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PROPAGATOR MATRICES IN ELASTIC WAVE
AND VIBRATION PROBLEMS

FREEMAN GILBERT* anp GEORGE E. BACKUS*

The houndary value problems most frequently encountered in studies of elastic wave propagation in stratified
media can he formulated in terms of a finite number of linear, first order, ordinary differential equations with
variable coefficients. Volterra (1887) has shown that solutions to such a system of equations are conveniently
represented by the product integral, or propagator, of the matrix of coefficients.

In this paper we summarize some of the better known properties of propagators plus numerical methods for
their computation. When the dispersion relation is some mth order minor of the integral matrix it is possible to
deal with mth minor propagators so that the dispersion relation is a single element of the mth minor integral
matrix. In this way one of the major sources of loss of numerical accuracy in computing the dispersion relation
is avoided.

Propagator equations for S/7 and for P-S1” waves are given for both isotropic and transversely isotropic media.
In addition, the second minor propagator equations for P-S1" waves are given. Matrix polynomial approximations
to the propagators, obtained from the method of mean coefficients by the Cayvlev-Hamilton theorem and the
Lagrange-Sylvester interpolation formula, are derived.

1. FIRST ORDER EQUATIONS cexp (iwf — ikx). (1.1)

Most computations for stratified elastic wave-
guides are made with the usc of some approxima-
tion to the stratification. The most common ap- T = udl dz, (1.2)
proximation is to represent the stratification as a
sequence of homgeneous lavers. Such an approxi- and the linearized equation for the conservation
mation leads to the application of matrix methods ~ of linear momentum is
attributed to Thomson (1930) and Haskell (1953),
and modified by Rosenbaum (1964), Dunkin
(1963), and others, or to an equivalent method

(Knopoff, 1964).

The constitutive relation is

AT dz = (uk® — pw?) L. (1.3)

Equations (1.2) and (1.3) are written in matrix

. . form
In this paper we describe a general method,
first used by Volterra (1887). It includes the d U] T 0 w! U
Thomson-Haskell method and Knopoff’s method dj: 7 - Luk? — pw® O ’ . (LD

as special cases.
To fix ideas and to minimize algebraic details  which is a special ease of
we examine the problem of SH wave propagation

in a stratified, isotropic half-space. In a rec- Wil I STRREE P N1

tangular cartesian coordinate system (x, v, 3) the i R ) —I (1.5)
surface of the half-space is normal to the z axis. ds| - . - . J B
The density, p, and the Lamé parameters, A and g, oy IS DRREREREI P9 i

are piecewise continuous functions of 3. The dis-

placement has only a ¥ component, u«(x, z, {). The 2. PROPAGATORS FOR ORDINARY LINEAR
doubly transformed displacement is DIFFERENTIAL EQUATIONS

- " Let A(z) be an nXn matrix of complex valued
Uk, 2z, w) = f d»\.f dtu(x, z, 1) functions .1,;(z) of the real variable z. Let () be
- - an 72X 1 column matrix of complex valued func-
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tions f,(2) of the real variable 5. The matrix equa-
tion

df dz = A(5)E(s) (2.1)

1s a system of n linear homogeneous ordinary dif-
@ferential equations for the functions fi(3),
éizl, c oo, e An X matrix F(z) of complex
Sfunctions Fi;{z) is called an integral matrix of
S0 if

seg.org/

Yy

dF 'dz = A(2)F(3). (2.2)
The integral matrices of (2.1) are those nXn
matrices each of whose columns is a solution of
(2.1).

An integral matrix of (2.1) is called a funda-
mental matrix of (2.1) (Coddington and Levin-
J~son, 1953, 68) ii it is nonsingular for every z in its
Sdomain of definition. An integral matrix, F(z), of
‘S (2.1) is called a propagator from z if F(z) is the
ZuXn identity matrix. We prefer the word
o “propagator’’ to Gantmacher’s word “matricant”
e (1939, 2, 113) because the former is more descrip-

tive and is sanctioned by analogy with other
O initial-value problems.

6 When 4;(z) are continuous functions of z it is
% well known (Coddington and Levinson, 1955, 20)
9 that for any complex 73X 1 column matrix b and

any 3 there is exactly one solution, £(3), of (2.1)
‘such that f(z) =b. It follows that for any nXn
@ matrix B and any 2 there is exactly one solution,
SF(5), of (2.2) such that F(s)=B. In particular.
B for any 2, (2.1) has a unique propagator from z
-gwhich we will denote by P(3, 2). The matrices
.§F=P(z, z) and F=P(3, 2z)P(z, 2z) are both

solutions of (2.2) and are equal when z=z.

: Therefore the uniqueness theorem assures their

see Termsof Use at h

t

‘C_)! equality for all z. For any zi, 2., 2,,

P(z;;, g1) = p(537 Zz)P(227 21)
3

= P(Zz, 51,1).

1=

(2.3)

ta

Since P(z1, z) is the identity matrix, it follows
from (2.3) that the inversc of P(zs, 21) is P(a1, 22).
In particular, for any z, P(z, 2) has an inverse.
Hence any propagator is a fundamental matrix.

If M(z) is any fundamental matrix for (2.1),
then not only M(z) but also M(2)M™1(z) satisfies
(2.2). Since M(20)M~(z,) is the identity matrix,
M (2)M~1(3) must be the propagator from g. That
is, if M(3) is any fundamental matrix for (2.1),

Downloaded 09/06/13 to 161.45.205

327

P(z, 20) = M(5)M~(3), (2.4)

Therefore, the propagator from any point g can
be calculated immediately by matrix inversion,
once 7 linearly independent 72X 1 column matrix
solutions of (2.1} are known.

The name propagator derives from the fact that
if f(z) is an 72X 1 column matrix solution of (2.1),
then

1(z) = P(z, z0)f(z0). (2.5)

This is a consequence of the uniqueness theorem.
The propagator can be used to solve the in-
homogeneous system

df/dz = A()E(z) + g(z), (2.6)

where g(z) is given #X 1 column matrix function
of z. The solution, verified by direct substitution,
is

(z) = F(2) [ [ Fowew

0

+ F_l(zo)f(zo):|, 2.7

where F(z) is any fundamental matrix of (2.1), We
may take F(z) =P(z, 3) in (2.7), so that

i) = [ P e

+ P(z, 20)f(20). (2.8)

If F(z) is any solution of (2.2), let F%(z) denote
the classical adjoint of F, that is, F,;* is the co-
factor of F;;.. Then F°F=I det (F) where I is the
n X n identity matrix. Also,

d(det (F)) 'dz = (dF, dz)F;¢°
= AuF F;0
= 4,6 det (F). (2.9)
Therefore,
d(det (F))/dz = tr (A) det (F)
det (F(2))

= det (F(zo))fztr (A(O))de.  (2.10)
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In particular,

det (P(s, z)) = f: tr (A(O)de. (2.11)

20
In case A(z) and f A(Dde
20
commute for every z,

P(z, z) = exp f A(O)de.  (2.12)

Equation (2.12) is applicable in particular if
A(z) is independent of z.

For many elastic wave and vibration problems
the secular function, whose roots are the eigen-
values, is some minor of the integral matrix F of
(2.1) that has met prescribed initial conditions. A
dithculty that frequently arises in such problems
1s that even when the minor is of moderate size,
the elements of F which enter into its composition
may be so large that the minor is computed with
severe loss of numerical accuracy. One way to
circumvent this ditficulty is to compute the minor
directly rather than from the c¢lements of F.

A square matrix F of order » has ()% minors ol
order m <n. When the minors of order m are
arranged in a square array in some definite order,
the array is called the mth minor matrix of F,
which we denote by F*_ Gantmacher (1939, 1,
19-20) calls ' the mth compound matrix.

An mth order minor of F is

1’1 T im
(o en)
ky - ke

=Fu; - Fie

tmIm

Juecdm
kyeockp)

(2.13)

13

F(lz
F(
F(s

24

F<1z
I..I"(‘S) M

F(3) rFG) FGD) FGE) FED FGE

where

I im
6/{1 .. '/‘/H

is defined to be one if all the %'s are different and
the j’s are some even permutation of the £’s;is de-
fined to be —1 if all the &’s are different and the
j's are some odd permutation of the &’s; and is
zero otherwise.

Ii the matrix F satisfies (2.2), then

1'1 RPN Z'm
d]*‘( )/dz
kl T km
- I'm
= ‘,llll[f
kl R km

iy -1
o ,/( ‘ ) (2.14)
kl T km

Therefore 5, the mth minor matrix of F,is a
solution of

dgm 'ds = A(z)F0(z), (2.15)

where @ is a square matrix of order () each of
whose elements is a linear combination of the ele-
ments of A. The propagator of @ is the mth
minor matrix of the propagator of A and is called
the mth minor propagator of A. The fact that the
sccular function, some element of F™ in (2.13),
is computed directly rather than from (2.13)
means that its accuracy is independent of the
magnitude of the elements of F.

As one example, we take n =4, m=2. Arranging
the second order minors of F in the array

etc. . ) (2.16)

rG
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we find the matrix @ to be

M At des Ay Aoy
‘132 -111+ il 33 Jl 34
Ay Ay -’111+A]44
Q=
_4131 Algl 0
hA141 0 121
0 — .1y N T

3. PRODUCT INTEGRALS

Consider P(z, 2: A), the propagator for some
coefhcient matrix A

dP. dz = AP (3.1)

in the interval 5, <z <sg;. Divide the interval into
k parts by introducing the intermediate points
Hn<m< - <z Letyi=z—3,1=1, - -,k
Then, from (2.3),

P(z, 20) = H Pz, z1.4). (3.2)
-1

In the interval 3,1 <3<g; we choose an inter-
mediate point {;. Regarding y; as a small quantity
we make the approximation

Al ~A); 51033 (3.3)
Then
P(z;, 211) == exp {A(fz)%J
.
P(z, 20) ~ [] exp [AG)y.]. 3.4
-1
Thus,

Pz, 20) = P I+ A()dt]

= lim II I+ AG)v. (3.5

L

In (3.5) the limit is called the product integral
of A (Volterra, 1887; Birkhoff, 1937). In (3.4) the
product is called the Tl approximant to the
product integral of A. In (3.1) the propagator of
A is the product integral of A.

When A({)v:in (3.4) is replaced by

[ A

21—

329

— .l — Ay 0 T
[ 1o 0 — .1y
0 [ Ay
(2.17)
R s ETRN P — .1y
Ay B R i NP Y
— A Ay RETE SRV

the IT approximant to the product integral is said
to be computed by the method of mean co-
ethcients (Frazer, Duncan, and Collar, 1960,
232-245).

When n is not large in (2.1) and (3.1) the
Cayvley-Hamilton theorem and the Lagrange-
Svlvester interpolation formula can be used to
compute

P(z1,211) ~exp |:f“A(§‘)d§‘i|. (3.6)

21-1

Alternatively, some purely numerical method,
the {ourth order Runge-Kutta-Gill
method, can be used to solve (3.1).

In (3.4) the approximation of taking A constant
in subintervals of z is equivalent to the approxi-
mation of taking (N, u, p) constant in the subin-
tervals. The subintervals are sometimes called
homogeneous layers, and in this case the methods
of Thomson (1950) and Haskell (1933) are usually
used to compute the propagator. It is clear from
(3.3) that the Thomson-Haskell procedure vields
the product integral as the limit in {3.3) is taken.

such as

4. THE METHOD OF MEAN COEFFICIENTS

Let

B = f: A(¢)de.

Then
Pz, z1.1) ~ exp B. .1

For SH waves A is given by (1.4). The char-
acteristic equation for B is
v* — BB = 0. +.2)

Using the Cayley-Hamilton theorem and the
Lagrange-Sylvester interpolation formula, wehave

exp B = ¢,B + al, (4.3)
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where ay=shg/q, ay=chg, ¢=(BuB1»"2 In the
special case where w and p are constant (4.1) is
exact and (4.3) is the propagator matrix derived
by Haskell (1953) for SH waves.

For P-SV waves n=4 in (2.1). Taking /) to be
the z displacement, f, to be the x or y displace-
ment, f5 to be the z stress, and /; to be the z, or g,
stress, it is simple to show that thc coefficient
matrix is

( 0 AN+ 2u)1
—k 0
A =
— pw? 0

0 —po® + 4R + w)A + 20)7!

Therefore the characteristic equation for B is

v =pv+q=0, (4.5)
where
p = BB + BasBss + Bi2Ba
+ Bi3Bsy,

qg = 312343<321334 - 1531324)

+ BisBu(BsBa — BauBi), (4.6)
Thus
3
exp B =2 a,B" (4.7)
n=>0

where
az = (sh yi/y1 — sh ve/v2) /€
dg = (Ch Y1 — Ch ’Yz)/e,

ar = (y1* sh ys/v2 — v2* sh vi/v1)/e,
(4.8)
@ = (v1® ch ys — y»? ch Y1)/,

€= 7’ — 7t
12 = [3(p £ (p* — )R]

In the special case where \, u, and p are constant
(4.7) is the exact propagator and is equal to the
matrix derived by Haskell (1953) for P-SV waves.
When v,2=",? in (4.8) we have

a3 = (y chy — shy) 2%,

as = sh y/2y,

ar = (3shy — v chy)/2y, (4.9)
ay = chy — yshy 2,

v =g = (2

O+ 2u)1 0
0 —1
. (4.4)
0 k
XM 4 201 0 |

When vy=0in (4.9), a,=1/#n!

Series cxpansions of (4.8) and (4.9) can be ex-
pressed in terms of the Lucas (1891) polynomials
(Barakat, 1964)

az = Z LTH(P) (])//(3” + 1)‘
n=0

ao = Z []71(P7 q}/(‘zn)!
n=0

= —q 2 Ualp, 9)/(2n + 1)!

n=0

(4.10)

aG=—q 3 Ui(p, ¢)/(2n)!

n=0
Un(P) (]) = PUn—l(P; 9) - f/{'n~2(i77 q)y
(/Zﬁ(p) g) = 0; Ul(P, 4) = 1,
Uslp, @) = — ¢ U(p, ¢).

In many P-SV problems the sccular function is
a second order minor of an integral matrix of
{2.1). The second minor propagator of A where A
is given by (4.4), is then the propagator of @ in

(2.17). Let
5= [awu.

21
Let ®(z;, 2,-1) be the propagator of @. Then

®(z1, 211) ~ exp B. (4.11)
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The characteristic equation for ®, when @ is
given by (2.17) and A is given by (4.4), is

Ry

Y — o) (v — o)

In the special case where A, u and p are constant
(4.11) is the exact second minor propagator. The
elements of (4.11) are then the second order
minors derived by Dunkin (1963) for P-ST waves.
When ¢12=0¢,% in (4.15) we have

Wave and Vibration Problems 331

When o=01in (4.16), u,,=1 n!
Series expansions of (4.15) and (4.16) in terms
of the Lucas polvnomials are

= 2 UAP, Q) 2+ 3)

ady
=0
as= Y U(P, Q) 2n+2)!
n=0
as=— Q> U, (P, Q) Qun+3)! (4.17)
n=0
ay= = Q2 U, (P, Q) 2n+ 2)!

n=0

P=2p,0=p~ g

72} (01® — a3?),

— 02%) 4 oi’shay/ 023012 — a42), (4.15)

= 0.2) 4 o12chos /02202 — 027),

where
01:71+72,02:71—72,
ars = (p £ 2¢) (4.13)
and yi and v, are given by (4.8).
Thus,
exp® = D a,® (4.14)
n—0
where
as = 1/'/0120'22 —f— 5110'1,"0'13(012 - 0'22) - 8}102/'/0'23(0'12 — 022),
a3 = 1/01%05> + chay/o1%(0,? — o92) — chayy/
az = — (01® + 022) /a1%0:" — o22sho1/ 0% (012
ay = — (01 + 02%)/01%02* — o2°chay/012(0+2
a =1,
a, = 1.

For all examples given in this scction each
propagator has unit determinant as a consequence
of (2.11).

Expressions (4.2), (4.3), and (4.12) are also
valid for transversely isotropic media with the z
axis being the axis of symmetry. For SH waves A

a5 = (20 — o ch ¢ — sh ¢)/ 20", in (1.4) is replaced by
as= (2 —2cho—~ oshoa)/204,
a3 = (S5sho — o cho — 10)/20%,
@y = (dcho— 4 — gsha)/20% (4.16) A= [ 0 “_1} . (418)
S —p® + Wk 0
a =1,
o = p? For P-SV waves Ain (4.4) is replaced by
0 NS s 0
Ao | F 0 0 (4.19)
— pe? 0 0 k
0 —pw?+ B2\ + 24" — A8 —kNTT O
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where the five elastic parameters N\, A, u, ¢/, 8
enter the stress-strain relations as follows:

T33 = Bes; + Aéi,
Ty = Tz = 2ues,, (4.20)
T:; = Newds; + 2u’e; + hessb.;.

In (4.20) the letter indices take on the values 1, 2
and the summation convention is used. Also
xi=x, x=7v, x3=3 In an isotropic medium
N=A uw'=u, B=A+2u. The T’s and ¢’s in (4.20)
are the elements of the stress tensor and strain
tensor, respectively.

In closing we remark that the characteristic
roots of exp B in (4.14) are derivable from those of
exp B in (4.7) by Kronecker’s theorem (Gant-
macher, 1959, 1, 75).
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