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Abstract

The mathematical framework for turbulent transport in the ocean is reasonably
well established. It may be applied to large-scale fields of scalars in the ocean and to
the instantaneous or continuous discharge from a point. The theory and its physical
basis can also provide an interpretation of passive scalar spectra. Spatial variations
in the rate of turbulent transfer can be related to the movement of the center of mass
of a scalar and to a formulation in terms of entrainment. The relative dispersion of
a scalar with respect to its center of mass and the streakiness of the concentration
field within the relative dispersion domain need to be considered. In many of these
problems it is valuable to think in terms of simple models for individual streaks, as
well as overall statistical properties.
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1. Introduction

Including the effects of processes that are unresolved in models is one of the
central problems in oceanography. In particular, for temperature, salinity, or
some other scalar, one seeks to parameterize the eddy flux in terms of quan-
tities that are resolved by the models. This has been much discussed, with
determinations of the correct parameterization relying on a combination of
deductions from the large-scale models, observations of the eddy fluxes or as-
sociated quantities, and the development of an understanding of the processes
responsible for the fluxes. The key remark to make is that it is only through
process studies that we can reach an understanding leading to formulae that
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are valid in changing conditions, rather than just having numerical values
which may only be valid in present conditions.

Rather than attempt a comprehensive review, this brief article will summarize,
as simply as possible, some basic ideas and results on dispersion in a turbulent
flow, drawing attention in particular to results that may go beyond standard
texts, such as that of Csanady (1973). Some fundamental fluid dynamical
ideas and their application to the ocean will be described in Section 2. Quite
apart from the importance of turbulent dispersion for the evolution of large-
scale patterns in the ocean, it also determines the concentration of material
released from a point source, either instantaneously or continuously. This will
also be reviewed.

For an instantaneous release, it is important to consider not only the “abso-
lute” dispersion with respect to the point of release, but also the “relative”
dispersion with respect to the center of mass of the released substance (e.g.
Csanady, 1973; Fischer, List, Koh, Imberger, & Brooks, 1979). This will be
reviewed in Section 3. Furthermore, the “streakiness” within the domain of
relative dispersion may be a matter of concern and will be discussed.

The connection between the flux of a substance, with sharp gradients ulti-
mately disappearing by molecular diffusion, and the adiabatic stirring asso-
ciated with the dispersion of marked particles, will be reviewed in Section 4.
In particular, standard ideas on the connections between stirring and mixing
have been generalized to allow for the treatment of a hierarchy of different tur-
bulent motions. Other, non-turbulent, mechanisms for dispersion in the ocean
will be mentioned in Section 5, though not reviewed in detail.

Although eddy fluxes of potential vorticity or other dynamical quantities are
also carried by particles, this paper will be concerned only with scalars. I hope
that the non-expert reader will find it a useful introduction and that the expert
reader will find one or two items of interest to compensate for shortcomings.

2. Eddy fluxes

We consider an ocean in which some scalar has concentration C = C + C ′

where C is the ensemble average of C and C ′ is its fluctuation. In practice the
ensemble average is replaced by an average over time or space. This requires
that there be a spectral gap, i.e. a band of frequency or wavenumber with
little variance, between the slowly varying mean and the rapidly varying fluc-
tuations. This assumption may well be hard to justify; we return to it later.
The equation for the evolution of the mean state C involves the eddy flux
F = uC ′, where u is the velocity fluctuation.
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It is well recognized that F need not be aligned with the local gradient ∇C,
but may be written in tensor form as

Fi = −Tij
∂C

∂xj

. (1)

This is formally possible for any flux, but the connection to the local mean
gradient may only make physical sense if the motions responsible for the flux
have a “mixing length” that is small compared with the distance over which
C varies significantly.

We may write Tij = Kij + Sij where Kij = 1
2
(Tij + Tji) and Sij = 1

2
(Tij − Tji).

The symmetric tensor Kij is diagonalizable and is likely to represent down-
gradient diffusion parallel to the principal axes of the tensor. We return to this
later. The antisymmetric tensor Sij has an associated “skew flux” Fs given by

Fsi = −Sij
∂C

∂xj

= −(D×∇C)i (2)

where D = −(S23, S31, S12). This flux is perpendicular to ∇C and may be
written as

Fs = −(∇×D)C +∇× (DC). (3)

The second term of this flux is non-divergent and so does not affect the
evolution of C. The first term represents advection of C with a velocity
Us = −(∇×D) which may be written as

Usi =
∂Sij

∂xj

. (4)

This standard formalism (e.g. Rhines & Holland, 1977; Moffatt, 1983; Mid-
dleton & Loder, 1989) is purely kinematic. Further insights are obtained if we
write the fluctuation C ′ in terms of a particle displacement X from the position
where its value of C matches the local mean value. Then C ′ = −Xj∂C/∂xj

provided that X is small in magnitude compared with the distance over which
∇C varies significantly. The eddy flux becomes

uiC ′ = −uiXj
∂C

∂xj

. (5)

The diffusivity Kij is now 1
2
(uiXj + ujXi) and the antisymmetric tensor Sij

is given by 1
2
(uiXj − ujXi). The vector D may be written as 1

2
X× u and the

advection Us from (4) may be written as Usi = ∂(uiXj −Kij)/∂xj.
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In this expression u, while representing the Eulerian velocity at a point, is also
the Lagrangian velocity ∂X/∂t of the particle carrying the anomalous value
of C. Now if ∇ · u = 0, then also ∇ · X = 0 and we may write, following
Middleton and Loder (1989),

Usi = X · ∇ui +
1

2

∂2XiXj

∂xj∂t
. (6)

For small amplitude motions, the first term on the right hand side of (6) is just
the Stokes drift, or the difference between the Lagrangian and Eulerian mean
flows. For larger displacements, the interpretation is less simple (see Plumb
and Ferrari (2005) for a recent discussion and the relation of these ideas to
dynamics). Moreover, the second term on the right hand side of (6) may be
non-zero for motions with statistical properties that vary in space and time.

While the effects of Sij on the evolution of C can be expressed as purely
advective and parallel to contours of C, the flux associated with Kij is diffusive,
but not orthogonal to contours of C unless Kij is diagonal. Nonetheless, as
mentioned earlier, the symmetric nature of Kij means that it is diagonalizable,
most likely describing large mixing rates along mean isopycnals and a very
much smaller diapycnal mixing rate. Further, this diagonalization means that
we may examine the problem in one dimension.

2.1 Dispersion in one dimension

As described in Taylor’s (1921) famous paper, the effective diffusivity in one
dimension is given by

K = X
dX

dt
=

t∫
0

u(t ′)u(t) dt ′ (7)

after writing u = dX/dt and interchanging the integration and the averaging.
This may be written as

K = u2

t∫
0

R(τ) dτ (8)

where R(τ) = u(t)u(t + τ)/ u2 is the Lagrangian velocity autocorrelation func-
tion.
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Defining the Lagrangian integral time scale TL =
∫∞
0 R(τ) dτ , we then have

K approximately equal to u2t for t � TL, so that X2 ' u2t2. This is as
expected; a particle’s expected excursion is just its rms speed times the time
since release.

For t� TL, K tends to the constant value u2TL so that X2 ' 2u2TLt. This is a
simple extension of the 1D “drunkard’s walk” with steps X1, X2, X3, . . ., each
of length S but randomly either forwards or backwards. In that case the speed
u is S/τ0 during each step if this lasts a time τ0. Then R(τ) decreases linearly
from 1 at τ = 0 to 0 at τ = τ0 and TL = 1

2
τ0. Thus we have K = 1

2
S2/τ0 and,

after n steps taking a total time nτ0, K = XdX/dt gives X2 = 2Knτ0 = nS2,
as expected.

While it is tempting to regard this constant diffusivity regime as applying after
a time that is not much greater than TL, a long tail to R(τ) can mean that (8)
does not converge quickly, and the effective diffusivity increases, albeit slowly,
for a time that is very much larger than TL.

For K = u2TL to be the appropriate diffusivity for use in treating the evolution
of scalar fields in the ocean, we require two things:

(i) That the concentration associated with a water parcel not change much
over the time scale of order TL, or longer, for which the Lagrangian autocor-
relation is significant. In fact, in the presence of molecular diffusion as well
as stirring by eddies, a tracer will tend to diffuse out of filaments (in two
or three dimensions) and so reduce the turbulent transport. Saffman (1960)
and Bennett (1987) have reviewed this problem, with the conclusion that the
corrected total diffusivity is of the form

K = u2TL

[
1−O(Re−1/2)

(
κ

ν

)]
+ κ (9)

where κ and ν are the molecular diffusivity and viscosity respectively, and Re
is the Reynolds number based on the typical velocity and length scale of the
eddies. The correction is likely to be small.

(ii) That the mean gradient is reasonably uniform over a distance comparable
with the length scale L = (u2)1/2TL (or more if R(τ) has a long tail), the
typical excursion of a particle during the time it contributes to the eddy flux.
Then K = (u2)1/2L, which is just the rms velocity times a mixing length L.

It is also important to recognize that it is the Lagrangian integral time scale
that is needed in Taylor’s (1921) formula, requiring data from drifters rather
than from current meters, even though the mean square velocity can be esti-
mated from either. Middleton (1985) investigated the difference between TL

and the Eulerian integral time scale TE, defined as the integral of the autocor-
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relation of the velocity measured at a fixed point for zero mean flow, or moving
with the mean flow if it is not zero. He argued that TL/TE is less than 1 and
depends on the size of the eddies compared with the distance L = (u2)1/2TL.
If the eddies are large compared with L then the Eulerian and Lagrangian ve-
locities are very similar over a correlation time and so TL ' TE. On the other
hand, if the eddies are not large compared with L, the Lagrangian velocity
changes more quickly as a water parcel is carried into a different eddy and so
TL < TE.

Finally, it is worth pointing out that the energy spectrum of the Lagrangian
velocity is proportional to the Fourier transform of R(τ), with the long-time
diffusivity, from (8) with t → ∞, related to the spectrum at zero frequency.
Thus, with data of finite length, one can judge whether (8) is converging by
seeing whether the spectrum seems to be levelling off at low frequency and
tending to a finite limit at zero frequency (e.g. Rupolo, Hua, Provenzale, &
Artale, 1996)

2.2 Oceanic values

Freeland, Rhines, & Rossby (1975) used SOFAR floats at mid-depths in the
North Atlantic in a pioneering application of Taylor’s (1921) approach. They
found TL ' 11 days, with a mean square velocity of about 7× 10−4 m2 s−2 in
both zonal and meridional directions. Hence K ' 700 m2 s−1. Similar values of
both velocity variance and Lagrangian integral time scales have been found in
many other locations in the open ocean (Ferrari and Polzin (2004) summarize
some Atlantic data). On the other hand, a similar value of K, about 1, 100
m2 s−1, came from much a higher velocity variance, about 2 × 10−2 m2 s−2,
but a much shorter time scale, TL ' 15 h, in a strongly eddying region of the
Labrador shelf (Garrett, Middleton, Hazen, & Majaess, 1985). The Lagrangian
autocorrelation functions in two directions are shown in Figure 1. The near
equality of these, combined with the smallness of the lagged cross-correlation
(not shown) of the two velocity components, implies nearly isotropic dispersion
with diffusivities as implied by Ru and Rv. The antisymmetric part of the full
correlation tensor, with the cross correlations as the off diagonal elements,
gives a skew flux, but this has zero divergence if the eddy field is statistically
homogeneous.

The study by Garrett et al. (1985) relied on the trajectories of icebergs tracked
by radar from oil company drillships; constant reseeding of the area with fresh
“drifters” permitted the calculation of the Eulerian, as well as the Lagrangian,
statistics of the eddy field. Assuming isotropy, the cross-correlation functions
were evaluated for velocity components separated by a distance r as well as
lagged by time τ . These functions were found to be different for velocity com-
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ponents longitudinal and transverse to the line joining the two points, but were
reasonably separable in time and space as f(r)F (τ) and g(r)G(τ) for the lon-
gitudinal and transverse components, respectively. The spatial functions f(r)
and g(r) were found to be different, as expected for isotropic turbulence (see
Garrett et al. (1985) for details). The time dependent functions were some-
what different, but an average of F and G from Figure 1 gives an Eulerian
integral timescale of approximately 40 h, considerably greater than TL, and
qualitatively in line with Middleton’s (1985) argument, mentioned above, that
TL < TE. Finally, note the presence of inertial oscillations in all the functions
shown in Figure 1.

Fig. 1. The Lagrangian autocorrelation functions Ru and Rv for the eastward and
northward velocity components u, v respectively, of iceberg trajectories off Labrador.
Also shown are the time-dependent parts F and G of Eulerian longitudinal and
transverse correlation functions expressed as functions of spatial separation and
time lag. (Redrawn from Garrett et al. (1985).)

Rupolo et al. (1996) examined float data from 700 m depth in the North
Atlantic in terms of Lagrangian spectra, finding spectral shapes correspond-
ing to a long tail to R(τ). They found an intermediate dispersion regime
for TL < t < 10TL in which displacement variance grew more slowly than
the t2 behavior at short time, but more quickly than the t behavior at long
time. They attributed this to particle trapping in coherent structures in the
flow; similar behavior, with a 5/4 power law, has been found in numerical
simulations of 2D and quasigeostrophic turbulence (Bracco, von Hardenberg,
Provenzale, Weiss, & McWilliams, 2004). Also, Rupolo et al. (1996) found that
convergence of (8) at long time, as deduced from the shape of the Lagrangian
frequency spectrum, was not found for all the trajectories, presumably as a
consequence of gradients in the mean flow. The complexity of possible and
observed oceanic motions clearly calls for caution in applying the basic theory
of turbulent dispersion.
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It should be also be stressed that the averaging required in Taylor’s (1921)
model is properly that over an ensemble of realizations. Replacing the ensemble
average with a space average means that equal areas need to be given equal
weight (e.g. Davis, 1991). An average over the drifters can give undue weight to
regions of previous convergence. In fact, Middleton and Garrett (1986) found
that, while low frequency currents measured by the icebergs tended to rotate
clockwise if the averaging was over data weighted according to their density
in space, the sense of rotation reversed if the averaging was just over the
icebergs. This was because drifters tend to congregate in regions of previous
convergence and these regions tend to have acquired a cyclonic rotation if the
eddies are quasi-geostrophic!

The values of diffusivity discussed above apply to ensemble average “absolute”
dispersion by mesoscale eddies, with scales of order 100 km in the open ocean,
and perhaps a tenth of this on the continental shelf. Smaller diffusivities are
often derived from examination of the spread of a patch in a single realization,
but this is usually with respect to the center of mass of the patch, in a pro-
cess termed “relative” dispersion. (For example, Martin, Richards, Law, and
Liddicoat (2001) found a lateral mixing rate of 22± 10 m2 s−1 for a patch size
of 10 km or so.) The distinction is important and will be discussed later.

2.3 Relation to the spectrum of a passive scalar

We have a mental image of a homogeneous field of turbulent eddies stirring a
passive scalar with a large-scale mean gradient which may be treated as locally
uniform. We expect that the rms fluctuation in the scalar concentration will
be at least as large as an eddy scale times the mean gradient. It may be larger,
however, if wisps of high or low concentration can survive for a while before
they are thin enough to diffuse away through molecular processes.

For homogeneous, isotropic, 3D turbulence, this may be discussed further
by considering standard results for the spectrum of a passive scalar. This
spectrum EC(k), as a function of wavenumber k, is proportional to χε−1/3k−5/3

from some low wavenumber k0 inversely proportional to the scale of the largest
eddies. Here, ε is the turbulent kinetic energy dissipation rate per unit mass
and χ is the dissipation rate of the scalar fluctuations, given by 2κ∇C ′ · ∇C ′,
with κ the molecular diffusivity of the scalar. If the Prandtl number Pr = ν/κ,
with ν the kinematic viscosity, is much less than 1, the −5/3 spectral form
is cut off rapidly near k = (ε/κ3)1/4. If, on the other hand, Pr � 1, the
−5/3 spectrum applies up to the Kolmogorov wavenumber kν = (ε/ν3)1/4

beyond which viscosity cuts off velocity fluctuations. For higher wavenumbers,
the scalar spectrum has a high wavenumber tail proportional to χτk−1 out
to the diffusive cutoff wavenumber kc = (ε/νκ2)1/4 (Batchelor, 1959). Here,
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τ = (ν/ε)1/2 is a timescale inversely proportional to the rms strain rate.

Given these spectra, the mean square concentration fluctuation is given by

C ′2 = O(χε−1/3k
−2/3
0 ) + O(χτ ln[kc/kν ]). (10)

Garrett (1989) showed how this may be written as

C ′2 = [O(k−2
0 ) + l2](dC/dx)2 (11)

where l2 = O(Kτ ln[kc/kν ]), with K the eddy diffusivity proportional to the
rms current speed u0 times the eddy scale of order k−1

0 . The derivation of (11)

simply uses the representation of χ as 2K(dC/dx)2 and u2
0 ∝ ε2/3k

−2/3
0 from

the integral of the Kolmogorov spectrum for velocity.

The rms scalar fluctuation may thus be interpreted as coming from a mixing
length, times the mean scalar gradient, where there are two contributions to
this length. The first contribution is the expected one of the eddy scale. The
second corresponds to the rms distance that a particle is dispersed, according
to Taylor’s (1921) theory described earlier, in the time τ ln[kc/kν ] that it would
take for the rms strain rate of order τ−1 to have the smallest dimension of a
streak reduced from the viscous cutoff scale kν to the diffusive cutoff scale kc.
(We are assuming here that this time is greater than the Lagrangian integral
time scale of order k−1

0 u−1
0 , an assumption equivalent to l > k−1

0 so that the
second term in (11) is important.)

Our physical picture is thus that eddies first stir a scalar, producing scales of
variation down to that of the smallest eddy. The resultant blobs and streaks
are then strained by the velocity field until they are thin enough to diffuse
away. This will happen very quickly if the Prandtl number is not large so that
diffusion is already acting at the scale of the turbulent eddies. However, for
large Prandtl number, it takes a finite time for the eddy straining to produce
the small scales at which diffusion acts, and in that time the blobs and streaks
disperse farther, giving rise to further fluctuations in scalar concentration.

Ross, Garrett, and Lueck (2004) have assumed that this scenario also applies in
a situation in which two passive scalars with different diffusivities are present.
In that case it seems reasonable to assume that the fluctuations of the two
scalars will remain coherent at small scales, even though one will diffuse more
quickly than the other. This model has novel implications for the scattering of
high-frequency sound by small-scale fluctuations of density and sound speed.
These fluctuations are induced by fluctuations in both temperature and salin-
ity, so it is important to know how the small-scale structures in temperature
and salinity are related to each other.
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2.4 A point source

We have, so far, discussed the application of Taylor’s (1921) theory to the
dispersion of a scalar with a large-scale gradient, and have argued that the
“long time” limit of Taylor’s formula is relevant. This is not appropriate for
the evaluation of the concentration expected from the release of a scalar at a
point, either instantaneously or steadily in time. For an instantaneous release,
the ensemble-averaged concentration field is assumed to be Gaussian (though
this is not proven (Csanady, 1973)), with a spread σx given by integrating (7),
with σ2

x = X2, and similarly in two or three dimensions as appropriate.

A continuous release at a fixed point at rate Q is just a succession of instan-
taneous point releases (Csanady, 1973), so that the resulting average concen-
tration field in three dimensions is given by

C = Q(2π)−3/2

∞∫
0

exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

)]
(σxσyσz)

−1 dt. (12)

In the simplest case of isotropy, we can write σ2
x = σ2

y = σ2
z = σ2 and r2 =

x2 + y2 + z2 to obtain

C = Q(2π)−3/2

∞∫
0

e−r2/(2σ2)σ−3 dt. (13)

For molecular diffusion with diffusivity κ, σ2 = 2κt and then (13) is easily
integrated to give C = Q(4πκr)−1, the standard solution for a continuous
point source in 3D. In the turbulent case, σ2 = u2

0t
2 for t � TL, where we

have denoted u2
1 = u2

2 = u2
3 by u2

0, and σ2 = 2u2
0TLt for t� TL. For large values

of r compared with u0TL, the integral in (13) is dominated by contributions
from values of t greater than TL and so C ' Q(4πu2

0TLr)−1, as for constant
diffusivity u2

0TL. On the other hand, for r � u0TL, the integral in (13) is
dominated by contributions from values of t much less than TL and hence

C ' Q(2π)−3/2u−1
0 r−2. (14)

Thus a stronger singularity near a source arises for turbulent diffusion than for
constant diffusion, with the average concentration proportional to r−2 rather
than r−1. This can be thought of as a consequence of a smaller effective diffu-
sivity near the source.

As discussed by Csanady (1973), who also evaluated the concentration field
for a point source in a steady mean flow, this anomalous behavior near the
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source is important in marine and atmospheric pollution problems. Garrett
and Shepherd (1987) considered an anisotropic situation, with turbulent dif-
fusion in both horizontal directions, but with a constant diffusivity in the
vertical, as appropriate for the much smaller eddies and shorter timescales in
the vertical. After scaling each coordinate by the square root of the diffusivity
in that direction, they found that the near-source concentration was propor-
tional to r−3/2. The singularity is weaker than before, but still stronger than
for constant diffusion in all three directions.

The discussion here has concerned only the ensemble-averaged concentration
to be expected. We consider later the fluctuations that are to be expected
in various situations, but next discuss briefly the consequences of a spatially
variable eddy diffusivity.

2.5 Variable eddy diffusion

The discussion so far has assumed statistical homogeneity. If this does not
apply, the situation becomes considerably more complicated (Davis, 1987). If,
however, the statistics of the eddy field vary over a scale much larger than that
of the eddies themselves, it is possible to represent their effect in terms of a
spatially variable eddy diffusivity, say K(x) in one dimension. Thus, without
any mean flow, the mean scalar concentration C satisfies the equation

∂C

∂t
=

∂

∂x

(
K

∂C

∂x

)
. (15)

We can write this as

∂C

∂t
− dK

dx

∂C

∂x
= K

∂2C

∂x2
(16)

in which the right hand side of the equation has K outside the derivative, as we
are used to seeing if K is constant. This form of the equation makes it appear
that the mean concentration field is being advected at a speed −dK/dx at
the same time as it spreads by diffusion. On the other hand, if we define the
center of mass of the scalar as x =

∫∞
−∞ xC dx, assuming that

∫∞
−∞ C dx = 1,

then

dx

dt
=

∞∫
−∞

x
∂C

∂t
dx (17)
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may be written, using (14), integrating by parts, and assuming C → 0 for
x→ ±∞, as

dx

dt
=

∞∫
−∞

dK

dx
C dx. (18)

Thus the center of mass moves with a weighted average of +dK/dx, i.e. up,
rather than down, the gradient of K (Freeland et al., 1975; Davis, 1987). This
makes good physical sense, of course; the scalar is stirred towards regions of
high diffusivity.

2.6 Diffusion or entrainment?

In many situations in the ocean we represent dispersion and mixing through
the use of eddy diffusivities, but in other situations, particularly for turbulent
boundary layers at the surface and bottom of the ocean, it is common to
represent the effects of strong mixing by the use of an entrainment velocity.
The connection between mixing gradients and the entrainment rate has been
discussed by Csanady (1990). In particular, considering a 1D situation with
vertical density profile ρ(z) and a vertical mixing rate that may be represented
by K(z), the density equation (ignoring a mean vertical velocity) is

∂ρ

∂t
=

∂

∂z

(
K

∂ρ

∂z

)
. (19)

This may be used to describe the change in depth z(ρ, t) of a particular isopy-
cnal, using 0 = (∂ρ/∂z)t(∂z/∂t)ρ + (∂ρ/∂t)z for the change of density on an
isopycnal. Hence

∂z

∂t

∣∣∣∣∣
ρ

=−
(

∂ρ

∂z

)−1
∂

∂z

(
K

∂ρ

∂z

)
(20)

=−dK

dz
−K

(
∂ρ

∂z

)−1
∂2ρ

∂z2
(21)

describes the evolution of z(ρ, t). The first form of this, in (20), is discussed
more completely by Pelegŕı and Csanady (1994) and by McDougall (1987)
who also allows for nonlinearity in the equation of state. Csanady’s (1990)
form, (21) here, shows that the vertical motion of the isopycnal at a point of
inflection of the density profile is given simply by dK/dz, the vertical gradient
of the diffusivity. In practice, the separation between layers might be taken
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at a different location. Moreover, with sharp gradients, the eddies causing
the mixing might have a larger scale than that over which the density gradi-
ent changes significantly. It would not then be appropriate to represent mass
transfer as a local process.

3. Relative dispersion

So far we have focused on the ensemble-averaged concentration field for a
dispersing scalar, though in Section 2.3 we also discussed the fluctuations to
be expected at a point. This topic warrants further discussion, with the issues
being simple and clear if we consider an instantaneous point release. After a
finite time there are really three domains of occupation for the scalar which
need to be considered, as illustrated in Figure 2.

Fig. 2. The three domains of occupation for a scalar, at a fixed time after an instan-
taneous release. The large circle applies to the ensemble average over many releases.
The smaller circle shows the expected area or volume occupied by floats seeded in
the scalar after a short initial diffusion time. The shaded streaks show the actual
domain of high concentration in a single release.

Here, the larger circle, for 2D dispersion, or sphere for 3D dispersion, repre-
sents the area or volume occupied by the scalar on the basis of what is known
as “absolute” dispersion. It might be taken as the domain containing some
fraction of the assumed Gaussian distribution of the scalar, with the concen-
tration given by Taylor’s (1921) formula. (If the stirring is anisotropic, the
domain will be an ellipse or ellipsoid, becoming a circle or sphere in coordi-
nates scaled with the square roots of the eddy diffusivities in each direction.
We ignore this simple extension.)

In any given release, however, an initial blob at the origin will be carried off
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in some particular direction at the same time as it is spread by molecular
diffusion, or some small-scale stirring and mixing process, and torn apart by
the larger eddies. The domain occupied by the scalar in a particular release,
shown as the smaller circle in Figure 2, thus refers to the dispersion of the
scalar elements with respect to the center of mass and can be estimated by
considering the “relative” dispersion of particles seeded into the patch at the
end of an initial diffusive phase, just as the patch begins to be torn apart by
the eddies.

Even within this domain defined by relative dispersion, however, the scalar
may be concentrated in thin streaks, shown by the dark patches separated by
clear water in Figure 2. Alternatively, and perhaps after sufficient time, these
streaks may merge, so that the scalar distribution is more uniform within the
domain defined by relative dispersion, though clearly still somewhat patchy.
Also, after sufficient time, the relative dispersion domain may grow to exceed
the size of the largest eddies. After this the relative dispersion rate is the same
as that for absolute, one-particle, dispersion.

The situation is familiar to anyone who has stirred cream into coffee, and
was discussed in a pioneering and illuminating way be Eckart (1948). Further
studies have included simple estimates by Garrett (1983), who claimed that
streaks would merge very soon after the scalar release in 3D turbulence, but
that streakiness would tend to persist for a significant time for 2D stirring.
This expectation was reinforced by the numerical simulations of Haidvogel
and Keffer (1984) and has been borne out in tracer release experiments in the
ocean (Ledwell, Watson, & Law, 1993). Sundermeyer and Price (1998) have
conducted more sophisticated analysis of the basic fluid dynamics.

To discuss this further, we start with a summary of the basic arguments
for relative dispersion of a cloud of particles. If they have a concentration
C(r) with respect to their center of mass, we define their spread by s where
s2 =

∫
Cr2 dV/

∫
C dV , where the integration is over area for 2D or volume for

3D and includes all of the particles. For 3D turbulence characterized by dissi-
pation rate ε, Richardson (1926) and Batchelor (1952) argued that the relative
diffusivity, defined as 1

2
ds2/dt, can only depend on ε and on s itself. Hence,

on dimensional grounds, the diffusivity must be proportional to ε1/3s4/3, the
famous “four-thirds” law. Okubo (1971) found that much oceanographic data
on relative dispersion does seem to obey such a law, but this must be for other
reasons, as the assumption of homogeneous 3D turbulence is hardly valid over
the large scales analyzed.

The physics of this result is worth discussing. As reviewed by Bennett (1987),
two particles with separation s are, on average, separated by the strain γs =
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s−1ds/dt of eddies larger than s where

γs ∝

 s−1∫
0

k2ε2/3k−5/3 dk


1/2

∝ ε1/3s−2/3 (22)

if we assume a standard Kolmogorov energy spectrum, with an energy spec-
trum ∝ k−5/3, and multiply it by k2 to obtain the strain spectrum. Now, since
ds/dt ∝ γss, we obtain 1

2
ds2/dt ∝ ε1/3s4/3 as before. This is dimensionally

inevitable, but the derivation is interesting as it shows that small eddies are
less important as the patch grows, rather than the large eddies becoming more
important. The patch growth has s2 ∝ t3 and should really be regarded as
slower than the exponential growth that would apply if the strain were inde-
pendent of patch size, rather than faster than the linear growth appropriate
for a constant diffusivity.

This physical interpretation of relative dispersion in 3D turbulence is valuable
in providing a framework for the 2D case. We might expect (22) to still apply,
but note that if the energy spectrum is steeper than k−3, as seems to be
the case, the strain is dominated by the lowest wavenumber in the spectrum,
provided it is smaller than s−1, i.e. by the largest eddies. The strain is thus
independent of size, giving exponential separation of a particle pair, and thus
exponential growth of the radius of the relative dispersion domain. It is clear,
though, that within this circle, the scalar in a particular realization of the flow
will be confined to a thin streak, with the streak length growing like exp(γt)
for a strain γ. The width of the streak is readily determined by an advective-
diffusive balance in the cross-streak direction to be proportional to (κ/γ)1/2,
where κ is the mixing rate associated with small-scale processes.

This simple physical scenario was exploited by Ledwell et al. (1993) in their
interpretation of the remarkable lateral dispersion of a tracer released in the
North Atlantic. After six months or so, the tracer was found to be largely
in a streak that was not straight but had an overall length consistent with
stretching by a strain rate of 3 × 10−7 s−1. Combined with a streak width of
about 3 km, this implied a lateral diffusivity of about 3 m2 s−1. This is much
greater than the molecular value, implying the presence of some small-scale
mixing process. A first guess might be that this was shear dispersion, a pro-
cess in which oscillatory vertical shear of horizontal currents, associated with
internal waves, combines with the vertical mixing caused by the waves to give
lateral mixing. Young, Rhines, and Garrett (1982) estimated that this lateral
mixing would have κ ' (N/f)2Kv, where N, f are the buoyancy and Corio-
lis frequencies, respectively, and Kv is the vertical mixing rate. However, this
only seems to give a value of order 10−2m2 s−1 for κ, much less than required.
A plausible explanation for the larger observed value is that it was associated
with stirring by small-scale “vortical modes” (Polzin & Ferrari, 2004). These
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vortical modes, which may arise from the collapse and geostrophic adjustment
of vertically mixed patches (Sundermeyer, Ledwell, Oakey, & Greenan, 2005),
can be thought of as an extra part of the mesoscale eddy spectrum, giving it a
bump at high wavenumbers which rises above the background spectrum that
is steeper than k−3. This small-scale stirring most likely feeds directly into
molecular diffusion without causing significant extra streakiness, in the same
way that in 3D turbulence it seems that streaks rapidly become convoluted
and merge within the relative dispersion domain (Garrett, 1983).

This discussion has been for an instantaneous release. The fluctuation problem
for a continuous release is much more difficult, but Csanady (1983) presented
a useful discussion by regarding the discharge as made up of “old puffs” which
contribute a background concentration field, and “new puffs” which emerge
as a plume. The location of this plume depends on the current direction at
the time and so gives rise to fluctuations.

Finally, it is worth remarking that the issue of streakiness may be important
if the impact of the dispersing tracer is nonlinear. For example, if the response
of, say, fish to a pollutant is a nonlinear function of the concentration, there is
clearly a difference between the effects of a pollutant which is uniformly dis-
persed and one which is confined to streaks, even if the average concentration
is the same; a population of 90% healthy fish and 10% dead fish in the latter
case is not the same as 100% slightly sick fish in the former!

4. Stirring to mixing

Much of the above discussion has referred to the interplay between stirring
and mixing. Stirring tends to sharpen gradients to the point where molecular
diffusion takes over and provides the ultimate mixing.

In a statistically steady state, one can calculate the flux of a scalar as either (i)
the sum of the eddy flux and a much smaller molecular flux across the contours
of the mean scalar field, or (ii) the average molecular flux alone across the
highly convoluted instantaneous contour of the scalar. This equivalence, and
the latter approach, have been discussed by Nakamura (1996) and Winters
and D’Asaro (1996).

Further to this approach, the “eddy” field itself may be made up of large-scale
mesoscale eddies and much smaller-scale turbulence. The former, which we
refer to just as eddies, may really just be stirring the scalar, with the link to
molecular dissipation being provided by the turbulence. A “triple decomposi-
tion” of the scalar field into mean, eddies, and turbulence has been discussed
by Joyce (1977), Davis (1994), and Garrett (2001) and is summarized here in

16



Figure 3. The eddies and the turbulence both create scalar variance by stir-
ring the mean field. The eddy-scale fluctuations in the scalar are then acted
upon by the turbulence to produce scalar fluctuations which, along with those
produced by the turbulence acting on the mean field, are then cascaded to
small enough scales that they can be dissipated by molecular processes. If
the upper pathway in Figure 3 is the dominant one, then the eddies are the
rate-limiting process and the turbulence just does what it has to, much like
molecular diffusivity itself in ordinary high Reynolds number 3D turbulence.
On the other hand, if the lower pathway is dominant, it is the turbulence that
is the rate-limiting process.

Fig. 3. A schematic showing the possible ways in which scalar concentration variance
is produced from a mean field and carried to dissipation scales.

A very nice example of this distinction has been found by Ferrari and Polzin
(2004). They discuss the origin of observed dissipation of temperature fluctu-
ations at a site in the North Atlantic. At one range of depths the dissipation is
associated just with turbulence acting on the mean vertical gradient, as in the
lower path in Figure 3, whereas at greater depths the upper path is followed,
with the production of temperature variance being dominated by isopycnal
stirring of lateral temperature gradients.

Other aspects of the connection between stirring and mixing have been dis-
cussed in the workshop proceedings of Müller and Henderson (2001) and sum-
marized by Müller and Garrett (2002). Mahadevan (2001), Richards, Brent-
nall, McLeod, and Martin (2001), Young (2001), and Seuront (2001) dis-
cuss the interesting patterns which arise if the scalar being stirred is non-
conservative, as for growing phytoplankton. A comprehensive review has been
presented by Martin (2003). While numerical simulations and rigorous statis-
tical treatments are clearly essential, it is possible that further insight can be
gained by simple models focussing on the evolution of the scalar in the thin
streaks produced by eddy stirring. The lateral compression of the streaks is
assumed to be balanced by lateral diffusion, as in the earlier discussion for
conservative scalars.
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5. Discussion

We tend to think of dispersion as requiring a turbulent flow field. In recent
years, however, it has been recognized that even simple “deterministic” flow
fields can lead to the tearing apart of a patch of scalar (e.g. Aref, 1984). In
a nice oceanographic example, Ridderinkhof and Zimmerman (1992) built on
earlier analyses to show how dispersion can arise in a flow field consisting of
oscillatory tidal currents, with large spatial scales, superimposed on small-scale
residual eddies. These eddies can themselves be generated by rectification of
the tidal currents over small-scale features in the bottom topography. Not all
of the domain is dispersive; there tend to be regions from which particles do
not escape without the addition of extra physical processes. Parameterizing
these effects in a model that does not resolve the small eddies presents a major
challenge.

Particle separation can occur in a variety of spatially variable and time-
dependent flow fields which one would not characterize as turbulent. The
methods of dynamical systems theory has been helpful in analyzing these sit-
uations (e.g. Kirwan, Toner, & Lipphardt, 2001). Of course, if the spatial and
temporal scales of the flow are resolved in a model, then the dispersion will be
accomplished by the model without the need for the parameterization that is
required for processes not resolved in space and time.

There is still much to be learned about the actual physical processes responsi-
ble for dispersion in the ocean. It is important to remain aware of conceptual
problems and weak assumptions. One prominent issue concerns the “spec-
tral gap” that is assumed to exist between the mean field and the eddies. In
the triple decomposition discussed above, two spectral gaps are assumed to
exist, one between the mean and the mesoscale eddies and one between the
mesoscale eddies and the breaking internal waves or whatever else is respon-
sible for the turbulent fluxes. The absence of a spectral gap reminds us of
conventional 3D turbulence where one cannot reliably describe the effect of
unresolved small eddies on individual large eddies. Statistically, however, the
small eddies may just be absorbing variance produced at larger scales. In this
case, one might have confidence in Large Eddy Simulation (e.g. Metais, 1998),
which rests on the assumption that it is only necessary to resolve the start of
the inertial subrange, with the parameterization of smaller-scale eddies being
unimportant to the overall dynamics. On the other hand, if there is a reverse
cascade from small scales to large scales, failure to resolve the small scales will
inevitably lead to errors at large scales. Finally, it bears repeating that, in any
investigation, it is valuable to think not just in terms of statistics and param-
eterization, but also in simple physical ways about the Lagrangian evolution
of individual patches of scalar.
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