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ABSTRACT

A depth-independent model for the tidal rectification process is developed in order to explain the residual
Eulerian velocity observed at the top of a shelf edge. An approximation of the nonlinear equations for an inviscid

ocean is considered.

It is found that the Lagrangian mean current vanishes if the geostrophic contours are closed. Exact conservation
of the potential vorticity along a water column trajectory indicates that the model and its approximations are
valid. Quantitative results are shown for an idealized shelf break (constant bottom slope). Finally, a realistic
transect is considered in the north of the Bay of Biscay. The residual and fortnightly tide behavior is examined.

1. Introduction
a. Motivation

For many years, the continental slope area around
Chapel Bank (47°30'N, 7°30'W) in the northeast At-
lantic has been a subject of interest. The semidiurnal
tide is the major feature of the dynamics of the zone.
Various sets of data, as well as numerical models, show
that tidal currents can reach 0.3 m s~ during neap
tides and 0.7 m s™! at spring tides near the shelf break
along the 200-m isobath.

Analysis of measurements shows that the mean cur-
rent along the crest of the slope can reach values 10%
or 20% of the instantaneous current amplitude. Along
the 200-m isobath, the mean currents flow northwest-
ward at speeds in the range of 5-13 cm s™' (Fig. 1).
On the whole, direction of flow is parallel to the shelf
break and confined to the top of the slope, as shown
by the difference between the values of current speed
in P; and P, (during the ONDINER85 Experiment in
October-November 1985). In P, (Fig. 1) depth is 173
m and current velocity is 8.5 cm s™!, whereas in P, it
is only of 3.5 cm s™! for a depth of 168 m. These two
points are as close as one-half nautical mile. Another
example of the specific localization of the phenomenon
is given by moorings 64 and 65 where both amplitude
and direction of the current vary considerably.

Characteristic of the shelf break is a variation in
depth from 4500 to 200 m over a length of 60 km. The
average slope is about 7% but reaches a maximum of
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14% about 1500 m deep. Along the 200-m isobath,
which is the presumed area of internal tide generation
(Pichon and Maze 1990) and of the maximal observed
residual current, the slope is 4%. The nondimensional
parameter indicating nonlinearity is the ratio of the
tidal excursion, L,,, over the horizontal topographic
length scale, L. If U is the current amplitude of the
tide, w the frequency, and H the total depth, these
length scales are therefore defined by

dH
LT_H(X)/E (1)
LM=M_ )
@

Length scales L,, and Ly have been calculated con-
sidering a tidal current with an amplitude of 0.40 m s ™!
at a depth of 200 m and assuming HU constant. This
ratio shows a sharp maximum of 0.35 at the 200-m
isobath, confirming the dynamical importance of that
area (Fig. 2). The nonlinearities decrease acutely on
the shelf, and 5 km inshore the ratio is only 0.03.
Mooring P, is located near the maximum nonlinearity.

Thus, we expect a tidal rectification process at the
top of the shelf break. Other processes may also be
involved and contribute to form the mean current.
Among those processes are local adjustment to an
oceanic forcing (pressure or density gradient) and the
consequence of a geostrophic balance associated with
a front in this transition region. The same experimental
area has been examined in regards to internal waves
(Pichon and Mazé 1990) and slope currents (Pingree
and Lecann 1989).
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b. Previous studies

Tidal rectification theories have been developed to
explain the existence of residual currents in coastal en-
vironments. At shallow depths, topographic irregular-
ities and effects of nonlinear terms (friction and ad-
vection ) are important. Moreover, energy transfer be-
tween the fundamental tidal frequency and higher
harmonics, or the residual field (i.e., integrated over
one tidal period), cannot be omitted.

The existence of residual motion on sandbanks and
islands, capes and bays, and idealized bottom slopes is
often discussed in the literature. In a review article,
Zimmerman (1981) emphasizes the importance of
scaling, mainly with regards to the ratio of tidal ex-
cursion to a horizontal lengthscale. Robinson (1981,
1983) lists the different processes involved and how
different scientists have dealt with the question.

Harmonic separation and truncation allow, in some
simple geometric cases, solution of the problem ana-
lytically. Huthnance (1973) has applied that method
to a rectilinear sandbank. Loder (1980) has improved
the method and applied it to Georges Bank.

The study of relative vorticity reveals, usually qual-
itatively, the existence of both eddies and, as a conse-
quence, residual currents. By losing any reference to a
free surface behavior in that transformation, it is then
possible to study the effect of any topography on re-
sidual current (Pingree and Maddock 1979, 1980a,b;
Pingree and Mardell 1987). Relative vorticity equa-
tions can also be solved by using Fourier transforma-
tions to connect the spectral properties of topography
to those of the mean current (Zimmerman 1980).
However, such a pattern only applies to a series of
sandbanks.

More recently this idea has been used to describe
exactly the vorticity over a sinusoidal topography of
small amplitude (Maas et al. 1987). A perturbation
method is used rather than a harmonic truncation. The
extreme case of steplike topography is considered, and
the roles of friction and vortex stretching in generating
residual vorticity are shown.

Interestingly, the Langrangian mean current gen-
erated by a simple wave in a rotating ocean of variable
depth is the solution of the linearized unforced geo-
strophical motion (Moore 1970). This implies that the
eventual mass transport has to follow the geostrophical
contours. Huthnance (1981) shows that the latter result
is not affected by the strength of a weak bottom friction.

2. Physical background and hypothesis
a. Basic equation

For local study we assume a semidiurnal tidal wave
propagating from the abyssal plain with a normal in-
cidence to a rectilinear shelf break. A right-handed
Cartesian coordinate system (x, y, z) is used with the
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FIG. 2. Depth profile along the transect 4'-4. The bottom slope
(dotted) has a maximum of —14% around 1500-m depth. Nonlin-
earities have a very sharp maximum around 200-m depth (ratio L/
Lg for Hauy = 80 m? s™') (solid).

X axis perpendicular to isobaths in the direction of de-
creasing depth. The y axis is oriented with the shallow
area to its right. Assuming that all y gradients vanish,
the vertically integrated equations of the motion be-
come

ou* ou* ac*

* * — 0 *
o T ey TV e T
av* dv*
__+ * ¥ = *
Ey u o + fu rv

(H + ¢ )u*] _ a¢* 3)
dx o

For the remainder of the paper, the asterisk variables
represent nonlinear solutions for physical quantities or
their approximations. Here u* is on the x axis, v* is
the y-axis nonlinear velocity component, and {* is the
free-surface perturbation. Also, fis the Coriolis pa-
rameter, g the gravitational acceleration, r a friction
coefficient dependent on the x coordinate, and H(x)
the depth.

b. Harmonic separation and truncation

Motion can be decomposed into a sum of mean
(time averaged) motion and a tidal contribution and
its harmonics. Strictly speaking, each period should be
simultaneously solved but usually the series are trun-
cated after the first harmonic. Velocities and the sea
surface elevation can therefore be expressed as

(u* v, ) =(@+a, 3+, {+0. (4
The overbar represents time averaging over a tidal pe-
riod and indicates time-independent or residual vari-
ables. The tilde represents the contribution of the M,
oscillating motion. Introducing (4) in (3) gives:
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Tidal frequency
o . a¢ o _odil
—_— = — - — + _— _
o V=8 [’“ “ax+“ax]

E o . _ob
T ti—+ =
o TS [”’ Tox T 8x]

OH1 i} 7
w8 (o] 5

ox at ax

When we neglect bracketed terms in (5), the solutions
are very simple. In appendix A, the form of the exact
solution and its classical approximation are developed.
It is a Poincaré wave that is partially reflected and
transmitted over a slope. The crests are almost parallel
to the isobaths and the hodograph describes an ellipse
whose major axis is normal to the shelf break:

Residual motion

Lo df [_ou _
uax fo= o [ua—+ru]
b _dv
_+ [ — —_— n

uax fu [u6x+ rv]

a($i)  A(Hir)

RAT LT )

ax Ix (6)

The first term in each equation of (6) comprises forcing
terms (the Reynolds stress) for the residual motion;
they depend on tide propagation. If we neglect residual
self-advection and friction [i.e., the bracketed term in
(6)], then the mass conservation gives

§a

-

The residual Eulerian current is then a function of the
mean energy flux ¢y (appendix A):

du
pgH*

While the # current is almost proportional to H ™!, the
conservation of energy induces a residual current pro-
portional to H72, For a wave propagating from the
abyssal plain, the cross-shelf residual current is directed
toward that plain. In the Celtic Sea, over the Chapel
Bank, the energy flux entering the continental shelf is
about 400 kW m™!. The residual current # is then 1
X 1073 m s~! at a depth of 200 m. This value is so
small that it is less than current-meter resolution.

In the second momentum equation of (6), the forc-
ing term can be evaluated by using the relation de-
scribing wave propagation (appendix A) and can also
be expressed in terms of energy flux:

o _ fou
u— 3
ax pgH

i=—

7=

=—fu.
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The second and third equation in (6) are consistent,
and the first momentum equation has two unknown
quantities © and { (after removing the bracketed
terms). Thus, the equations are not closed. This is a
direct consequence of the rectilinear shelf-break as-
sumption because it is implicit that ¥ and ¢ are not set
when x = *oo. Any residual current in geostrophic
balance with the surface slope is possible but not de-
termined. Harmonic separation and truncation provide
an incomplete approximation of the inviscid equation.
The result is a geostrophic balance to which the mean
contribution of the quadratic terms is added. Accepted
approximations, although valid, have lead to a problem
of geostrophic degeneracy, which is widely described
in the literature (Pedlosky 1979). It is obvious that
only by including the dynamical secondary effects, like
advection or friction, can we proceed. Thus, by ac-
counting for friction, Huthnance (1973) and Loder
(1980) have been able to remove the degeneracy.

¢. Results with friction

The tidal rectification process, developed first by
Huthnance (1973) and improved by Loder (1980), is
based on the effect of friction. A sandbank generates
relative vorticity by vortex stretching of the fluid that
moves on top of it. Dissipation, which is stronger over
smaller depth, causes distortion in the vorticity advec-
tion. The result is the generation of a residual relative
vorticity and consequently a mean current along the
bank when the water column is submitted to an oscil-
latory tidal motion.

In terms of currents, friction introduces a supple-
mentary phase lag between # and 9. Thus, they are no
longer in quadrature, and the forcing term (#dD/dx)
in the y-residual momentum equation of (6) does not
vanish. To balance this term, a residual current D
should be considered. To derive this, the procedure
consists of first calculating the linear semidiurnal cur-
rent that is perturbed by the friction (9,). (The cross-
isobath current is assumed unperturbed by friction or
nonlinearities.) Second, the residual balance in the y
direction leads to the evaluation of the residual current
(u is negligible)

, Q;

5= 1
r 6x )

Three classical parameterizations of r (r = ku; r = ku/

H; r = ku/H? k const) are considered. In each case,

it is possible to derive the residual current:

A\ fHRGAH
2 W2H3 dx’
_ Hiu
D= < f:,_;{;’dx, r=k/H )
3 fH2u2 dH
e TR
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Huthnance (1981) observes that if friction is weak, the
final result does not depend on the strength of friction
but only on its parameterization. Rhines (1977 ) shows
that a localized motion generates a zonal current in a
beta plane. An extension to a topographic beta effect
is carried out with a linear friction (ku). The same
result as in both the Loder (1981 ) and the Huthnance
(1973) procedures are found in the particular case of
a periodic motion. Of course, these approximations
are only a crude representation of frictional effects.
More sophisticated friction laws have been developed
(Wright and Loder 1988), but the physical process re-
mains identical.

d. Lagrangian concept

Data quoted in the Introduction are given by current
meters at a fixed position. Thus, estimated current val-
ues are Eulerian. Another appproach consists in fol-
lowing a water parcel and describing its instantaneous
velocity according to its displacement. Let a water col-
umn be at the position (xp, Jo) at time £,. The calcu-
lation of its trajectory, when a rectilinear slope with
normal incidence is considered, can be done by solving
a differential equation:

H=200m ___ %X —— 3300m
to = 0
. H=500m o
Y
Ay =-660m
H=800m
-3500m
3500m o} -3500m
H =200m X 3500m
tor
y 0
Ay = -660m
yH=8oom ____{__________|
-3500m
3500m 0 -3500m
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dax
E_u(X(XOs t)’ t) (8)

dy
z = U(X(XO, t), t)

where X (¢) and Y (¢) are positions of the water column
at time ¢. The method used to solve (8) is a fourth-
order Runge-Kutta formula. The Eulerian field used
for computation is the linear field (appendix A). We
consider different starting times £, for a column, relative
to the position X,; the trajectories vary as a function
of these. Here 1o = 0, T/4, T/2, 3T/4, where T is the
tidal period, with H(x,) = 500 m over a constant slope.
After one tidal period the water column returns to the
starting isobath. This result is logical since we consider
Poincaré waves without any mass transport on the shelf.
Whatever the starting time, the water columns have
various negative y displacements in a range of 360-
2000 m (Fig. 3). For a tidal period 7, the mean La-
grangian current is defined as

_ Y(T)—-Y(0)
Uz (Xp, o) = —— .
T
[(H=200m___x_________ ]
to =—I‘
dy=-350m
H= 500m
- o)
y
L H=800m_ ___ | __ ________]|
-3500m
3500m 5} - 3500m
3500m
LH=200m__ _ _ 7 N\ eee o
fo"'i—T
-+ y 0
Ay =2000m
H=800m L
______________________ -
-3500m
3500m 0 - 3500m

FIG. 3. Lagrangian trajectories resulting from the linear hypothesis. The bottom slope is constant (dH/
dx = —0.1) and the position (0, 0) of the water column at various starting times (f, = 0, T/4, T/2, 3T/4)

is 500 m deep.
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Fc;r Hl(xo) = 500 m, dH/dx = —0.1, and Huu,; = 80
m°s

vy =0.015m sl

Often, the problem of passing from an Eulerian ve-
locity field to a Lagrangian field occurs. The existence
of such a relation for residual velocity has been com-
mented on by Longuet-Higgins (1969) and Zimmer-
man (1979) when oscillating currents dominate. It is
known that

Lagrange = Euler + Stokes,

where Langrange is the mean Lagrangian velocity, Eu-
ler is the mean Eulerian velocity, and Stokes depends
on wave propagation. Accordingly, calculation of the
residual Lagrangian velocity for the linear approxi-
mation gives

ur (x0,%0=0)=0

b (o o 0y = L LG a )
L1050 2 w2H? dx

Note that this result is only valid for sufficiently weak

slope. For the linear approximation, the Eulerian mean

current is equal to zero. Therefore, the residual La-

grangian velocity is exactly identical to the Stokes ve-

locity.

3. Solving the nonlinear equations

Another way of removing the geostrophic degeneracy
consists in solving the nonlinear equations without
harmonic truncation and in analyzing the current thus

obtained in terms of residual and tidal current. Qur-

knowledge of the linear motion makes it possible to
simplify the advection terms and leads to a simpler
solution. :

a. Basic equations

In order to approximate a nonlinear solution, we
first linearize the two momentum equations of the sys-
tem (3) by writing the advection terms in the form

i} )

gx%ua, (10)

u*

where u is a linearized solution for the cross-isobath
current (A, or Ag). The strategy developed here consists
in choosing a pseudo-Lagrangian coordinate transfor-
mation x*(x, ¢) that allows nonlinear currents to be
derived from linear ones by
u*(x, t) = u{x*(x, t), t)) = u(x*) cos(wt)
+ u(x*) sin(wt)

vV¥(x, 1) = v(x¥(x, 1), 1)) = v;(x*) cos(wt)

+ v(x*) sin(wt).

(11)
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Without loss of generality, x* can be defined as a sum
of space and time-dependent functions:

x* =X +f0(x! t) +fl(x’ t) +f2(x9 t)
oot fi ) e

Using (10) and introducing ( 11) in the equations gov-
erning the motion yields

Ju(x*, t) + [ax*

— + u(x, 1) E] Su(x*, 1)

ox ot ox ax*
a L 3
—fotx, 1y = —g 55 (12)
ox
do(x* 1) [ox* ax* 1 dv(x*, 1)
ax [ a e D ax] ax*
¥ fu(x*, 1) =0. (13)

This useful transformation is one that causes the
bracketed terms to vanish in (13) and builds a periodic
solution for the currents as:

ox* ox*
[ o + u(x, t)*&] =,
that is,
afo i dfo af
L T N )
[az ot T W T ok

In order to derive the final result, the f; functions are
defined by a recurrent series:

ah__

at (14)
i __ o

at ax -

If only the first two terms of the series are retained, the
transformation becomes

l
x*=x—f udt,
I

0

which is the opposite transformation to one that de-
fines, to the same order, the Lagrangian y displacement

t
X(xp,1) = xo + f udt.

o

The pressure gradient (3{*/dx) can be determined
by the first momentum equation (12). Finally, under
a tidal Eulerian velocity field effect, a water column
moving over the slope is submitted to vertical stretch-
ing. Water column trajectory and associated potential
vorticity are fundamental aspects of tidal dynamics
over a slope. Particularly, if no simplifications (e.g.,
linearization of the advection terms) are made, the po-
tential vorticity should be constant along the trajectory.
Thus, validity of the final solution can be verified.
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b. Case of constant slope

For the sake of simplicity, the above theory is applied
to a shelf break with a constant slope (dH/dx = —a)
and for the linear currents 4, and A,, (cf. appendix
A). Therefore, the linear currents over the slope are

_ Hgau, cos(wi)
“ Hall — (a/ Hx] (1
_ S Hauysin(wt) (16)

 Hy[l — (a/Hp)x]"

The origin of the coordinate system is taken at the rise
of the continental slope (depth H,). Straightforward
algebra (appendix B) allows one to derive the x* trans-
formation as a series that converges for

2Ly <1.
Lt

Thus, the useful pseudo-Lagrangian transformation is
only available when nonlinearities are not dominant.

. -1
u,u (ms™) Cross Isobath current

0.20

Tidal cycle

V,}V'(ms")
0.20

Along Isobath current

0.15 v*
O.IO—l‘ /’v S
0.05 4~

0.00

- 0.05 4
-0.10 ¥ ~ -

-0.15 4

- 0.20 i + | ! ! ! ! 1 {

Tida!l cycle

FIG. 4. Nonlinear (solid) and linear (dotted) tidal currents for a
constant slope (H = 500 m and Hu, = 80 m? s~} dH/dx = —0.1).
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Let Hyuy; = 80 m?s™! and a = 0.1. Convergence is
ascertained for depths equal to 340 m and more. Non-
linear solutions are (see appendix B)

. _ Hauy 2aHuy . 12
u*(x,r) = H(x) cos(wt)[l + __wH(x)z sm(wt)]
(17)
H
o0 = - L s

. 2aHu, . ~1/2
X sm(wt)[l +—msm(wt)] . (18)
It is easy to verify that if (15) and (16) are acceptable
solutions for linear motion, then u* and v* are solu-
tions to a nonlinear approximation of the 0 y momen-
tum equation of (3). The potential vorticity equation
is checked at the end of this chapter.

Nonlinear and linear tidal currents are compared
(Fig. 4) for a depth H = 500 m, a mass flux H,uy,
= 80 m? s~! and a slope a = 0.1. The maxima of the
cross-isobath current are slightly stronger and a defor-
mation of the sinusoid is obvious but remains weak;
therefore linearization of the advection terms is valid.
The current v* is clearly asymmetrical and the differ-
ences with linear behavior are more important. We
observe a positive Eulerian residual current v* that
can be exactly evaluated by the time integration of (18):

— 1 faH%u? 15 [ aHug\*
= — + — 4],
8 \ wH? )

*
v 2 w?H?
In the case of weak nonlinearities, only the first term
in the bracket is retained, and thus the same result is
obtained as for a linear friction law (ku). To this order
of approximation, the Eulerian residual current found
is also exactly the one that cancels the Stokes velocity
in the linear approximation.

Considering {* < H, knowledge of the current allows
one to calculate the trajectory of a column of fluid and
its potential vorticity. The Lagrangian form of the linear
(Q) and the nonlinear (Q*) potential vorticity are

_ i aHuy sin(wt)

Q(X(XO, t)) = |: H(X)2

+f]/H(X)

O*(X(xp, 1)) = [— £ aHuy, sin(wt)/

5 2aH uy sin(wt)\3/?
[H(X)(l+——wH(X)2 ) + /1) H(X),

where X is the position of a water column along Ox,
and x, the starting position at ¢ = 0. During a tide
cycle, the trajectory of the nonlinear model is a closed
curve (Fig. 5a). It is an ellipse described anticycloni-
cally in which, the major-to-minor axis ratio equals w/
/. This confirms the disappearance of the Langrangian
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@

=800m A H=800m
With friction ku /H2?

“H=860m |
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With friction ku /H

o
E
[«
= >
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o 3 .t .
S . st
s N
° 7 @ Tidal cycle
10—
o] Q.5 I
Nonlinear Linear
H=200m __ 4 H=200m 3

, F‘\ ) y — )
\_/ \_/
@ @ Ay =-660m

(H=800m H=800m
0 (o}

FiG. 5. Lagrangian trajectories resulting from the frictionless nonlinear model (a), from the linear model
(b), and from the nonlinear theories using a weak friction (k — 0) in three cases (c), (d), and (e). The
behavior of the potential vorticity along the trajectory is in each case presented in (f). Only in the first

model (a) is the potential vorticity conserved and the trajectory a closed curve.

transport along the slope. The associated potential vor-
ticity is nearly constant (Fig. 5f):

f

~ =2X10"m™'s7,
H(xo)

Q*

Conservation of Q* is only approximate because we
have made many assumptions. Nevertheless, this vor-
ticity behavior validates the whole analytical model. A
comparison with the linear approximation (Fig. 5b)
and with tidal rectification theories using a friction law
(Fig. 5c,d,e) is very instructive. The linear trajectory
shows a negative Lagrangian current along the slope
and conservation of potential vorticity is poor. In the
case of weak friction, three laws (ku; ku/H; ku/H?)
are considered and in each case, according to Loder

(1980), a positive Lagrangian y transport is observed.
For 7 = ku/H and 7 = ku/H?, the potential vorticity
conservation is very poor, showing that the Huthnance
(1973) and the Loder (1980) procedures are, for weak
friction, unable to conserve the potential vorticity. With
a linear friction law, (v = ku), the proposed solution
is more efficient, but the form of the y component of
the residual current is identical with that obtained by
truncation of our nonlinear solution (when only the
first f; function is conserved).

4. Application to the 4'-A4 transect

a. Method

The method mentioned above is similar to a per-
turbation method. The convergence criterion shows
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the limit beyond which nonlinear terms become dom-
inant with respect to the others. On the 4’4 transect,
since the ratio L,/ Ly is less than 1 (Fig. 2), the non-
linearities are sufficiently weak for us to assume that
nonlinear effects are only a perturbation of the linear
tide. For natural topographies the results are not a sim-
ple mathematical function as for a constant slope, so
convergence should be numerically checked and the
x* expansion truncated.

Assuming, at the top of the slope, a linear tidal cur-
rent described by 4y and Ag, we can separate time and
space variables of the f; functions in the following way:

Jilx, 1) = gi(x)[sin(wt)]™",

where
- Haug
8= T CH()
_ Hju, dgi(x)
8i+1 =

T (i + DeH(x) dx

The derivatives are evaluated in terms of finite dif-
ferences

1 1
g,-(x + ) Ax) - gi(x 5 Ax)
dgi(x)

dx Ax

Space derivatives of depth appear in these expressions.
A linear interpolation of those along the transect is
inefficient because the derivatives are either discontin-
uous or undefined at various tabulated depths. A cubic
spline interpolation is performed and only the three
first terms in the x* expansion are retained:

x* =x+ fo(x, 1) + fi(x, t) + fo(x, 1).

+0.6 ms™'
T +0.6ms™!

T T T T

-0.6ms™!

FIG. 6. Nonlinear tidal current ellipses at the top of the shelf break
(near P,) for three mass transport amplitudes: (a) H, = 70 m?s~";
(b) Hyuz = 87 m*s™'; (¢) Huy = 104 m? s,
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m.s™"
.08

Om-\'

0.07 T
0.06
0.05 +
0.04 4+
0.03 -
0.02 -:«@
0.0 J4500m =
o) i
0 25

125 km

FIG. 7. Residual Eulerian current v} profile computed along the
cross section A'—A for the three various situations: Hyu; = 70 m? s™!
(dotted); Hu, =87 m® s~ (solid); Hu; = 104 m? s~ (chain-dotted ).
The maximum of tidal rectification current is in the vicinity of P,.

Using Az and Ay for the linear currents and Eq. (11)
allows the nonlinear behavior of tidal currents to be
derived.

b. Results

Tidal currents observed at P, are close to 0.5 m s~ .
They reach 0.6 m s™! at spring tide and decrease to 0.4
m s~ ! at neap tide. Since the depth is 173 m, the mass
flux amplitudes are, respectively, Hju, = 87 m?s™,
Hau,; =104 m? s~ and 70 m? s~!. Nonlinear tidal cur-
rent hodographs in these three situations are presented
for a depth of 200 m (Fig. 6). As for a Poincaré wave
in the Northern Hemisphere, the oscillating current
rotates clockwise. The hodograph is strongly asym-
metric with respect to the u axis, and thus an Eulerian
mean current, with the shallower depth to its right,
occurs. A numerical time integration over one tidal
period of v* is used to evaluate the residual current
v* along A’-A. The range of this parameter lies between
0.03 ms~' and 0.07 m s~! with a maximum value at
the shelf break (Fig. 7). The mooring P, is in the vi-
cinity of the maximum. The predicted mean current
is somewhat underestimated at P,. The very sharp de-
crease in mean velocity over the shelf reproduces the
magnitude gap between P, and P,. Of course, at 4, (H
= 3 225 m) the observed weak mean current (0.03
m s™') is not a consequence of nonlinear advective
effects. An example of a water column trajectory is
presented (Fig. 8) in the region where greatest nonlin-
earities are estimated. Tidal displacement over one tidal
period is nearly a closed curve. Moreover, mean La-
grangian current is found (1073 m s™!) to be insignif-
icant.

Efficiency of the method is checked by the potential
vorticity conservation Q*. In the worst case, AQ*/ O*
equals about 11%. Potential vorticity becomes constant’
if the trajectory is computed using the linear current
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F1G. 8. Lagrangian trajectory for a water column located at the
top of the shelf edge at time ¢ = 0. Despite an irregular slope, the
displacement is symetrical to the starting isobath.

u and the nonlinear current v*, Thus, the aforede-
scribed solution of the nonlinear set of equations (3)
[after transformation by (10)] is exact. Therefore, the
bias comes from poor approximation of the cross-iso-
bath current in the linearized advective terms. To im-
prove the method, a better approximation for u*(39/
dx) as u(0/0x) must be taken. A convenient way is to
consider the truncated nonlinear cross-isobath current
u, obtained by the approximation u(d/dx) and to
evaluate the linearized self-advection by u,(9/dx)

Hu, cos(wt)

“'T Hlx — (Haua) oH) sin(w0)]
or
_ Hdud Hdud dH(X) .
U = HG) cos(wt)(l + I dx sm(wt)) .

Although evaluation of f; functions is lengthy, the
vorticity conservation is significantly improved (AQ*/
O* <2%). In all cases, the behavior of parcel displace-
ment and residual motion is unaltered by the new ap-
proximation. Thus, vorticity conservation is an accu-
rate check on the validity of the result.

¢. Nonlinear interaction between M, and S,

It is well known that the linear sum of two waves of
different frequencies generates a “beat” phenomenon.
This appears in the spring tide to neap tide cycle. When
we consider the two semidiurnal waves M, (ws, = 1.405
X107 s ')yand S, (ws, = 1.454 X 10™* s~') and when
the nonlinearities are nonnegligible, two forced oscil-
lations are expected. The first is the MS, component
(of frequency wwm, + ws,). The second is the MS; com-
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ponent of the tide that appears in the form of a fort-
nightly modulation of the mean current (here inte-
grated over one tidal period). In fact, if only the effect
of M, and S, over a slope are considered, three con-
tributions to low-frequency motion occur simulta-
neously. These are self-interactions of each wave (M,
or S;), which generate a purely residual current and
cross-interaction between M; and S,, which induces a
fortnightly oscillating current. Of course, linear ap-
proximation of tidal current is a linear sum of the M,
and S, contribution:

1
u(x, 1) = 1) ([Hauglm, cos(wmat)

+ [Haugls, cos(wsat))

v(x,t)=— ‘i“‘é“(l‘;c‘)‘ ([Hattalm, sin(wmat)

+ [Haugls, sin(wsat)).  (19)

Using (19) to calculate the x* transformation (14)
we obtain the nonlinear current:

u*(x, t) = u(x*, 1)
v¥(x, t) = v(x*, 1).

These results are represented in Fig. 9 for the transect
A'-A at 200-m depth. Comparison of the linear (u)
and the nonlinear (#*) cross-isobath currents shows
that the latter is slightly stronger in amplitude. No re-
sidual cross-isobath current is generated. Along the shelf
break the v* current is strongly asymmetrical, and
consequently a residual and a fortnightly oscillating
current occurs. The magnitude of this low-frequency
current varies from 0.08 m s™! at spring tide to 0.02
m s~ ! at neap tide. Thus, amplitude of the MS; com-
pone?t of the current along the isobath is close to 0.03
ms- .

5. Conclusions and summary

It is shown that nonlinear dynamics of an inviscid
ocean are sufficient to construct a rectification mech-
anism because the dynamics over a slope are nonlinear,
even if friction vanishes. In this study, we have de-
scribed a simple alternative method that to harmonic
separation and truncation. Our results are in agreement
with potential vorticity conservation, and the trajectory
of a water column is a closed ellipse. For tidal currents
rotating anticyclonically in the Northern Hemisphere,
the mean Eulerian current flows along the slope leaving
the shallow water on the right-hand side.

The most important result is the absence of mass
transport along the isobaths. The Eulerian residual
current cancels the Lagrangian mean current due to
the linear approximation. This result improves the
work of Moore (1973), which had demonstrated that
Lagrangian transport generated by a wave over a non-
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FI1G. 9. The linear sum of tidal waves M, and S, just shows the beating of these two respective components. No residual current is
generated (a), (b). Introduction of nonlinear interaction increases the current amplitude perpendicular to the isobath (¢). Along the y axis,
residual, as well as 14.7-day oscillating and semidiurnal, currents are generated (d).

flat bottom must follow the geostrophic contours (f/
H = const). Consequently, if the domain boundaries
intersect the latter contours, the mean Lagrangian cur-
rent vanishes. A rectilinear shelf break considered here
is, in fact, a closed geostrophic contour. It is shown
that in such a case also no mass transport occurs.

An application to a particular transect across the
slope of the Bay of Biscay is in agreement with the
analytical results. Data and calculations are in the same
range. Thus, the tidal rectification process generates
the greatest part of the observed residual current at the
top of the slope. The nonlinear interaction between the
semidiurnal lunar component (M,) and solar com-
ponent (S;) is correctly reproduced.

The weakness of analytical results that use friction
in order to remove geostrophic degeneracy is evident,
but the physical concept (a distortion in the vorticity
advection due to friction) is basically sound. The bias
comes from taking into account, in the forcing term
of the residual momentum equation, the linear currents
(perturbed by friction ) instead of nonlinear (also per-
turbed by friction) currents. The feedback of the gen-
erated residual currents to the tidal velocity field in-
troduced by Loder (1980) improves the theory, but

probably remains insufficient to describe the complete
nonlinear behavior of the tide. An interesting challenge
is an extension of the pseudo-Lagrangian method de-
veloped here in order to examine the momentum bal-
ance with friction.
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APPENDIX A
Linear Tide over a Slope

When a normal incident tidal wave over a shelf break
is considered, two mathematical (and physical) ap-
proaches are possible. In the first, the free-surface be-
havior over the slope can always be expressed as

$(x, 1) = HIF(x, w) cos(wt) + G(x, w) sin(wt)],
(A1)
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where F(x, ) and G(x, w) are time-independent
functions. This is an alternative expression of the more
conventional description of a progressive wave

§(x, 1) = {(x, w) cos[wt + ¢(x)]
where the amplitude is
§x, w) = {o(F? + G*)'V2,
and the phase is

= arctan g
4 Fl

Equation (A1) describes only a linear tide. Using
(A1) and the linearized equations of motion, the cur-
rent components are expressed in terms of F and G
derivatives

g= (wgsz)‘}Z [dG cos(wt) — ggsm(wt)] (A2)

Therefore an alternative form of the propagation
equation is the system:

PF 1 dHdF o' —f?
dx? ﬁdxd_x+ gH F=0 (a4
&G 1 dHdG o —f
=+ = 0.
et it e 670 A

In the case of a progressive wave Egs. (A1)—-(A3) allow
calculation of the mean energy flux along the x axis:

<75u=ng?5
- 1 pg*t3Hw d_G_ dF
= 2(2f2(F Gd). (A6)
Using (A2), (A3) gives
2B gl [dFAG_dGdF
ox 2(w?—f2)?%|dx dx* dx dx?

Calculating dF/dx (A5) — dG/dx(A4) = 0, we obtain

AP dGdF)_ (@[ dF _dG
dx dx*  dx dx? gH dx dx
and finally:
S _ 1 pgtdef (,.dG _ _dF
x 2(w?*—f>HH dx dx
b _ . ¢u
uax =f ek (A7)

In the second approach and according to the weak-
ness of the local divergence parameter, the continuity
equation leads to
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H,uy,
u(x, t) = Hix )cos(wt) (A8)
For a normal incident wave, it is
S Haa
v(x,t) = — = ——sin(w? A9
(x, 1) © H(x) (wi). (A9)

Knowledge of the current u,in the deeper region (depth
= H,) is sufficient to describe the velocity component
u and v at any point over the slope. Note that these
approximations transform a progressive wave into a
standing one.

APPENDIX B
Case of Constant Slope

Knowledge of the linear cross-isobath current (15)
allows one to clearly make the x* expansion and the
f; function defined [using (14)] as

a_ﬁ)_ _ _ Hdu
o u, thus f,= oH(x )sm(wt)
afi __dfo L lba (Hug\* .,
o uax,thus f]_+2H(wH) sin“(wt).
Finally
1 . 1 —
f= (=1 3.5 [2(i+1)— 3]

(i+1)

% (4 ' Hauy sin(wt) !

H wH ’
The potential vorticity equation and the nondivergence
x transport at the tidal frequency allows elimination
of the constant (with respect to ¢) that can appear in
the time integration. The nonlinear current is derived
from the linear one by (11), giving
Hau, cos(wt)
H(x)(1+5)

_i Hu, sin(wt)
w Hx)(1+8)’

* —

*

where S is the series

(1)
-1
z 2\
2

with
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The series (1 + S) is a known binomial series, which
converges to (1 + Z)/2 for | X| < 1. Thus, the non-
linear currents are rewritten

_ L Hjugsin(wt) — v(x,1)
v*(x, t)_ wH(X)(1+Z)l/2—(1+Z)l/2
W (x, 1) = Hu, cos(wt) u(x, t)

Hx)(1+2)72 (1+2)7

The convergence of the (1 + S) series is, in fact, ob-
tained by the unequality
2aHdud <1

wH?
Using (1) and (2), an equivalent convergence condi-
tion is expressed in terms of physics by sufficiently smail
nonlinearity:

2L,

Ly

< L.
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