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ABSTRACT

Short, dissipative, surface waves superposed on longer waves cause a growth of the long wave momentum

M; at a rate

dM,/dt=Fkia;(— kiS;s sinb--r, cosb),

where ki, ¢, are the amplitude and wavenumber of the long waves, so that kjq; is their steepness; S, is the
radiation stress of the short waves and 7, the rate of transfer of momentum to the short waves by the wind;
and the angle braces denote an average over the long-wave phase 6=kx—wit.

The first term in the above equation is the radiation stress interaction (Phillips, 1963 ; Hasselmann, 1971)
and is generally negligible compared with the second term, neglected by Hasselmann (1971), which shows
that long waves can grow if short wave generation (rather than dissipation) is correlated with the long wave

orbital velocity.

Even if the modulation of 7, is only O (k;2;) times (7,), this mechanism can contribute a significant fraction
of long wave momentum. However, even a substantially greater modulation of r,, perhaps due to varying
exposure of short waves to the wind, is unlikely to account for all the alleged momentum input to long waves,
due to the upper bound %;0; on the efficiency of the process.

1. Introduction

It has long been realized that short surface gravity
waves should have enhanced amplitudes at the crests
of long waves, due to the compression of the short
waves by the orbital velocity of the long waves, the
working of the long wave rate of strain against the
radiation stress of the short waves, and the increased
ratio, for the short waves, of potential to kinetic
energy near long wave crests (Longuet-Higgins and
Stewart, 1960). This led to the expectation that short
wave dissipation would occur preferentially at long
wave crests, and the implications of this have been
the subject of considerable debate.

Phillips (1963) argued that the energy dissipated
by the short waves had partly been acquired from
the long waves, so that the interaction would damp
the long waves.

Longuet-Higgins (1969a) pointed out that as the
short waves dissipate they give up their momentum,
and so effectively exert a horizontal stress. For short
waves and long waves propagating in the same direc-
tion, this stress is in phase with the orbital velocity
of the long waves and so should lead to their growth.
Longuet-Higgins (1969a) showed that this could pro-
vide a much greater input of energy than the loss
due to Phillips’ (1963) mechanism, and, assuming
that the short waves were regenerated by the wind,
he proposed this as a maser-type mechanism for the
generation of long waves.

However, Hasselmann (1971) showed that the
energy input to the long waves due to the rate of
working of the effective surface stress exerted by dis-
sipating short waves is almost exactly cancelled by a
potential energy transfer, the residual being just the
original damping term discovered by Phillips (1963).

Our purpose in this paper is to point out that long
wave growth can result if short wave generation
(rather than dissipation) is correlated with the orbital
velocity of the long waves. Hasselmann’s (1971)
analysis included this effect, but he assumed the
correlation to be zero. It seems very likely, though,
that short wave generation will be enhanced near the
crests of long waves if the short waves are larger
there [as in the theory of Longuet-Higgins and Ste-
wart (1960) and the observations of Cox (1958)7] and
more exposed to the wind. The potential importance
of a correlation between short wave generation and
long wave orbital velocity has also been recognized
by Keller and Wright (1975) and Valenzuela and
Wright (1976).

As with Longuet-Higgins’ (1969a) original maser
mechanism, the present effect can lead to long wave
damping if the short and long waves are propagating
in opposite directions, as for wind blowing against
a swell.

Before deriving a general equation for the rate of
increase of long wave energy, we first summarize
some of the basic results on the interaction of short
and long waves.



926

2. The short wave equations

Short surface gravity waves riding on much longer
waves in deep water are effectively in a modified
gravitational field given by g—DU,/Di, where
g= (0,0, —g) is gravity and DU,/D¢ the fluid accelera-
tion at the long wave surface. This modified gravity
is equal to Vp/p, and is normal to the long wave
surface if atmospheric pressure is uniform.

The frequency of the short waves relative to a
frame of reference moving with velocity U, is then

w,=|8—DUy/Dt|}|K, |}, (2.1)

where K, is the vector wavenumber of the short
waves, parallel to the long wave surface. Suffixes J, s
will be used throughout to refer to properties of the
long and short waves respectively.

Relative to an inertial reference irame, the short
wave frequency is

we=w+U:-K,. (2.2)

We can think of the long wave surface as a wave-
guide for the short waves, with a varying normal
restoring force, and a Doppler shifting current equal
to the component of U; parallel to the long wave
surface. )

We now assume that the long waves are of small
amplitude, so that, to first order in the long wave
steepness, (2.1) becomes

w= g+t k],

where ¢; is the elevation of the long wave surface,
and we may replace K, by a purely horizontal wave-
number k,. Eq. (2.2) becomes

(2.3)

ws=wtur-k,, (2.4)

where u; is the horizontal part of the orbital velocity
U= (u;,W}) of the long waves.

We have assumed an adequate separation of time
and space scales of long and short waves so that
“local” formulas such as (2.1)-(2.4) apply. Formally we
require wrKw, and (k| |k,| where w;, k; are the
frequency and wavenumber of the long waves. In
practice the scale separation does not have to be all
that large for WKB-type results to hold (Kulsrud,
1957), and a ratio of about 10 in wavenumber, and
hence only about 3 in frequency, is probably adequate.
~ Further work is required to establish the effects of
interactions between waves of rather similar scales.

The group velocity of the short waves relative to
the long wave surface is

Coa™= aw;/aku:' %(g'i" fl)% ’ k, I—gksa= %w.;k-w l k, 1_2; (2-5)

where subscripts «, 8 will be used to refer to hori-
zontal components. In this same frame of reference,
accelerating vertically at a rate {i, the short wave
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energy is given by

Ei=3p(gt+{0as, (2.6)

with equipartition between potential and kinetic
energy; ¢, is the short-wave amplitude. The mass
flux, or horizontal momentum, associated with the
short waves, is

M,=pfu,=Ek,/w;, @.7)

where u, is the horizontal component of the short-
wave orbital velocity at the surface. ,

The wavenumber k, of the short waves changes,
due to changes in the horizontal component u; of the
long wave orbital velocity and in the vertical accelera-
tion §;, at a rate (Phillips, 1966, p. 44)

Okoa/0t~+ (w1st+ C;B)aksa/axp= —kopOt1p/ 9%

—%w, | ks |08 1/0%4.  (2.8)

Only the explicit dependence of w, on x, through u;
and {;, gives terms on the r.h.s. of (2.8). For a single
long wave component with frequency w; we have
|&1]=w|ui], so that the magnitude ratio of the
second term to the first term on the r.h.s. of (2.8) is
L (wi/w,) seco, where ¢ is the angle between the direc-
tions of propagation of short and long waves. Now
wiKw, by assumption, so that for ¢ well away from
7/2 the second term on the r.h.s. of (2.8) may be
neglected. In other words, changes in k, are largely
associated with the effect of the Doppler shift u;-k,
of the short wave frequency.

The analysis is readily extended to include the
effect of surface tension, which we omit for the sake
of simplicity.

Changes in short wave energy, in the absence of
generation or dissipation, are given by the wave ac-
tion conservation equation (Bretherton and Garrett,
1968) :

d(E;/wy)/0t+V-[(artc)Ey/w,]=0,

where V has horizontal components only. It is im-
portant to realize that this equation applies to the
short wave energy evaluated in the vertically ac-
celerating frame of reference, and may, indeed, be
applied without long wave linearization, using (2.1, 2)
and related formulas. Previous authors (Longuet-
Higgins and Stewart, 1960; Phillips, 1966, p. 61)
have worked with equations describing the rate of
change of short wave energy measuréd in a frame
of reference moving horizontally with velocity u; but
not accelerating vertically. There is no difference in
the final results for the modulation of short wave
properties, but E, and (2.9) seem more fundamental,
especially in view of the equipartition of potential
and kinetic energy in the accelerating frame, and
the simple connection (2.7) between E, and wave
momentum.

(2.9)
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If we combine (2.7)-(2.9), and allow for short wave
generation and dissipation, we find (Garrett, 1976)
that the short wave momentum is governed by

aMaa/at+ a[Msa (ulﬁ+ ng):]/axg
= _Msﬁaulﬁ/axa—'psa+ Tsay (2.10)

where D, is the rate of loss of momentum from the
short waves by dissipative processes, and 7. is the
rate of generation of short wave momentum by the
wind or other processes.

If, for simplicity, we now take the short waves
and long waves to be propagating in the same direc-
tion, and consider just a single long wave component,
the modulation of the short wave parameters by the
long waves is readily evaluated (most simply by
considering the steady problem in a frame of reference
moving with the phase velocity of the long waves).
To lowest order in the long wave steepness k:a;, and
without, in fact, neglecting the last term in (2.8), the
dispersion relation gives

ko= ko(1+ kia; cost)
iptrien)

(2.11)
;= ¢y(1 —~Eya; cosh)

where 6 refers to the long wave phase, kx—wy, and
$1=aicosd. The constant &g is just the average wave-
number of the short waves, ko=(k,), where { ) de-
notes an average over 0.

For purely conservative interactions (i.e., D= ,=0)
(2.9) gives, again to lowest order in ka;,

E,= Ey(14kja; cosh). (2.12)

Now E,=%p(g+¢{1)as?, so that the short wave am-
plitude &, is given by

as.=ao(1+ ks cosﬁ),
M= M(14 2k, cost),
where ao=(a,) and Mo=(M )= Eko/wy.

(2.13)
(2.14)

We have assumed the long waves to be propagating
in the positive x direction. If the short waves are
propagating in the opp051te direction we merely
change the sign of ko and co- The short waves still
have a maximum amplitude at the crests of the long
waves.

These results, derived here using an approach
somewhat different from that of Longuet-Higgins and
Stewart (1960) and Phillips (1966, p. 61) in order to
illustrate the power of the wave action conservation
equation (2.9), are readily extended to the situation
where long and short waves are not propagating in
the same direction and the water depth is finite
(Phillips, 1966, p. 61).

Given short wave generation and dissipation, but
such that the short wave field is stationary with
respect to the long waves, the modulation of &,,
w, and ¢, is as in (2.11) and the modulation of M,
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may be found by solving (2.10) with D, and 7, in-
cluded. To lowest order in k;a; and w)/w, the equation
in one dimension is

aM,
—_—— ‘—ZMskl(Zl Sln0-—-wz l(Te*‘Ds)

(2.15)
do

3. The long wave energy equation

If we integrate the full horizontal momentum equa-
tions vertically over a thin surface layer containing
the short waves, we find that they exert an effective
surface stress on the total flow (Phillips, 1966, p. 46;
Hasselmann, 1971; Garrett, 1976) given by

s+ 1M oot Scap) /025 (3.1)

The term Sw,s is the radiation stress of the short
waves, given by

= —9 (’uz,,

1] fitts

(ot sathsgtBaphs)das+

$1—h $1

Ssapg= (3.2)

8, ,gpdxa.

Here {;—% is some depth 7% below the free surface,
deep enough so that the vertical integral in (3.2)
contains all the short wave Reynolds stress, but
shallow enough to be effectively at the surface for the
long waves, i.e., we require |k;|<<|k.|. The overbar
indicates an average over several wavelengths or
periods of the short waves. The average pressure P is
split into two parts, .= pu,s and py, so that p; satis-
fies the same free surface boundary condition, p;=aver-
age atmosphere pressure, as in the absence of short
waves. The last term in (3.2) may be written as

—20p/0xs evaluated at . To lowest order in the
short waves, and first order in the long wave steepness,
0p/dx; at xs={; is given by —p(g+§;) from the
vertical component of the equation of motion. Hence,
using the local properties of the short waves, the
last term in (3.2) exactly cancels the second term in
the first integral. In terms of energy and momentum,
the short wave radiation stress may now be written

Ssapg= %E;ksaksﬁ/ I ks I2= Man;p- (3.3)

Garrett (1976) showed that if one substracts the
wave momentum equation (2.10) the effective surface
stress exerted on the flow associated with the long
waves is

Fi=M,X VXu;~u;V-M,+D,. (3.4)

We note that any direct generation =, of short wave
momentum by, for example, atmospheric pressure,
enters (2.10) and the total momentum equation [in
the last term of (3.2), in fact, in the present formula-
tion], so that it cancels in deriving (3.4). The surface
stress F; supplies energy to the long waves at a rate
F 1* ;.

Hasselmann (1971) pointed out that there is also
a potential energy transfer, as mass is being supplied
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from long waves to the short waves at a rate V-M,
and with potential energy gt per unit mass. Hence the
full energy equation for the long waves, neglecting
direct generation, is

dE,/dt=—{gt1V-M,)+(u;-D,)
+(uz * (Ma X VXllz | A Ms))y (3'5)

where, as before, the angle braces denote an average
over the long waves.

The third and fourth terms on the r.h.s. of (3.5)
are quadratic in u; and so negligible compared with
the first term. We now use (2.10) to evaluate u;-D,
in (3.5), again neglecting terms that are quadratic
in u;. Hence, :

dEt/di= —-(gg‘;V . Ms> —(lll . 6M,,/at)
(1] [2]
— (%120 (M sat.p)/0%8)F (01 %5).  (3.6)
[3] (4]

Terms [1] and [2] in (3.6) may be written

[+[2]=(~V" (gr:M,)
—3(w-M,)/01+M, - (dui/3i+¢ V), (3.7)

in which the first two terms vanish if we assume
that (g¢;M,) is homogeneous and (u;- M) is stationary.
[In fact, if the long wave energy is growing, this
last assumption cannot be strictly valid. However,
using (2.14) to make a rough estimate of (u;-M,),
we find it to be (wi/w,)3(keaq)® times as big as E,
and so totally negligible.] The final terms in (3.7)
vanish, to first order in long wave steepness, from
the form of the horizontal momentum equation near
the surface, which gives (Hasselmann, 1971)

uy/ot+gVe=0(|m %, |u] | M,]). (3.8)

Equivalently, du;/di4¢gV¢; vanishes for each Fourier
component of the long wave field provided that it
behaves approximately like a free wave. The net result
is that [1J]4[2] vanishes with errors that are quad-
ratic in u; and M,..

Term [3]in (3.6) may be written (—%1405:ap/3%s),
from (3.3), or, invoking homogeneity, (S.qs0%14/0%8).
This is just the damping term investigated by Phillips
(1963).

We may now write (3.6) as

AE/di={Sapdtt1e/0%8)1 (U1 %s). (3.9)

We have ignored direct generation of long waves
through, for example, atmospheric pressure fluctuations
in phase with —a¢;/9¢. Eq. (3.9) is equivalent to that
derived by Hasselmann (1971), and, indeed, many
aspects of the present derivation parallel his. How-
ever, we have thought it worthwhile to re-derive the
energy equation for the long waves in order to em-
phasize the significance of the term (w;-=.), where
x, is the rate of transfer of momentum to the short
waves.
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It seems very likely that <, should at least be
proportional to short wave amplitude (as for any
wave generation theory involving feedback from the
waves to the airflow), and hence that |e,| will be
largest where the short waves are largest, i.e., near
the long wave crests.

Before exploring various models for the variation
of short wave amplitude and =, as functions of long
wave phase, we point out that in order to retain the
first term on the rhs of (3.9) compared with quad-
ratic terms in u; which we have neglected, we require
[u;/<<|c,|. This amounts to assuming that the long
wave steepness kia; is much less than the frequency
ratio w;/w,, which has also been assumed small. This
may not be true, so that the long wave damping
due to the action of the short wave radiation stress
may be overwhelmed in practice by nonlinear effects
for steep long waves. However, it is also possible
that these quadratic terms are small, as triad inter-
actions do not occur for surface gravity waves.

In any event, the dominant term on the r.h.s. of
(3.9) is (u;-%,), and =, here should include any mo-
mentum transfer from the air to the water, whether
it goes into short gravity waves (as assumed here),
or capillary waves, or straight into drift currents (see
Longuet-Higgins, 1969b; Stewart, 1967).

4. Long wave momentum

The implications of (3.9) for the growth of long
waves are best understood in terms of the rate of
generation of long wave momentum. We first simplify
(3.9) to the one-dimensional situation, for which

AEy/di=(S dw/dx)+urrs), (“.1)

and assume a single long wave component, with fre-
quency w; and wavenumber k;. The long wave mo-
mentum is M= Eki/w;, and

dM 1/ dt= (kis1){S:0u1/ 3%+ uits). (4.2)

We now write {;=a;cos8, #;=wa; cosf (assuming
the long waves to be propagating in the positive
x direction), where 6=Fx—w; is the long wave
phase. Hence

dM /di= kia{—EkiM ¢, sinb+ 7, cosd).  (4.3)

The average ( ) is taken over the phase 6.

If we reverse the direction of the short waves
relative to the long waves, the first term on the r.h.s.
of (4.3) is unchanged, whereas the second term
changes sign.

5. Long wave growth

We see from (4.3) that at most a fraction kja; of
the total wind stress 7, can go into long wave mo-
mentum. This requires that 7, be a series of delta
functions at the long wave crests.
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A precise estimate of the importance of the radia-
tion stress term in (4.3) requires the knowledge of
M,(9), either from observation, or from the solution
of (2.15) given 7, and D, as functions of §. In general
the radiation stress term is negligible compared with
the term 7, cosf, as is illustrated by the following
very simple example.

MobEL A. Assume that 7, is a series of delta func-
tions at long wave crests (0= 2nx), and D,=wM,.
Eq. (2.15) then becomes

aM./do= —2kaM , sinf+BM,
which leads to

M= 2ro; ro(14- 2€)~1 (287 — 1)L exp (86 2¢ cosh),
. 0<6<2m, (5.2)

where ro=(r,), the average stress, and e=%;a;. Hence,
neglecting terms of O (e),

(—kiM s, sin)= (wr/wp) (14+8) 1m0 (5.3)

Even if 8 is small, this is small compared with 7, as
(wi/wy) is small. However it is interesting that this
model, and indeed any model which has r,~— D, larger
than average at the long wave crests, predicts that
the radiation stress term acts as a source of energy
for the long waves, albeit a very weak one, in con-
tradiction to the usual assumption. This result is
associated with greater amplitudes of wind-generated
short waves on the rear faces of long waves, rather
than the forward faces, as is generally assumed.

More observations on the distribution of M, (§) will
be most valuable, not so much for calculating the
radiation stress effect, but rather as a constraint on
possible distributions of r.(6).

MopeL B. A more plausible assumption for 7, is
that it varies linearly between crest and trough like
7s=79(1-4+5 cosf). This might correspond to a varying
exposure to the wind. The radiation stress term is
again negligible and

M/ di= kb, (5.4)

so that, for #<1, a maximum of about %%;a; of the
wind stress can appear as long wave momentum.

MopeL €. An alternative hypothesis is that 7, is
proportional to M,. With this assumption, and a dis-
sipation that, for example, limits the short wave
steepness to some maximum, the modulation of M,
and hence of 7., is always less than that obtained
for conservative interactions in (2.14). The upper
bound on dM,/dt is then (k;a;)%ro.

All of these models assume a monochromatic long
wave. A calculation of the momentum transfer to a
spectrum of long waves requires specification of how
T, varies with, say, the elevation due to the long
waves. We shall not pursue such models in detail
here (but see Valenzuela and Wright, 1976; Longuet-
Higgins, 1976), other than to remark that plausible

(5.1)
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extensions of models B and C lead to momentum
transfer rates of something like 3~ (k2a:?) 7o, where the
summation is over all the long waves. Now this sum-
mation, or integral, depends logarithmically, for an
w;~® energy spectrum, on the high-frequency cutoff
assumed. If we arbitrarily assume the cutoff frequency
to be 5 times the peak frequency and use the canonical
JONSWAP spectrum (Hasselmann ef al., 1976), we
find 3 (k14:)°=0.02 to 0.04, depending on the fetch.
An extension of model A (Longuet-Higgins, 1976) can
lead to much greater fractions of 7o appearing as long
wave momentum, although one suspects that, in
general, the kja; factor appearing in model A will
also limit the efficiency of transfer for a complete
long wave spectrum.

According to Hasselmann ef al. (1976), only about
59, of the total wind stress remains in the wave
field, though about 3 or 4 times as much momentum
must be imparted to the long waves initially to allow
for computed transfers, by conservative nonlinear
interactions, to dissipative high frequencies.

Thus it seems that the mechanism described in this
paper probably contributes a significant proportion of
long wave momentum, although it seems unlikely that
it can account entirely for long wave growth.

6. Conclusions

The main conclusions to be drawn from this study
are:

1) Any variation of momentum transfer from air
to water that is correlated with the orbital velocity
of long waves can contribute to the growth of long
waves (or decay of swell propagating against the
wind), even if the momentum transfer goes into
shorter waves first.

2) At most only a fraction kja; of the wind stress
can go into long wave momentum by this mechanism.

3) The radiation stress term in the energy equation
for the long waves is generally negligible compared
with the wind stress term, but could conceivably act
as a weak source for long wave energy, rather than
a sink as usually assumed.

Any particular assumption for the variation of 7,
and D, as functions of short wave momentum or long
wave phase can be used in Eq. (2.12) to give M,(6)
and hence dM;/di. But appropriate assumptions for 7,
and D, are almost totally unknown. The real need
is for experimental determination of the variation of
wind stress and short wave amplitude relative to the
phase of longer waves.
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