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ABSTRACT

For a well-developed sea at equilibrium with a constant wind, the energy-containing range of the wavenumber
spectrum for wind-generated gravity waves is approximated by a generalized power law 8(U?/g)*k~***Y (k,
), where Y is the angular spread function and u can be interpreted as a fractal codimension of a small surface
patch. Dependence of u on the wave age, £ = Cy/ U, is estimated, and the “Phillips constant,” 3, along with
the low-wavenumber boundary, ko, of the inertial subrange are studied analytically based on the wave action
and energy conservation principles. The resulting expressions are employed to evaluate various non-Gaussian
statistics of a weakly nonlinear sea surface, which determine the sea state bias in satellite altimetry. The locally
accelerated decay of the spectral density function in a high-wavenumber dissipation subrange is pointed out as
an important factor of wave dynamics and is shown to be also highly important in the geometrical optics
treatment of the sea state bias. The analysis is carried out in the approximation of a unidirectional wave field
and confined to the case of a well-developed sea characterized by £ > 1.

1. Introduction

Sea surface roughness on scales of wind-generated
gravity waves provides a peculiar example of turbulence
developing through nonlinear wave—wave interactions
within resonant wave tetrads. Due to the remarkable
weakness of these interactions, the characteristic scales
of wave field evolution are very large—hundreds of
kilometers (e.g., Walsh et al. 1989). Conventional wave
observations cover a relatively limited range of wind-
wave interaction regimes, as characterized by rather
short wind fetches and a relatively small local depth.
More advanced stages of wave development, encoun-
tered in the open ocean, can be observed by satellite-
borne instruments. However, oceanographic interpre-
tation of satellite measurements requires adequate
understanding of the sea surface’s statistical geometry
in relation to wave dynamics. Much work on the sur-
face geometry is due to Longuet-Higgins (1957, 1962,
1984), while problems arising in connection with the
multiple-scale variability of the surface elevation field
have been addressed by Glazman (1986) and Glazman
and Weichman (1989). Rapid development of ocean
remote sensing techniques raises a number of new is-
sues; some of them are addressed in this paper.
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Our attention is focused on dynamics and statistics
of the wave field for a case of sufficiently well-developed
seas, which means that there exists an extended range
of wavenumbers dominated by inertial (Kolmogorov-
type) cascades of energy and wave action. Dynamical
problems are investigated in sections 2, 3, and 6 based
on the weak-turbulence theory (WTT) of surface grav-
ity waves (Zakharov and Filonenko 1966; Zakharov
1984; Zakharov and Zaslavskii 1981-1983). We dis-
cuss an effective exponent for the inertial range of wave
spectra and estimate its dependence on the degree of
the wave development. Furthermore, based on the in-
tegral balance of the wave energy and action, we derive
the fetch laws, which during the past three decades have
been known largely as an empirical fact. Section 6 fo-
cuses on the high-wavenumber rolloff of the wave
spectrum associated with the energy dissipation due to
wave breaking. Sections 4, 5, 7, and 8 are devoted to
statistical geometry of the sea surface: various non-
Gaussian statistics are estimated as functions of wind
speed and the degree of the wave development. Such
statistics are especially important for the correct inter-
pretation of altimeter measurements. Therefore, we
present many of our results in the form in which they
can be readily applied to analysis of altimeter data.
Comparison with experimental data of Fu and Glaz-
man (1991) is also provided.

Theoretical studies (Glazman 1986; Glazman and
Weichman 1989; Glazman 1990, 1991) and analyses
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of satellite data [ satellite scatterometer (Glazman 1987;
Glazman et al. 1988), altimeter (Glazman and Pilorz
1990), and microwave radiometer (Glazman 1991)]
indicated that the degree of the wave development is
an important factor of air-sea interactions that has a
profound effect on statistical properties of a rough sea
surface. This factor, expressed, for instance, via the
wave age
Co

3 U’ (1.1)
measures the overall effect of the conventional geo-
metric fetch X and of the boundary-layer stratification
(as discussed in section 2). Here U is the mean wind
speed well above the surface, and C is the phase ve-
locity of dominant (spectral peak) waves. Typical val-
ues of £ for open ocean waves lie in the range 1 to 3,
with the mean about 2.3 (Glazman and Pilorz 1990;
Fu and Glazman 1991). One of the most important
properties of the sea surface controlled by the wave age
is its effective fractal dimension Dy, which characterizes
the cascade pattern in surface geometry (Glazman and
Weichman 1989). In section 2, the term “effective” is
defined quantitatively. Analysis of wave dynamics in
sections 2 and 3 is confined to the case of open ocean
waves, for which Dy = 2.2. When Dy is greater than
2 (2 is the topological dimension of a narrow-banded
random surface), the surface experiences variations in
a broad range of scales, and between each pair of dom-
inant wave crests there appear many secondary (and
higher-order) wave crests.

Surface curvature at the specular facets, surface
slopes, and other parameters responsible for the ob-
served radar cross section are strongly influenced by
the fractal dimension of the sea surface (Glazman 1990,
1991a). Recently, Rodriguez and Chapman (1990)
analyzed deconvoluted wave forms from the Geosat
altimeter and concluded that the surface skewness,
whose effect on the wave forms was parameterized by
Jackson (1979), Barrick and Lipa (1985), and Srokosz
(1986), exhibits a negative correlation with the wave
age. Fu and Glazman (1991) analyzed errors in sea
level measurements by the Geosat altimeter and found
that the sea state bias decreases with an increasing wave
age. One of the goals of the present work is to quantify
these trends based on the theory for the sea state bias
developed by Jackson, Barrick and Lipa, and Srokosz.

2. Equilibrium state of a well-developed sea and u as
a function of &

In the above-the-spectrum-peak range, the spectral
density of the wave potential energy density per unit
area (and divided by pg) can be approximated as

k/ko> 1: F(k,0)=B(U?*/g)**k™ Y (k,0),

(2.1)
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where the nondimensional “Phillips constant” 8 can
depend on the nondimensional fetch x, and p tends
to zero at short fetches (the Phillips law). This u is a
slowly growing function of x, attaining about % at x
of order 10 and going to its asymptotic limit of ¥
(Zakharov and Zaslavskii 1982a, 1983a; Zakharov
1984; Kitaigorodskii 1987) when x tends to infinity
(practically, at x > 10°). The physical principles un-
derlying Eq. (2.1) and its implications for the sea sur-
face’s geometry are discussed in Glazman and Weich-
man (1989), where u is identified as the Hausdorff
(fractal) codimension of a small surface patch corre-
sponding to the equilibrium range: u = Dy — 2. A
simple heuristic model relating u to the wave age is
offered in the end of this section.

Because of the important role which £, 8, and u play
in our theory, we need some scaling laws relating these
parameters to external factors of air-sea interactions.
Such laws can be derived from the conservation prin-
ciples, but this would require extending the model (2.1)
to lower wavenumbers. A notorious feature of equilib-
rium sea is the existence of a rather steep cutoff of the
energy spectral density at wavenumbers near k, which
is associated with the dominant wavelength (the “outer
scale”). Hence, the extension of (2.1) into the low-
wavenumber range is obtained by multiplying it by a
slightly smeared Heaviside function H(ko/k — 1)
which provides a smooth cutoff near ky. A simplest
form of this function is given by exp[ —(ko/k)?] [which
also follows from the Pierson-Moskowitz (1964 ) spec-
trum]. Furthermore, since there is no commonly ac-
cepted form for the angular spread function Y, we shall
conduct our analysis in the approximation of a uni-
directional field of waves propagating along the (con-
stant) wind direction (Y reduces to the Dirac delta
function). It can be shown (e.g., see Zakharov and
Zaslavskii 1983b) that if the spectrum is characterized
by a narrow directional distribution, as is the case for
wind-generated gravity waves, approximating Y () by
a delta-function gives a satisfactory spectrum model
for wave energy and action balance analyses. Thus, for
the energy-containing range, the one-dimensional
spectral density of wave energy is

F(k) = B(U?/g)*k>** exp[—(ko/k)*] (=E(k)).
(2.2)

The dominant wavenumber can be presented in the
form: :

ko = Kyt™? (2.3)

where
Ky =g/U? (2.4)

is interpreted as the characteristic wavenumber roughly
corresponding to the spectral peak of the energy flux
from wind to waves (implying the Miles-Phillips gen-
eration mechanism), and £ is given by (1.1) with
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Co = wo/ko. Furthermore, £ is a function of the non-
dimensional fetch x = gX/U? (we consider wave du-
ration to be infinite) which has the form

£ = Ax" (2.5)
confirmed by numerous field observations. The values
of » found by different authors vary in a rather narrow
range—from 0.22 to about Y5, while 4 is somewhere
between 6 X 1072 and 8.6 X 102 (Phillips 1977; Do-
nelan et al. 1985). As shown below, parameter v is very
important, and therefore we shall examine it in the
following section.

At the present time, the generalized Phillips constant
@ is understood rather poorly. Field observations (e.g.,
those reviewed by Kitaigorodskii 1983) in moderately
developed seas (i.e., when u ~ %) estimate 8 as ~2.3
X 1073, Earlier observations, dating back to JON-
SWAP, showed 8 as a homogeneous function of the
nondimensional fetch:

B8 = Bx®. (2.6)
The reported values of v are typically small: v ~ —0.2,
while B ~ 0.0331 (e.g., Hasselmann et al. 1976; Do-
nelan et al. 1985). We believe that much of the un-
certainty in the observed values of 8 or, alternatively,
of B and v is due to the fact that an experimental es-
timation of g critically depends on the value of u chosen
to represent the slope of the spectrum. Most observa-
tions have been conducted at relatively short fetches
(well under 100 km) and assuming u to be a “universal
constant.” In the 1960s and much of the 1970s this
constant was thought to be zero (the Phillips law ), while
in the past decade it was upgraded to % on various
grounds (Zakharov and Filonenko 1966; Kitaigorod-
skii 1983; Phillips 1985). Phillips (1985) presented ar-
guments indicating that x = % can be obtained not
only as a result of a purely inertial energy cascade but
also as a result of a more complex energy balance when
the source functions (energy dissipation and wind in-
put) are included.

In order to relate u to the nondimensional wind
fetch, we recall that there are three special values, p
= (0, Y%, and Y5, corresponding to three asymptotic re-
gimes of wind-wave interaction. Two of them, relevant
to open ocean waves, are the direct energy cascade (u
= 14) and the inverse energy cascade (u = '3) (Zak-
harov and Filonenko 1966; Zakharov and L’vov 1975;
Zakharov and Zaslavskii 1982a). The corresponding
values of u were found by Zakharov and his collabo-
rators as exact analytical solutions of the kinetic equa-
tion in the approximation of the weak-turbulence the-
ory and assuming that the energy source is concentrated
either at the low-frequency end of the spectrum (u = %)
or at the high-frequency end (1 = %3). A comprehensive
review of the theory is given by Zakharov (1984). Al-
though the actual spectral density of the energy flux
from wind to waves is by no means a delta function
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of either w or k (Phillips 1985), it is known to have a
pronounced maximum due to a resonant mechanism
of wind wave generation. In this respect, Eq. (2.4) rep-
resents a scaling relationship for the resonant wave-
number corresponding to this peak. The weak-turbu-
lence theory offers a simplified approach to the param-
eterization of the overall spectrum width: at ¢ near
unity, the equilibrium wave spectrum is dominated by
the direct inertial cascade (characterized by u ~ ).
As ¢ increases well above one, the relative extent of the
inverse cascade becomes appreciable leading to an in-
crease in the effective value of u.

Based on this idealization, one can roughly quantify
the rate at which the effective value of x should change
as a function of the wave age. A crude model can be
constructed starting with a composite spectrum as a
prototype:

b( U2/g)2/3k—10/3,
b( U2/g)1/2k—7/2’

if ko<sk<Ky
if K0<k<w.
(2.7)

It is easy to check that at kK = Ky both branches meet
at an arbitrary value of b. Let us find x4 and 8 based
on the requirement that the spectrum (2.1) must yield
the same integral wave energy and wave action as would
follow from (2.7). The resulting x and 8 are said to be
the effective fractal codimension and the generalized
Phillips constant, respectively. Thus, we have two
equations:

F(k) = [

fw E(k)dk = fw E.(k)dk
ko ko
o © (2.8)
f E(k)/w(k)dk = f E.(k)/w(k)dk
ko ko
where

E(k) = f: F(k, 0)kdb ~ B(U?*/g)*k3*2,  (2.9)

Similarly,
E (k) = F.(k)k (2.10)

This system has an exact solution which, after some
algebra, is

g, _1_M
K 4NE—M
(2.11)
_ . 2(1 = uN
b=b=pmn—
where
_i 11/13_i _.3 8/3 1
M=17¢ 3 amd N=72& 12

Functions u(£) and | — B(£)/b are plotted in Fig. 1.
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FIG. 1. The wave-age dependence of the fractal codimension, u(£),
and of the g-defect, d(£) = 1 — B(£)/b. Equations (2.11).

The latter function describes a (small) 8-defect caused
by our ad hoc model.

An alternative form of (2.7), as was originally pre-
sented by Zakharov (see also Kitaigorodskii 1987), is

F(k) = 4,p"*k™108 (2.12)

corresponding to the inverse inertial cascade of wave
energy (u = '5), and

F(k) = A,q'Pg™ "%k,

corresponding to the direct energy cascade (u = %).
Constant A4, [estimated as O(1072)] by Glazman and
Weichman (1989) has a meaning similar to the Kol-
mogorov constant for the inertial range in isotropic
three-dimensional turbulence, and g represents the
surface density of wave energy flux (the rate of energy
transfer from wind). Constant 4; was estimated as
O(1) by Zakharov and Zaslavskii (1983a), and p rep-
resents the wave action flux density.

However idealized, the spectrum forms (2.1), (2.2)
proved to be highly useful for applications. This simple
model (i.e., the use of a single g for all wavenumbers)
is motivated by the relatively short overall extent of
the equilibrium range (roughly two decades in wave-
numbers), as well as by the fact that the range of pos-
sible variations of u is relatively small. A great practical
advantage of (2.1) over more complicated forms (in-
cluding composite spectra) is due to its simplicity.
Spectra (2.1) and (2.2) allow one to readily relate var-

(2.13)
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ious statistical properties of the wave field to external
parameters and on that basis analyze and predict an
impact of wind speed and fetch on air-sea fluxes,
breaking wave statistics, microwave remote sensing
signatures, etc. (Glazman 1990, 1991a; Glazman and
Pilorz 1990). However, all such results depend ulti-
mately on the scaling relationships (2.5) and (2.6) in
which parameters » and v play a crucial role. Therefore,
it is important to better understand their physical
meaning and constrain their values based on appro-
priate conservation principles.

3. Scaling law for £ and 8

Zakharov and Zaslavskii (1983b) derived the fetch
dependence of the wave age based on the balance of
the wave action and assuming that the wave spectrum
is dominated by the inverse energy cascade (u = 5).
We use a more general form for the wave spectrum
and, in order to include the case of moderately devel-
oped seas (u ~ '), consider the energy balance equa-
tion. However, the following procedure can be applied
to the wave action as well.

Consider the energy conservation principle for deep-
water gravity waves in the absence of mean currents.
In an equilibrium sea, the total wave energy does not
change with time. Due to the conservative nature of
weakly nonlinear wave-wave interactions, the diver-
gence of the spectral flux of wave energy in the wave-
number space, integrated over all wavenumbers, tends
to zero, provided the direct energy cascade dominates
the energy balance. Therefore, the energy conservation
law is

o [ CE®E=p0. (1)

The group velocity C, is estimated based on the dis-
persion relationship for deep-water gravity waves. The
left-hand side of (3.1) represents the divergence of the
wave energy flow (Whitham 1974; Phillips 1977). The
weakly nonlinear wave-wave interactions are included,
in a parametric form, by allowing the spectrum pa-
rameters £ and 8 to depend on the nondimensional
fetch x. Finally, Q is the net flux density of energy
supplied to waves, per unit mass of air (i.e., wind input
minus dissipation). In what follows we assume that
the energy dissipation due to wave breaking is negligible
compared to the wind input (integrated over all wave-
numbers). Equation (3.1) does not presume any par-
ticular spectral distribution of the source functions.
Assuming constant wind direction and studying wave
field variations only along the wind vector, we identify
the distance along this vector as the conventional wind
fetch, X. It is important to remember that the conser-
vation equation (3.1) pertains to the field averaged over
a horizontal area, which includes at least one dominant
wavelength but is small by comparison to the charac-
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teristic variations of the wind fetch causing variations
in the wave spectrum parameters.

At shorter wind fetches the waves experience the
action of local wind only for a brief period 7 oc X/ C.
Hence, we select the homogeneous boundary condi-
tion. Being interested in an equilibrium sea state, we
further assume that the wind input can depend only
on U and X. Ultimately,

0 =c(x)U. (3.2)
In general, ¢; may also depend on the stratification of
the marine boundary layer above the surface being a
decreasing function of atmospheric stability. However,
such effects are beyond the scope of the present work.
The role of ¢, is to account for gradual readjustment
of the atmospheric boundary layer as the waves develop
with fetch. However, since this readjustment occurs in
response to the changing wave field, it is appropriate
to view this interaction coefficient as a functional of
the wave field itself, ultimately of the degree of wave
development: ¢; = f(£). The question then arises as to
the characteristic rate at which ¢, changes as a function
of £. The forthcoming proposition, like most other
theoretical efforts in this difficult area, should be viewed
as a hypothesis. We introduce into our discussion the
term “‘generation range” (as used, for example, by
Zakharov and Zaslavskii 1982b) to designate a fairly
narrow band of wavenumbers near K;; where the wind
is most strongly coupled with wave components. Con-
sidering sufficiently developed seas (i.e., £ = 1) we no-
tice that, apart from the wind speed, the most important
parameter governing the surface’s geometrical features
in this range of scales is the fractal dimension of the
surface patch (Glazman and Weichman 1989): its in-
fluence on the wave slope variance and on other major
statistics of the surface geometry is more important
than that of the dominant wavelength 27/ k,. Accord-
ing to the Miles theory, the wavebound component of
the energy flux, which is coupled with the waves, is
linearly proportional to the wave slope. Therefore, the
interaction coefficient ¢;(£) can change only as fast as
(). This allows us to rewrite (3.1) as

o0 X

¢| ZEEwk)ydk = f (WU3dX ~ GUX  (3.3)
o dk (}

where

)
c(p) = = 8]
p

w

and cis given by (3.7). Due to the assumed weak de-
pendence of ¢; on X, Eq. (3.3) can be integrated over
relatively short segments of X by keeping the interaction
coeflicient constant. In the end of this section the notion
of the “relatively short segments of X is quantified.
Employing the deep-water dispersion relationship and
substituting (1.1) and (2.2)-(2.4) into the left-hand
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side of (3.3), we ultimately arrive at the following scal-
ing law:

B(x)E5* o« x. (3.4)

Using (2.5), this can be written in terms of the fetch
alone:

l—5v+4uv. ( 3.5 )
It is interesting to notice that the most typical values
of u and v reported by the field observations (g = Y
and v = %) yield 8 = const.

The last and most crucial step in our development
is the assumption that 3 is indeed a universal constant,
as was anticipated by Kitaigorodskii (1983 ) for a special
case of u = %, This assumption yields:

£7% oc x

B(x) oc x

or

_ 1
g 5—4u

where the effective codimension u can be roughly es-
timated from (2.11). The function £(x) is plotted in
Fig. 2. [In order to quantify the actual range of the
nondimensional fetch, we employed in this calculation
a concrete value of the proportionality coeflicient 4
introduced in (2.5): 4 = 8.62 X 1072, as suggested by
Donelan et al. 1985.] Our theory thus resulted in an
unlimited monotonic growth of the wave age with fetch.
Apparently, by imposing some mechanism that would

(3.6)

T T T T T T
2.5 1 .
2 L 3 |
1.5 -]
1L B/b _
0.5 —
I S—

0 1 1 lIIIlll 1 1 | I N T I |
10000 1E+5 1E+6

Non-dimensional fetch, x

FIG. 2. The wave age £ (3.6), the codimension u and the generalized
Phillips constant (in relative units) 3/b (2.11), as functions of the
nondimensional wind fetch.
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make Q in (3.1) a decreasing function of x, we could
obtain a regime in which the wave age as a function
of x eventually reaches a limit. However, the search
for such a mechanism is outside the scope of the present
work. Besides, the previous experimental work (Glaz-
man and Pilorz 1990) yields results that strongly dis-
agree with the notion of the fully developed sea as pre-
sented by Pierson and Moskowitz (1964) and char-
acterized by £ = 1.4 as the limit. The limiting value of
£ remains unknown, and we find that values as large
as 3 are quite feasible (Glazman 1991b).

The physical significance of the constant 8 assump-
tion can be clarified in a special case of 4 = % for which
equation (2.1) can be interpreted in terms of more
fundamental quantities introduced by (2.13). Namely,
g = c(p) U? and A4, plays the role of the Kolmogorov
constant—it controls the energy dissipation rate.
Hence, 8 = A>¢'/?(u). The fetch-independent 8 means
that, once the sea has attained an essentially fractal
regime (as defined in Glazman and Weichman 1989),
the rate of energy transfer does not change appreciably
with further increase of the fetch. Let us examine the
probability of wave-breaking events observed instan-
taneously (Glazman and Weichman 1989) in a given
surface area (defined as the expectation of the number
of breaking wavelets per total number of gravity wave-
lets observed): Pgy oc (I'/v)? exp(—T'2/2v?), where
2 is the wave slope variance and I is the characteristic
slope attained by gravity-range wavelets prior to break-
ing. It is easy to show that in an essentially fractal re-
gime [see also (6.9)-(6.10) of the present paper], v?2
is proportional to 3 but is virtually independent of k.
Therefore, assuming 3 to be independent of x is equiv-
alent to assuming Py (hence, the Kolmogorov con-
stant 4,) to be independent of x. Thus, in the case of
a direct energy cascade, our description of the energy
flow is, at least, self-consistent.

The interaction coefficient ¢( ) is difficult to estimate
theoretically. Let us express it in terms of the empirical
parameters A and 8 introduced in section 2. To this
end, we substitute (2.2)-(2.5) and (3.6) into (3.3) and
arrive at

_T(5/4—p)
4

B8

é(p) BATH ZA4 (~const), (3.7)

which lends further credibility to our model and per-
mits a semiempirical estimation of ¢.

Finally, in Fig. 2 we also plotted p and 8 to illustrate
a considerable difference in the characteristic scales of
X —variations needed to cause comparable relative
changes in £, u, and 8. An order of magnitude increase
of x causes 100% increase of £ but only 20% growth of
w and about 3% change of 3. It is these differences that
justify our simplified theory.

Employing the wave action balance equation instead
of (3.1), the fetch dependence of the wave age is found
to be
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5% o x

or

1
v = .
6 —4u

This result should be appropriate mainly for very high
degrees of wave development.

(3.8)

4. Sea state bias in satellite altimetry

The contemporary view of the sea state bias is based
on the geometrical optics treatment of the reflection
of a finite-length pulse from a weakly nonlinear wave
surface at nadir incidence. If we consider all specular
points as reflectors of equal strength, the distribution
of their heights about the mean sea level is estimated,
and the sea state bias is then determined as a deviation
in the reported sea level height due to a shift in the
position of the half-power point of the altimeter wave-
form caused by departures of the surface wave field
statistics (i.e., of the joint probability density function
for surface elevations and slopes) from the Gaussian
distribution (Jackson 1979; Barrick and Lipa 1985;
Srokosz 1986, 1987). The bias is given by

1/1
bias = —-(— Ao + N)Hl/s, (4.1)

8\3

where H, 3 = 4( {22 1/2 js the significant wave height,
Ao = {£*/{¢*)3? is the surface skewness, and ),
(usually denoted by v but re-denoted here to avoid
conflict with the rms wave slope) was called “cross-
skewness” by Srokosz (1986) (relating elevation to
slope squared: { {(V{)?)). This latter quantity obtains
simple geometrical interpretation by considering the
mean height of specular points which was estimated
by Srokosz (1986):

A
8

where f({) is the (conditional) probability density
function for the heights of the surface points with zero
slope (V{ = 0). Therefore, we shall call A, the “specular
relative height” (or just “specular height”), which bet-
ter describes its meaning. It can be shown (Longuet-
Higgins 1963; Barrick and Lipa 1985; Srokosz 1986)
that the two parameters Ao and A\, may be expressed
in terms of integrals of the two-dimensional wavenum-
ber spectrum of the waves. In particular,

Hys, (4.2)

[ ercsrar -

3fdkF(k)fC(k, K'YF(k')dk'

Ao =
0,3

(4.3)

Here we introduced the total variance of the surface
elevation:
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o= fF(k)dk (={(). (44)

The expression for A; is more complicated and is given
in full by Srokosz (1986), along with the form of the
coefficient C(k, k').

A suggestion was made to estimate the components
of the sea state bias by postprocessing the altimeter
waveform data (Srokosz 1986; Rodriguez 1988; Rod-
riguez and Chapman 1989, 1990), but this is a time-
consuming task and it may not be possible to get ac-
curate results (Rodriguez and Chapman 1990). Here,
based on the knowledge of the wave spectrum, we ex-
amine the two components of the bias analytically and
numerically. Our practical goal is to relate the sea state
bias to wind and wave data available from satellite
measurements. In particular, we will present the sea
state bias as a function of wave age and significant wave
height, which can be estimated from altimeter mea-
surements (as, for instance, done by Fu and Glazman
1991).

First we notice that A contains no information about
surface gradients (i.e., wave slopes), which are known
to be strongly influenced by the high-wavenumber tail
of the wave spectrum. All integrals in (4.3) converge
very rapidly. Therefore, Ao can be estimated with suf-
ficient accuracy even if the tail of the spectrum is spec-
ified incorrectly. In contrast, parameter A, related to
wave slope statistics, critically depends on the scales of
surface variations taken into account. Unless irrelevant
small-scale variations of the surface elevation field,
pertaining to the tail of the wave spectrum, are filtered
out, the corresponding integrals would diverge (Glaz-
man 1986; Glazman and Weichman 1989). In section
6 we provide a brief review of basic notions related to
this issue, which will allow us to evaluate A, in section
7, while A, is examined in the following section.

5. Sea surface skewness in a unidirectional sea

Let us consider a simple case of a unidirectional wave
field. This case allows one to obviate a difficult problem
of selecting an appropriate angular spread function
Y (k, 6) in (2.1) and to drastically reduce the amount
of computations.

The skewness takes the form (Jackson 1979) (after
introducing minor corrections pointed out by Srokosz
and Longuet-Higgins 1986):

6 fw E(k)Go(k)dk
0
Ao = e (5.1)
where
k
Go(k) = fo K'E(k"dk'. (5.2)
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Substituting (2.2), the inside integral (5.2) is found as

k
Golk) = BU/g)™ fo (k)22 expl—(ko/K'21dK.
(5.3)

We reduce this to a table form by replacing (ko/k')?
= y, which yields

Go(ky = & w21y (L - (K2)) . (5.
0 ) g (] 2 '\ % A9

In Fig. 3 this incomplete gamma function is plotted to
show that its growth with an increasing k at k > kg is
very weak. Due to a rapid decay of E(k) at high k
[which is not offset by the slow growth of Gy(k)], the
outside integral in the numerator of (5.1) is dominated
by the spectral peak range. This integral, as well as the
denominator in (5.1), can be calculated exactly, using
(6.455) and (3.381) of Gradshteyn and Ryzhik (1980).
The final results are

o =L WMk ) (55)
Mo = 3(887*)"2 Ro(w) (5.6)
10 r T T T T T T T T T T T T
1 |-
= [
0.1 i oyl s L aa oy
0.1 1 10

k/ko

FIG. 3. The incomplete gamma function (5.4) for several values
of u as indicated at the curves.
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where

2(1 - WIT = W17

(5.7)

and , F, is the Gauss hypergeometric function, readily
evaluated using a series expansion [e.g., (9.100) of
Gradshteyn and Ryzhik 1980]. The factor 3 is intro-
duced in (5.6) in order to avoid notational inconve-
nience when comparing two terms of (4.1) (sec-
tion 8). '

As shown in Fig. 4, the factor Ry, for the range of u
of interest to the given problem, is a weak function of
u; hence, the behavior of A is controlled primarily by
the nondimensional fetch (or the wave age) through 8
and ¢. Employing (3.4) we derive this dependence:

Ao oc (xE™3)1/2, (5.8)
Two alternative final forms for A, follow from (3.6):
Ao oc x2S
oc £, (5.9)

In the case of u = Y%, these yield Ao oc x~ /% and A,
oc £71/2_ In other words, as the sea becomes more ma-
ture, the overall surface skewness A\ decreases.

10

0 | I !

0.25 0.3
u

F1G. 4. Nondimensional factors R, (solid curve) and R, (dashed
curves), (5.7) and (8.3), respectively. The values of § are plotted at
each curve.

0.35
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However, as shown in section 7, the surface skew-
ness, although of considerable intrinsic interest, has
little influence on the sea state bias, as the typical values
of Ro(w) turn out to be rather small by comparison to
the similar factor of the “specular height” A;.

6. The dissipation range and the intrinsic inner scale

In recent studies (Kitaigorodskii 1983; Phillips 1985;
Glazman 1985, 1986), the existence of an intrinsic in-
ner scale & associated with energy dissipation due to
wave breaking was predicted. A simple argument
(Glazman 1985, 1986; Glazman and Weichman 1989)
that yields an estimate of this scale is that the wave
slope variance

o

y2= J; k*E(k)dk (6.1)
would be infinite for all 4 = 0 unless the spectrum
experiences a rapid rolloff within certain transitional
(i.e., “dissipation’) subrange. A physical mechanism
limiting possible values of v is due to hydrodynamic
instability of steep wavelets leading to a vigorous
breaking of exceedingly steep crests. An important fea-
ture of developed seas is the statistical self-affinity of
surface profiles, which appears in the fractal regime
(Glazman and Weichman 1989). That means, in par-
ticular, that shorter wavelets tend to be steeper than
the longer ones:

(AS/AP)?Y oc (Ar) 72, (6.2)

Therefore, shorter wavelets are more likely to break.
With respect to the overall surface geometry, the
breaking of the wavelets results in an effective low-pass
filtering of the surface elevation field. In terms of the
wavenumber spectrum (representing a large surface
area including many breaking events), the “filtered”
surface can be described by

E(k) = E(k) exp[—(k/k)’] (6.3)

where E(k) is given by (2.2). According to (2.2), the
spectrum (6.3) increases as a function of wind. On the
contrary, the spectrum behavior at high wavenumbers,
as reported by Banner et al. (1989), is virtually inde-
pendent of the wind speed (and of the wind friction
velocity) and is given by

Ey(k)=B'k?, for k> k, (6.4)

where p ~ 4 and 8’ = 2 X 1073. As a result of these
marked differences in the spectrum behavior above and
below the “transitional” range associated with the in-
trinsic inner scale 4, a profound mismatch between
(2.2) and (6.4) appears. This mismatch would grow
with an increasing wind. Apparently, the low-pass filter
introduced by (6.3) closes the gap.

We interpret Banner’s results as indirect experimen-
tal evidence confirming the existence of the “transi-
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tional” dissipation range predicted by the authors
mentioned above. Indeed, after a certain (actually,
rather small) amount of energy is removed from the
inertial subrange due to the intermittent wave breaking,
the spectral density at smaller scales can resume its
fractal behavior (i.e., can continue its power-law decay
at the rate k™ or slower).

According to previous estimates (Glazman 1986;
Glazman and Weichman 1989), the value of 7= 1/
kj is about one-half meter.

Substituting the filtered spectrum into (6.1), one
evaluates the wave slope variance corresponding to the
gravity-range surface wavelets exactly, as

2 2B s, )

Y =3 (6.5)
where
Io(p, 8) = f x " exp(—x7! — 8%x)dx
o
= 207"K,(26) (6.6)

is obtained by replacing (k/k¢)?> = x and using
(3.471.9) of Gradshteyn and Ryzhik (1980). Here,

(6.7)

and K, is the modified Bessel function of the third kind.
A more traditional (approximate ) form of (6.5) is based
on

Iy(u, 8) ~ J: x e x gy = 87T (u, %) (6.6)

which corresponds to a sharp low-wavenumber spectral
cutoff.

Using (2.3), é can be written in a more informative
form as

6 = ot ™2 (6.8)

where 8o = Ky/k, = gh/U?. The so-called essentially
fractal regime takes place when

0 < (1 + p) (6.9)
which reduces (6.5) and (6.6’) to
ﬂ U2 2u
2 =
v~ (gh) T() (6.10)

(Glazman and Pilorz 1990; Glazman 1990, 1991a).
Based on the analysis of dimensions, Kitaigorodskii
(1983) suggested a gravity-wave version of the Kol-
mogorov inner scale: 4 ~ g2/3/ g, which translates into
h oc U?/g. The latter would yield §, = const. If &
were indeed a constant, all the wind-speed dependence
of v would be due exclusively to the weak dependence
of the fractal codimension on the wave age £. However,
a direct transplantation of the Kolmogorov argument
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to the case of gravity waves is questionable because the
possibility of the inverse cascade of wave energy diver-
sifies feasible mechanisms of energy dissipation. In
particular, the growth of the long-wave part of the wave
spectrum decreases the role of small-scale wavelets as
a factor of the dynamical equilibrium. Hence, the inner
scale is unlikely to be entirely determined by U. In our
forthcoming calculations, we shall use several charac-
teristic values of 6y as based on earlier estimates (Glaz-
man 1986; Glazman and Weichman 1989) according
to which # is roughly half a meter; hence, &4 is between
0.01 and 0.1.

Finally, a question arises whether k;, presents the
appropriate upper boundary for the range of wave-
numbers falling into the framework of geometrical op-
tics for radar (X- and C-band) backscatter at nadir
incidence. A detailed discussion of this issue is given
by Glazman (1990), and here we note only that, al-
though wavenumbers higher than k;, might also satisfy
the criterion of geometrical optics, the use of the higher-
wavenumber portion of the spectrum would not change
the character of the wind-speed and wave-age depen-
dences of the sea state bias. This is so because, as men-
tioned above, the “Banner range” of the spectrum is
independent of the wind and other external parameters.
In other words, by adding the contribution from (6.4)
to our integrals, we would slightly increase the value
of v, but such an essentially constant component would
add no new information of oceanographic significance.

7. “Specular height” of a unidirectional sea

The integral representation for A\, in a unidirectional
sea, as originally obtained by Jackson (1979), is

fow E(k) G (k)dk
2

P =
(T‘Y2

where o was introduced by (4.4) and 2 is given by
(6.1). Furthermore,

(7.1)

k
Gi(k) =J; (k" + 2k*kE(KYdK'.  (7.2)

High-order spectral moments appearing in (7.1) and
(7.2) necessitate the use of the filtered wavenumber
spectrum (6.3). Here again, we replace (ko/k)? = x
and (ko/k')? = y and represent the numerator of (7.1)
as

fE(k)Gl(k)dk =a(l, + 1) (7.3)

where

Il(u,6)=J:° fj exp[—(x + )

= 8%(x + ¥)/xy1(xy) "y~ 2dydx, (7.4)
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b9 =2 [ [~ expl-(x+ )

= 8%(x + p)/xyNxp) "y 2dydx, (7.5)
_(BE™)?
a= ————4k0 . (7.6)
On account of (5.5) and (6.5),
(BE*)*/?
22> g 7.7
ay 2V§ko 3 ( )
where
I3(p, 8) = 267*K,(26)[26'7*K,_,(28)]'/*
~ 207*K(28)VI(1 — p). (7.8)
In terms of these quantities, (7.1) becomes
A = (BE™*)'2Ry(p, 8) = (x£7°)'?Ry(n, 8) (7.9)

where the latter equality results from (3.4), and

V2(1, + L)

Rl(”', 6) = 13

(7.10)

Functions I, and I, are evaluated numerically and
plotted in Fig. 5 to show that I, is small by comparison
to I. 2. .
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F1G. 5. Functions I;(u, 8) (7.4) (dashed curves) and I,(u, 8) (7.5)
(solid curves). for selected values of § as designated at each curve.
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8. Sea state bias as a function of the wave age

Taking into account (3.4), (5.6), and (7.9), Eq.
(4.1) can be written in a convenient form:

(xg™%)'12

bias =
1aS 3

[Ro + Ri]1H,;3. (8.1)

In Fig. 4 functions Ry and R, are compared to show
that, for practical purposes, the component of the sea
state bias due to the surface skewness, Ao, can be ne-

glected. Hence, the sea state bias in a developed sea
becomes simply:

A
bias ~ ——8—'H1,3, (8.2)
where A, is given by (7.9) with
2r
R ~ V25 ) (8.3)
I

That is, the bias is chiefly due to the difference between
the zero-valued mean level and the mean level of the
specular points. Taking 8 as 2.3 X 1073 and employing
(2.11) and (6.8) in the evaluation of R, we find A,/
8 as a function of £ for several values of §y; see Fig. 6.
Evidently, the sea state bias is always negative. Its ab-
solute value tends to decrease as the wave age increases
(i.e., as the width of the wavenumber spectrum grows).
This could be anticipated a priori based on the follow-
ing simple argument. The wave spectrum width is con-
trolled by u and 4, both of which are functions of the
nondimensional fetch. As the spectrum broadens with
an increasing wave age, the mean number of specular
facets per unit area of the sea surface also increases. In
view of the central limit theorem, this increase should
lead to a greater statistical normality in the distribution
of specular point elevations.

Since the endpoint result depends, among other pa-
rameters, on 8o = gh/U?, any prediction of the sea
state bias as a function of external factors requires an
explicit specification of the intrinsic inner scale 4. As
was mentioned in section 6, there exists neither physical
nor experimental justification for assuming / to be a
function of the wind speed in general. Only at short
fetches, when the dissipation due to breaking waves is
important in the entire equilibrium range, can the value
of & be expected to depend on external factors. A plau-
sible dependence was proposed by appealing to the
concept of the Taylor microscale (Glazman 1986).
Considering the present case of mature seas, we shall
continue treating % as a constant. So far, this assump-
tion produced results that have been successfully
confirmed by indirect observations. For instance, the
character of the wind dependence for the nadir radar
cross section at high degrees of wave development
agrees rather well with altimeter measurements (Fig.
3 in Glazman and Pilorz 1990). Also using constant
h, Glazman and Weichman (1989, 1990) arrived at a
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Wave age,

rather realistic description of breaking wave statistics,
including fluctuations of breaking wave rates observed
over a small surface area.

In the following numerical example, we assume
constant 4 and write (6.8 ) in the form & = (h/X )xt 2
where the definition x = gX/U? was employed to ex-
clude U from &,. The advantage of this particular form
will be explained below. Since the nondimensional
fetch x and wave age ¢ are unambiguously related by
(2.5) with » given by (3.6), one ultimately arrives at

6 = A—5+4u _h_ 53_4“-

(8.4)

The choice between (8.4) and the alternative form 6
= (gh/U?)£™? depends on the specific experimental
conditions implied, that is, at a constant wind U, dif-
ferent degrees of wave development (quantified by ei-
ther x or £) can be observed at different distances X
along the wind vector. Such a situation is rather typical,
for instance, of aircraft experiments in which the wave
field is monitored along the flight path normal to the
coast line as the wind remains unchanged. Therefore,
this particular case should be modeled by keeping &,
constant, so that & = const X £72, Figure 6 is most
relevant to this case. On the contrary, sampling the
ocean surface on the global scale (the case of satellite
observations), one typically finds the wind speed in a
global sample varying in a very wide range (say, from
0.5 to 25 m s7'), while the fetch (as, for example,
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associated with the characteristic curvature of surface
isobars) varies in a relatively narrower range (say, 70
to 300 km). Moreover, due to the linear dependence
of x on X, as opposed to the inverse quadratic depen-
dence of x on U, the wave age is much more sensitive
to wind-speed variations than to fetch variations.
Therefore, attributing most of the wave-age dependence
to wind speed variations [i.e., employing (8.4) with a
constant value of X], we have a better chance to cor-
rectly represent statistics of global satellite observations.

For the situation described by (8.4), we plot the sea
state bias coefficient ¢ = —\,/8 versus wave age for
several values of #/X (in Fig. 7). The curves closely
resemble hyperbolas of the form £~ with m of order
one. The dashed line represents an empirical fit found
by Fu and Glazman (1991) based on analysis of 2.7
years worth of data gathered by the Geosat altimeter.
Evidently, the theory produces best agreement with the
experimental results if the values of # and X are taken
as, e.2., 0.5 m and 125 km. These values are quite
reasonable. Hence, taking into account both the sim-
plicity of our idealized theory and the inevitable errors
and biases of the experimental procedure employed in
Fu and Glazman (1991), we conclude that the theory
does bring out major features of the process.

9. Conclusions

Our main conclusion is that the weak-turbulence
theory yields correct description of wave dynamics for
equilibrium or near-equilibrium sea states. The theo-
retical fetch dependence of the wave energy, wave age,

59 0 kW00 0B
o

2.5 3 3.5
G/ U

Wave age,

FIG. 7. The sea state bias coefficient ¢ ~ — X, /8 for several values
of h/X, where h is the inner scale and X is the dimensional fetch.
The numbers at the curves give (/X)) X 108.
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surface skewness, “‘specular height,” and other prop-
erties of a weakly nonlinear sea agrees reasonably well
with the observed trends. For instance, substituting
(2.3) and (2.4) into equation (5.5) and dividing it by
(U? g7")? produces a relationship between the wave
age and the dimensionless wave energy, e:

const = [BT(1 — w)/2]17,
r=1/(4 - 4u). (9.1)

For p = Y%, we find that both r and const are in good
agreement with the experimental data of Donelan et
al. (1985), Dobson et al. (1989), and Glazman and
Pilorz (1990). The “fetch laws” for the wave age, (3.6)
and (3.8), also agree with the trends observed by dif-
ferent investigators, as summarized by Dobson et al.
(1989).

Surface statistics responsible for the sea state bias
are strong functions of Dy and wave age. Statistical
description of surface geometry given in sections 4
through 8 allows one to relate sea surface properties
accessible to remote sensing measurement (wave slope
variance, sea surface skewness, etc.) with factors of air-
sea interactions. Such relationships are particularly
useful for studies of wave dynamics and air-sea ex-
changes in the open ocean where satellite techniques
have obvious advantages over conventional observa-
tions.

Since a radar altimeter provides estimates of wind
speed and significant wave height, it is reasonable to
seek the sea state bias correction in the form

bias = B(£/E) ™" H, 3. (9.1)

Here, £ is the mean value of the wave age over the
World Ocean. The actual wave age can be estimated
roughly by using H,,; and U as suggested in Glazman
and Pilorz (1990), and coefficients B and m can be
found empirically. In this respect, the attempt reported
by Fu and Glazman (1991) appears to present an en-
couraging result.

£ = conste’,
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