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This paper concerns the formation of large-focused or near-focused waves in both
unidirectional and directional sea-states. When the crests of wave components of varying
frequency superimpose at one point in space and time, a large, transient, focused wave can
occur. These events are believed to be representative of the largest waves arising in a random
sea and, as such, are of importance to the design ofmarine structures. The details of how such
waves form also offer an explanation for the formation of the so-called freak or roguewaves in
deep water. The physical mechanisms that govern the evolution of focused waves have been
investigated by applying both the fully nonlinear wave model of Bateman et al. (Bateman
et al. 2001 J. Comput. Phys. 174, 277–305) and the Zakharov’s evolution equation (Zakharov
1968 J. Appl. Mech. Tech. Phys. 9, 190–194). Aspects of these two wave models are
complementary, and their combined use allows the full nonlinearity to be considered and, at
the same time, provides insights into the dominant physical processes.

In unidirectional seas, it hasbeen shown that the local evolutionof thewave spectrum leads
to larger maximum crest elevations. In contrast, in directional seas, the maximum crest
elevation iswellpredictedbya second-order theorybasedon theunderlying spectrum,but the
shape of the largest wave is not. The differences between the evolution of large waves in
unidirectional and directional sea-states have been investigated by analysing the results of
Bateman et al. (2001) using a number of spectral analysis techniques. It has been shown that
during the formation of a focused wave event, there are significant and rapid changes to the
underlying wave spectrum. These changes alter both the amplitude of the wave components
and their dispersive properties. Importantly, in unidirectional sea-states, the bandwidth of
the spectrum typically increases; whereas, in directional sea-states it decreases.

The changes to thewave spectra have been investigatedusing Zakharov’s equation (1968).
This has shown that the third-order resonant effects dominate changes to both the amplitude
of thewave components and the dispersive properties of thewave group.While this is the case
in both unidirectional and directional sea-states, the consequences are very different. By
examining these consequences, directional sea-states in which large wave events that are
higher and steeper than second-order theory would predict have been identified. This has
implications for the types of sea-states in which rogue waves are most likely to occur.
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1. Introduction

The water surface of a realistic ocean environment can be described by the sum
of wave components, of different frequency, travelling in different directions. If
the crests of the wave components come into phase at one point in space and
time, they superimpose to form a large focused wave event. Such waves are
believed to be representative of the largest waves in a sea-state. The details of
how large waves form is of the utmost importance to the design of marine vessels
and structures. For shipping, the assessment of extreme crest elevations is
critical in determining the applied loads, vessel response, occurrence of green-
water inundation and incidences of wave slamming. Whereas, in the design of a
fixed structure, the deck elevation is traditionally set to maintain an effective air
gap, so even the highest crest elevations do not impact on the underside of the
structure. Furthermore, the focusing of wave components offers a possible
explanation for the occurrence of freak or rogue waves; describing those events,
which are higher or occur more often than is statistically predicted. Indeed, a
large focused wave crest has all the characteristics of a freak wave, it is transient,
appearing almost out of nowhere, has large crest–trough asymmetry and during
its formation, significant and rapid nonlinear interactions can occur that increase
both the crest elevation and the wave steepness.

Building on the work of Lindgren (1970) and Boccotti (1983), the new wave
theory of Tromans et al. (1991) predicts that, according to linear theory, a
focused wave profile, corresponding to the scaled autocorrelation of the
underlying spectrum, is the most probable shape of the highest waves. If
second-order nonlinearities are accounted for, the analysis of field measure-
ments by Jonathan et al. (1994) indicate that this is indeed the case. However,
the nonlinearity of a large transient wave event is not restricted to second
order; there are not only higher-order bound nonlinearities, but at third order
and above, there are also resonant nonlinearities. For a regular wave, the
bound nonlinearities are the higher-order terms derived by Stokes (1847), and
are represented by bound waves that are phase locked to the underlying linear
wave component. Similarly, in an irregular wave field, they can be described
to second order by the theory of Sharma & Dean (1981). In both cases, the
bound nonlinearities alter the shape of a wave profile by sharpening the peaks
and broadening the troughs.

In contrast, the resonant nonlinearities lead to the redistribution of energy
within a wave spectrum, and can thus alter the amplitude and phase of the
underlying linear wave components. The transfer of energy was first studied in
relation to pairs of wave components by Phillips (1960), with interactions
identified as resonant since they had the mathematical form of a linear resonator.
A resonant interaction occurs when the interaction between wave components
satisfies the dispersion relationship. When this occurs, the interaction between
these components forces a wave mode that can propagate freely and energy is
exchanged between the various components. The conditions, in deep water,
under which this can occur are expressed as

ki Z
XN
j

sjkj ; ð1:1aÞ
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ui Z
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where k is the wavenumber, u the wave frequency and the subscript i identifies
the wave component that is being forced. For deep-water gravity waves, this
condition can only be met for NR3, and hence, can only occur at third and higher
order. These nonlinearities account for both the instability of a regular wave in a
laboratory flume (Benjamin & Feir 1967) and the long-term evolution of a wave
spectrum (Hasselmann 1962). However, the former is often described as a case of
near resonance, as the condition expressed by equation (1.1b) is not met exactly
owing to resonant changes in the frequency of the wave components; this is
discussed further in §5. Moreover, in relation to extreme crest elevations, evidence
discussed in §2 suggests that during the formation of a focused wave event, the
resonant (and in particular the near resonant) interactions can occur extremely
rapidly. This can lead to the wave profile becoming much higher and steeper than
would be expected from the predictions of linear or second-order theory.

In the current paper, the formation of focused wave events will be investigated
by applying two, very different, nonlinear wave models. These will be described
in §3 and the significance of the bound and resonant nonlinearities ascertained for
a number of realistic wave fields. It will be shown that the evolution of wave
spectra is fundamental to the formation of the largest wave events. This will be
described in §4. In §5, the physical mechanisms responsible for this evolution will
be ascertained. Finally, §6 provides some concluding remarks and discusses the
practical implications.
2. Background

Baldock et al. (1996) measured the water surface profile and the water particle
kinematics associated with a number of unidirectional-focused wave events in a
laboratory flume. They found that the measured crest elevations were typically of
the order of 35% higher than the linear prediction and 25% higher than the second-
order prediction.One of thewave cases that they investigatedwas a narrow-banded
spectrum with wave components of equal amplitude, uniformly distributed within
the period range 0.8!T!1.2 s. By examining the spectrum measured at the
location of the extreme crest, they were able to identify significant energy lying
within the range 0.6!T!0.8 s. This could not be attributed to either the linear
input or the second-order nonlinearities. Hence, they argued that it represented a
local and rapidwidening of the underlying linear spectrumand itwas responsible for
the large increase in maximum crest elevation. Johannessen & Swan (2001)
extended this work by examining directionally spread focused wave events. They
found that as the sea-state becamemore short crested, second-order theory rapidly
became sufficient to predict the maximum crest elevation. Both of these
experimental investigations highlight the importance of considering both the full
nonlinearity and the directionality of a sea-statewhen describing extreme transient
Proc. R. Soc. A (2007)
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waves. The transfer of energy during the formation of an extreme wave event was
investigated further by Johannessen&Swan (2003)with the use of a fully nonlinear
numerical directional wave model, based upon the unidirectional formulation of
Fenton & Rienecker (1982). By using a numerical wave model, they were able to
generate data with a much higher spatial resolution than is possible in the
laboratory. The analysis of this data led to spectra in both wavenumber and wave
frequency. As a result, they were able to identify a rapid transfer of energy to high
wavenumbers that appeared to be freely propagating, but did not quite satisfy the
linear dispersion relationship. Furthermore, by incorporating the evolved spectrum
of freely propagating wave components into the second-order theory of Sharma &
Dean (1981), they were able to predict both the extreme crest elevation and the
water particle kinematics with good accuracy. However, Johannessen & Swan
(2003) were not able to identify the physical mechanisms responsible for this
transfer of energy. Furthermore, the numerical wave model was restricted to
modelling unrealistic narrow-banded spectra of the type used in the laboratory
experiments of Baldock et al. (1996) and Johannessen & Swan (2001).
3. Two nonlinear wave models

To investigate the fully nonlinear evolution of a realistic, broad-banded,
directionally spread sea-state, it is necessary to use a fully nonlinear wave
model that can incorporate all of these features. Furthermore, in order to
understand the fully nonlinear results, it is desirable to use a wave model that
isolates the contributions from the various physical processes. This section
describes two nonlinear wave models. The first is that of Bateman et al. (2001),
hereafter known as BST. This is a fully nonlinear numerical wave model that can
accurately and efficiently model the evolution of realistic, directionally spread,
wave spectra. The second model is based on Zakharov’s equation (Zakharov
1968) hereafter known as ZE. This is a nonlinear evolution equation that can be
applied to realistic, directionally spread, wave spectra and has been derived in
Hamiltonian form up to fourth order by Krasitskii (1994). Although the two
wave models have a number of important similarities, the ordering of the terms
within their representative series solutions is fundamentally different. BST
adopts a Fourier series representation in which individual wave components can
be isolated, but their physical properties and, perhaps more importantly, their
physical origins remain uncertain. In particular, it is difficult within the BST
model to determine whether a wave component is bound or freely propagating,
and from which wave interactions a wave component arises. In fact, each wave
component may well represent a number of different free and bound waves and
arise from a combination of different interactions. However, provided the model
includes a sufficiently large number of wave components, the numerical results
may be considered fully nonlinear. In contrast, the model referred to as ZE is
based upon the Krasitskii (1994) fourth-order formulation. Although this is
limited in terms of nonlinearity, it clearly identifies the physical properties of the
evolving wave components, and the wave interactions from which they have
arisen. By utilizing both models, it is possible to ensure that the full nonlinearity
has been addressed and to gain some understanding as to the physical processes
that are responsible for the results obtained.
Proc. R. Soc. A (2007)



25The evolution of large ocean waves
(a ) Description of the wave models

BST developed a numerical three-dimensional wave model based upon the
unidirectional formulation ofCraig&Sulem (1993); the equation set onwhich these
models are based having been considered earlier by Milder (1977) and Stiassnie &
Shemer (1984). In the present paper, the relevant model results are noted as BST,
since this describes the actual model employed and provides a first account of how
directionalitymay be included.Within thismodel, the water surface profile and the
velocity potential on the surface are described by Fourier series and are time-
marched as suggested by Zakharov (1968). The efficiency of the model relies upon
the calculation of the spatial derivatives of the potential on the surface byapplyinga
Dirichlet–Neumann operator. The application of this operator leads to a procedure
that is many times more efficient than one based upon large matrix inversion (e.g.
Fenton&Rienecker 1982). As a result, the wavemodel is able to incorporate a very
large range of length-scales and is therefore capable of accurately modelling the
evolution of realistic broad-banded directionally spread sea-states containing near-
breaking waves. It has been shown to be in excellent agreement with both the
laboratory data of Johannessen & Swan (2001) and the numerical results of
Johannessen & Swan (2003). A detailed account of its application can be found in
Bateman& Swan (submitted). However, while the results are exact, accounting for
the full nonlinearity, they give very little direct indication as to the physical
processes controlling the evolution.

Zakharov’s equation is an integro-differential equation that can describe the
evolution of a broad-banded directionally spread sea-state. Although it has only
been derived to fourth order, the ability to isolate the various wave interactions
allows the physical processes, controlling the formation of an extreme wave event
to be identified. A complete derivation can be found in Krasitskii (1994), the
manner in which it can be applied numerically is described in Annenkov & Shrira
(2001), and the effect of discretization studied by Rasmussen & Stiassnie (1999).
Furthermore, it has been shown by Shemer et al. (2001) to be in good qualitative
agreement with laboratory data concerning the evolution of both a bimodal and a
Gaussian spectrum. An explanation of ZE, following the derivation of Krasitskii
(1994), is given below; the main purpose of which is to highlight the physical
significance of the various terms and to clarify the advantages of using the model.

The evolution of wave motion can be described (Zakharov 1968) in
Hamiltonian form as follows:

vhðx; tÞ
vt

Z
dH

d4ðx; tÞ ;
v4ðx; tÞ

vt
ZK

dH

dhðx; tÞ ; ð3:1Þ

where d are functional derivatives and the Hamiltonian, H, is the sum of the
potential and kinetic energy. The surface profile, h(x), and the value of the
velocity potential on the surface 4(x), are described in terms of their Fourier
integrals h(k) and 4(k), respectively,

4ðxÞZ 1

2p

ðN
KN

4ðkÞeik$x dk;

hðxÞZ 1

2p

ðN
KN

hðkÞeik$x dk;

9>>>>=
>>>>;

ð3:2Þ
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where x is the spatial coordinate and k is the wavenumber vector. These
are transformed into a pair of canonical conjugate variables a(k) and ia�(k),
such that

i
vaðkÞ
vt

Z
dH

da�ðkÞ ; ð3:3Þ

hðkÞZMðkÞ½aðkÞCa�ðKkÞ�; ð3:4aÞ

4ðkÞZKiNðkÞ½aðkÞKa�ðKkÞ�; ð3:4bÞ

MðkÞZ qðkÞ
2uðkÞ

� �1=2
; ð3:4cÞ

NðkÞZ uðkÞ
2qðkÞ

� �1=2
; ð3:4dÞ

where qðkÞZ jkjtanhðjkjdÞ, d is the water depth and uðkÞZ
ffiffiffiffiffiffiffiffiffiffiffiffi
gqðkÞ

p
; the latter

defining the linear dispersion relationship.
With the Hamiltonian H, expanded as an integral power series in a, the

evolution equation for a (from equations (3.1)) has been derived to fourth order
by Krasitskii (1994), but is expressed below to third order,

i
va0
vt

Z
vH

va�0
Zu0a 0C

ðð
U

ð1Þ
0;1;2a1a2D0K1K2 dk1 dk 2

C

ðð
U

ð2Þ
0;1;2a

�
1a 2D0C1K2 dk1 dk 2

C

ðð
U

ð3Þ
0;1;2a

�
1a

�
2D0C1C2 dk1 dk 2

C

ððð
V

ð1Þ
0;1;2;3a1a 2a 3D0K1K2K3 dk1 dk 2 dk 3

C

ððð
V

ð2Þ
0;1;2;3a

�
1a 2a 3D0C1K2K3 dk1 dk 2 dk 3 C/; ð3:5Þ

where a0 is the wave component that is evolving, Da,b,c is shorthand for the
delta-function which equals 1 if kaCkbCkcZ0 and zero otherwise, and the
kernels U (1), U (2), U (3), V (1) and V (2) are known functions of wavenumber and
water depth. This integral power series consists of both bound interactions, that
do not alter the underlying linear spectrum and resonant interactions that do.
For example, the integrals involving the U (i) kernels are equivalent to the
second-order bound interactions calculated by Sharma & Dean (1981); while the
integrals involving the V (i) kernels define both third-order bound and resonant
interactions. Equation (3.5) could be time marched to model the evolution of
the spectrum. This would include both the bound and the resonant interactions.
However, as it is only the resonant interactions that alter the underlying
spectrum, it is possible to reduce this equation by the transforming the
Proc. R. Soc. A (2007)
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variables a(k) and ia�(k) to the canonically conjugate variables b(k) and ib�(k),

a0 Z b0C

ðð
A

ð1Þ
0;1;2b1b2D0K1K2 dk1 dk 2

C

ðð
A

ð2Þ
0;1;2b

�
1b2D0C1K2 dk1 dk 2

C

ðð
A

ð3Þ
0;1;2b

�
1b

�
2D0C1C2 dk1 dk 2

C

ððð
B

ð1Þ
0;1;2;3b1b2b3D0K1K2K3 dk1 dk 2 dk 3 C/: ð3:6Þ

The various kernels A and B are now exclusively the bound interactions, and
hence, the evolution of the underlying linear wave components can be expressed
entirely in terms of the resonant interactions (expressed below to fourth order)

i
vBm

vt
Z

XN
nZ1

XN
pZ1

XN
qZ1

~V
ð2Þ
m;n;p;qB

�
nBpBq e

iðumCunKupKuqÞt DmCnKpKq

C
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nZ1
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pZ1
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qZ1

XN
rZ1

~W
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m;n;p;q;rB

�
nBpBqBr e

iðumCunKupKuqKur Þt DmCnKpKqKr

C
XN
nZ1

XN
pZ1

XN
qZ1

XN
rZ1

~W
ð3Þ
m;n;p;q;rB

�
nB

�
pBqBr e

iðumCunCupKuqKur Þt DmCnCpKqKr ;

ð3:7Þ

where Bðk; tÞZbðk; tÞeiuðkÞt.
Equation (3.7) describes the evolution of an underlying linear wave

component in terms of third-order resonant interactions, ~V , and fourth-order
resonant interaction, ~W . It can be time marched using a standard Runge–
Kutta algorithm and then the surface profile recreated at each time-step to the
desired order by re-incorporating the bound interactions of equation (3.6).
However, the essential benefit of this approach is that it is possible to choose
which interactions are included and which are neglected, and hence to isolate
the physical processes (or wave interactions) that control the evolution of the
wave field.

During the review process, important questions were raised concerning the
validity of the comparison between the two wave models; specifically whether the
transformation noted above may be a source of distortions in the Fourier
spectrum of the solutions. To allay such fears, electronic supplementary material
has been added in which the Krasitskii implementation of Zakharov’s equation is
shown to exactly reproduce three well-known nonlinear wave effects. These are
the nonlinear changes in a regular wave form; the interactions arising at second
order when two wave components coexist (Longuet-Higgins & Stewart 1960);
and the third-order changes in the phase arising when two wave components
interact (Longuet-Higgins & Phillips 1962). Using these results, the renormaliza-
tion necessary to ensure consistent comparisons between the two wave models
(BST and ZE) is further discussed.
Proc. R. Soc. A (2007)



Table 1. Details of the wave spectra, investigated. The four cases highlighted are those considered
in detail in this paper. The parameters are defined as follows: for the laboratory-scale Top-hat
spectra, the total amplitude of the spectrum is spread evenly in period, T, between TL!T!TU; for
the JONSWAP spectrum, Tp is the peak period, g the peak-enhancement factor and ss the
standard deviation of the wrapped-normal directional spreading function (all other parameters,
aZ0.0081 and bZ1.25, are held constant for these cases); and for the Gaussian spectra, Tp is the
mean period, sg the standard deviation in the period domain and ss as before.

case spectral form

parameters

TL (s) TU (s) Tp (s) g ss sg

NB Top-hat 0.8 1.2 n.a. n.a. 0 n.a.
BB Top-hat 0.6 1.4 n.a. n.a. 0 n.a.
J1D0 JONSWAP n.a. n.a. 12.8 1 0 n.a.
J5D0 JONSWAP n.a. n.a. 12.8 5 0 n.a.
J1D5 JONSWAP n.a. n.a. 12.8 1 5 n.a.
J1D10 JONSWAP n.a. n.a. 12.8 1 10 n.a.
J1D30 JONSWAP n.a. n.a. 12.8 1 30 n.a.
J5D5 JONSWAP n.a. n.a. 12.8 5 5 n.a.
J5D10 JONSWAP n.a. n.a. 12.8 5 10 n.a.
J5D30 JONSWAP n.a. n.a. 12.8 5 30 n.a.
J5D30T10 JONSWAP n.a. n.a. 10 5 30 n.a.
J5D30T16 JONSWAP n.a. n.a. 16 5 30 n.a.
G16D0 Gaussian n.a. n.a. 16 n.a. 0 2
G18D0 Gaussian n.a. n.a. 18 n.a. 0 2
G16D5 Gaussian n.a. n.a. 16 n.a. 5 2
G18D5 Gaussian n.a. n.a. 18 n.a. 5 2

R. S. Gibson and C. Swan28
(b ) Focused wave events

The two wave models have been applied to study the formation of large
focused wave events, in which the waves are at, or close to, their breaking limit.
They are initiated with a desired amplitude spectrum, and the subsequent
evolution of both the wave spectrum and the surface profile ascertained. Within
the present study, a large number of focused waves arising in a variety of wave
spectra have been considered, full details of which are given in table 1. However,
the majority of the results presented herein concern four specific test cases: case
NB, a laboratory scale spectrum used by both Baldock et al. (1996) and
Johannessen & Swan (2001); case J5D0, a unidirectional JONSWAP spectrum;
case J5D5, a long-crested JONSWAP spectrum; and case J5D30, a short-crested
JONSWAP spectrum. The notation used to define the JONSWAP spectra is
JXDY, where the X refers to the peak-enhancement factor g and Y is the
standard deviation of the wrapped normal directional spreading function.

In each case, BST has been initiated with a dispersed sea-state at a point in time,
t0, well before the focused wave event occurs. The surface profile and the velocity
potential are calculated using linear (or second-order) wave theory, and are time
marched up to and beyond the extreme event. The spatial profile at the time of the
highest wave is identified. In these cases, the phase of each component was selected
at t0 so that according to linear theory a perfectly focused (all the wave components
Proc. R. Soc. A (2007)
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Figure 1. Surface profiles of two extremewave events in unidirectional sea-states; comparisons between
fully nonlinear calculations based onBSTand boundwave solutions. (a)CaseNB, (b) case J5D0.Dotted
line, linear; solid line, second order; open circle, third order; dash-dotted line, fully nonlinear.

29The evolution of large ocean waves
are exactly in phase)wave eventwould occur at tZ0 s.However, the results confirm
that not only do these events occur earlier thanwould be predicted, but they are not
perfectly focused. Therefore, it might be expected that a change in the relative
phasing of the wave components at t0 will give an even greater fully nonlinear crest
elevation. In unidirectional sea-states this is the case, however, the situation in
directional sea-states is more complicated; an issue that is discussed in relation to
the focal quality of the extreme event in §6.

The wave profile can be compared to the predictions based solely on bound-
wave solutions: the linear solution based upon the superposition of Airy (1845)
wave components; the second-order solution of Sharma & Dean (1981)
(equivalent to utilizing the A kernels of equation (3.6)); and the third-order
bound wave solution recovered by utilizing both the A and the B kernels of
equation (3.6). The predictions based on the different orders of nonlinearity for
the unidirectional cases NB and J5D0 are compared in figure 1. The location at
which the crest occurs in the fully nonlinear simulations has been shifted in order
to facilitate this comparison. It is clear that in both cases, the wave profile
calculated using BST (fully nonlinear) is much higher and steeper than that
predicted to linear (NB 56%, J5D0 34%), second (NB 42%, J5D0 22%) or even
third order (NB 41%, J5D0 18%). Furthermore, the maximum crest elevation
calculated to third order is only marginally (less than 4%) greater than that
predicted to second order. This suggests that the inclusion of even higher-order
bound interactions will not explain the difference between the fully nonlinear
results and those of a bound-wave solution.

In contrast, figure 2 shows the profiles of the focused wave events in the
directional seas, J5D5 and J5D30. Unlike the unidirectional cases, it has not been
necessary to shift the location at which the crest occurs. While the maximum crest
elevation is very similar to that predicted using a second-order bound-wave
solution, the troughs associated with the highest wave are significantly shallower.
Furthermore, in case J5D5, the extreme wave event occurs earlier than would be
predicted. The results presented in figures 1 and 2 confirm that the formation of an
extreme wave event cannot be predicted by simply applying a wave model that
includes only the bound nonlinearities. Indeed, during the formation of an extreme
Proc. R. Soc. A (2007)
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Figure 2. Surface profiles of two extreme wave events in directional sea-states; comparisons between
fully nonlinear calculations based on BST and bound wave solutions. (a) Case J5D5, (b) case J5D30.
Dotted line, linear; solid line, second order; open circle, third order; dash-dotted line, fully nonlinear.
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wave event resonant interactions may be significant, and important physical
processes can occur that result in the evolution of the wave spectrum. This
evolution can lead to both significant increases in the maximum elevation
associated with the largest waves and also to changes in their profile. By examining
the details of this evolution in §4, and the physicalmechanisms bywhich it occurs in
§5, the fundamental differences between unidirectional and directional sea-states
will be highlighted. This will enable situations in which extreme wave events in
directional sea-states that are higher than would be predicted by a bound-wave
solution to be ascertained. As a result, realistic sea-states in which roguewaves are
intrinsically more likely to occur can be identified.
4. The movement of energy within a spectrum

In §4a, the results of BST will be analysed in order to describe the evolution of
the wave spectrum during the formation of an extreme wave event. It is this
evolution that is believed to be responsible for the failure of bound-wave solutions
in predicting the shape of an extreme wave profile (figures 1 and 2). The results
of BST will be analysed using two methods: the Fourier transform and the
Stockwell transform (ST).

(a ) Two methods of spectral analysis

The Fourier transform (equation (4.1)) is widely used in oceanography to
generate wave spectra from measured surface records. With the use of the fast
Fourier transform technique (FFT; Frigo & Johnson 1998), it is an extremely
rapid and simple method of decomposing a surface trace in time (or space) into
its frequency (or wavenumber) content:

Xðf ÞZ
ðN
KN

xðtÞeðKi2pftÞ dt; ð4:1Þ

where x(t) describes the magnitude of a variable (e.g. the elevation of the water
surface) in time, and X(f ) is its Fourier transform, and hence, describes the
Proc. R. Soc. A (2007)
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frequency content of the record. However, the Fourier transformhas one significant
limitation, it assumes that the spectral content of a wave profile is stationary. As a
result, any non-stationarity is modelled by the inclusion of harmonics that appear
as a spreadof energy thathas no obviousphysicalmeaning.Despite this, theFourier
transformhas been applied to the surface profile, h(x), at different points in time, as
calculated usingBST, in order to describe the evolution of thewave-spectrum in the
wavenumber domain. Unfortunately, this gives no indication as to the dispersive
properties of the wave group.

This limitation can be overcome by applying the ST. This is similar to aWavelet
transform, but has a direct relationship with the Fourier transform (Stockwell et al.
1996). It essentiallyperforms theFourier transformonaGaussianwindowedsegment
of a time trace, with the width of the window varying in frequency,

STðt; f ÞZ
ðN
KN

xðtÞ fffiffiffiffiffiffi
2p

p eKððtKtÞ2f 2=2Þ eðKi2pftÞ dt: ð4:2Þ

The ST gives amplitude as a function of both frequency and time and so, for time-
scales larger than the window width, overcomes the problems associated with non-
stationary data. The one-dimensional transform has been described above, but this
can easily be extended to more dimensions (Mansinha et al. 1997). The two-
dimensional ST has been applied to the results of BST in time and space. This allows
changes to both the frequency and the wavenumber of the wave-components to be
determined in both space and time. Therefore, both the evolution of the amplitude
spectrumandchanges to thedispersiveproperties of thewavegroupcanbe identified.

The focus of this paper is the evolution of the underlying linear spectrum.
However, both the Fourier and the STs assume that the wave profile is the linear
sum of various wave components. Hence, any bound nonlinearities are modelled by
the inclusion of additional harmonics that represent wave components that are not
freely propagating (boundwaves).While this has parallels withwave theories based
upon perturbation methods, it often means that it is difficult to identify which
components are freely propagating. This can, to some extent, be overcome by
separating a wave spectrum into its odd- and even-order wave components, as
described in Johannessen & Swan (2003). If hp defines the positive wave profile,
corresponding to the focusing of wave crests and hn the negative wave profile,
corresponding to the focusing of wave troughs, it follows that

hðxÞp Z
X
i

h1ðai; ki; dÞC
X
i

X
j

h2ðaiaj ; ki; kj ; dÞ

C
X
i

X
j

X
k

h3ðaiajak ; ki; kj ; kk ; dÞ

C
X
i

X
j

X
k

X
m

h4ðaiajakam; ki; kj ; kk; km; dÞC/; ð4:3Þ
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Proc. R. Soc. A (2007)



1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
×10–3

wavenumber (rad m–1)

am
pl

itu
de

 (
m

)

(a)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

wavenumber (rad m–1)

(b)

Figure 3. The evolution of odd-order spectra for (a) case NB and (b) case J5D0. Solid line: initial
(a) tZK200 s, (b) tZK1000 s; grey line: (a) tZK100 s, (b) tZK500 s; dotted line: (a) tZK20 s,
(b) tZK300 s; dashed line, extreme event: (a) tZK9 s, (b) tZK166 s.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
× 10–3

–25 –20 –15 –10 –5 0 –25 –20 –15 –10 –5 0
0

5

10

15

20

25

30

wavenumber (rad m–1) wave number (rad m–1)

fr
eq

ue
nc

y 
(r

ad
s–1

) 

(a) (b)

spread of energy 

high-frequency component 

Figure 4. Amplitude of wave-components for case NB. (a) tZK18.5 s, xZK18.2 m and (b) tZK9 s,
xZK8.2 m (extreme event). Dashed curve, linear dispersion; solid curve, input range.

R. S. Gibson and C. Swan32
where h are functions of the amplitudes ai, wavenumber vectors ki and water depth
d, and hence, represent the various interactions.Comparisons between these results
confirm that only the odd-order terms change sign. As a result, subtracting hn from
hp defines the wave profile of the odd-order interactions,

hðxÞodd Z
hpKhn

2
Z

X
i

h1ðai; ki; dÞC
X
i

X
j

X
k

h3ðaiajak; ki; kj ; kk ; dÞ

Codd terms: ð4:5Þ

The wave profile of the odd-order interactions, hodd, defines the profile of the freely
propagating wave components provided two conditions are met: the third- and
higher-order bound interactions are insignificant, which has been shown to be the
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33The evolution of large ocean waves
case in §3; and the third-order resonant interactions dominate the evolution of the
spectrum.The earlier laboratory results of Baldock et al. (1996) and Johannessen&
Swan (2003) (discussed in §2) suggest that both of these conditions are indeed met.
In the former, it was found that both extremewave-crest events and extremewave-
trough events focused at the same point in the wave tank; if the fourth-order
resonant interactions were significant then this would not be the case. In the latter,
it was found that if the correct freely propagatingwave componentswere identified,
therewas excellent agreementbetween the surfaceprofile and theunderlyingwater-
particle kinematics predicted by the second-order solution of Sharma & Dean
(1981) and those predicted by the fully nonlinear model of Johannessen & Swan
(2003). If the third-order bound interactions were significant, this would not be the
case. Hence, the spectrum of the odd-order profile is a very good approximation of
the spectrum of the freely propagatingwave components (the free-wave spectrum).
In addition, it is also possible to isolate the profile of the even-order components by
adding the positive wave profile to that of the negative, hevenZðhpChnÞ=2. The
spectrum of this profile predominantly contains the results of the second- and
higher-order bound wave interactions, but also contains any fourth- and higher-
order resonant interactions.
(i) Unidirectional sea-states

Figure 3 depicts the evolution of the odd-order spectrum during the
formation of an extreme wave event in the unidirectional sea-states of cases
NB and J5D0. It is apparent that in both these examples, there are significant
changes to the amplitude of the freely propagating wave components. These
manifest themselves as a widening of the free-wave regime. What is also
apparent is the speed at which the spectra evolve; there are significant changes
to both spectra in the 10 wave periods before the extreme event. The speed of
these interactions is in direct contrast to the slow evolution predicted in
random sea-states by Hasselmann (1962). Although, these sea-states are
anything but random, they are representative of how large waves evolve. While
both of these spectra are fairly narrow-banded, significant changes are also
observed in all of the unidirectional cases in table 1. However, it should be
noted that narrow-banded sea-states, such as J5D0, are typically more
nonlinear than those that are more broad-banded, such as J1D0. As a result,
it is clear that the ‘peakedness’ of unidirectional spectra is an important factor
in determining their evolution.

The ST has also been applied to these two unidirectional cases in order to
ascertain the changes to the wave spectra in wavenumber and wave frequency
between different points in time and space. This is shown in figures 4 and 5,
where the time and location (t, x) at which the transform has been applied is
indicated in the figure captions. In these figures, the wavenumber is considered to
be negative and hence consistent with the definition of the surface elevation,
hðxÞZ

P
iai sinðutKkxÞ. In a separate study, the transform has been

successfully applied in order to identify wave components travelling in different
directions. In both figures 4 and 5, there are a number of clearly identifiable
‘ridges’ representing (in order from top to bottom), the third-order sum
components (bound), the second-order sum components (bound), the linear
components (free) and the second-order difference components (bound).
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These figures show that in both cases, the amplitude of the bound
components increases as the wave group evolves towards the extreme event.
This is not surprising and merely represents the fact that the profile is steeper
around the extreme crest. This can be interpreted in terms of a perturbation
analysis as the need for higher harmonic terms to satisfy the nonlinear
boundary conditions. However, the figure also shows changes to the linear
components. In particular, there is a growth of a spread of energy that almost,
but not quite, satisfies the linear dispersion relationship (indicated by the
dashed line). This spread of energy forms a distinct group in case NB, but
merges with the linear components in case J5D0. The origins of this spread of
wave energy are not clear. Indeed, three suggestions seem plausible: (i) third-
order difference energy of the form u0Cu1Ku2, (ii) freely propagating
components that are travelling faster than would be predicted by linear
theory, and (iii) harmonics that are included to represent the non-stationarity
of the data, and hence, this is not ‘real’ wave energy. The physical
mechanisms responsible for this spread of energy and the reasons why it
does not satisfy the linear dispersion relationship are investigated in §5
through the use of ZE. However, the spread of wave energy can also be
investigated by applying the ST to the profiles of both the odd- and even-
order components. Figure 6a shows a close up of the former for case NB at the
time and location of the extreme event and indicates that the spread of energy
is an odd-order interaction. Whereas, figure 6b shows the latter and highlights
a high-frequency component that, although small in magnitude, is a clear
example of an even-order resonant interaction.
(ii) Directional sea-states

The evolution of the directional wave spectra of cases J5D5 and J5D30 have
been investigated by examining the differences between the odd-spectrum at the
initial time, as shown in figures 7a and 8a, with that at the time of the extreme
wave event, figures 7b and 8b. These spectra only include the freely propagating
Proc. R. Soc. A (2007)
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35The evolution of large ocean waves
wave components, and hence, this analysis shows the effect of the resonant
evolution of the free-wave regime. The changes to the free-wave regime and their
effect on the directional spread of the wave group will be discussed here. The
importance of the degree of directional spreading on the consequences of the
spectral evolution will be highlighted later.

The most important change that occurs is the reduction in energy
propagating at an angle to the mean wave direction. This feature of the
evolution can be identified in both short- and long-crested sea-states and the
angle at which it occurs is similar to that of the spreading parameter of
the input spectrum: 68 for case J5D5; and 318 for case J5D30. On its own, this
Proc. R. Soc. A (2007)
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would lead to a reduction in the directional spread of the wave group.
However, there is also a further feature of the evolution that is important in
long-crested sea-states: the transfer of energy into a horseshoe pattern around
the peak. This leads to an increase in the directional spread of the wave group.
The evolution of directional wave groups also has two features that are similar
to those found in unidirectional wave groups; first, there is a spread of energy
to higher wavenumbers and secondly, a transfer of energy away from the peak
of the spectrum.

In contrast to unidirectional sea-states, figure 9a,b show that in defining
the resonant evolution, the peakedness of the spectrum is less important than
the directional spreading. Evidence of this is provided by the fact that the
various features of the energy transfers are very similar for the pair J5D5
and J1D5 (figure 9a), and also for the pair J5D30 and J1D30 (figure 9b).
However, there is a marked contrast between J5D5 and J5D30, and between
J1D5 and J1D30. Therefore, the conclusion (so far) would be that the
evolution of directional spectra depends upon the spreading parameter, ss,
rather than the peakedness, g. However, this is slightly misleading as the
extreme wave event occurs much earlier in the long-crested case J5D5 than it
does in the short-crested case J5D30. Hence, the phasing of the wave
components in the two cases is very different. If the initial phasing of the
wave components in the two cases is determined iteratively, such that a
perfectly focused wave event occurs (one in which all of the components
come exactly into phase at one point in space and time), the maximum crest
elevation remains largely unchanged, but the evolution of the two spectra is
now remarkably similar. This is shown in figure 10 and highlights the
importance of the phasing of the wave components in determining the
evolution of the wave spectra. The changes in the degree of directional
spreading of these sea-states is shown in figure 11 in terms of the mean angle
qmZ ½

P
Naijqij�=A, where A is the amplitude sum of the underlying linear

wave components defined by AZ
PN

i ai and qi the angle of propagation of
a wave component i. This not only confirms that the phasing of the wave
components is fundamental to the evolution of these spectra, but also
highlights the fact that, while the evolution is rapid, it is more gradual than
that observed in unidirectional sea-states.
5. Physical mechanisms

In §4, it was shown that during the formation of an extreme wave event, the
wave spectrum could change both significantly and rapidly. In §3, it was
shown that these changes could lead to an extreme event that is much higher
and steeper than a bound wave solution would predict. It is the purpose of this
section to explain the physical mechanisms that cause these changes. Using
these results, the significant differences in the evolution of unidirectional and
directional sea-states will be ascertained. Literature concerning the transfer of
energy between wave components is discussed in detail in the review articles
of Yuen & Lake (1980), Hammack & Henderson (1993) and, in the context of
wave breaking, Banner & Peregrine (1993). Although much of this work is
relevant, only those interactions that are significant to the present discussion
Proc. R. Soc. A (2007)
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are highlighted below. Accordingly, as significant changes to the height and
shape of the largest waves must necessarily involve the interaction of wave
components having appreciable energy, interactions involving the shortest
wave components, in the extreme tail of the spectrum are neglected. These
wave components may provoke highly localized wave instabilities that mark
the onset of wave breaking, but are unlikely to play a dominant role in
defining the shape of an extreme wave event.

In §1, it was noted that deep-water resonant interactions must involve the
interaction of three or more wave components (NR3 in equations (1.1a) and
(1.1b)), and hence, can only occur at third order and above. In terms of ZE, the
~V kernel governs the third-order (NZ3) resonance and the ~W kernel the

fourth-order (NZ4) resonance (equation (3.7)). While it is clear that if energy is
transferred between wave components their amplitudes must alter, if energy is
transferred to a wave component ‘out of phase’ with energy that is already there,
the dispersive properties of that component will also change. This was shown for
pairs of wave components by Longuet-Higgins & Phillips (1962), and is the
mechanism by which the Benjamin & Feir (1967) instability allows for the near-
resonant interactions between unidirectional wave components. When such
interactions involve only one ðk 0Zk1Zk 2Zk 3Þ or two wave components (k0Zk1
and k2Zk3), there is a change in their phase speed, but no change in their
amplitude. In the first case, this corresponds to the Stokes (1847) third-order
correction to the phase speed; while in both cases such interactions are often
termed degenerate. However, when more components are involved, the resonant
interactions are capable of altering both their amplitude and their dispersive
properties.

By applying ZE with only the ~V kernel in equation (3.7), it is possible to
ascertain the effect of third-order resonant interactions on the evolution of the
spectrum. This has been undertaken for the unidirectional and directional
spectra considered previously.

(a ) Unidirectional sea-states

Figures 13 and 14 show a comparison between the results of ZE, based on the
inclusion of only the third-order resonant terms ð ~V Þ, with those of the odd-
spectrum of BST for cases NB and J5D0, respectively. In order to make this
comparison, the amplitude spectra associated with ZE and BST have been
normalized with respect to the largest input amplitude at tZt0. This is
undertaken to overcome differences in discretization between the two models.
Therefore, figures 13 and 14 show the changes in the amplitudes of the wave
components between tZt0 and the time at which the wave focuses. An important
issue is the effect of discretization on the results of the wave models; for BST this
is addressed in Bateman & Swan (submitted), whereas for ZE this is addressed in
figure 12, which shows that for case NB the solution is converging rapidly.

It is clear from figures 13 and 14 that ZE can model the rapid evolution of the
wave spectrum, with excellent agreement between the two wave models. As a
result, it can be concluded that the spread of energy to high wavenumbers is
predominantly the result of third-order resonant interactions. Furthermore, by
including the ~W function in equation (3.7), it is possible to show that the higher-
order resonant interactions are insignificant to the evolution of these spectra.
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This is shown for case NB in figure 15. In this case, the greatest difference
between the third- and fourth-order results is in the region kO15 rad mK1, which
lies outside our main area of interest. However, it does correspond to where the
small high-frequency component (kZ16 rad mK1, uZ1.25 rad sK1) was observed
in figure 6b, suggesting that the latter is the result of a fourth-order resonant
interaction. These results are in agreement with work on unidirectional random
wave trains undertaken by both Mori & Yasuda (2002) and Janssen (2003). The
former found that the largest waves only occur if interactions higher than those
of second-order are included. Whereas, the latter stressed the importance of the
Benjamin–Feir instability to the formation of large waves, and its role in the
widening of the wave spectrum.
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39The evolution of large ocean waves
Figures 4 and 5 in §4 showed that in all cases, the spread of energy to high
wavenumbers did not exactly satisfy the linear dispersion relationship. However,
figures 13 and 14 show that the spread of energy is the result of third-order
resonant interactions, and hence, the wave components are freely propagating.
Proc. R. Soc. A (2007)
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The reason for this apparent discrepancy can be investigated by applying ZE in
order to ascertain, for a given wavenumber, the frequency of each wave
component. Furthermore, ZE can be used to isolate the effect of different physical
processes on this frequency. Three effects are of particular significance: (i) the
frequency from the linear dispersion relationship in deep water can be calculated
as u1Z

ffiffiffiffiffi
gk

p
, (ii) the change in the frequency due to degenerate third-order

resonant interactions that occur when a wave component interacts with itself
(the Stokes change to the phase velocity) and when two wave components
interact with one another (Longuet-Higgins 1962), can be calculated as u3, and
(iii) the instantaneous frequency ui can be calculated as the rate of change of the
phase of each component (Cohen 1995). Figure 16 shows the instantaneous
frequency for case NB both at the focal event (tZK9 s) and at a time well before
the focal event (tZK199 s). At tZK199 s, the difference between the
instantaneous frequency and the linear dispersion relationship is small.
Furthermore, for components of significant amplitude, which lie in the range
2:5!k!6:0 rad mK1, the degenerate resonant interactions explain the difference.
However, it is clear that at tZK9 s, the wave-components no longer satisfy the
linear dispersion relationship. Furthermore, at tZK9 s, the degenerate resonant
interactions make an insignificant contribution to the instantaneous frequency.

Figure 17 shows the results from the application of ZE, at tZK9 s,
superimposed upon those of the ST (figure 4b). There is excellent agreement
between the wavenumbers and instantaneous frequencies calculated by ZE,
indicated by the red line, and those from the application of the ST. Furthermore,
as ZE has been applied using only the third-order resonant terms, the physical
processes responsible for the change in the phase velocity of the wave
components are immediately obvious; energy is being transferred to existing
wave-components ‘out of phase’ with the energy that is already present and, as
a result, the dispersive properties of the wave group have been altered.
Proc. R. Soc. A (2007)
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initial; dashed line, BST; dotted line, ZE.
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Figure 13. Evolution of the free-wave spectrum of case NB. Comparisons are shown between BST
and ZE, where the latter only includes the third-order resonant terms. (a) tZK20 s, (b) tZ0 s.
Solid line, initial; dashed line, BST; dotted line, ZE.
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Therefore, it is proven that the spread of energy identified in §4 is the result of
freely propagating wave components travelling faster than might be expected by
linear theory.
(b ) Directional sea-states

The results of ZE, applied with only the third-order resonant terms included,
have been compared to those of BST for the directional spread cases J5D5 and
J5D30. In contrast to the unidirectional cases, these comparisons are difficult
because, owing to computational limitations, the number of components over
which the spectra are discretized is very different for the two models; BST uses
16 384 wave components, whereas ZE only 400. However, it is possible to
compare the properties of the wave spectra, particularly the amplitude sum, A,
and the mean angle, qm. Figure 18 confirms that the main features of the
Proc. R. Soc. A (2007)
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evolution of the wave groups can be identified using either model. In long-crested
sea-states, there is a gradual, but significant, increase in both the amplitude sum
and the mean angle, whereas in short-crested sea-states both slightly reduce
around the extreme event. However, as discussed earlier, these results are
strongly influenced by the phasing of the wave components. For example, if this
is adjusted iteratively to ensure that the wave group focuses perfectly, figure 19
shows that in the long-crested sea (case J5D5) far from increasing, the amplitude
sum actually reduces, an effect reproduced by both models.

The results presented in figures 18 and 19 indicate that the evolution of the
wave spectra is primarily the result of third-order resonant interactions.
Therefore, the evolution of both unidirectional and directional spectra is
Proc. R. Soc. A (2007)
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controlled primarily by the same physical mechanisms. However, the
consequences of these changes are very different. Indeed, the evidence presented
so far indicates that the extreme crest-elevation associated with a focused wave
event in a unidirectional sea cannot be predicted by a bound-wave solution. In
contrast, in a directional sea the extreme crest elevation is reasonably well
predicted by a bound-wave solution, but the overall shape of the wave profile is
not, particularly, the wave steepness and the depth of the adjacent troughs.
6. Conclusions

It has been shown that the formation of large ocean waves cannot be explained in
terms of a constant spectrum of freely propagating wave components coupled
with their associated bound waves. In both unidirectional and directionally
spread seas, the evolution of a large wave event involves rapid changes to the
spectrum of the freely propagating wave components. In both cases, this
evolution is primarily the result of third-order resonant interactions that are
capable of altering not only the amplitude of wave components, but also their
relative phasing. However, the consequences of these changes can be very
different; in unidirectional sea-states the extreme crest is higher than second-
order theory would predict, whereas, in directionally spread sea-states, it is
typically lower. With all the events close to their breaking limit, these changes
cannot simply be explained in terms of differences in the inline wave-front
steepness. Similarly, reductions in the time available for the interactions to occur
as the directionality increases does not fully explain these differences. Indeed, the
present results have shown that there are fundamental differences in the
Proc. R. Soc. A (2007)
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Figure 18. Changes to the properties of the free-wave spectra of cases J5D5 and J5D30 as
calculated using ZE and BST. (a) The amplitude sum, A, (b) the mean angle, qm. Solid line, J5D5
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evolution of the largest waves depending on the directionality of the wave-field;
the explanation for which lies in the nonlinear changes to the spectral bandwidth
and the phasing of the wave components.

In unidirectional seas, the spectral evolution involves a rapid and significant
broadening, with energy transferred to high frequencies; whereas, in directional
seas the degree of directional spreading can change, but the manner in which it
changes critically depends upon the phasing of the wave components. These two
features are related; changes to the directional spread of a spectrum are closely
linked to changes in the bandwidth. Moreover, changes to the bandwidth of a
spectrum alter its amplitude sum, AZ

PN
i ai, allowing the possibility of larger

maximum crest elevations. This occurs because the total energy, which must
remain constant, is proportional to the sum of the squares of the amplitude of
the wave components, EZ

PN
i a2i . If the amplitude sum, A, is spread evenly over

N wave components, aiZA/N, it follows that AZ
ffiffiffiffiffi
N

p ffiffiffiffi
E

p
. The amplitude sum of

the spectrum is thus proportional to the square root of the number of
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components over which the amplitude is spread. Therefore, it follows that
as a spectrum becomes more broad banded (N increases), its amplitude
sum increases.

The broadening of unidirectional spectra (figure 3) is therefore consistent with
an increase in their amplitude sum, and hence, larger maximum crest elevations.
In contrast, in directional seas, the results emphasize the balance between
changes to the focal quality (the degree to which the wave components come into
phase) and changes to the amplitude sum; as the focal quality increases the
amplitude sum reduces. This suggests that the largest wave in a directional sea-
state may not be perfectly focused. However, after exhaustive investigation into
the most probable shape of the highest crest elevations arising in a sea described
by a JONSWAP spectrum, the focal quality was found to be the dominant
factor. Hence, in JONSWAP sea-states, the most probable highest wave is one
that is almost perfectly focused. This is consistent with the analysis of field data
described by Jonathan et al. (1994).

These arguments suggest that it is not possible to obtain large nonlinear
increases in crest elevation in broad-banded directionally spread seas.
Alternatively, acknowledging the balance between the effects of dispersion or
focal quality, and changes in the amplitude sum of the spectrum, implies that
large nonlinear increases in crest elevation may occur in directional seas that are
initially narrow-banded and are therefore slow to disperse. This raises an
important question: are sea-states dominated by swell waves more likely to
exhibit large nonlinear increases in crest elevation?

To begin to answer this question, the evolution of a large wave event in a
Gaussian spectrum has been considered. This example corresponds to case
G16D5 in table 1; it has a small directional spread, ssZ58, and is representative
of a sea-state that is swell dominated. Figure 20a confirms that the formation of
an extreme wave event leads to a significant broadening of the spectrum; while,
figure 20b indicates that, as expected, this broadening leads to a significant
increase in the amplitude sum A. More importantly, figure 20c confirms that the
Proc. R. Soc. A (2007)



0.01 0.02 0.03 0.04 0.05 0.060

0.2

0.4

0.6

0.8

1.0

1.2

1.4

am
pl

itu
de

 (
m

)

–300 –200 –100 0 100
12

13

14

15

16

17

18

19

20

time (s)

am
pl

itu
de

 s
um

 A
 (

m
)

–200 –100 0 100 200
–10

–5

0

5

10

15

location (m)

el
ev

at
io

n 
(m

)

wavenumber (rad m–1)

(a)

(b)

(c)
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extreme wave profile is both steeper and higher than would be predicted by
a bound wave solution. This result suggests that the rapid and local spectral
evolution necessary to explain unexpectedly large crest elevations, and hence,
freak or rogue waves, may be intrinsically more likely to occur in severe
Proc. R. Soc. A (2007)
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swell-dominated seas rather than in locally generated wind seas. However, given
that such sea-states are rare, several equally important questions arise. For
example, how narrow-banded, in both frequency and direction, must a spectrum
be in order for the resonant nonlinearities to dominate over the effects of
dispersion? Furthermore, what effect does the presence of wind waves have on
the evolution of a swell-dominated sea? Having identified the mechanics
responsible for the evolution of a free-wave spectrum, these important questions
are the subject of on-going research.
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