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The probability density of the total curvature of a uniform random
Gaussian sea surface in the specular points

R. G. GARDACHOV

Istanbul University, Engineering Faculty, 34850, Avcilar, Istanbul, Turkey

(Received 24 April 1998; in � nal form 30 June 1999 )

Abstract. Assuming that sea surface is a random uniform Gaussian function, an
analytical expression is developed for the probability distribution density of the
total curvature of the surface in specular re� ection points. The density can be
expressed in terms of an integral, and its asymptotics acquire a simple form for
large values of the total curvature. A numerical experiment to verify the probability
distribution density is also given.

1. Introduction
The study of sea wave variables have been a subject of considerable interest in

oceanography. For this purpose, optical methods have been used.
Let S be the projection of the part of ocean’s surface being illuminated by parallel

light rays travelling in the direction of the unit vector sÞ0 , and the surface is being
viewed in the direction of the unit vector sÞ. It is well known (Keller and Keller 1950,
Bass and Fuks 1972, Shifrin and Gardachov 1985) that the mean value of intensity

7 I 8 of light re� ected by a rough sea surface is given by

7 I 8 5 k 7 N 8 T 1

|V |U S (1)

where, k 5 k ( sÞ0 , sÞ) is the coe� cient not depending on surface geometry; 7 N 8 is the
average number of specular points per unit horizontal area; and V is the total
curvature at the specular point and 7 1/|V | 8 the mean value of 1/|V |.

To de� ne the � uctuation of the intensity (I ) and its probability density (w(I )), a
knowledge of the total curvature probability density at the specular points (W (V)) is
required. The statistical distribution of the total curvature (V) for a Gaussian uniform
surface z 5 f(x, y) (of which elevation f and derivatives ‚ n+mf/ ‚ xn ‚ ym are distributed
normally and 7 f(x, y) 8 5 0), has been derived by Longuet-Higgens (1958, 1969). The
function W (V) has been expressed in terms of contour integrals and its asymptotics
by special functions.

The main object of the present study was to obtain a comparatively simple
expression for W (V), convenient for use in practical computations. It is shown here
that the distribution W (V) has an integral representation in terms of error function.
Veri� cation of the given expression by numerical experiments was also performed.
A computation using this expression gave exactly the same result as that obtained
by the Longuet-Higgins (1969) formula.

Internationa l Journal of Remote Sensing
ISSN 0143-1161 print/ISSN 1366-5901 online © 2000 Taylor & Francis Ltd

http://www.tandf.co.uk/journals



R. G. Gardachov2918

Let the surface of the ocean (which is assumed to be Gaussian uniform) be
de� ned by

z 5 f(x, y) (2)

where x and y are horizontal coordinates and z is the elevation. Then, the total
curvature of the surface (V) is given by

V 5
f
xx

f
xy

Õ f2
xy

(1 1 f2
x

1 f2
y
)2

(3)

where f
x
, f

y
, f

xx
, f

xy
, f

yy
denotes derivatives ‚ f(x,y)/ ‚ x, ‚ f(x, y)/ ‚ y, ‚ 2f(x, y)/ ‚ x2,

‚ 2f (x, y)/ ‚ y ‚ x, ‚ 2(x, y)/ ‚ y2 , respectively.
The subject is to obtain a statistical distribution of V at the specular points,

where the following system of equations are satis� ed:

f
x
(x, y) 5 c

x
5 const.

f
y
(x, y) 5 c

y
5 const.H (4)

Let, w (f
x
, f

y
, f

xx
, f

xy
, f

yy
) denote a probability density of f

x
, f

y
, f

xx
, f

xy
, f

yy
. Since the

� rst derivatives, f
x

and f
y
, are statistically independent of the second derivatives, f

xx
,

f
xy

, and f
yy

, we obtain

w (f
x
, f

y
, f

xx
, f

xy
, f

yy
) 5 w (f

x
, f

y
) Ö w (f

xx
, f

xy
, f

yy
) (5)

The probability density functions w (f
x
, f

y
) and w (f

xx
, f

xy
, f

yy
) are normal distributions

and are given by

w (f
x
, f

y
) 5

1

2p Ó D2
exp A Õ

m02f2
x

Õ 2m11 f
x

f
y
1 m20f2

y
2D2

B (6)

and

w (f
xx

, f
xy

, f
yy

) 5
1

(2p)3/2 Ó D3

Ö expC Õ
1

2
(M

11
f2
xx

1 M
22

f2
xy

1 M
33

f2
yy

1 2M12 f
xx

f
yy

1 2M13 f
xx

f
yy

1 2M23 f
xy

f
yy

)D (7)

where

D
2 5 det E

2
, E

2 5 Am20 m11
m

11
m

02
B ; A 7 f2

x 8 7 f
x

f
y 8

7 f
x

f
y
8 7 f2

y
8 B (8)

D3 5 det E3 , E3 5 Am40 m31 m22
m31 m22 m13
m22 m13 m04

B ; A 7 f2
xx 8 7 f

xx
f
yy 8 7 f

xx
f
yy 8

7 f
xx

f
xy 8 7 f

xx
f
yy 8 7 f

xy
f
yy 8

7 f
xx

f
yy 8 7 f

xy
f
yy 8 7 f2

yy 8 B (9)

and {M
ij

} is the matrix, inverse to E
3
.
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The conditional probability density w (f
xx

, f
xy

, f
yy

|c
x
, c

y
) of the random variables

f
xx

, f
xy

, f
yy

at the specular points with a gradient of (f
x
, f

y
), which satis� es equation

(4), is de� ned by

w (f
xx

, f
xy

, f
yy

|c
x
, c

y
) 5

1

7 N 8
w (c

x
, c

y
)

Ö w(f
xx

, f
xy

, f
yy

) |f
xx

f
yy

Õ f2
xy

| (10)

It can be shown that the matrix E
3

is a positive-de� nite; hence, by a real linear
transformation of variables, the exponent in equation (7) can be reduced to a unit
form and, at the same time, the expression

v 5 f
xx

f
yy

Õ f2
xy

(11)

can be reduced to a diagonal form (Longuet-Higgins 1958). Thus, for transformation
from variables f

xx
, f

xy
, f

yy
to new variables g1 , g2 , g3 is obtained

M11 f2
xx

1 M22 f2
xy

1 M33 f2
yy

1 2M12 f
xx

f
yy

1 2M13 f
xx

f
yy

1 2M23 f
xy

f
yy

5 g2
1
1 g2

2
1 g2

3
v 5 f

xx
f
yy

Õ f2
xy

5 l1g2
1

1 l2g2
2
1 l3 g2

3 H (12)

where l1 , l2 , l3 are the roots of the cubic equation

4l3 Õ 4Hl Õ D3 5 0 (13)

and H is determined from H 5 ö (m40m04
Õ 4m31m13 1 3m2

22
). Since the roots l1 , l2 , l3

are all real, we must obtain

0 #
D2

3
H3

# 1 (14)

and

l1 1 l2 1 l3 5 0

l2 l3 1 l3 l1 1 l1 l2 5 Õ × H # 0

l1 l2 l3 5 ì D3µ0 H (15)

l
3 # l

2 # 0# l
1

(16)

It has been shown (Longuet-Higgins 1969) that average density of specular points
with gradient f

x
(x, y) 5 c

x
, f

y
(x, y) 5 c

y
can be de� ned by

7 N 8 5
4
p

l1 WA Õ
l2
l1
Bw (c

x
, c

y
) (17)

where W (x) is a very slowly varying monotonic function with maximum and minimum
values of W (0) 5 1 and W (½) 5 p/2 Ó 3# 0.907, respectively.

2. Expression for probability density of total curvature
Following this introduction, we now turn to obtain an expression for the probabil-

ity density W (V) of the total curvature V at the specular points, determined by
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equation (4). From equations (10), (12) and (17), for a distribution of g1 , g2 , g3 at
the specular points, we have

w (g1 , g2 , g3 ) 5
1

8 Ó 2p
|l1g2

1
1 l2g2

2
1 l3g2

3
| exp [Õ (g2

1
1 g2

2
1 g2

3
)/2] (18)

First, we shall � nd the statistical distribution w (v), of the random variable

v 5 l1g2
1

1 l2g2
2

1 l3g2
3

(19)

at the specular points. Now, from equation (19), we have

g1 5 g1 (g2 , n3 , v) 5
1

Ó l1
Ó v Õ l2g2

2
Õ l3g2

3

‚ g1
‚ v

5
1

2 Ó l1

1

Ó v Õ l2g2
2

Õ l3g2
3 H (20)

Then, the distribution of v is given by

w (v) 5 G2P P
2

Õ 2

w (g1 (g2 , g3 , v), g2 , g3 )
‚ g1
‚ v

dg1 dg2 if v> 0

2P P
(G )

w (g1 (g2 , g3 , v), g2 , g3 )
‚ g1
‚ v

dg1 dg2 if v< 0

(21)

where, (G ) is a region on the plane (g2 , g3 ), points of which satisfy the inequality
vµ l2g2

2
1 l3g2

3
.

If v> 0 from (21) we obtain

w (v) 5
1

8 Ó 2p l3/2
1

W (Õ l
1
/l

2
)
v expA Õ

v

2l
1
BJ1 (22)

where,

J
1 5 P P 2

Õ 2

exp[Õ ½(a
2
g2
2

1 a
3
g2
3
)]

Ó v Õ l
2
g2
2

Õ l
3
g2
3

dg
2
dg

3
(23)

and a
2 5 1 Õ l

2
/l

1 > 0, a
3 5 1 Õ l

3
/l

1 > 0. To evaluate the integral J
1
, we use the

substitutions

g
2 5 r cos a/ Ó Õ l

2
g3 5 r cos a/ Ó Õ l3

r (24)

and � nd that

J1 5
1

Ó l2 l3
P 2p

0
daP 2

0

r exp[Õ r2m (a)]

Ó v2 1 r2
dr

5
Ó p

2 Ó l2 l3
P 2p

0

exp[vm (a)]

Ó m (a)
[1 Õ F ( Ó vm(a))] da (25)

where m (a) 5 1/2l1 (1 Õ l1/ l2 cos2 a Õ l1/l3 sin2 a) and F (x) 5 2/ Ó p Ÿ x0 exp(Õ t2 ) dt is the
error function.
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Hence, if v> 0, for the probability density w (v), we have an integral representa-
tion in the form

w (v) 5
1

16 Ó 2W (Õ l1/l2 ) Ó l1 l2 l3
v expA Õ

v

2l1
B

P 2p

0

exp[vm(a)]

Ó m (a)
[1 Õ F ( Ó vm(a))] da (26)

If v< 0. from equation (21), we have

w (v) 5
1

8 Ó 2p l3/2
1

W (Õ l1/l2 )
(Õ v) expA Õ

v

2l1
BJ2 (27)

where,

J2 5 PP
(G )

exp[Õ ½(a2g2
2

1 a3g2
3
)]

Ó v Õ l
2
g2
2

Õ l
3
g2
3

dg2dg3

5
Ó p

2 Ó l
2
l
3
P 2p

0

exp[vm(a)]

Ó m (a)
da (28)

Hence, if v< 0, for the probability density w (v), we have an integral representation
in the form

w (v) 5
1

16 Ó 2W (Õ l
1
/l

2
) Ó l

1
l
2
l
3

(Õ v) expA Õ
v

2l
1
B

P 2p

0

exp[vm(a)]

Ó m (a)
da (29)

From equations (26) and (29), it can be shown that

P 0

Õ 2

w (v) dv 5 P 2

0
w (v) dv 5

1

2
(30)

which indicates that the number of elliptical (v> 0) type of specular points are equal
to the number of saddle (v< 0) type of specular points.

Thus, equations (26) and (29) give statistical distribution of the random variables
v at the specular points.

3. The asymptotics of probability density
The asymptotic expression for distribution w (v) can also be obtained. From

equation (26) for large values of v, we obtain:

w(v)#
1

8W (Õ l
2
/l

1
)S 2p

l
1
(l

1
Õ l

2
)( l

1
Õ l

3
)

Ó v expA Õ
v

2l1
B v � 1 2 (31)
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Evaluating the asymptotic of the integral in equation (29), as v � Õ 2 , we � nd

w(v)#
1

8W (Õ l2/l1 )S 2p (Õ l
3
)

(l1
Õ l3 )( l2

Õ l3 ) Ó Õ v expA Õ
v

2l3
B v � Õ 2 (32)

In the following two special cases, w (v) can be expressed in terms of known functions.
Case 10 : Let l2 5 0. Then l1 5 Õ l3 . Which is the case when the surface f (x, y)

really consists of two distinct system of long-crested waves intersecting each other
at a small angle. It can thus be shown that distribution w (v) is de� ned by

w (v) 5
1

8l2
1

|v | K0 A|v |

2l1
B (33)

where, K0 (x) 5 Ÿ +2
1 e Õ xt / Ó t2 Õ 1 dt (x> 0) is the modi� ed Bessel function with

imaginary argument. The distribution is symmetrical about the origin.
Case 20 : Let l

2 5 l
3
. Then l

1 5 Õ 2l
2
. This might occur in a variety of circum-

stances—for instance, when the surface is isotropic or when the angular spread of
energy is small and has a certain ‘peakedness’. Since

m (a) 5
1

2l
1
A1 Õ

l1
l
2
cos2a Õ

l1
l
3

sin2 aB 5
1

2l
1
A1 Õ

l1
l
2
B 5

3

2l
1

5 Õ
3

4l
2

from equations (26) and (29), we � nd

w (v) 5
1

8l2
2

v expA Õ
v

2l1
BC1 Õ FAS Õ

3v

4l2
BD (v> 0) (34)

and

w (v) 5
1

8l2
2

(Õ v) expA Õ
v

2l1
B (v< 0) (35)

respectively.
Since the statistical distribution of v has already been found, the distributions

of
V 5 v/q, [q 5 (1 1 c2

x
1 c2

y
)2] and r 5 1/|V | can also be readily de� ned:

W (V) 5
1

q
wAv

qB (36)

W (r) 5
1
r2 CW A1

rB 1 W A Õ
1
rBD (37)

Then, the average value of r 5 1/|V | can be simply evaluated by

7 r 8 5 T 1

|V |U 5 P +2

Õ 2

1

|V |
W (V) dV 5

pq
4l1W (Õ l2/l1 )

(38)

The second moment of W (r) and its higher moments, are all in� nite.
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4. Numerical experiments and discussion
The validity of the formulas obtained for W (V) were tested by carrying out

numerical experiments, using E (k
x
, k

y
), the energy spectrum of the surface z 5 f(x, y),

for wind waves. All harmonics were taken from the gravitational part of the spectrum
(with Lmin 5 2.5 m, Lmax 5 1020 m) and, at the wind speed v 5 10 m s Õ 1 were found:
l1 5 0.00390, l2 5 Õ 0.00194, l3 5 Õ 0.00196. The average number of specular points
per unit area and the average radius, determined by equations (17) and (38), were

7 N 8 5 0.128 (m Õ 2 ) and 7 r 8 5 7 1/|V | 8 5 221.7 (m2), respectively. The graph of W (V)
for c

x
5 0, c

y
5 0 is shown in � gure 1.

Further, the uniform Gaussian surface is generated by

z 5 f (x, y) 5 �
N

n=1
c
n
cos (k

xn
x 1 k

yn
y 1 w

n
) (39)

where the phases w
n

were taken as being randomly and uniformly distributed between
0 and 2p, and the amplitudes (c

n
) were such random positive variables that in any

small region [k
x
, k

x
1 dk

x
] Ö [k

y
, k

y
1 dk

y
] of the plane of the wave numbers (k

x
, k

y
)

satisfy

�
n

1

2
c2
n

5 E (k
x
, k

y
) dk

x
dk

y
(40)

which is the summation of all amplitudes with (k
x
, k

y
), belonging to the region

[k
x
, k

x
1 dk

x
] Ö [k

y
, k

y
1 dk

y
].

T
he

 d
is

tr
ib

ut
io

n 
de

ns
ity

 W
(V

) 
(m

2 )

The total curvature V (m_2)

Figure 1. Probability distribution density of the total curvature at the specular points: (solid
line) were obtained by using equations (26) and (29); (dashed line) obtained by using
numerical experiments.
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The number of harmonics (N ) in equation (39) were taken as equal to 80, for
the distribution of f(x, y) at this value of N becomes practically a normal one.

The system of equation (4), which takes the form

fx(x, y) 5 Õ �
N

n=1
cnkxnsin(kxnx 1 kyny 1 wn) 5 cx

fx(x, y) 5 Õ �
N

n=1
cnkynsin(kxnx 1 kyny 1 wn) 5 cyH (41 )

were solved numerically and {(x
i
, y

i
), i 5 1, 2, 3 ... M} sets of specular points and their

total curvatures {V
i
5 f

xx
(x

i
, y

i
)f

xy
(x

i
, y

i
) Õ f

xy
(x

i
, y

i
)2/(1 1 f2

x
1 f2

y
)2, i 5 1, 2, 3 ... M}

were found. Using the set {V
i
, i 5 1, 2, 3 ... M}, the statistical distribution (histogram)

of V, which was denoted by W
e
(V), were evaluated. The distribution W

e
(V), obtained

for 6500 specular points (M 5 6500), is shown in � gure 1 by a dashed line. In general,
the curves of W (V) and W

e
(V) diŒer non-essentially, showing, therefore, that the

formula obtained for W (V) herein is correct.
A striking feature of the distribution W (V) is its nonsymmetricity, which is the

general property of random gaussian uniform surfaces.

5. Application
As one of the possible applications, we give an idea of the method of indication

of oil � lms on the sea surface by using the distribution W (r) of the reciprocal of
curvature r 5 1/|V |. It is well known that oil � lms extinguish the high-frequency
region of the wave spectrum. According to the measurements of Cox and Munk
(1954), for a clear sea surface the dispersion of surface slopers (gradients)
f
x
(x, y), f

y
(x, y) are

a2
x

5 3.16 Ö 10 Õ 3 v

s2
y

5 0.003 1 1.92 Ö 10 Õ 3 vr (42)

and oil � lms covering the surface have a dispersion 2–3 times less than that of a
clear sea surface. For oil covered surface, we take

sÅ 2
x

5 s2
x
/3

sÅ 2
y

5 s2
y
/3r (43)

Therefore, to get the same values of dispersions s2
x
, s2

y
and sÅ 2

x
, sÅ 2

y
, clear and oil-� lm-

covered sea surfaces have been modelled by the wave spectrum that includes harmon-
ics with wavelengths lµl

min 5 4.5 cm and lµlÅ
min 5 60.0 cm, respectively. In this case

the parameters l1 , l2 , l3 , which were evaluated from the energy spectrum E (k
x
, k

y
) at

v 5 10 m s Õ 1, were found as l1 5 63.0 m Õ 2, l2 5 Õ 30.8 m Õ 2, l3 5 Õ 32.2 m Õ 2 and lÅ 1 5
0.090 m Õ 2, lÅ 2 5 Õ 0.044 m Õ 2, lÅ 3 5 Õ 0.046 m Õ 2, for clear and oil-� lm-covered surfaces,
respectively.

The graphs of distribution density W (r), calculated by the theoretical formulae
(26) and (29) for clear and oil-covered surfaces, are shown in � gure 2. The mean
value of r evaluated by equation (38) was 7 r 8 5 0.014 m2 for a clear surface and

7 rÅ 8 5 9.6 m2 for an oil-covered surface. The average number of specular points N
calculated by equation (17) was 7 N 8 5 409.3 m Õ 2 and 7 NÅ 8 5 1.8 m Õ 2 for clear and
oil � lms covered surfaces, respectively. As is seen, when an oil � lm exists on the sea
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)

Figure 2. Probability distribution density of the reciprocal of curvature at the specular points:
(a) clear sea surface; (b) oil-covered sea surface.

surface, the number of specular points decreases by about 200 times; the mean value
of r (in other words, the mean value of the sizes of images of the specular point-
glitters) increases by about 700 times, and the graph of W (r) shifts essentially to the

right. By designing an appropriate optical system to sense the changes occurring in
these parameters, the problem of remote sensing of oil � lms existent on the sea

surface can be solved.

6. Conclusion

It is seen that the distribution W (r) of radius of curvature r 5 1/|V | depends on
two parameters (any two of l1 , l2 , l3 or H, D3 ), which can be determined by the energy

spectrum of surface waves. A comparatively simple form of W (r) is convenient for

the calculation of statistical characteristics of a re� ected light from the sea surface.
The number of specular points and radia of curvatures are quantities very

sensitive to the surface geometry structures. Therefore, these variables can be used
for solving various remote sensing problems, such as studies of currents and internal

waves, near-by surface processes, etc., which in� uence the sea surface geometry

structures.
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