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ABSTRACT

This paper concerns the calculation of the probability of exceedance of wave crest elevation. The statistics
have been calculated for broadbanded, unidirectional, deep-water sea states by incorporating a fully non-
linear wave model into a spectral response surface method. This is a novel approach to the calculation of
statistics and, as all of the calculations are performed in the probability domain, avoids the need for long
time-domain simulations. Furthermore, in contrast to theoretical distributions, the broadbanded, fully
nonlinear nature of the sea state can be considered. The results have been compared with those of fully
nonlinear time-domain simulations and are shown to be in good agreement. The results indicate that in
unidirectional seas the crest elevations of the largest waves can be much higher than would be predicted by
linear or second-order theory. Hence, the occurrence of locally long crested sea states offers a possible
explanation for the formation of freak or rogue waves.

1. Introduction

The statistics of wave crest elevation are fundamental
to the design of both deep-water offshore structures
and shallow-water coastal structures. In the case of
fixed structures, deck elevations are typically set to
maintain an effective air gap, thereby preventing the
impact of the largest wave crests on the underside of
the structure. In addition, individual members must be
designed to support the applied loads, with the maxi-
mum drag forces arising beneath the largest wave crests
and being proportional to the square of the wave am-
plitude. For floating structures the occurrence of wave
slamming, the extreme vessel response (particularly roll
motion), and green-water inundation are all key param-
eters dependent upon extreme wave events. Likewise,
crest elevations represent a key point in the design of
coastal structures, both fixed and floating, for shoreline
protection and flood prevention. In the latter some de-

gree of overtopping must be anticipated, but its estima-
tion should be based upon a clear understanding of
crest-height distributions.

This paper is concerned with the calculation of the
exceedance probability of wave crest elevation, in deep
water, in unidirectional seas. Directionally spread wave
fields will be considered in a future paper. The statisti-
cal distributions have been calculated using two recent
advances in wave modeling. The first concerns the fully
nonlinear wave model proposed by Bateman et al.
(2001, hereinafter referred to as BST), while the second
involves the use of a spectral response surface (SRS)
method, which was not developed in the context of
wave modeling, but can be very usefully applied
therein. For example, Tromans and Vanderschuren
(2004) have previously used the method, in conjunction
with the wave model proposed by Sharma and Dean
(1981), to calculate the probability of exceedance of
crest elevation to second order, and the results have
been shown to be in excellent agreement with those of
the second-order time-domain simulations of Forristall
(2000).

Within the present paper the application of the BST
model within the SRS method provides a first oppor-
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tunity to calculate statistical distributions in which the
full nonlinearity of an evolving (unsteady) wave field
are included. The motivation for undertaking this task
is twofold. First, the ongoing discussion of freak or
rogue waves frequently implies that the description of
the largest or steepest waves may include significant
contributions from third- and higher-order interactions.
Second, recent calculations of large isolated wave
groups (Gibson and Swan 2007, hereinafter GS) have
shown that the resonant, and near-resonant, interac-
tions arising at third-order can produce local, and rapid,
changes to the spectrum of the freely propagating wave
components. In unidirectional seas this involves a
broadening of the underlying spectrum, providing the
potential for larger maximum crest elevations to
evolve.

The paper begins in section 2 by describing the back-
ground to the calculations, together with a brief over-
view of the BST model. It continues in section 3 by
describing the application of the SRS method, and in
section 4 the method is applied to calculate the prob-
ability of exceedance of crest elevation in two unidirec-
tional sea states. These results are compared with those
of fully nonlinear, random, time-domain simulations
in section 5, with concluding remarks provided in sec-
tion 6.

2. Background

Although there is generally good agreement between
observed and theoretical crest elevations, there is some
suggestion of the existence of freak, or rogue, waves
that are much higher and steeper than might be ex-
pected (e.g., Sand 1990). The exact definition of what
constitutes a rogue wave remains the subject of much
debate; however, it is broadly agreed that the occur-
rence of such waves cannot be predicted using second-
order theory. Therefore, one limitation of theoretical
distributions is that they do not consider the full non-
linearity of the wave field. Another is that most do not
take into account the broadbanded nature of the ocean
environment, both in terms of a realistic wave spectrum
and also in terms of the directional spread of the wave
energy. In contrast, time-domain simulations are a ro-
bust method for determining statistical distributions.
Indeed, rogue waves apart, the statistics derived from
the second-order time-domain simulations of Forristall
(2000) have been found to be in good agreement with
measured data. However, in order to have confidence
in the extremes of the distributions, many hours of a
particular sea state must be modeled.

Many of these limitations can be overcome by using
the SRS method. First, by incorporating a suitable wave

model into the method, the full nonlinearity can be
considered. This task is addressed in the present paper.
Second, the sea state can be described by a realistic
broadbanded and directionally spread spectrum; the
former is addressed herein, and the latter is left for a
subsequent paper for reasons that will become appar-
ent. Furthermore, the property of the wave field that is
of interest can be expressed in either the time domain
(e.g., wave height) or the frequency domain (e.g., crest
elevation). One final advantage is that it takes the same
length of time to determine the extremes of a distribu-
tion as it does any other part. However, the SRS
method also has two important limitations. First, in or-
der to calculate the probability of exceedance of a cer-
tain response (be it crest elevation or wave height), a
constrained optimization problem must be solved. The
difficulty lies in the fact that in many cases the function
to be optimized is not only nonlinear, but may also
contain several local maxima. As a result, particular
attention must be given to the solution of this con-
strained optimization problem. Second, the shape of
the response surface is unknown and must be approxi-
mated. This is undertaken through the Taylor series
expansion of the response surface about the point with
the greatest probability density. In a first-order reliabil-
ity method (or FORM) this approximation is linear,
while in a second-order reliability method (or SORM)
it is parabolic. Both approximations are considered in
the present paper and are described in more detail in
section 3.

Before considering the details of the SRS method, it
is appropriate to briefly review the BST model. This
wave model represents a recent contribution to a class
of wave solutions, first envisaged by Zakharov (1968),
in which a spatial description of the water surface el-
evation, � (x, y), and the velocity potential on that sur-
face, � (x, y, �), are time marched using the nonlinear
kinematic and dynamic free-surface boundary condi-
tions. In applying solutions of this type, the fluid is
assumed to be inviscid and incompressible, and the
wave-induced motion irrotational. Based on these as-
sumptions, the BST model provides a fully nonlinear
description of the evolution of large waves in realistic
wave fields, involving a significant spread of energy in
both frequency and direction. In practice, the wave
model may be subdivided into two parts. The first, full
details of which are given in Bateman et al. (2001),
concerns the evolution of the water surface elevations,
�, and is directly relevant to the present application,
while the second, described in a follow-up paper (Bate-
man et al. 2003) adopts a related approach to the de-
scription of the internal water particle kinematics based
on the previous solutions of � and �.
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An essential element of both parts of the BST model
lies in its computational efficiency. This is not sought
for its own sake, but is an absolute requirement neces-
sary to achieve high resolution in the wavenumber do-
main, without which realistic broadbanded wave fields
cannot be successfully modeled. To optimize the nu-
merical efficiency, the BST model is formulated in
terms of the surface parameters, � and �|z��, where z is
the vertical coordinate defined upward from the still
water level. This has two overriding advantages. First, it
provides a dimensional reduction, and second, it allows
both � and � to be represented as Fourier series so that
the evaluation of the unknown coefficients can be rap-
idly achieved using the fast Fourier transform algo-
rithm, and without resource to large matrix inversions.

Unfortunately, with � defined only on the water sur-
face the calculation of ��/�z, necessary for the evalua-
tion of the free-surface boundary conditions, requires
the application of a Dirichlet–Neumman operator. This
problem was tackled by Craig and Sulem (1993) for
unidirectional waves, with BST providing an extension
to include the effects of directionality. Furthermore,
with the adopted Fourier series representation, both �
and � must be single-valued functions. As a result, the
model can be applied to the description of highly non-
linear waves up to the point of wave breaking, but can-
not be used to model overturning waves.

With the fundamentals of the model explained, the
only difficulty that remains is the specification of the
initial conditions. In essence, this merely involves going
back sufficiently far in time, to t � t0, so that the wave
field is fully dispersed. With the total wave energy
spread across the computational domain there can be
no large isolated wave events, and thus both �(x, y, t0)
and �(x, y, �, t0) can be represented by either a linear
or a second-order solution. Further details concerning
this essential first step and, in particular, the application
of the model to realistic ocean spectra are given in
Bateman and Swan (2005, manuscript submitted to
Appl. Ocean Res.).

3. The spectral response surface method

The SRS method is related to reliability methods that
have traditionally been used in structural engineering in
order to find the most likely event leading to a response
that exceeds the design limitations. This involves three
steps:

A: The response of the structure R is defined in
terms of a number N of independent, normally
distributed, standardized parameters xn.

B: The value of the response, R � F, that meets the

design limitations of the structure is calculated,
and hence, a safe region, R � F and a failure
region, R � F, are defined. Figure 1 shows the
event space of two variables x1 and x2, with each
point in the domain representing an event with a
certain response R(x1, x2). As the parameters
have been standardized, the probability density
of an event decreases with distance from the ori-
gin, �, where �2 � �N x2

n. A limit-state surface
separates the safe region from the failure region.
The value of the response on this surface is a
constant, but the probability density (distance
from the origin) varies.

C: The design point is the point on the limited-state
surface, A, that is the closest to the origin. This
has the greatest probability density and, hence, is
the failure event that is most likely to occur. The
distance of this event from the origin can be uti-
lized to estimate the cumulative distribution func-
tion and, hence, the probability of exceedance.
This is undertaken through a first- (in a FORM
analysis) or second-order (in a SORM analysis)
Taylor series expansion of the limited-state sur-
face about the design point.

In the present paper the SRS method will be applied
to find the point with the greatest response rather than
the point with the greatest probability density. This
procedure involves three steps:

FIG. 1. The response surface for a two-parameter problem, g(x1,
x2). This surface, denoted by - - -, represents a series of events that
have the same values of the response, R(x1, x2), but have different
probability densities. The response surface separates the safe re-
gion from the failure region. Point A is the point closest to the
origin; it has the highest probability density and hence is the fail-
ure event that is most likely to occur. This corresponds to the
so-called design point.
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A: A design spectrum G��(�) is discretized into a
number N of wave components xn, each of which
is statistically independent and normally distrib-
uted.

B: The response R (in our case the crest elevation)
is defined in terms of these components, and
hence, for a certain probability of exceedance a
spectral response surface can be described (Fig.
2). On this surface the probability density of each
event is constant, but the value of the response
varies.

C: The point on this surface with the largest re-
sponse is determined and its probability of ex-
ceedance calculated. The former is achieved by
utilizing an optimization routine, the exact nature
of which depends upon the manner in which the
response function has been defined. The latter is
achieved by assuming that the shape of the sur-
face of constant response is either linear (FORM)
or parabolic (SORM).

These three steps are described in more detail below.

a. Discretization of the spectrum (step A)

The surface elevation �(t) at one point in space can
be described as the linear sum of many wave compo-
nents:

�	t
 � �
n�1

N

�n � �
n�1

N

an cos	�nt � �n
, 	1


where an is the amplitude of the nth wave component;
�n is its circular wave frequency, or 2/Tn where Tn is
its period; and �n is a random phase angle. The wave
components are statistically stationary, independent
variables. Therefore, the variance of each component
�2

n can be expressed in terms of the spectral density
function G�� (Ochi 1998):

�n
2 � G��	�
��, 	2


where �� is determined by the discretization of the
spectrum. The application of the SRS method is sim-
plified by transforming the wave components into stan-
dardized variables xn that all have the same stochastic
properties: normally distributed, with zero mean and
unit variance,

xn �
�n � �n

�n
, 	3


where �n is the mean value of �n. Since �n � 0 for all
n, this simplifies to

xn �
�n

�n
. 	4


To consider the phasing of the wave components it is
necessary to define their Hilbert transform. Since �n �
an cos(�nt � �n), the Hilbert transform �̃n is given by

�̃n � an sin	�nt � �n
. 	5


As �̃n � �n, the Hilbert transform of the standardized
variable xn is defined as

x̃n �
�̃n

�n
. 	6


Using these definitions, the amplitude and phase of
each component can be expressed in terms of the stan-
dardized variables and the standard deviation:

�n � �nxn � an cos	�nt � �n
, 	7a


�̃n � �nx̃n � an sin	�nt � �n
, 	7b


an
2 � 	�nxn
2 � 	�nx̃n
2, and 	7c


��n�t�0 � arctan� x̃n

xn
�. 	7d


b. Formulation of the response function (step B)

To apply the SRS method a response function must
be defined. The SRS method can be applied extremely
efficiently if this is defined in terms of the standardized
variables, xn and x̃n. For some responses, such as the
response of a structure to nonlinear wave loading (Tro-
mans and Suastika 1998) this can be an extremely dif-
ficult task; for other types of response this may be im-

FIG. 2. The response surface representing a series of events that
have the same probability density, but different values of response
R(x1, x2). In this case if A is the point with the highest response it
is the design point; g(x1, x2) is denoted by - - -.
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possible. Examples of the latter include zero-crossing
wave height, as it can only be defined in the time do-
main, and fully nonlinear crest elevation, as it can only
be defined from the results of a fully nonlinear wave
model. However, a simple example that can easily be
defined in terms of the standardized variables is that of
the linear crest elevation

R � �
n�1

N

an cos	�nt � �n
 � �
n�1

N

	�nxn
. 	8


c. Calculation of the probability of exceedance
(step C)

The probability of exceedance can be calculated by
integrating the probability density function over the n-
dimensional volume in which the response is greater
than the desired crest elevation, C,

Q � ��
R	x,x̃
	C

�	x, x̃
 dx dx̃, 	9


where Q is the probability of exceedance and � the
probability density function. In terms of structural re-
liability analysis this is equivalent to integrating the
probability density function over the failure region.
However, if the surface of constant response is linear
(an n-dimensional plane), and the probability density
function is given by the Gaussian distribution, then this
is given by Hasofer and Lind (1974) in terms of the
distance from the origin to the design point, �, as

QFORM � 
���	x, x̃
�, 	10


where � is the cumulative distribution function. The
“design point” is the event with a desired response that
is closest to the origin and, hence, has the greatest prob-
ability density. In structural engineering the response is
defined, the design point found, and the probability of
exceedance calculated. In this paper, the probability of
exceedance will be defined, the design point found, and
the response associated with that probability calcu-
lated. Equation (11) describes the response surface
g(xn, x̃n), that is a n-dimensional “sphere” in the space
of the standardized variables, xn and x̃n:

g	xn, x̃n
 � �
n

xn
2 � �

n

x̃n
2 � �2. 	11


As all the variables are standardized, the sphere repre-
sents points with an equal probability density. The
maximum response on this surface defines the design
point and can be found through a standard optimization
routine (Press et al. 1994). Once the design point has
been identified, the probability of exceedance of the
response can be calculated. As this paper is concerned

with the probability of exceedance of crest elevation,
rather than of surface elevation, this is approximated
for large crests by the Rayleigh distribution

QFORM � P�C 	 R	x, x̃
� � exp��
�	x, x̃
2

2 �. 	12


The validity of this approximation is discussed in ref-
erence to linear wave theory by Longuet-Higgins
(1952), who built on the work of Rice (1944, 1945).
However, the use of the Rayleigh distribution for non-
linear crest elevation relies on the assumption that large
crests form from the focusing of many small wave com-
ponents. This assumption implicitly neglects the possi-
bility of large waves emerging from the modular insta-
bility of a regular wave train. However, the authors
firmly believe that such waves are not characteristic of
the largest waves in a deep-water broadbanded sea
state and that the Rayleigh distribution is entirely ap-
propriate. This is discussed in more detail in section 4.

If the surface of constant response is nonlinear then
the estimation of the probability of exceedance can be
improved by considering the surface to be parabolic
rather than linear. This is achieved by considering the
Taylor series expansion of the surface about the design
point, a full description of which can be found in Mad-
sen et al. (1986) and Melchers (1987). In the present
investigation, the SORM analysis is simply applied to
determine the importance of the shape of the response
surface. To this end, if it is assumed that a Rayleigh
distribution is equally applicable to a SORM analysis
then it follows that in the space of two variables x1 and
x2 the probability of exceedance is given by

QSORM � �
��

� �
x2�C

x2�� exp	�x1
22


	2�
12 x2 exp	�x2
22
 dx2 dx1,

	13


where C � � � 0.5 �x1
2 is the surface of constant re-

sponse, and therefore

QSORM � �
��

� exp	�x1
22


	2�
12 exp��	�2 � ��x1
2

� 0.25�2x1
4
2� dx1

� exp	��22
�
��

� exp	�x1
22


	2�
12 exp	��x1
22
 dx1.

	14


Therefore, for N components

QSORM � QFORM�
n

N�1

	1 � ��n
�1, 	15
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where �n are the principal curvatures of the surface of
constant response,

�n � �
�2yN

�yn
2 , 	16


and where the vectors yn are orthogonal to the vector of
the design point yN and can be found by applying a
method of singular value decomposition (Press et al.
1994).

In the next section the probability of exceedance of
crest elevation will be calculated for two unidirectional
spectra. To achieve this, a number of response surfaces,
or n-dimensional spheres, must be generated. Each
sphere will have a different radius and will therefore
represent a different probability of exceedance. These
response surfaces will be searched in turn and in each
case the point of maximum response found. Hence, the
maximum crest elevation with a certain probability of
exceedance will have been calculated. Figure 3 shows
that if this is undertaken using the response function of
linear crest elevation [Eq. (8)] the results are, not sur-
prisingly, in perfect agreement with those of the Ray-
leigh distribution.

Up to this point the calculations have all been under-
taken in the probability domain. However, it is also
possible to determine the time history of water surface
elevation associated with the most probable event cor-
responding to a particular response. This can be
achieved through the use of Eqs. (7a)–(7d). If the re-
sponse function is defined by linear crest elevation, the
profiles of the most probable events are, as expected,

identical to those given by Lindgren (1970), Boccotti
(1983), and, more recently, the NewWave theory of
Tromans et al. (1991). In this case, the wave profile
corresponds to the scaled autocorrelation function of
the underlying random process.

4. Fully nonlinear wave statistics

In the following section two unidirectional spectra
have be investigated: case J1 and case J5. Both are Joint
North Sea Wave Project (JONSWAP) spectra of sig-
nificant wave height Hs � 12 m and peak period Tp �
12.8 s, the former having a peak-enhancement factor �
� 1 and the latter � � 5. The spectral shape determines
the variance of each wave component and hence de-
fines the probability that a wave component will have a
particular amplitude. Therefore, it is possible that in the
optimization process a different wave spectrum will be
selected. The optimized spectrum represents one pos-
sible event that could occur, with the probability of it
occurring determined by the statistics of the underlying
wave field. The optimization process selects this event
as the most probable profile for a given probability of
exceedance, in this case crest elevation.

Tromans and Vanderschuren (2004) applied the SRS
method using both a linear and a second-order re-
sponse function, both calculated using a FORM. They
found that if the linearly optimized spectrum is used as
the input to the second-order model of Sharma and
Dean (1981), the crest elevations are almost identical to
the results of the second-order optimization. This re-
flects the fact that the spectra optimized to second or-
der are very similar to those optimized to first order.
This result was, perhaps, to be expected since while the
spectra optimized using the second-order response
function do not include the second-order, sum and dif-
ference bound waves, they have been optimized on the
basis that these waves exist. As bound waves cannot
alter the phasing or the amplitude of the linear, freely
propagating wave components, their effect is limited by
the second-order kernel, which has been plotted for
two wave components by Forristall (2000). The SRS
method, with a second-order response function, opti-
mizes the amplitude of the wave components (the
shape of the spectrum) so that the combined contribu-
tion from the linear terms and the second-order kernel
produces the greatest crest elevation. However, the op-
timization is constrained such that the probability of
exceedance of the wave spectrum must equal a desired
value. Hence, any increase in the crest elevation asso-
ciated with the second-order terms is correlated with a
reduction in the crest elevation associated with the lin-

FIG. 3. Probability of exceedance of crest elevation, for case J1.
Comparison between the statistics calculated by using the SRS
method with a linear response function (—) and those of the
Rayleigh distribution (�).
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ear terms. In this case the balance is weighted toward
the latter, and the result is that the spectra optimized to
second order are similar to those optimized linearly.
Put simply, in a realistic sea state the second-order in-
crease in crest elevation is insensitive to the exact shape
of the spectrum.

On the other hand, if the full nonlinearity of the wave
field is modeled, the resonant and near-resonant inter-
actions arising at the third and higher orders of the
wave steepness become significant, and these can lead
to rapid changes to the wave spectrum in the vicinity of
the large wave event (GS). With the underlying linear
wave field providing the input to the fully nonlinear
wave model, calculations are based upon the assump-
tion that high crests arise from the focusing of wave
components. However, as these wave components be-
gin to focus they interact in such a way that the design
event occurs. This interaction is modeled fully nonlin-
early and may result in the amplitudes and phases of
the wave components changing. This nonlinearity is
captured in the position and the shape of the surface of
constant response when constructed in the space of the
initial linear input. In unidirectional seas these interac-
tions can lead to large increases in crest elevation, and
in contrast to the second-order interactions, they are
sensitive to the shape of the initial spectrum. Indeed,
the near-resonant interactions that dominate the evo-
lution of a unidirectional spectrum can only occur for
wave components that are closely spaced (Benjamin
and Feir 1967). Therefore, it might be expected that
there will be a significant difference between the non-
linear response that results from a spectrum that has
been optimized linearly with one that has been opti-
mized fully nonlinearly. These two methods of obtain-
ing a response are labeled the correction method and
the exact method, respectively. In the former the spec-
tra are optimized linearly, and the resulting spectrum
used as the input to the fully nonlinear wave model,
BST. This yields an underprediction of the actual re-
sponse. In contrast, in the latter the spectra are opti-
mized fully nonlinearly by incorporating the BST
model within the SRS method.

a. The correction method

In this section the fully nonlinear wave model has
been applied to the linearly optimized spectra of cases
J1 and J5 in order to calculate fully nonlinear crest
elevations by the correction method. Figure 4 indicates
that the effect of including the full nonlinearity is sig-
nificant, with an increase in crest elevation of over 1 m
for near-breaking waves with probabilities of exceed-
ance Q � 0.05. Furthermore, the results show that a

reduction in the spectral bandwidth, corresponding to
an increase in the peak-enhancement factor, leads to
larger maximum crest elevations (case J5). However,
the results of these calculations should be treated with
caution because the spectra have not been optimized
fully nonlinearly. Indeed, to ascertain the accuracy of
the correction method and, hence, the extent to which
it underpredicts the crest elevation associated with a
particular probability of exceedance, the statistics must
also be calculated using the exact method.

b. The exact method

To apply the exact method the nonlinear wave
model, BST, must be incorporated into the implemen-
tation of the SRS method so that the response function
is determined by the results of the wave model. To
achieve this, the wave model must be run once to de-
termine the response associated with any single event,
the desired output being the maximum crest elevation
within that particular run. To identify the event that has
the largest response on a particular surface, the BST
model must be run many times. Although the wave
model is highly efficient, individual runs typically take
one hour. The overall time taken then depends upon
the nonlinearity of the wave field and the number of
components into which the spectrum is discretized. In
the present cases the discretization involves 100 pairs of
wave components (xn and x̃n), and the computations
took several days to calculate the crest elevations asso-
ciated with each probability of exceedance. While in

FIG. 4. Probability of exceedance of crest elevation calculated
by the fully nonlinear correction method for cases J1 and J5,
where (-�-) denotes linear (identical results for both case J1 and
case J5), (- � -) second-order case J5 (similar results for case J1),
(-·-�-) fully nonlinear case J1, and (· � ·) fully nonlinear case J5.
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unidirectional sea states it is time consuming to opti-
mize a spectrum fully nonlinear, in directional sea
states many more wave components are required and
the calculations take several weeks to identify the crest
elevation for a given probability of exceedance. It is for
this reason that only unidirectional sea states have been
considered in this paper. A different approach is pres-
ently under development in order to optimize direc-
tional spectra and will be discussed in a future paper.

Owing to the length of time it takes to optimize a
spectrum fully nonlinearly, only a limited number of
points have been included for each wave case. Never-
theless, the trends indicated on Fig. 5 are clear. In nar-
rowbanded sea states the fully nonlinear optimization
of the wave spectrum leads to a significant increase in
the crest elevation. For example, in case J5 the increase

in crest elevation is greater than 3.3 m for a probability
of exceedance defined by Q � 0.027, where the latter
value corresponds to a 92% chance of this event being
exceeded in 20 min of a storm. However, in more
broadbanded sea states the increase is much less sig-
nificant: in case J1 the increase is only 0.5 m for Q �
0.027. These results suggest that, in unidirectional sea
states, narrowbanded spectra give rise to larger nonlin-
ear increases in crest elevation, indicating that such sea
states can be considered more nonlinear. This is en-
tirely consistent with the laboratory observation of ex-
treme wave groups reported by Baldock et al. (1996).
Further evidence of this is given by the shape of the
optimized spectra shown in Fig. 6: in both cases J1 and
J5 an increase in crest elevation is associated with a
narrowing of the wave spectrum, the effect being more
pronounced in the latter case.

The application of the exact method not only opti-
mizes the amplitudes of the wave components, but also
their relative phasing. In a linear or second-order analy-
sis this is unnecessary because it is possible to predict
the time and location of a focused wave using the linear
dispersion relationship. However, third- and higher-
order nonlinear interactions are capable of altering the
dispersive properties of the wave components and
hence the focal quality of the design event. This effect
explains part of the difference between crest elevations
calculated using the correction method and those cal-
culated using the exact method. However, it has been
found that changes to the focal quality of the event are
much less important than changes to the bandwidth of
the wave spectrum.

FIG. 5. Comparison between the probability of exceedance of
crest elevation calculated by the correction and the exact methods
for (a) case J1 and (b) case J5, where (-�-) denotes linear, (- � -)
second-order, (· � ·) correction, and (· � ·) exact.

FIG. 6. Spectra of cases J1 and J5 optimized fully nonlinearly,
where (—) denotes J1 optimized linearly, (- - -) J1 optimized fully
nonlinearly, (- · -) J5 optimized linearly, and (· · ·) J5 optimized
fully nonlinearly.
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c. Second-order reliability method

In the previous sections the probability of exceed-
ance has been calculated using a first-order reliability
method, and hence, the calculations have been under-
taken assuming that the surface of constant response is
linear. Therefore, while the application of the SRS
method has considered the nonlinearity of the re-
sponse, it has not considered the nonlinearity of the
response surface. In this section a second-order reliabil-
ity method will be applied in order to ascertain what
effect the assumption that the response surface is linear
has on the statistics of crest elevation.

For the probability of exceedance to be calculated
using a second-order reliability method the curvature of
the response surface must be ascertained along vectors
perpendicular to that of the design point [Eq. (16)]. If
this curvature is positive the size of the “failure” region
will be overestimated and the probability of exceedance
calculated using a first-order reliability method will be
an overprediction; conversely, if it is negative the prob-
ability of exceedance will be underpredicted.

If the response function was given explicitly, calcu-
lating the curvature would be a straightforward task;
however, for the response of fully nonlinear crest el-
evation the response surface must be calculated from
the results of the numerical wave model. This has been
undertaken by considering the Taylor series expansion
of the response surface about the design point, in the
plane of two vectors yi and yN:

R	yi, yN
 � R0 �
�R

�yi
�yi �

�R

�yN
�yN �

1
2

�2R

�yi
2 	�yi


2

�
1
2

�2R

�yN
2 	�yN
2 �

1
2

�2R

�yN�yi
�yN�yi, 	17


where R0 is the response at the design point.
By calculating the response along the various or-

thogonal vectors, and curve fitting a parabola to these
results, it is possible to calculate all of the gradients in
Eq. (17) except the cross product �2R/�yi�yN. As an
example, Fig. 7 shows the change in the response along
three particular vectors: the first is the vector of the
design point, yN, with the small periodic oscillations the
result of resonant changes to the phasing of the wave
components, the second is a vector that has very little
curvature and is typical of most of the results, whereas
the third is a vector along which the curvature of the
response is relatively large. Once the response along
every orthogonal vector has been established it is pos-
sible to use Eq. (17) to calculate the equation of the
surface of constant response in the plane of yN and yi as

�R

�yi
yi �

�R

�yN
yN �

1
2

�2R

�yi
2 yi

2 �
1
2

�2R

�yN
2 yN

2 � 0, 	18


where the cross-product term has been neglected. Dif-
ferentiation of this gives the curvature of the response
surface as

�2yN

�yi
2 � �

�m4�m1

m2
�2

� m3�
m2

, 	19a


where

m1 �
�R

�yi
,

m2 �
�R

�yN
,

m3 �
�2R

�yi
2 , and

m4 �
�2R

�yN
2 . 	19b


Having calculated the curvature of the response surface
it is possible to apply Eq. (15) and to calculate the
change in the probability of exceedance due to the non-
linearity of the response surface. For case J5 and a
probability of exceedance QFORM � 0.09, the response
surface is convex. This suggests the first-order calcula-
tion of the probability of exceedance is an overpredic-
tion, with QSORM � 0.087. Therefore, the second-order

FIG. 7. Changes in the value of the fully nonlinear response of
case J5 (a) along the vector of the design point and (b) along two
vectors orthogonal to the design point, where (—) denotes typical
vector with very little curvature, and (- - -) denotes vector with
relatively “large” curvature.
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analysis results in only a very slight reduction of the
probability of exceedance, of the order of 3.5%, which
indicates that the response surface is almost linear. In-
deed, following a large number of tests, it has been
concluded that the nonlinearity of the response func-
tion is much more important than the nonlinearity of
the response surface. To highlight this conclusion, Fig.
8 shows a comparison between the results of the first-
order reliability analysis and those of the second-order
reliability analysis, with a reduction in the probability
of exceedance of approximately 3.5% barely noticeable
on the log scale.

5. Fully nonlinear time-domain simulations

In an attempt to validate the present results, fully
nonlinear time-domain simulations have been under-
taken for case J5. This has been achieved by initializing
BST with a random realization of the desired spectrum
with Hs � 8 m. BST has been run 10 times for 4000 s
and the surface elevation has been recorded at one
point in the spatial domain of length 40 000 m. While

this might be expected to correspond to approximately
3000 waves, only 1500 have been obtained. The reason
for this discrepancy is that the wave model can only
simulate the evolution of a wave field up to the point at
which a wave breaks. Therefore, in the realizations of
the random sea state that contain the largest waves the
fully nonlinear simulation has terminated before the
entire 4000 s of data have been collected. This inevita-
bly means that there are fewer waves associated with
large sea states and hence has implications for the sta-
tistics of crest elevation derived from the fully nonlin-
ear simulations. This is an inherent difficulty in collect-
ing wave statistics using such a model. Nevertheless,
individual waves within the resulting time traces, �(t, x
� 0), have been separated by their zero up-crossings
and their crest elevations calculated.

Figure 9 shows that the fully nonlinear application of
the SRS method is in good agreement with statistics
derived from the time-domain simulations. In particu-
lar, it is clear that any discrepancies are small in com-

FIG. 8. Comparison between the probability of exceedance cal-
culated using a first- and second-order reliability method, where
(—) denotes linear, (- - -) second order, (�) fully nonlinear FORM
calculation, and (- · -) fully nonlinear SORM calculation.

FIG. 9. Comparison between the results of the SRS method and
fully nonlinear time-domain simulations for case J5, where (—)
denotes linear, (- · -) second order, (· · ·) fully nonlinear correction
method, (·�·) fully nonlinear exact method, and (—●—) fully non-
linear time-domain simulations.
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parison with the difference between the time-domain
results and the linear or second-order theory. Despite
the general agreement between the SRS method and
the time-domain simulations, the former slightly over-
predicts the crest elevations. This is surprising, as the
main limitation of the SRS method is that the optimi-
zation process may not have found the largest response
for a particular probability of exceedance. Therefore, it
would be expected to underpredict crest elevations.
There are at least three reasons for discrepancies be-
tween the two approaches. The first, and probably the
most significant, is that the time-domain simulations
cease when a wave breaks, and hence there are fewer
data from the realizations of the largest sea states. The
second arises because the fully nonlinear simulations

based on the SRS method assume that the results ob-
tained from a fully dispersed wave group focusing to-
gether on an otherwise calm sea are representative of
the same group forming, at least on average, in the
presence of a random background. Early theoretical
work, notably by Alber (1978), but with other contri-
butions reviewed by Yuen and Lake (1982), has sug-
gested that the random background may partially dis-
rupt the dominant third-order interactions accounting
for the increased crest elevations. However, the results
typically concern very narrowbanded spectra, modeled
using the nonlinear Schrodinger equation, and may not
be relevant to the sea states considered herein. Indeed,
separate calculations have been undertaken to examine
the effects of a random background, and, so far, it has

FIG. 10. Comparison between a linear and a fully nonlinear random realization of case J5:
(a) 0 � t � 4000 s and (b) 0 � t � 600 s, where the blue solid line denotes fully nonlinear and
the red solid line denotes linear.
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been found to be relatively unimportant; however, this
work remains ongoing. The third reason is that the sea
state modeled in the time-domain simulations is non-
stationary: not only are there rapid changes to the spec-
trum that are associated with large wave events, but
also more gradual changes associated with smaller
events. Both of these changes are the result of the near-
resonant interactions described by Benjamin and Feir
(1967). However, after the formation of a focused event
these interactions reverse and so there are no signifi-
cant changes to the wave spectrum. In contrast, the
presence of waves that are not focused leads to gradual
changes to the spectrum, and hence the comparisons
with the current application of the SRS method cease to
be compatible.

A direct comparison between the linear and fully
nonlinear random wave profile is shown in Fig. 10, the
lower panel of which depicts the first 600 s of one par-
ticular random realization. In this figure not only are
the fully nonlinear crest elevations significantly higher
than those predicted using linear theory, but they also
occur earlier, with the latter effect attributed to changes
to both the wave spectrum, and also nonlinear changes
in the phase speed. What is also noticeable is that, apart
from second-order nonlinearities, which sharpen the
peaks and broaden the troughs, the two profiles are in
good agreement until the occurrence of the large wave
group at t � 320 s. On its own this is certainly not
conclusive, but it supports the notion that the formation
of a large wave coincides with rapid changes to the
wave spectrum, as discussed in GS.

In effect, these comparisons confirm that the nonlin-
earity of a wave field leads to two types of spectral
changes: those that are both local and rapid, that de-
pend on the evolution of individual wave groups, and
those that evolve over much longer time-scales involv-
ing hundreds or perhaps thousands of wave cycles.
While these two types of spectral evolution may repre-
sent the same physical process, namely, third-order
near-resonant interactions (GS), they can have a very
different effect on the statistics of crest elevation. The
present approach, incorporating a nonlinear wave
model (BST) within the SRS method, includes the
former, but not the latter, and in so doing remains con-
sistent with the concept of a design spectrum. Indeed, it
is important to stress that the inclusion of the latter
involves the solution of a more complicated problem in
which any notion of a design spectrum becomes inap-
propriate. Furthermore, a solution of this problem
would have to include not only the nonstationary na-
ture of wave-modulation effects, but also that of energy
input and dissipation within a developing sea state.

6. Conclusions

The statistics of crest elevation have been calculated
by incorporating a fully nonlinear wave model into the
spectral response surface method. The results have
been shown to be in good agreement with fully nonlin-
ear time-domain simulations. The statistics have shown
that in unidirectional seas, particular those that are nar-
rowbanded, crest elevations can be much higher than
would be predicted by linear or second-order theory.
Although completely unidirectional seas are unrealis-
tic, the presence of locally long crested sea states offers
an explanation as to the occurrence of freak, or rogue,
waves in deep water.
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