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a b s t r a c t

The forecasting of ocean waves on real-time or online basis is necessary while carrying out any

operational activity in the ocean. In order to obtain forecasts that are station-specific a time-series-

based approach like stochastic modeling or artificial neural network was attempted by some

investigators in the past. This paper presents an application of a relatively new soft computing tool

called genetic programming for this purpose. Genetic programming is an extension of genetic algorithm

and it is suited to explore dependency between input and output data sets. The wave rider buoy

measurements available at two locations in the Gulf of Mexico are analyzed. The forecasts of significant

wave heights are made over lead times of 3, 6, 12 and 24 h. The sample size belonged to a period of 15

years and it included an extensive testing period of 5 years. The forecasts made by the approach of

genetic programming indicated that it can be regarded as a promising tool for future applications to

ocean predictions.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Real-time forecasting of waves over a time step of a few hours
at a specified location is required in operational planning of any
engineering activity in the ocean. This is traditionally done by
converting wind-related information to waves. In 1960s and 1970s
empirical models like SMB and Darbyshire (US Army, 1984) were
practiced for this purpose, while numerical models such as WAM
and SWAN solving the wave energy balance equation (WMO,
1988; Komen et al., 1994) became popular in 1980s and 1990s. The
latter methods have the advantage of mathematical rigor as well
as that of large temporal and spatial coverage associated with
them. Since last 15 years or so collection of wave data through
rider buoys moored at a large number of locations around the
world became very common and this gave rise to demand and also
availability of station specific forecasts on real-time or online
basis (Deo and Naidu, 1999; Makarynskyy, 2004). For making such
‘point’ forecasts time-series-based models like auto-regressive
(AR), auto-regressive moving average (ARMA), auto-regressive
integrated moving average (ARIMA) and Kalman filter are suitable.
While AR and ARMA models are applicable for stationary time
series of a short term, ARIMA and Kalman filter models can cater
to data non-stationarity and hence can model a long-term series.
Apart from forecasting, such stochastic models are also popular in
carrying out simulation of a wave time history. More information
on such a task along with a good account of related past works can
ll rights reserved.

: +91 22 2576 7302.
be seen in Cunha and Guedes Soares (1999). Artificial neural
network (ANN) is another alternative in this category. While
forecasting using a time history the model (autoregressive
stochastic or ANN) is fed with an input consisting of a sequence
of previous observations so that it recognizes a hidden pattern in
such a sequence and accordingly forecasts the future value in
continuation. It is presumed in this process that all causative
factors are reflected in the very occurrence of historical values.
The application of time-series-based methods to wave forecasting
being relatively new compared to the numerical models it
requires a continued research with innovative modeling methods.

Presumably, the first report on application of ANN to online
wave forecasting is due to Deo and Naidu (1999), who used this
soft computing tool to forecast ocean wave heights with varying
warning times off the east coast of India. Later Agrawal and Deo
(2002) compared the ANN results with those derived from
stochastic models of ARMA and ARIMA and found that the ANN
was more accurate than the latter for shorter intervals. However,
they found that for longer intervals both the neural and stochastic
techniques produced similar results. Makarynskyy (2004) at-
tempted to improve long-range predictions of significant wave
heights and zero crossing wave periods using ANN with the
help of different correction approaches. Londhe and Panchang
(2006) carried out real-time forecasts at five locations in the Gulf
of Mexico and noticed anomalies in high interval forecasts of
hourly wave heights. Their predictions were much satisfactory up
to the interval of 6 h, following which inaccuracy (especially at the
peaks) and lag started developing to a large extent and the
coefficient of correlation between the predicted and observed
values dropped to around 0.40 for a 24 h prediction. The authors
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further noticed that the low prediction accuracy at the peaks
was due to the small period of time in which the peak forms
compared with the prediction interval. Kanbua et al. (2005)
provided online forecasting up to 24 h based on a cause-effect
modeling in which the wind speed, wind fetch and duration,
together with the water depth and the significant wave height
at previous time steps were given as input. They reported that
the root mean square error (RMSE) increased from 0.06 to
0.15 m when the forecasting interval changed from 3 to 24 h.
The authors also found that the ANN performed better than the
numerical model ‘WAM’ which underestimated waves by 20
percent.

From the above discussion it is clear that there is a scope to
explore usefulness of alternative soft computing tools in the area
of real-time wave forecasting. In this study the soft approach of
genetic programming (GP) has been selected since like ANN it is
also a purely non-linear technique of modeling.
2. Genetic programming

The concept of genetic programming is borrowed from the
process of evolution occurring in nature, where the species
survive according to the principle of ‘survival of the fittest’. The
GP is similar to genetic algorithms (GA) but unlike the latter its
solution is a computer program or an equation as against a set of
numbers in the GA. A good explanation of various concepts related
to GP can be found in Koza (1992). Information on basic GP
operations like reproduction, mutation, and crossover is given in
Appendix A for the benefit of readers not familiar with this
technique.

In GP a random population of individuals (equations or
computer programs) is created, the fitness of individuals is
evaluated and then the ‘parents’ are selected out of these
individuals. The parents are then made to yield ‘offspring’s’ by
following the process of reproduction, mutation and crossover.
The creation of offspring’s continues (in an iterative manner) till a
specified number of offspring’s in a generation are produced and
further till another specified number of generations are created.
The resulting offspring at the end of all this process (an equation
or a computer program) is the solution of the problem. The GP
thus transforms one population of individuals into another one in
an iterative manner by following the natural genetic operations
like reproduction, mutation and crossover.

The step-by-step procedure involved in the implementation of
the GP is further explained below:
1.
 Create initial random population of individuals (equations or
programs) of a certain size by randomly picking up the same
from a set of terminals (consisting of input variables and
constants) and functions (involving operators like, multiplica-
tion, addition, subtraction, division, square root, log, etc.).
2.
 Evaluate the fitness of each individual in a population through
some criterion like the RMSE.
3.
 Select individuals or parents (normally probabilistically
through a tournament involving comparing two parents at a
time and thereafter short listing the winner for further
competition).
4.
 Generate new offspring’s (individuals) from these parents by a,
b and c below:
a. Reproduction: Copy the best program as it is as per the

fitness criterion and include it in the new population.
Increase individuals by 1.

b. Crossover: Select two individuals as per the fitness. Perform
crossover. Insert the two individuals into the new popula-
tion. Increase individuals by 2.
c. Mutation: Select one individual as per the fitness. Perform
mutation. Insert the mutant into the new population.
Increase individuals by 1.
5.
 If the number of individuals (offspring’s) equals a maximum
selected number, increase the number of generations by 1 and
go to step 6; otherwise increase the individuals by repeating
steps 2–5.
6.
 If the number of generations is equal to a certain maximum
value, terminate the program; otherwise repeat steps 2–5.

2.1. Previous works on applications of GP

Applications of GP in coastal engineering are difficult to find,
although the same in water-related engineering started around 6
years ago. Unlike the other soft computing tool of artificial neural
networks, they are restricted to relatively fewer sub-areas and
include rainfall-runoff modeling (Whigham and Crapper, 2001),
modeling of risks in water supply (Babovic et al., 2002), modeling
of waste water treatment plants (Hong and Rao, 2003) and river
flow prediction (Drunpob et al., 2005). Applications of GP to solve
problems in coastal engineering are conspicuous by their near
absence. The current work therefore assumes significance from
this consideration.

2.2. Implementing GP

In the current work software Discipulus (Francone, 1998) was
used to generate the GP programs, while TurboC in the C++
environment was employed to run the evolved programs and to
implement them over a new data set. As explained in the
subsequent section about two thirds of the sample size had been
used for calibration of the GP models while the remaining ones
were employed to test or validate the same. A typical choice of the
initial GP control parameters was as follows: The population size
was 500 while the number of generations was 300. The mutation
frequency was 90 percent while the crossover frequency was 50
percent. Values of these control parameters were selected initially
and thereafter varied in trials till the best fitness measures were
produced. The fitness criterion was the mean squared error
between the actual and the predicted value of the significant wave
height. The statistical error criteria of correlation coefficient (R),
RMSE and mean absolute error (MAE), have been used in this
study to compare the GP predictions with the actual observations
and these were evaluated by using Matlab, which also facilitated
generation of the scatter plots between the target output and the
one obtained through GP.
3. Analysis and results

The present work aims at the use of GP to carry out the real-
time forecasting of significant wave heights over time steps of a
few hours or a day at a specified location.

The database used in the study pertains to two selected
locations of the US coast and available for free download on the
website of National Data Buoy Center (NDBC) (http://www.ndbc.
noaa.gov). The choice of these two stations was governed by
regularity and continuity in the reported values. One of the
stations chosen (station 42001) is in deep water while the other
one (station 42020) is near the coast of 88 m water depth (see
Fig. 1). The choice of two stations enabled confirmation of the
results obtained at one location with another site in a different
depth regime. The measurements belonged to hourly values of the
significant wave height over the duration of 1990–2004.

http://www.ndbc.noaa.gov
http://www.ndbc.noaa.gov
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Fig. 1. The location map.
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Considering the statistical homogeneity of the monthly
measurements it was decided to develop separate GP models for
every month. Hourly values of significant wave height, Hs, for each
month from 1990 to 2004 were considered for this purpose. The
training data belonged to the measurements of Hs for 5 years from
1990 to 1994, while the validation set consisted of hourly values of
Hs for 5 years from 1995 to 1999. The testing or actual application
was done by giving only the input set from 2000 to 2004. The
output was then compared with actual measurements with
appropriate lead times and the error plots and statistics were
accordingly derived. Different GP models were developed to make
forecasts for different lead times. The lead times were, 3, 6, 12 and
24 h. By trials it was observed that a sequence of three preceding
observations was sufficient for the GP model to understand a
hidden pattern in measured values and predict the subsequent
value accordingly. The outcome from each model at the end of
training and validation was in the form of the best computer
program. This was further employed to make predictions of Hs

with different lead times during the 5-year testing period of
2000–2004.

The closeness between the GP forecasts and their actual
observations was qualitatively ascertained with the help of time
history and scatter plots showing predicted values versus the
observed ones along with their deviations from the ideal fit line
and quantitatively checked using the three error criteria of
correlation coefficient (R), RMSE, and MAE. The correlation
coefficient provides the extent of a linear association between
the measured and the predicted values, while the RMSE shows an
overall prediction quality, especially when iterative procedures
are involved. The MAE on the other hand shows a uniform
goodness of fit without giving undue weightage to the higher
observations unlike the correlation coefficient. Multiple criteria
are necessary as a trade-off between the advantages and
disadvantages of each one of them.

Figs. 2–5 show typical examples through scatter plots of
predicted versus observed values along with corresponding time
history comparisons for 3, 6, 12 and 24 h prediction cases,
respectively, in the month of July at location 42020. It may be
noticed from the figures that smaller prediction intervals are
associated with better prediction accuracies. This can be expected
considering higher correlations between the values separated by
shorter periods. Some times during testing at longer prediction
intervals the higher Hs values were found to be either over- or
under-predicted as typically shown in the example of Figs. 4 and
5. A possible reason for this could be the lack of sufficient
involvement of higher Hs values during the training imparted.

The match of the GP based forecasting with actual observa-
tions for the testing period of 5 years in terms of the three error
criteria is shown in Figs. 6–8 for the location 42001 and in Table 1
for the site 42020. These figures and the table show how the three
statistics change for each month from January to December over
the two locations involved. For station 42001, the R values were
noticed to be high, varying from 0.83 to 0.93 for 3 h predictions,
indicating excellent predictions. Similarly the RMSE and MAE are
low, ranging from 0.17 to 0.43 and 0.08 to 0.24 m, respectively. The
corresponding 3 h predictions for station 42020 were marginally
better than those of site 42001, where the R, RMSE and MAE
changes from 0.89 to 0.97, 0.16 to 0.40 and 0.07 to 0.24 m,
respectively, across all months. The better predictions at site
42020 could be due to relatively less gaps (and more consistency
as a result) in the measured time series of Hs values. From the
long-term average values of significant wave heights at these
locations shown on the web site http://www.ndbc.noaa.gov/
images/climplot/42001_jpg it appears that very high wave activity
prevailed in the months of March, August and October. Such
higher wave occurrences were however not found to have a clear
link or one-to-one correspondence with the accuracy of predic-
tions (higher R and lower RMSE and MAE) for different months.

When it comes to forecasting for a period of next 6 h, almost
similar accuracy as the previous 3 h prediction was seen. Typically
for station 42020 the R, RMSE, MAE vary from 0.82 to 0.95, 0.09 to
0.47 and 0.09 to 0.30 m, respectively.

http://www.ndbc.noaa.gov/images/climplot/42001_jpg
http://www.ndbc.noaa.gov/images/climplot/42001_jpg
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July 3 hr, 42020
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Fig. 2. Predicted versus observed Hs values (lead time: 3 h; month: July; Station:42020).
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Fig. 3. Predicted versus observed Hs values (lead time: 6 h; month: July; Station:42020).

July 12 hr, 42020
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Fig. 4. Predicted versus observed Hs values (lead time: 12 h; month: July; Station:42020).
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The accuracy levels were non-uniform, when it comes to 12 h
predictions with R varying from 0.62 to 0.92 and RMSE and MAE
changing from 0.25 to 0.59 and 0.12 to 0.44 m respectively at
station 42020. The drop in the forecasting accuracy is expected in
the light of the fact that values spaced widely away from each
other would have smaller dependence and hence become difficult
to model as a sequence.

For the lead time of 24 h, the prediction accuracy further
dropped down. For station 42001 (Fig. 6) the R value with an
exception of the month of June ranges from around 0.60 to 0.75
while the RMSE and MAE vary from 0.30 to 0.78 and 0.25 to
0.55 m, respectively. The error statistics at station 42020 generally
agree with these values of station 42001 (or even look better in
some cases) except the correlation coefficient, which is consider-
ably lower for certain months. It is however mentioned that many
previous works failed to achieve even this much accuracy level
for the 24 h predictions. Deo and Naidu (1999) while forecasting at
site Yanam along the east coast of India, observed that the
correlation coefficient between the ANN predictions and actual
observations significantly drops from 3 to 24 h prediction, so also
Agrawal and Deo (2002) later, who reanalyzed the Yanam site
data by using alternate training schemes. Both these works
additionally had the shortcomings that they did not produce
direct forecast of actual observations, but only provided an
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July 24 hr, 42020
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Fig. 5. Predicted versus observed Hs values (lead time: 24 h; month: July; Station:42020).
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indirect estimation of average values. Further, these results
involved a limited comparison based on low sample sizes unlike
the present case and hence they may not be always generally
realized at any other location. Makarynskyy (2004) during their
ANN based analysis of Atlantic and Irish Sea measurements had
similarly noted low correlation coefficients for the 24 h ahead
predictions. While experimenting on coastal waters off Tasmania
and Portugal with ANN, Makarynskyy (2005) and Makarynskyy
et al. (2005) further confirmed high reductions in the correlation
coefficients for the 24 h predictions. Londhe and Panchang (2006)
have recently reported an exhaustive application of ANN to online
forecasting at the US National Data Buoy Centre sites with a large
sample size. The problem of handling large forecasting intervals
still remained elusive, although they could achieve a correlation
coefficient ranging from 0.40 to 0.63 in their works for the 24 h
forecasts.

From this discussion, it is clear that the GP-based prediction
reported herein may appear to be more attractive than many past
works based on ANN especially when all the error statistics are
viewed together. The testing sample size used in this study is one
of the largest compared to the previous works (4 years) and hence
these results should be regarded as relatively more reliable. One of
the reasons why the GP worked better here can be the fact that as
compared with the ANN the GP might manage a large number of
training pairs (typically hourly values for a period of 10 years)
more efficiently while the ANN may suffer from problems like
over-fitting in such a case. The use of a large sample size as in the
present work for training can be regarded as necessary for the
problem under consideration in order to account for a large range
of variations in long-term observations.
4. The ANN model

An attempt was also made to see if better predictions were
possible for larger intervals with the help of an equivalent ANN.
An ANN model of autoregressive type was developed. It was
calibrated and tested using the same training as well as testing
data employed for the previous GP model. The ANN used for this
purpose was of feed forward type, which is most commonly used
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Table 1
Error statistics for station 42020

3rd hour 6th hour 12th hour 24th hour

January

R 0.89 0.84 0.78 0.70

RMSE (m) 0.40 0.47 0.55 0.64

MAE (m) 0.24 0.28 0.40 0.44

February

R 0.89 0.82 0.64 0.30

RMSE (m) 0.29 0.37 0.50 0.42

MAE (m) 0.17 0.27 0.39 0.50

March

R 0.94 0.86 0.71 0.47

RMSE (m) 0.23 0.33 0.46 0.59

MAE (m) 0.15 0.24 0.34 0.47

April

R 0.93 0.85 0.71 0.52

RMSE (m) 0.20 0.29 0.39 0.46

MAE (m) 0.13 0.20 0.28 0.34

May

R 0.97 0.95 0.92 0.88

RMSE (m) 0.16 0.20 0.25 0.31

MAE (m) 0.07 0.09 0.12 0.16

June

R 0.91 0.87 0.78 0.62

RMSE (m) 0.20 0.25 0.31 0.39

MAE (m) 0.12 0.17 0.23 0.31

July

R 0.96 0.91 0.79 0.71

RMSE (m) 0.21 0.31 0.27 0.31

MAE (m) 0.11 0.17 0.20 0.24

August

R 0.94 0.89 0.77 0.62

RMSE (m) 0.17 0.21 0.31 0.38

MAE (m) 0.09 0.13 0.20 0.24

September

R 0.93 0.89 0.79 0.58

RMSE (m) 0.27 0.33 0.45 0.60

MAE (m) 0.15 0.20 0.29 0.40

October

R 0.95 0.88 0.75 0.50

RMSE (m) 0.19 0.28 0.40 0.54

MAE (m) 0.13 0.20 0.30 0.42

November

R 0.90 0.83 0.79 0.40

RMSE (m) 0.34 0.43 0.50 0.71

MAE (m) 0.19 0.30 0.38 0.57

December

R 0.93 0.83 0.62 0.36

RMSE (m) 0.28 0.43 0.59 0.79

MAE (m) 0.19 0.30 0.44 0.64

Fig. 9. Program [�q+(p)1/2)/3 p] in the form of a tree structure.

S. Gaur, M.C. Deo / Ocean Engineering 35 (2008) 1166–1172 1171
and where the information flowed only in the forward direction,
i.e. from the input layer to the output layer and through a hidden
layer—all layers consisting of a set of neurons or computational
elements. The number of neurons in the input layer was three and
it belonged to three preceding hourly observations of the
significant wave heights, like the earlier GP method while the
number of output layer neurons was one corresponding to the
predicted significant wave height value. The basic concepts and
details of working of an ANN can be seen in text books such as
Haykin (1999). A variety of learning algorithms were employed to
impart training to the network and these ranged from ordinary
error back propagation to advanced search-based techniques
(Haykin, 1999). The Levernberg–Marquardt algorithm turned out
to be the best method of training and hence the same was adopted
for testing. In the end however the testing results of such an ANN
model were not found to be encouraging for large interval
predictions as compared to GP. Typically at station 42001, for
the month of January, the testing over the period of 2000–2004
yielded 12 and 24 h wave forecasts with R ¼ 0.79 and 0.65 based
on GP while the same with ANN produced forecasts with R ¼ 0.71
and 0.42, respectively. This difference in the results could be due
to a more efficient handling by GP of a very large amount of
calibration data involved in this study. However such difference
between the GP and the ANN methods needs to be further
confirmed with more detailed investigations.
5. Conclusions

The previous sections discussed an application of the soft
computing tool of GP to the problem of making online wave
forecasts over lead times of 3, 6, 12 and 24 h. The sample size
belonged to a period of 15 years and this included an extensive
testing period of 5 years. Wave rider buoy measurements
available at two locations in the Gulf of Mexico were considered.

Like the recent works of past investigators on real-time wave
forecasting based on ANN, the application of GP in this study also
resulted in a situation where small-interval forecasts (3 or 6 h)
were more accurate than the large-interval ones (12 or 24 h);
however, the general level of prediction accuracy seen in the
current study would indicate that the soft tool of GP held promise
for future applications.

A comparison of results obtained at two different locations
showed that a small number of gaps and resulting consistency in
data might lead to relatively better forecasts.

A limited comparison of the GP-based predictions with
corresponding ANN-based ones indicated the tendency of the GP
to perform better at higher forecasting intervals and this could be
due to its relatively efficient handling of a very large amount of
calibration data involved in this study.

The present work showed that GP can be regarded as a
promising tool for its future applications to problems of ocean
predictions. It is worth exploring how it performs in carrying out a
causal as well as a spatial mapping as against the present
temporal one.
Appendix A. Examples of genetic operations

A.1. Generating population

A program [�q+(p)1/2)/3 p] is given in Fig. 9 in the form of a
tree structure. A population of random trees representing the
programs is initially constructed and genetic operations are
performed on these trees to generate individuals with the help
of two distinct sets; the terminal set T and the function set F. For
the Fig. 9, {�,+,O,/}DF and {p, 3, p, q}DT. In order to generate a
random tree one has to pick randomly from T[F, until all branches
end up in terminals.
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Fig. 11. Mutation.

Fig. 10. Crossover.
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A.2. Crossover

Two random nodes are selected from inside such program
(parents) and thereafter the resultant sub-trees’ are swapped,
generating two new programs as in Fig. 10.

A.3. Mutation

A sub-tree is replaced by another one randomly (Fig. 11).

A.4. Reproduction

This means an exact duplication of the program if it is found to
be acceptable by the fitness criteria.
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