–2008. The trend associated with
the null hypothesis is equal to 1.57 (± 0.98)× 10−6 yr−1 in
summer and 1.28 (± 0.51)× 10−6 yr−1 in winter. This means
that changes in spatial sampling are responsible for approx-
imately 10 % of the observed trend in summer and 20 % of
the observed trend in winter. We thus conclude that the trend
observed in the averageM values cannot only be explained
by an irregular sampling of the buoys. This increase inM is
not an artefact and reveals a genuine increase of the inertial
oscillations magnitude over the whole Arctic Basin.
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Fig. 14.Mean time seriesM(t) (a) in summer (red) and(b) in winter (blue), as in Fig.10 andM0(t) (black lines), resulting from the null
hypothesis. The best linear fits are also plotted, showing that changes in spatial sampling only account for a small fraction of the observed
trend.

5 Conclusions

From the IABP ice drifter trajectories recorded between 1979
and 2008, we analyzed the average amplitude of inertial os-
cillations over the Arctic sea ice cover. To do so, we defined
a non-dimensional parameterM that quantifies the magni-
tude of inertial oscillations relative to advection motion along
the trajectories. For a sea ice cover of low concentration, con-
stituted from a loose floe field moving nearly in free drift,
inertial motions andM values are large. On the reverse, a
highly cohesive sea ice pack, characterized by strong inter-
nal stresses, is expected to be associated with lowM values.
From appropriate averaging of this 30-yr dataset at different
space or time scales, we have shown the following:

(i) TheM values describe an annual cycle with a minimum
reached in May and a maximum in September, in a qual-
itative agreement with the corresponding annual cycles
of sea ice extent (Comiso et al., 2008), concentration,
thickness (Rothrock et al., 2008; Kwok and Rothrock,
2009), advection velocity and deformation rates (Ram-
pal et al., 2009).

(ii) The spatial pattern ofM over the Arctic Basin is in
agreement with the sea ice thickness and concentration
patterns. LowM values are observed in western Arctic,
whereas large values are observed within a peripheral
zone (Beaufort Sea, eastern Arctic) and south of Fram
Strait.

(iii) A significant increase of average values ofM is ob-
served from 1979 to 2008. This increase, although more
marked in summer, is observed in both seasons and is
associated with the reduction of the thick, multi-year ice
zone in recent years.

From the expected link between the magnitude of the
oscillations and the degree of consolidation of the ice
cover (McPhee, 1978; Colony and Thorndike, 1980; Geiger

and Perovich, 2008), we believe that point (iii) is a signa-
ture of the mechanical weakening of the Arctic sea ice cover
in recent years. However, one may argue from the momen-
tum balance of sea ice (see Eq. (2)), that this strengthen-
ing of inertial motion might simply and more directly result
from the observed thinning of the cover, i.e. a reduction of
ice mass per unit area. In addition, this evolution could, to
some extent, be the result of a modification of vertical pen-
etration of turbulent momentum within the ocean boundary
layer. InGimbert et al.(2012), we have shown, from a sim-
ple ocean-sea ice coupled dynamical model, that these two
explanations cannot fully account for the evolution of iner-
tial motion in the Arctic, which actually reveals a genuine
mechanical weakening, through an associate decrease of the
sea ice internal friction magnitude, of the cover at the basin
scale. Such mechanical weakening has (will have) strong
consequences in terms of ice drifting speeds, deformation
rates, export (Rampal et al., 2009) and therefore on mass bal-
ance (Rampal et al., 2011).
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