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PROPAGATOR MATRICES IN ELASTIC WAVE 

AND VIBRATION PROBLEMSi 

The boundary value problems most frequently encounted in studies of elastic wave pro1)agation in stratified 
media can he formulated in terms of a finite numljer of linear, first order, ordinary differential equations \yith 
variable coefficients. \‘olterra 11887) has shown that solutions to such a system of equations are convenientI> 
represented by the I,roduct integral, or I)rol)agator, of the matrix of coefficients. 

In this paper we summarize some of the better kno\vn prol)erties of prolzt,oators plus numerical methods for 
their computation. when the dispersion relation is some jttth order minor of the integral matrix it is l)ossit)le to 
deal with wth minor I”opagators so that the dislwsion relation is a single clement of the wth minor intecrral 
matrix. In this way one of the major sources of loss of numerical accuracy in coml’uting the tlisl)ersion rrlazon 
is avoided. 

Propagator equations for S/I and for PSI’ waves are given for both isotrol,ic and transverseIT- isotropic media. 
In addition, the second minor propagator equations for P-ST. waves are gi\ren. 11atris I’olynomi& al’l)roximations 
to the propagators, obtained from the method of mean coefficients 1)~ the (‘a!-ley-Hamilton theorem and the 
Lagrange-Sylvester interl)olation formula, are derived. 

1. FIRST ORDER EQUATIONS 

Llost computations for stratified elastic \vave- 

guides arc made with the use 0i some approxima- 

tion to the stratification. The most common all- 

proximation is to represent the stratification as a 

sequence of homgeneous layers. Such an approxi- 

mation leads to the application of matrix methods 

attributed to Thomson (1050) anti Haskell (19.53), 

and modified by Roscnhaum (1964)) I)unkin 

(1965), and others, or to an equivalent method 

(Knopoff, 1964). 

In this paper wc describe a general method, 

first used by \-olterra (1887). It includes the 

ThomsowHaskcll method anti Knopoff’x method 

a5 special cases. 

To fix ideas and to minimize algebraic tlct.ails 

we examine the problem of .SH IVaye propagation 

in a stratified, isotropic hali-space. In a rec- 

tangular Cartesian coordinate system (.r, y, z) the 

surface of the hali-space is normal to the z axis. 

The density, p, and the Lam& parameters, X anti p, 

are piecewise continuous functions oi 2. The dis- 

placement has only a y component, U(S, z, 1). The 

doubly transiormetl displacement is 

esp (id - ikx). (1.1) 
The constituti1.e relation is 

T = /.dl. tls, (1.2) 

anti the linearized equation ior the conservation 

oi linear momentum is 

(IT dz = (/d” - ,,w’) 1.. (1.3) 

Equations (I .2) and (1 ..i) are witten in matrix 

form 

\vhich is a special cast 0i 

2. PROPAGATORS FOR ORDINARY LINEAR 

DIFFERENTIAL EQUATIONS 

Let A(z) be an II X II matrix of complex valued 

functions ;l ,,(z) oi the real \.ari:tble 2. Let f(z) be 

an II X 1 column matrix 0i complex valued iunc- 
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Propagator Matrices in Elastic Wave and Vibration Problems 327 

tionsJl(z) of the real \-ariablc z. The matrix equa- 
tion 

tlf, t/z = A(s)f(z) (2.4) 

is a system 0i 12 linear liomogcncous ordinary dif- 
ferential equations for the functions ,fL(z), 
i=l,. . , 12. .in nXn matrix F(z) of complex 
functions I;,,(z) is called an integral matrix of 
(2.1) if 

dF, ‘ciz = A(z)F(z). (2.2) 

P(z, z,,) = M(z)M-‘(za), (2.1) 

Thcreiorc, the propagator iron1 any point 2” can 

he calculateti immediately- by matrix inversion, 
once lb linearly independent /r X I column matrix 
solutions of (2.1) arc known. 

The name propagator derives iron1 the fact that 
if f(z) is an riX 1 column matrix solution of (2.1), 
then 

f(z) = P(z, z,)f(z,). (2.5) 

The integral matrices 0i (2.1) are those 11x II This is a conseyuence oi the uniqueness theorem. 

matrices each of whose columns is a solution 0i The propagator can he used to solve the in- 

(2.1). homogeneous system 

An integral matrix 0i (2.1) is called a funda- 
mental matrix 0i (2.1) (Coddington and Levin- 

df:‘dz = A(z)f(z) + g(z), (2.6) 

son, 1955, 68) ii it is nonsingular for e\ery z in its where g(z) is given 12 X 1 column matrix function
domain of definition. ,411 integral matrix, F(z), of of z. The solution, verified by direct substitution, 
(2.1) is called a propagator from R if F(zo) is the is 
12x12 identity matrix. \Ve preier the \vortl 
“propagator” to Gantmacher’s word “matricant” 
(1959, ,7, 113) because the former is more descrip- f(z) = F(z) [ sZ F-l(.Gg(GG- 

-0 
tive and is sanctioned hy analogy with other 
initial-value problems. 

\\:lien A;,(z) are continuous functions of z it is 
well known (Coddington and Le\-inson, 195.5, 20) 
that for an!. complex rzX 1 column matrix b and 
any zO there is exactly one solution, f(z), of (2.1) 
such that f(zO)=b. It follows that ior any UXE 
matrix B and any zo there is exactly one solution, 
F(z), of (2.2) such that F(zo) =B. In particular. 
for any zO, (2.1) has a unique propagator from z0 
which Tve \vill denote by P(z, zO), The matrices 
F=P(z, z,) and F=P(z, zJP(zl, 20) are both 
solutions 0i (2.2) and are equal ~\hcn z=zr. 
therefore the uniqueness theorem assures their 
equalit!. ior all z. For any z~, z?, z3, 

(2.7) 

\\here F(z) is any iundamental matrix of (2.1). We 
may take F(z) =P(z, ~3) in (2.7), SO that 

+ w, zo)f(zo). (2.8) 

If F(z) is any solution of (2.2), let F”(z) denote 
the classical adjoint of F, that is, F,j” is the co- 
factor of Fji. Then F”F=I det (F) where I is the 

P(za, ar) = P(z3, ZL)P(ZP, zr) 
II XII itlentity matrix. ;\lso, 

= fi P(zr, il_l). 
d(det (F)) dz = (dF,j, (iz)FjFa 

(2.3) 
I=? = .I ,kF,,F,,a 

Since P(z,, zr) is the identity matrix, it follows = .4 &, det (F). (2.9) 

from (2.3) that the inverse of P(z?, zi) is P(zr, 2~). 
In particular, for any 2, P(z, 20) has an inverse. 

Therefore, 

Hence’any propagator is a iundamcntal matrix. 
If M(z) is any fundamental matrix ior (2.1). 

d(det (F)) ‘dz = tr (A) det (F) 

then not only M(z) but also M(z)M-r(zo) satisfies det (F(z)) 
(2.2). Since M(z,JM-~(z~) is the identity matrix, 
M(z)M-r(zo) must be the propagator iron1 ZO. That = det (F(Q)) sZ tr (A(.C)WT. (2.10) 
is, ii M(z) is any fundamental matrix for (2.1), 2” 
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328 Gilbert and Backus 

In particular, 

det (P(5, =,I)) = J z tr (A(i_))ti:-. (2.11) 
;o 

In case A(z) and 
s- 

- A(.r)(~~ 
i” 

commute ior every z. 

P(z , zU) = exp AWj_. (2.12) 

Equation (2.12) ih applicable in particular ii 

A(z) is independent oi z. 

For many elastic \vave and vibration problems 

the secular function, whose roots are the cigen- 

values, is some minor of the integral matrix F oi 

(2.1) that has met prescribed initial conditions. r\ 

diliiculty that irequently arises in such problems 

is that even \vhen the minor is oi moderate size, 

the elements of F \vhich enter into its composition 

may be so large that the minor is computed \vith 

severe loss 0i numerical accuracy. One \vay to 

circumvent this ditiiculty is to compute the minor 

directly rather than iron1 the elements oi F. 

.I square matrix F oi order II has (,t)’ minors oi 

order rn<,l. \Vhen the minors of order 11~ are 

arranged in a square array in some definite order, 

the array is called the rttth minor matrix of F, 

which we denote 1)~ 3 (“o. Gantmacher ( 1 I).iY, I, 

10-20) calls 3 (“1’ the mth compound matrix. 

An wzth order minor oi F is 

\vhere 

is defined to he one ii all die k’s are different antl 

the j’s are some even permutation of the k’s; is de- 
fined to he - 1 if all the k’s are different and the 

j’s are some odd permutation of the k’s; and is 

zero otherwise. 

If the matrix F satisfies (2.2)) then 

Therefore 3(“‘, the nzth minor matrix of F, is a 

solution 0i 

&3”“‘, tlz = Am’““, (2.15) 

where W is a square matrix oi order (E) each of 

whose elements is a linear combination of the ele- 

ments oi A. The propagator oi Ct is the vzth 

minor matrix of the propagator oi A and is call4 

the wzth minor propagator of A. The iact that the 

secular function some element of F(?“’ in (2.19, 

is computed directly rather than from (2.1.1) 

means that its accuracy is independent oi the 

magnitude of the elements oi F. 

;is one example, ve take II = 4, vz = 2. ;\rranging 

the second order minors of F in the arra! 

F($) F(g) F($) FG) FW FG3 1 
FG) 
F(:tj 

5? = F23) etc. 

1 

F (:i) 

F(z) . . . . 

(2.16) 
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Propagator Matrices in Elastic Wave and Vibration Problems 329 

we find the matrix W to he 

(Z = 

3. PRODUCT INTEGRALS 

Consider P(z, zO: A), the propagator for some 

coefficient matrix A 

ciP, dz = AP (3.1) 

in the interval so <z<,:k-. I)i\-idc the interval into 

lz parts by introducing the intcrmctliate points 

Z,<Z?< . ‘. <zt_,. Letyl=zl--zl_i,I= I, ,k. 
Then, from (2..1), 

P(Zk, 20) = fi P(r,, C,~l). 
I=1 

(3.2) 

In the interval zl_l<z<zl we choose an inter- 

mediate point j-l. Regarding yl as a small quantit! 

we make the approximation 

A(z) ‘v A(i_J; z/ -1 _< z < zl. (3.3) 

Then 

P(z2 , Z~LI) = exp [A(j_,)y,] 

p(zi;, 20) = 11 exp [A(<l)rl]. (3.1) 
1=1 

‘IhlS, 

In (3.5) the limit is calletl the product integral 

of A (Volterra, 1887; Hirkhoff, lY,37). In (3.1) the 

product is called the n approximant to the 

product integral of A. In (3.1) the propagator of 

A is the product integral of A. 

When A(<Jyl in (3.1) is replaced by 

(2.1 7) 

the II approximant to the product integral is said 

to he computed hy the method of mean co- 

et‘ticients (Frazer. 1)uncan. antl (‘ollar, 1060, 

232-24.5). 

\Vhen II is not large in (2.1) and (3.1) the 

Cayley-Hamilton theorem antl the Lagrange- 

Sylvester interpolation formula can be used to 

compute 

P( ~1, zl~1) ‘v esp [ [;_+I{]. (3.6) 

.ilternatively, some purely numerical method, 

such as the fourth ortler Runge-Kutta-Gill 

method, can be used to solve (3. I) 

In (34) the approximation of taking A constant 

in subintervals oi 2 is equivalent to the approxi- 

mation of taking (X, p. pj constant in the suhin- 

tervals;. The subintervals are sometimes called 

homogeneous layers, and in this case the methods 

of Thomson (10.50) and Haskell (105.3) are usual11 

used to compute the propagator. It is clear ir0m 

(.S.i) that the ‘I’homson-Haskell procedure yields 

the product integral as the limit in (3..5) is taken. 

4. THE METHOD OF MEAN COEFFICIENTS 

Let 

B= S ” A(<)&-. 
2, L 

Then 

P( zl, z[___~) 2 exp B. (1.1) 

For SH waves A is givrn 1)~ (1.1). The char- 

acteristic equation for B is 

y’ - &1B12 = 0. (1.2) 

Using the Cayley-Hamilton theorem and the 

Lagrange-Sylvester interpolation formula,TTehave 

exp B = alB + ~~1, (4.3) D
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330 Gilbert and Backus 

where ur=shq/q, ou= chq, q= (B2,BIL)‘/*. In the 
special cast where w and p are constant (1.1) is 
exact and (1.3) is the propagator matrix derived 
by Haskell (1953) for SI1 waves. 

Fur I’-SI’ waves Ic=A in (2.1). Takingj, to be 
the z displacement, Jz t.o be the .r or y displacc- 
ment, ,f3 to be the z stress, and j4 to be the zJ or zll 
stress, it is simple to show that the coefficient
matrix is 

r 0 Xk(X + 2p)-1 

i 

-k 0 
A= 

-pd 0 

0 -pw2 + 482&i + /.L)(X -t 

Therefore the characteristic equation for B is 

where 

y4 - p-y” + q = 0, (4.5) 

P = Bd& + B&z4 + B12R21 

+ BnB31, 

q = B12B4dB2Jh - B&24) 

+ Bdh2(Bd2~ - B21Bs), (4.6) 

Thus 

exp B = c unB7c, 
n=O 

(4.7) 

where 

aa = (sh YI/YI - sh rs/‘yz)/~, 

~2 = (ch YI - ch yz),‘~, 

1’1 = (YI” sh y2/y2 - ~22 sh YI/Y1)i~E, 
(3.8) 

Yl,Z = [B(p i (p" - 4q)‘/2)]‘12. 

In the special case where X, p, and p are constant 
(4.7) is the exact propagator and is equal to the 
matrix derived by Haskell (1953) for P-W waves. 
When y12=yz2 in (4.8) we have 

cl:{= (ychy-shy) 2y”, 

(12 = sh y/2y, 

(~1 = (3 sh y - y cl1 ?),/2y, 

au = ch y - y sh y 1, 

y = q’/4 = (p/q’/‘, 

(A + 2/L-l 

0 

0 

a-4-1 --xk(X + 2/4-l 0 

(4.9) 

(4.4) 

When y=O in (1.9), tz,= l/z! 
Series expansions of (4.8) anti (4.9) can be ex- 

pressed in terms of the Lucas [ 1801) polynomials 
(Barakat, 1964) 

u3 = 2 I’,,(p, (r)/(‘!lZ + l)! 
tL=ll 

a1 = - 9 c r:,,+,(p, C/)/(2% + l)! 
71=0 

Li?z(P, q) = Pz:?L-l(p, 9) - 9l’,-z(p, q), 

rrocp, 4) = 0, ~:I@, 4) = 1, 

u-n(p, 9) = - q-7~z:,i(p, (1). 

In many P-.CT’ problems the _;cxcular function is 
a second order minor of an ilitcgral matrix of 
(2.1). The second minor propag;l Ior of A, where A 
is given by (4.4), is then the prol)agator of @ in 
(2.17). Let 

Let @(IQ, 21-1) be the propagator of @,. Then 

6(2~, z~_l) ‘v ex1) (6. (4.11) D
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Propagator Matrices in Elastic Wave and Vibration Problems 331 

The characteristic equation ior ($3, when B is \v11en u=o ill (4.lh), Cl,, = 1 II! 
given 1)~ (2.17) and A is given 1)~ (4.4), is Series exI)ansions oi (4.1.;) anti (4.16) in terms 

yyy’ - uI’)(y - uz’) 
oi the I,ucas y~l!~nomials arc‘ 

= Y” - 2pr4 + (P’ - 4c/w = 0, (4.12) (I5 = 5 [.,,(I’ 0) (212 + 3); 

IvIlere 
,,=,i 

uI = YI + Yr, u? = 71 - Y‘L, 
u1 = 2 I’,,(/‘, Q) (211 + 2)! 

Cl.2 = (p i 2q’:‘)’ “, (4.13) 
,1=ll 

and y, and ye are given II)- (4.8). u3 = - <I% l’,,_l(P, 0) ‘(212 + A)! (4.17) 

Thus, ,r=” 

where t’ = 2p, Q = p’ - 49. 

a5 = 1,‘u12u22 + sllu~,‘a~“(ul~ - CQ?) - shu2,‘u,“(ul~ - u2?), 

a4 = ~/‘uI”u~” + c~u~/u~~(u~~ - uz”) - chu2, u2?(u14 - ,,?y), 

0~ = - (UI? + c+‘,‘u~*u~~ - u2’shu,,~ul”(ul? - uz?) + ul%hu~,‘u2”(u12 - u2?), 

a2 = - ((~1’ + u?), ‘u~%T~~ - uz”chuI,‘u12(uI” - uz2) + u1?Chu2 ‘uz?(ul? _ uz?), 

ill = 1, 

00 = 1. 

(4.15) 

In the special case where X, ~1 and p are constant For all examples given in this section each 
(4.1 1) is the exact second minor propagator. The propagator has unit determinant as a consequence 
elements of (4.11) are then the second order oi (2.1 I). 
minors derived 1,~ L)unkin (19ki) for P-SI’ waves. Expressions (4.2), (4.5), anti (4.12) are also 
\Vhen ul* = uy2 in (4.15) \ve have valid ior transversely isotropic media with the z 

u5 = (2~ - u cl1 u - sh u) 2u5, 

a4 = (2 - 2 ch u - u sh u)/‘2u4, 

axis being the axis of symmetry. For SII \vaves A 

in (1.4) is replaced b! 

a3 = (5 sh u - u ch u - 4u),:2u3, 

u2 = (4 ch u - 4 - u sh u),‘2u?, (4.16) 
0 

A= 
I* 

-I . (4.18) 

al = 1, 
-/NJ? + l’k’ 0 1 

00 = 1, 

u = pw, For P-S\’ waves A in (4.4) is replaced t,> 

0 KXP-’ 

-k 0 
A= 

-p&9 0 
(4.19) 

0 -pa’ + k2(X’ + 2~’ - X2/?‘) D
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332 Gilbert and Backus 

where the five elastic parameters X, A’, p, p’, /3 
enter the stress-strain relations as follows: 

(4.20) 

In (4.20) the letter indices take on the values 1, 2 

and the summation convention is used. Also 
X1 = .z , “l-2 = Y - , x:i=z. In an isotropic medium 
X’=X, p’=p, p=X+Zp. The T’s and e’s in (4.20) 

are the elements of the stress tensor and strain 
tensor, respectively. 

In closing we remark that the characteristic 
roots of exp (A in (4.14) are derivable from those of 
exp 63 in (4.7) by Kronecker’s theorem (Gant- 
macher, 1959, I, 7.5). 
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