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ABSTRACT

Phillips has shown that an undulating motion of a layered medium relative to a measuring instrument
will result in a o™2 spectrum (frequency or wavenumber) over a bandwidth determined by the thickniss of
the layers and of the sheets separating them. We show, for any (temperature) fine-structure statisteally
stationary in depth with covariance rs(y.—y2) = (6 (y1)8(ys)}, that the covariance of the observed time ceries
can be expressed in terms of 7y and the covariance in the vertical displacement {, assuming { to be josintly
normal. An explicit expression for the spectrum is given for the case that the rms value of { is large compared
to the vertical coherence scale of the fine-structure. Wetentatively conclude that the fine-structure dominates
in the upper few octaves of the internal wave spectra, and then extends the spectra beyond the cutoff
frequency (wavenumber). The loss of vertical coherence due to fine-structure occurs over a distance in-
versely proportional to frequency, in general agreement with an empirical rule proposed by Webster.

1. Introduction

With the development of instruments capable of high
resolution it has become evident that a step-like fine-
structure is superimposed on the gross vertical profiles
of temperature and salinity (Woods and Fosberry, 1966;
Woods, 1968; Stommel and Fedorov, 1967; Cox et al.,
1969). Accordingly, for a smooth up-and-down motion
of the water column, time series of temperature and
salinity (moored or towed) display many small steps.
If there is an associated fine-structure in the Viisili
frequency #(y), then the vertical shear du/dy is concen-
trated at the steps (Phillips, 1966, p. 168) and this leads
to analogous features in the time series of horizontal
flow (see Section 9). Phillips (1971) has given an
excellent account of the evidence in both ocean and
atmosphere.

Cox (1966) has pointed out the difficulty, associated
with fine-structure, in the derivation of internal wave
spectra from temperature-time series. At a Royal
Society meeting in November 1970, Gould (1971) dis-
cussed the case of a sinusoidal fine-structure. Phillips
(1971) derives the contribution to the internal wave
spectrum that is associated with the step-like fine-
structure, and finds it to be proportional to =% (fre-
quency or wavenumber) over a certain bandwidth. The
fact that internal wave spectra roughly proportional to
o~% have been observed is at least a warning that fine-
structure effects may be important. Reid (1971) gives
an explicit solution for the special case of a transducer
located at the mean boundary of two uniform layers.
We find that a quite general case involving only the
statistics of the layering can be treated somewhat along
the lines of Reid’s paper.

2. Temperature covariance

Let T(y) designate the temperature profile in the
absence of internal waves. If the observed temperature
fluctuations at some fixed depth y, are entirely the
result of vertical displacements {(¢), then T(¢)
=T{yo—{(t)]. The covariance of temperature measure-
ments separated in time by 7 (or similarly in horizontal
distance) can be written as

Re(r) =(TOT(t+)),

- [ [ =t T(o—=t)p(enss; D1 sy, (1)

where ( ) is the time (or similarly space) average, and
p(¢1,82; 7) the joint probability density of a displace-
ment {; at some time £ and ¢, at {+7.

Suppose the temperature profile near y,, and referred
to T(yo), is written as

T3 =0~y)T"+6(), 8()=0, @

thus consisting of a mean gradient 7'=d7T/dy and a
superimposed fine-structure 6(y). Then

T(yo—=)T(vo~¢2)
=T'%1 o= T'[$1 0(yo—E2)+E2 6(yo—£1) ]
+0(yo—81)80(y0—22).  (3)

The first term gives the expected “gradient covariance”

RTW{(T)=T’2./-/§'1 Cap(Er,bes 7)1 dS=T"2Ry(7), (4)
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where Ri(7) = (Di(t+7)) is the covariance of the
displacement ¢.

We could proceed in a similar deterministic manner
with the remaining terms, using the measured 6(y) in
(3), but the result would be a sensitive function of time,
place and depth of experiment. Since the fine-structure
varies slowly in time (distance), the sensible thing to do
is to assume 6(y) a random variable and to use the
expected values for the remaining terms. Since §=0, the
expected value of [{16(yo—to)+¢2 0(vo—¢1)] is zero,

and the last term vields the “fine-structure covariance”

Rafo()= / / ro(Er=Ep(Enss; S dEny ()

where r¢({1—¢2) =(0(yo—1)8(yo—(2)), with { ) here
implying an ensemble average over many realizations
of the fine-structure. In practice the average ( ) is
formed with respect to depth in the neighborhood of y,.

3. Gaussian wave field

To go further we need a form for p(f1,¢2;7). We
assume that the displacement at any point comes from
many different, largely independent frequencies and
wavenumbers. By the central limit theorem, {(¢) is then
normally distributed and ¢(#), ¢(/47) are jointly
normal, i.e.,

~2p¢1 $o 180t
p(Enia; )= ] ©

1 |: &1
exp| —
2w Z2(1—p2)} 273(1—p?)
where po(7)=R.(r)/Z% is the autocorrelation of the

displacement, and Z?={2=R;(0) is the displacement
variance. Eq. (5) then becomes

Ry’ (r)=[4n(1—p) 22}

X 0 zz l 7
/_ ) exp[— —— (1_,,)22]‘ . ()

where we have changed one variable, {;say, to z=¢1—{»
and integrated over the other, {3, using

/ exp(—Axt)dx=(w/\)*
Eq. (7) may be written alternatively as
Rp?3(r)=n"} / ro[ 2(1—p)iZx] exp(—a2)dx. (8)

We see immediately that Ry/*(0) =7,(0) =8 as required.
As 7>, p(7)— 0, but

Ryf3(r) — 74 / ro(2Zx) exp(—x2)dx,
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which is not, in general, zero. Thus, the temperature
measurements remain correlated by the fine-structure
even when the vertical displacements are no longer
correlated. This residual correlation is removed if we
allow for the fact that the fine-structure is a slowly vari-
able function of time (distance), 8(y,f), with covariance
ro(2,7) ={0(yo~{1, 1)8(vo—{2, t+7)) that tends to zero
as 7— . Replacing rs(z) by 76(z,7) in (7) then gives
Rp/*(0)=0. For the special case of no internal waves,
P(EuE2; 7)=06(¢1)d(52), and Eq. (5) becomes simply
Rp’*(r) =74(0,7). We shall neglect this weak dependence
on 7 and write 74(z) for 74(2,0).

4. The fine-structure approximation

If ro(z) and p(r) are known, then (8) may, in principle,
be evaluated and Fourier-transformed to give the spec-
trum, Fr/*(c), of temperature fluctuations due to the
presence of layers. Further simplifications result if the
vertical displacement Z of the internal waves is large
compared to the scale of the layering (as is implied by
the term ‘“fine-structure”). A suitable definition of the
fine-structure scale K~! in terms of the fine-structure
spectrum Fo(k) is given by

Ko= / B2F (k) dk / / Fg(k)dk——d—_;=—r:t:(’)§0). ©)

[If 6(y) were normally distributed, K/ would be the
average number of fine-structure zero-crossings per unit
vertical distance.] Similarly

St= / oF (o) do / / Fr(o)do=—p"(0).  (10)

As we have assumed {(!) to be normal, S/7 is the
average number of internal wave zero-crossings per
unit time. When substituted into (8) the Taylor ex-
pansions (the first derivatives must vanish so that the
mean-square gradients are finite!)

ro(s) =G(1~3Ks*+ ), (1)
p(r)=1—385%24. - -, (12)

give the temperature covariance
Ry/3(r) =0*(1 =1 K2Z2827 4 - ). (13)

The fine-structure approximation KZ>>1 then implies
that Ry/*(r) drops off much more sharply than p(7), so
that the parabolic approximation for p(7) is adequate.
Thus, using (12) [but not (13)7], the Fourier transform

1 The two-layer model of Reid (1971), and Phillips’ (1971) first
example (zero sheet thickness), have infinite mean- square
gradients.
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of (8) becomes

4 = @
Frie(o)= — / dr cosor / re(V2S7Zx) exp(—x2)dx,
0 0

T

2 ]
= —/ dx exp(—a2) (V2§ Zx)™!
T Jaq

2 r* o
X ~ / ro(z)cos[—_ :ldz,
xJo V2SZx

g

2
=— exp(—a? VfSZx)“F(
p(—*)( \ sz

©

1

mrJe

AR T o \?
=<;> 52/0 exp’:—(:/—zjs—zz> :]k_ Fo(k)dk. (15)

The contribution of fine-structure to an internal wave
spectrum thus depends on the internal waves only
through their rms frequency S and rms displacement Z.
The fine-structure comes in as a weighted integral of
the spectrum Fo(k).

The situation is perhaps a bit simpler in terms of the
spectrum of fine-structure gradient, Fg(k)=FkF (k).
Changing the dummy variable to ¢=x2, Eq. (14) can be
written as

2\} * -
FTfs(U) = <—> SZg2 / e_“Fg'<——_-—~>dq.
T 0 N2¢SZ

If we further change the variable to ¢/o? then
Fr’*(s) is related to Fe (k) by a Laplace transform.

)a’.x, (14)

X

(16)

5. Two fine-structure models

Suppose the gradient spectrum of fine-structure is

Fo(k)=07/(ks~kr), kL<k<ks, (17)

and zero otherwise; this is roughly the situation when
the gradient ¢'(y) consists of a series of narrow spikes of
typical thickness 27k s~! (dimension of sheets) separated
by 27k~ (layers). Then from (16)

Fr'*(0) = (2/m)SZo (ks —kL)™
X0 exp(—a?rs?) —exp(—o2rz2)], (18)

where 757=(V25Zkgs )"t and 2V2nrrg, is the time
required for crossing a sheet (layer) at a speed SZ. The
function in brackets behaves like

1 for 71 Ko7 g7

CXp( —0'21',32) for r5 <o

ol ? for o717,

, (19)

so that the fine-structure contribution is relatively
small at very low and very high frequencies, and pro-
portional to ¢~2 in the important intermediary band.
This is consistent with the findings by Phillips.

The top-hat model (17) can be compared with the
observed gradient spectrum by Cox ef al. (1969). This
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consists of a decade-wide flat portion with a sharp high
wavenumber cutoff at ks=0(1) rad cm™. There is no
corresponding termination at low wavenumbers; in
fact, the spectrum is observed to rise again with
diminishing k, reaching perhaps a second plateau. This
behavior is tentatively ascribed (Peter Hacker, personal
communication) to a multiple thermocline structure
and the resulting nonstationarity with depth. Roden
(1971) has used salinity-temperature depth (STD)
observations to extend the spectrum into lower wave-
numbers, and finds it to rise indefinitely. The problem
is further discussed in Section 11. Ultimately there must
be a reduction in Fe (k) for small & at least as rapid
as k in order for

62= f E2F g (k)dk

to be finite. For a model
Fo (k) o b2/ (k1> +k?),

and zero beyond, the result (after suitable normaliza-
tion) is similar to (18), with the function in brackets
replaced by

o272 exp(o?r2) Ea(o?r 2 +o?rs?),

0< kS ks, (20)

21)

where

El(z)=/ et

is the “‘exponential integral” function. The asymptotic
behavior for intermediate and high wavenumbers is just
the same as (19), but for ¢<&r,' we now have
o?r,In(o?r?) —v] in place of o % The difference
between the two types of cutoff at low o is not vital.
The two models give the fine-structure scale [see
Eq. (9)]:

Kr=tiks, 2inkiks—O(kL?). (22)

6. The fine-structure ‘“contamination’

An important consideration is the fine-structure
contribution relative to the ‘‘gradient spectrum”

[(see Eq. (4)]:

Fpri(e) =T"?F¢(o). (23)
We introduce the dimensionless numbers
C:=0"1/T'2>1, D*=K—2/7:K1. (24)

The “Cox number” C is the ratio of rms to mean vertical
temperature gradient; the fine-structure number D is
the ratio of rms fine-structure scale to rms internal wave
displacement.

One can consider the additional assumption that the
layers are thoroughly mixed, so that the temperature
gradients in the layer vanish, i.e., 7'+6;'=0; the fine-
structure was defined so that & e« k710, +ks165 =0.
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~ TOWED

Ir6. 1. Solid lines show the assumed frequency spectrum from moored sensors [Eq. (30a)]
and wavenumber spectrum from towed sensors [Eq. (30b)], in a log-log presentation. For
either case, the dashed curves show the fine-structure spectrum when y>1 (left) and v<1

(right).

It follows that

Cr=kg/ky. (25)

Using Eq. (5), the relative contribution by the fine-
structure to the temperature variance produced by the
internal waves is

Rr5(0)  r4(0) < 1 >2
= =D — ),
Rp94(0) T7272

(26)

1z

which is typically small. But the relative spectral
density due to fine-structure may dominate at the high
frequencies. From (14) and (24) we have

Frf(s) (2/m)CDSo—K/ (ks—hs)
FT”d(o‘) Z_2Fg~(0’)

ks '—kL *© [
X[ / e_‘IFgf< — >dq] 27)
6% Jo V2¢SZ

For the top-hat model in the intermediary range, [ ]=1
and K/(ks—kr)=(kr/ks)t. Using (22), (24) and (25),
this ratio then becomes

Fpis(o) 3 (2/mt ZS

v(o)= (28)
Fr(a) kL oF(o)
in the frequency interval such that
7. Ko Kr 5, (29)

where 7., 571 =V2k; sZS. We shall apply this result to
observed spectra of internal waves.
7. Two internal wave models
The two models (Fig. 1)
0
Fe(o)= for

—7r

0o

Aa'o_r, for Gogagal,

(30a,b)

o< aoo;

and zero beyond o1, represent frequency spectra from

measurements at moored stations, and wavenumber
spectra from rapid tows, respectively (Garrett and
Munk, 1971). We obtain 4 from S Fi(o)do=2% and S
from fo?Fi(0)de=225% [Eq. (10)].

This discussion is limited to the special case r=2
(consistent with observational evidence); the internal
wave spectrum (30) and fine-structure spectrum (18)
then both have a ¢~2 dependence in the interval defined
by (29) and ¢y<e<e;. The result when ¢¢<Ko, is

2 2\ (¢1/00)?
TL—1=—2: 7:(17\/2—)<_> (0-1 i >
T kiZ

Nr Y T L

(31a,b)

so that for y>1 the fine-structure spectrum overlaps
and exceeds the internal wave spectrum at the high
frequencies (Fig. 1).?

For the frequency spectra we identify o1 and oy with
Viisdld and Coriolis frequencies # and f, respectively.
In the upper oceans the ratio is O(102). If we take 10 m
for a typical layer thickness and typical vertical dis-
placement, then k7Z=2r, y=0(1) and it is difficult to
say which way things will go. Since Z«n~%(y), then
vxn(y)kr™!, the product of the Viisili frequency and
the layer thickness.

For the wavenumber spectra we identify oo and o1
with wavenumbers «;=0(10"%2 cycle km™) and
a, =0(10 cycles km™!), respectively (Garrett and Munk,
1971); @, diminishes with depth proportional to #(y).
The fine-structure contamination appears to be some-
what larger, and with more overlap than in the case of
the frequency spectrum. The depth dependence is
ven(y)kr ™1, as before.

8. The frozen fine-structure assumption

We can now verify the assumption that the fine-
structure is indeed a sufficiently slowly varying function
of time. Assuming the fine-structure to be time-
independent, we note from (13) that Rs/*(r) falls off

2 Gould (personal communication) has recently shown us a
current spectrum from the Bay of Biscay which appears to be in
accord with our model for y=0(1).
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with a time scale of order

1 k\} kL\! v
e

KZS ks ks g1

For the frequency spectrum, this is about 1072 times
the Viisild period, or typically 30 sec. The correspond-

ing distance scale is 3 m. These scales are small com-
pared to the persistence of fine-structure.

(32)

9. Currents

From internal wave theory, the relation between
shear and vertical velocity (omitting a factor e™*?) is
given by
n*(y)—a*

"o e

0= ~ia]

g°—

Horizontal motion vanishes at the Viisild frequency #,
vertical motion at the Coriolis frequency f. For a sum
of contributions with the same frequency ¢, but possibly
different wavenumbers a, U’ =4 (n*—o?), where

A=—1) a(e?—f2) "W,

Suppose U’'=U,/+U;’ and n?’=n,2+ns2 where
nss2 will alternate between high values in the sheets
and approximately —#,,? in the layers. Then

' (v)

ng,ﬁ—az led2 T/

Uy npl—a?

U,d

n;sz

(34)

The first approximation applies when ¢<<#,44, and the
second if the ratio of fine-structure to mean gradient is
the same for salinity as for temperature. This is by no
means established (Pingree, 1969; Cox and Gregg,
personal communication).

In the latter case the following geometric argument
shows that the relative spectral contribution by the
current fine-structure, yy (o) =Fy’*(c)/Fy?¥o), equals
the relative contribution by the temperature fine-
structure, yr(o) { see Eq. (28)]. Consider filtered records
of U(f) and T(¢) in some narrow frequency band cen-
tered at o. The two sensors have traversed the same
layers and sheets and the associated step-like features
in the record are proportional in view of (34). If the two
records are plotted so they have the same scale, then
they will agree in detail and the relative statistics are
also the same. We should emphasize that yy () =vyr(o)
involves Z and not the rms current U.

10. Coherence

Phillips (1971) points out that the presence of fine-
structure will reduce the coherence between tempera-
ture records at two points separated in the vertical even
if the vertical motions causing the temperature fluctua-
tions are perfectly correlated. He further suggests that
the coherence scale will be of the order of the thickness

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 1

of a layer of the fine-structure. We reach a more specific
conclusion by extending our analysis for the fine-
structure spectrum.

The covariance (T'(yo,t)T(yo+ Y, i+7)) between tem-
perature measurements at depths yo, ¥+ ¥ is again the
sum of a gradient covariance Rp?¢(7,¥) and a fine-
structure covariance

Ryp/*(,¥) = / f ro(E1— o= V) (1,805 7,¥)dEr dEs, (33)

where 75(z) is as before and p({1,¢2;7,Y) is the joint
probability distribution of {7 at o at time ¢, ¢ at yo+ ¥
at time {4-7. Assuming as before that ¢ is the sum of
many independent waves, p is jointly normal and

Ry/e(r,¥) = [dr(1 —p) 22T} / ro(a—¥)

72
Xexpl:— m]dz, (36)

22 =[ () (3+ 1) 4,

and p(7,Y) = (¢ (o,))¢ (yo+ ¥, t417))/Z% is the correlation
of ¢ at the two points. Eq. (36) reduces to (7) when
¥ =0. The generalization of (8) is

where

Rp/s(r,Y) =71 /m re[2(1~p)¥Zx—Y]

Xexp(—x2)dx. (37)

In general p(0,¥)5=1 so that further progress along the
lines of Section 4 is not possible. However, in the
special, and interesting, case of perfect coherence be-
tween the vertical displacement at the two depths, we
again use the fine-structure approximation p(7,Y)
=1—15272 [valid now if —Z2%,"(¥V)/rs(¥Y)>>1]in (37).
Since Ry’*(—7,Y)=Ry’*(+,¥), the corresponding
quadrature spectrum is zero, and the co-spectrum is

2 0
Cy'5(a,¥V)=— / Ry/5(1,Y) cosordr, (38)
0

T

N1 i o 2
A
x/ SZ Jo V2SZk

XFo(k) coskYdk,

AN * s ¥
=<—> SZa—2/ e_“Faf( — )cos( — )dq, (40)
™ 0 V2¢5Z V2¢5Z

corresponding to (15) and (16) for the spectrum. Thus,
Cr’® is related to Fy as if each element of the latter were
a standing wave. This is not altogether surprising,
though the consequences are completely unexpected.
We have assumed that the displacements at the two

(39)
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depths are perfectly coherent. With the further assump-
tion of zero phase lag, Cr?(o,¥Y)=Fr?%s) and the
quadrature spectrum is zero. Thus, the coherence is

1+7(0) ®s"*(0,¥)

Ry(a,V) = (41)
14+v(o)
For our first model (Section 5) of Fy (k) we have
ug
®Rp/*(0, V) = / exp(—g¢*)¢g? coshgdg /
ay,
ag
/ exp(—¢ g %g, (42)
L
where
oV
)\=\/Z_SZ_’ (jL,S:(UTL,s)_l. (43)

For 7.7 '<e¢<rs7! the bounds may be replaced by 0
and o, so that

(RTf“(a,V)=2/ exp(—¢~2g73 coshgdg=A(N\), (44)
0

plotted in Fig. 2. The parameter A involves only the
characteristic vertical velocity SZ of the internal waves,
and so the fine-structure coherence ®¢/*(q,Y) is inde-
pendent of the fine-structure provided only 7, 'Koe<Ko g™
Further, if v is independent of frequency [as in (31)],
then ®r(s,¥) depends on frequency and separation
only through the product ¢¥. In particular, Ry(s,¥)=3%
for ®Ry/*(0,Y) =3(y—1)/v; thus, for y>>1, y=1, we have
A(0.67) =%, A(1.3) =0, giving

(¢¥);=0.955Z, 1.85Z, (43)
a law which applies to measurements of current as well
as temperature (see Section 9). For S=(nf)}=~0.4
cycle hr™ and Z=10 m, (45) gives (¢¥)3=4, 7 m
cycle hr! for ¥>>1, y=1, respectively. This result is
suspiciously close to the empirical law (¢¥);=13 m
cycle hr~! found by Webster (1971) for vertical
coherence of current fluctuations at Woods Hole
“Site D, though Webster’s result extends tofrequencies
much lower than those we expect to be affected by fine-
structure. The actual coherence distances implied by
our result range from O(k.™!) to O(ks™) in the appli-
cable frequency range 7,7 '<o <75l

11. An operational interpretation of layer thickness

The principal shortcoming of our discussion has to
do with the low wavenumber cutoff k£ associated with
layer thickness. The relative contribution of the fine-
structure varies inversely with %z, as does the fine-
structure intrusion into the band of frequencies nor-
mally reserved for internal wave activity [Eqgs. (31a,b)].
We have rather glibly set £, = (27/10) m, in spite of the
fact that the measured spectra of microstructure show
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¥16. 2. The “fine-structure coherence” Rr/*(e,¥)=A(7),
A=0¥/(V252).

no evidence of a low wavenumber termination for Fy (k),
indicating rather a hierarchy of layering, from micro-
structure to ministructure all the way to the main scale
of oceanic stratification.?

The key to the problem is the separation of T'(y) into
a deterministic mean component plus a stochastic
perturbation. The separation depends on the scale of
the experiment. Consider a tow from x=0 to x=L, with
temperature profiles taken at such close intervals that
T(x,y) is adequately observed. The mean profile is
operationally defined by

L
T(y)=1L"! / T(x,y)dx,

0

and clearly depends on expedition parameters. The
mean field in Eq. (2) is interpreted as the first term in
a Taylor expansion of 7(y—v,), and the perturbation
field as 8(x,y) = T(x,y)~T(y). Similarly

L
re(z)=L"" /. ro(z,%)dx.
[

The perturbation field as here defined is not the same
thing as a locally high-passed 7'(y), whether achieved
by differentiation (Cox ef al., 1969) or by binomial
filtering (Roden, 1971).

Any horizontal scales in the temperature structure
much larger than L are part of the mean field, those
much shorter than L part of the perturbation field. The
work of Stommel and Fedorov (1967) suggests that
layers of 2-40 m thickness have horizontal scales of

3 For Garrett and Munk’s model of the main stratification, the
density beneath the thermocline increases with depth y as
potAp(1—e/?) with b=0(1 km). Harmonic analysis over any
depth range % gives a power proportional to [1+4 (jwb/h)*]™* for
harmonic 7, or roughly Fg(k) < .72 Roden’s (1971) 278/ gpectra at
the low wavenumber limit can presumably be attributed to the
main thermal structure. In all events the spectra monotonically
increase with decreasing k. The non-integrability at k=0 is
avoided by the discretization of the spectrum imposed by finite
ocean depth.
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2-20 km; Cox et al. estimate 0.05-0.5 km for 0.1-1 m
layers. Suppose the “aspect ratio” is 10%:1; then the
perturbation field is limited to layers <10—%L, and
kr=2r/(103L). A typical tow is over 10 km, giving
kr=(2r/10) m. Vector displacement diagrams for a
typical moored record indicate 50-km displacements
over a month (Webster, 1970), thus suggesting
kr=(27/50) m. But perhaps the moored spectra are
more subject to #me changes in the thermal structure
(rather than spatial changes that are swept by the
mooring). In that event we expect to relate the record
length to the lifetime of a layer of thickness 2x%;

It is a consequence of this point of view that longer
records (space or time) assign a larger part of the tem-
perature structure to the perturbation field, with the
result that the relative contribution of the fine-structure
is likewise enhanced. If this dependence of the fine-
structure theory on expedition parameters is deemed
undesirable, so is the dependence (in our view) of the
spectra we are trying to interpret. There is perhaps
some hope that the horizontal extent of layering has
an upper limit in the oceans; in that event we would
find that r¢(z) as here operationally defined would
approach some asymptotic form for very large L.

Russ Davis (personal communication) has suggested
that £z may also have a lower bound determined by the
range of validity of the joint normal distribution (6). If,
for example, there is zero probability of {>{max, One
effect will be to limit the range of integration of (7) to
| 2] < 2¢max. Alternatively, r¢(z) might be taken as zero
for |2| > 2fmax, producing a low wavenumber cutoff for
Fo(k) at k=0(2max)™D), ie., 27k 1=0(4n¢max).
Taking {mex=3Z gives 27k~ 1=0(12r2)=0(300 m),
which is probably much larger than the value of
27k;~! obtained from other considerations (as above).

12. Summary

We expect spectra of internal waves to exhibit a
sharp cutoff above ¢1. For “moored spectra” o;=n(y)
(the Viisild frequency); for “towed spectra” oy =a.(y),
a wavenumber proportional to #(y) and of order 10
cycles km™! at a few thermocline depths. Spectra of
currents and temperatures at fixed depths (moored or
towed) are observed to have a ¢~2 dependence with no
discernible break at # or a, {Fofonoff, 1969; Webster,
1970 [see especially Bermuda spectrum 1612(6)7;
Ewart, personal communication}. Fine-structure theory
predicts a ¢—2 dependence above a frequency o1/, at a
level vy times the underlying internal wave spectrum.
The observed statistical properties of the fine-structure
" are not inconsistent with v>1, leading to a dominance
of fine-structure at the higher frequencies and wave-
numbers. Tt should be noted that spectra of vertical
velocity (presumably not subject to fine-structure
contamination) measured by Voorhis (1968) do, in fact,
cut off sharply at n(y).

Fine-structure theory predicts a vertical coherence
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distance Y «¢™! which is in rough accord with an
empirical rule proposed by Webster. The trouble here is
that Webster’s rule appears to hold over a broader
range of frequencies than can be accounted for by the
fine-structure theory.

In our view the moored and towed spectra and the
moored vertical coherence indicate a dominant role for
the fine-structure at the upper frequencies and wave-
numbers. Conflicting evidence consists of the successful
n-normalization at different depths, and of the successful
comparison of different observables on the assumption
of internal wave theory (Fofonoff, 1969). But this goes
beyond the scope of the present paper.
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