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S U M M A R Y
Microseisms in the period of 2–10 s are generated in deep oceans and near coastal regions. It is
common for microseisms from multiple sources to arrive at the same time at a given seismome-
ter. It is therefore desirable to be able to measure multiple slowness vectors accurately. Popular
ways to estimate the direction of arrival of ocean induced microseisms are the conventional
(fk) or adaptive (Capon) beamformer. These techniques give robust estimates, but are limited
in their resolution capabilities and hence do not always detect all arrivals. One of the limiting
factors in determining direction of arrival with seismic arrays is the array response, which
can strongly influence the estimation of weaker sources. In this work, we aim to improve the
resolution for weaker sources and evaluate the performance of two deconvolution algorithms,
Richardson–Lucy deconvolution and a new implementation of CLEAN-PSF. The algorithms
are tested with three arrays of different aperture (ASAR, WRA and NORSAR) using 1 month
of real data each and compared with the conventional approaches. We find an improvement
over conventional methods from both algorithms and the best performance with CLEAN-PSF.
We then extend the CLEAN-PSF framework to three components (3C) and evaluate 1 yr of
data from the Pilbara Seismic Array in northwest Australia. The 3C CLEAN-PSF analysis is
capable in resolving a previously undetected Sn phase.
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1 I N T RO D U C T I O N

Two processes are responsible for the generation of ocean induced
microseisms in the frequency range 0.05–2 Hz. Primary micro-
seisms are generated by the interaction between ocean waves and
the sloping ocean floor close to the coastline (Hasselmann 1963;
Ardhuin et al. 2015). Secondary microseisms are generated by
opposing ocean wave trains with slightly different wavenumber �k
(Longuet-Higgins 1950). Seismic waves induced by the secondary
process are observed from the deep ocean (Gerstoft et al. 2008;
Euler et al. 2014; Beucler et al. 2015) as well as coastal areas (Ces-
saro 1994; Essen 2003; Schulte-Pelkum et al. 2004; Bromirski et al.
2005; Chevrot et al. 2007; Behr et al. 2013; Reading et al. 2014).

In array-based microseisms studies, it is common to observe
multiple wave arrivals from different backazimuths owing to the
complex nature of the frequency-dependent ambient noise field
(Brooks et al. 2009; Koper & Hawley 2010; Traer et al. 2012;

Gal et al. 2015). This poses increased requirements on the detec-
tion techniques compared to a single source. The analysis of the
wavefield may be carried out with the conventional or adaptive
beamformer (Kelly 1967; Capon 1969) that show robust estimates
but also suffer from limited resolution capabilities (Krim & Viberg
1996; Shumway et al. 2008).

In the presence of a strong source, weaker arrivals can remain
undetected or are overshadowed by the beam pattern of the strong
source. A further difficulty arises if the array has a wide mainlobe
or strong sidelobe, which results in a blurred power spectrum in
the case of multiple wave arrivals from different backazimuths.
To mitigate the effect of a blurred power spectrum, Nishida et al.
(2008) applied Richardson–Lucy (RL) deconvolution (Richardson
1972; Lucy 1974), which deconvolves the array response function
from an image in a maximum likelihood fashion to reduce blurring.
A similar approach named CLEAN (Högbom 1974), was designed
in the field of radio astronomy to remove bright objects from the
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measured sky brightness distribution to improve the sensitivity to
weaker emission. CLEAN iteratively removes the power and beam
pattern of the strongest source and replaces it with a ‘clean’ beam
to give a sidelobe-free representation of the sky. The algorithm was
adapted to acoustic beamforming as CLEAN-PSF (Sijtsma 2007),
by iteratively removing fractions of plane wave energy from the
cross-spectral density associated with the strongest source in the
acoustic record. Hence, these techniques can be applied directly to
seismic array data.

The increase of publicly available three-component (3C; one ver-
tical and two horizontals) single station and array data allows for
the study of the full seismic wavefield. For the single station case,
polarisation analysis methods are commonly used to infer the par-
ticle motion and arrival direction (Vidale 1986; Park et al. 1987;
Jurkevics 1988; Schimmel & Gallart 2003, 2004). In the case of
ocean induced microseisms, the use of single station analysis pro-
vides a great alternative for regions with no seismic arrays (Schim-
mel et al. 2011; Sergeant et al. 2013; Davy et al. 2015). For 3C array
data, beamforming can be performed separately for each compo-
nent by rotation of the horizontal components (Poggi & Fäh 2010;
Gibbons et al. 2011; Behr et al. 2013) or using all components
simultaneously (Wagner 1996, 1997).

The aim of this work is to increase the resolution of the power
spectrum to allow detection of weaker ocean induced microseisms
and enable robust direction of arrival estimation. We evaluate the
performance of RL deconvolution (Richardson 1972; Lucy 1974)
and CLEAN-PSF (Sijtsma 2007) for three arrays (ASAR, WRA and
NORSAR) with different apertures and compare the results with
IAS Capon (Gal et al. 2014). We further extend the CLEAN-PSF
algorithm to 3C seismic data. The performance of the 3C extension
is assessed by evaluating 1 yr of data from the Pilbara Seismic Array
(PSAR).

2 M E T H O D S

2.1 Conventional beamforming

For the conventional Bartlett beamformer (Bartlett 1948), the sam-
ple cross-spectral matrix (also known as cross-power spectral den-
sity) is given as

C( f ) = 1

L

L∑
l=1

Xl ( f )X†
l ( f ) (1)

where Xl ( f ) denotes the Fourier transform of the lth snapshot (tem-
poral subwindow) xl (t), † is the conjugate transpose, f is the fre-
quency and L the number of snapshots. Hence, the phase informa-
tion for the wavefield at each seismic sensor, for a frequency f, is
present in the cross-spectral matrix C( f ). The power output of the
beamformer is then

P(w) = w†C( f )w (2)

where w denotes a weight vector. For the conventional Bartlett
beamformer, the weight vector is obtained by maximising the output
power of the beamformer and it follows that

wB = a(k)√
a†(k)a(k)

(3)

with a(k) denoting the steering vector and k is the wavenumber.
Inserting eq. (3) into eq. (2), leads to the power spectrum

PB(k) = w†
B(k)C( f )wB(k). (4)

2.2 CLEAN and CLEAN-PSF algorithms

The CLEAN algorithm in its basic form, introduced in radio as-
tronomy by Högbom (1974), is based on the assumption that the
brightness distribution of the radio sky can be represented by spa-
tially separated point sources. The idea is to find the position and
strength of point sources and iteratively deconvolve their contribu-
tion to the image, that is, their point spread function (PSF). This
iterative approach reduces the power of the ‘dirty’ image. Because
the position and strength of the deconvolved source is known, point
sources with the appropriate strength are placed into the ‘clean’
image. After a user specific threshold of source power was decon-
volved (cleaning is stopped when the peak in the residual image
reaches a level comparable with the theoretical noise), the ‘cleaned’
image is then constructed by convolving the clean components with
an ideal beam (one with the same resolution as the array PSF, but
no sidelobes) and adding the residual image. This approach is very
successful in removing bright point objects that overshadow sources
with a low signal-to-noise ratio (SNR).

Following the idea of CLEAN, the same principle of source power
reduction can be introduced for conventional fk beamforming by
removing the PSF (the point spread function is equivalent to array
response function) from the power spectrum in a least-squares op-
timisation (Dougherty & Stoker 1998; Wang et al. 2004). CLEAN-
PSF is an improved implementation of the conventional CLEAN
that removes phase information associated with the strongest source
directly from the cross-spectral matrix (Sijtsma 2007), hence mit-
igating edge effects for PSF’s that suffer from strong sidelobes.
This extension allows the use of CLEAN-PSF with adaptive beam-
forming, that is, for slowness dependent PSF’s. CLEAN-PSF can
be formulated by removing a fraction of the dominant source power
PB,max from the cross-spectral matrix

Ci+1
PSF = Ci − φPi

B,maxwmaxw†
max (5)

where φ is the control parameter that determines the fraction of
removed power and wmax(k̃) is the normalised steering vector for
a plane wave with a wavenumber k̃ that is associated with the
maximum value in the power spectrum Pi

B,max(k̃). The idea behind
removing a fraction of power is to iteratively remove sidelobe con-
tributions associated with the strongest sources on the rest of the
power spectrum. This process can be viewed as the introduction of
a synthetic point source of negative power at the position of the
dominant source. The choice of φ is in general data dependent and
will be discussed on synthetic and observed data. Since the amount
of removed power is known (e.g. φ = 0.05 removes 5 per cent of
power from the strongest source), we can construct the CLEAN
power spectrum PCLEAN as

PCLEAN(k) =
M∑
i

φPi
B,max (6)

with M denoting the number of iterations and φPi
B,max is the amount

of reduced power for the dominant sources at iteration i. The fi-
nal spectrum PPSF is then obtained by summing the CLEAN and
background spectrum

PPSF(k) = w†
B(k)CM

PSF( f )wB(k) + PCLEAN(k), (7)

where CM
PSF( f ) is the cross-spectral matrix after M iterations. The

reason for adding the background spectrum is to obtain the correct
power levels as phase information may be difficult to remove for high
iterations once a low signal-to-noise ratio is present. The extension
of CLEAN-PSF to the Capon beamformer follows a similar logic
and is given in Appendix A. For our calculation, we use a nested grid
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search to refine the position of the maximum in the slowness plane
to an accuracy of 10−3 s deg−1. This procedure is implemented to
reduce error accumulation with increasing iteration number.

2.3 Richardson–Lucy algorithm

In astronomy and medical microscopy, a widely used method for
the deblurring of images is the RL deconvolution (Richardson 1972;
Lucy 1974). The data model of an observed image I(x) is defined
as

I (x) = P(x) ∗ O(x) (8)

where P(x) denotes the PSF of the system, O(x) is the original noise-
free image, ∗ is the convolution operator and x denotes the image
coordinates. Ideally, one wants to obtain the original noise-free im-
age from the observed image and a known PSF. Richardson (1972)
and Lucy (1974) addressed the reconstruction within a Bayesian
framework that leads to the iterative equation

Ôi+1(x) = Ôi (x)

[
P(x)T ∗ I (x)

P(x) ∗ Ôi (x)

]
, (9)

where i denotes the iteration number and Ô0 is the first guess for the
solution. This equation was later rederived as the maximum likeli-
hood solution under Poisson statistics (Shepp & Vardi 1982). The
equation therefore iteratively deconvolves the PSF under a maxi-
mum likelihood constraint. In this analysis, we use an implemen-
tation of RL deconvolution (Bertero & Boccacci 2005), previously
successfully applied to beamforming (Nishida et al. 2008; Picozzi
et al. 2010), that reduces Gibbs oscillations created by edge ef-
fects, allows the use of non-symmetric PSF’s and improves overall
performance.

The implementation is given as

Ōi+1(x) = w̄(x)Ōi (x)

[
P̄(x)T ∗ Ī (x)

P̄(x) ∗ Ōi (x) + b

]
, (10)

where the bar denotes objects that have been extended by zero
padding. The observed image I(x) with a pixel length of J × J is
extended by zero padding to the dimensions 2J × 2J and placed
into the centre of the extended area (an example of Ī (x) can be
found in Fig. S1a). The same procedure is applied to P(x), see
Fig. S1b, and Oi(x). The PSF placed into the centre of P̄(x) can
have a larger extent than J and/or a non-symmetric form and is
normalised to unity volume. The regularisation parameter b is the
background noise level. When set, it will enforce the constrain of
non-negativity upon the image. w̄(x) is defined as

w̄(x) =
{ 1

ᾱ(x) if ᾱ(x) > σ

0 otherwise
(11)

with

ᾱ(x) = P̄(x) ∗ M̄s(x), (12)

where Ms(x) is a mask object of dimensions J × J filled with values
equal to 1 and M̄s(x) is the zero-padded version. Hence, ᾱ(x) is
the convolution of the zero-padded PSF with the mask object and
describes the reach and influence of the PSF upon an image with
dimensions J × J. An example of both ᾱ(x) and w̄(x) are shown
in Fig. S1(c) and (d). The threshold parameter σ is introduced
to avoid any divisions by zero during the iterative process and
was suggested to be 0.01 or smaller for astronomical applications
(Bertero & Boccacci 2005).

3 S Y N T H E T I C DATA

3.1 Point sources

We evaluate the performance of the two deconvolution approaches
using synthetic data with the array element configurations of ASAR
(aperture of 10 km), WRA (26 km) and NORSAR (77 km). Array
locations, shapes, array response functions and relevant frequency
bands are displayed in Fig. 1. We generate 10 synthetic sources
with a phase velocity of 3.3 km s−1 (simulating Rg waves) and 3
synthetic sources with a phase velocity of 4.1 km s−1 (Lg waves), as
shown in Fig. 2. The slowness distribution of the synthetic sources
is chosen to cover a variety of scenarios, for example, multiple
backazimuths, closely spaced sources and similar directions for
Rg and Lg waves. Instead of creating synthetic seismograms and
calculating the Fourier transform for each station to generate the
cross-spectral matrix (eq. 1), we introduce phase shifts with equal
power directly into the synthetic cross-spectral matrix

Csyn =
∑

n

wB(kn)w†
B(kn), (13)

where n iterates over the number of sources and wB(kn) denotes
the normalised steering vector of the nth source. For conventional
(Bartlett) fk analysis in combination with CLEAN and RL, the
cross-spectral matrix does not require additional processing prior to
the beamforming procedure. In the case of the Capon method, we
apply diagonal loading to ensure the existence of the inverse matrix
(Featherstone 1997). In astronomy, the removed power is replaced
by the mainlobe only. This could be done for the fk algorithm for
which a mainlobe is data independent. For the Capon algorithm,
the mainlobe is data dependent and varies in the slowness plane.
We chose an arbitrary configuration, which is solely chosen for
visualisation purposes and replace the removed power of sources in
the CLEAN-PSF algorithm by a Gaussian kernel which occupies
7 × 7 gridpoints in the slowness plane and has no impact on the
results. All other parameters used for the calculation are displayed
in Table 1. The choice of the control parameter φ is selected in
an accuracy versus computational cost compromise and will be
discussed alongside the synthetic results. The iterations are stopped
after a user defined value M, although other stopping criteria are
discussed in Section 6. For the RL control parameter σ , we have tried
a variety of threshold values and found robust estimates between
0.05 < σ < 0.11.

The results of the synthetic analysis are displayed in Fig. 3. In the
case of the conventional fk analysis, we find a blurred spectrum for
each of the three arrays. Depending on the array station geometry
and frequency band, each array shows unique resolution capabilities
and shortcomings. The dense station configuration of ASAR shows
good power suppression for faster arrivals (i.e. body waves), but
strong blurring of surface waves due to the large beam mainlobe in
the chosen frequency range (Fig. 1b). WRA shows strong aliasing
due to its L-shaped geometry. NORSAR shows the best resolution
of the three arrays for the surface waves. However, NORSAR with
its seven dense subarrays (Fig. 1a) is prone to aliasing of body waves
for the selected frequency range.

In the case of CLEAN-PSF, we find a strong improvement in
source localisation for all three arrays and the recovery of previously
overshadowed sources in the original power spectrum. In general,
we see a suppression of artefacts generated by beam sidelobes,
especially for the case of WRA and NORSAR. For the CLEAN-
PSF with conventional fk, closely spaced sources are identified as a
single source due to the overlapping array response. CLEAN-PSF
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348 M. Gal et al.

Figure 1. (a)–(d) Geographical location of the arrays with their station configurations and (e)–(h) array response functions. A scale of 10 km above each station
configuration map is displayed as reference. The array response functions are displayed on a ±50 × ±50 sdeg−1 slowness grid. The displayed frequencies are
used during beamforming analysis of each array.

Figure 2. Representation of 10 synthetic sources with a velocity of
3.3 km s−1 and three synthetic sources with a velocity of 4.1 km s−1 in
the slowness plane. All sources are generated with equal power.

in combination with Capon shows very good reconstruction of the
true synthetic source parameters. Only minimal errors are visible
for the case of ASAR, while WRA and NORSAR show an error-free
spectrum. We have tested a range of φ values and their influence
on the recovery of weaker sources. In general, a small value of φ

< 10−3 will converge towards a unique solution but suffers from
high computational cost, that is, a high iteration number M. The
optimal φ is dependent on the array design (number of stations and
configuration), the frequency range chosen and the SNR. Arrays
with a small station count and low SNR are likely to converge only
for small φ values. For completeness, we display the convergence
behaviour of CLEAN-PSF-fk for the ASAR case for different φ

and iteration values and display which k̃ is removed per iteration in
Fig. S2.

The RL deconvolution shows strong reduction of blurring and
a good recovery of synthetic sources for the case of ASAR and

Table 1. Parameters used for the analysis of synthetic and observed data. The following symbols denote: sl snapshot length in seconds,
nw number of snapshots (windows), φ CLEAN control parameter, σ RL control parameter, M number of iterations where subscript C

and RL are to be associated with the two deconvolution approaches and ‘stop’ denotes the stopping criterion for both algorithms.

Array sl[s] nw φ σ M stop

Synthetic data
Point sources ASAR,WRA,NORSAR ∞ 1 0.1 0.09 100C/200RL User defined
Extended sources ASAR,WRA,NORSAR ∞ 1 0.1 0.09 180C/200RL User defined

Observed data
Single component ASAR 100 71 0.05 0.09 120C/200RL User defined

WRA 200 35 0.05 0.09 120C/200RL User defined
NORSAR 400 17 0.05 0.09 120C/200RL User defined

Earthquake excluded ASAR 100 69 0.025 0.09 200C200RL User defined
Earthquake included ASAR 100 71 0.025 0.09 250C/200RL User defined

Three component PSAR 200 35 0.1 - 60 User defined
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Array analysis of seismic noise 349

Figure 3. Comparison between different beamforming algorithms in the case of synthetic sources. Algorithms are displayed in rows, (a)–(c) conventional fk,
(d)–(f) CLEAN-PSF with fk, (g)–(i) CLEAN-PSF with Capon and (j)–(l) RL deconvolution. Each column shows results from a specific array. Black circles of
constant velocity are displayed at the true synthetic source velocities of 3.3 and 4.1 km s−1.

NORSAR. For WRA, we see only minimal improvement in com-
parison with conventional fk. The reason for the low improvement
is the PSF of WRA, which has relatively large sidelobes (Fig. 1g). In
this specific case, better recovery can be obtained with a reflective
boundary condition (Ng et al. 1999). In the conventional case pe-

riodic boundary conditions are used, while the reflective boundary
acts as a mirror on the boundaries. To preserve consistency, we use
the extension of Bertero & Boccacci (2005) for all further RL decon-
volution calculations. It has to be noted that the RL deconvolution is
strongly dependent on the number of iterations (Picozzi et al. 2010)
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Figure 4. (a) Display of the synthetic configuration of extended sources. The red arcs symbolise incoming energy from extended backazimuths. The two black
circles are placed at 3.3 and 4.1 km s−1. Results for ASAR for the three approaches are shown in (b)–(d).

and the optimal number to achieve the best resolution/bias compro-
mise requires an empirical approach. In this case, where the true
source location of the synthetics is known, we chose the best match
between the RL and the true power spectrum (200 iterations). We do
not attempt to combine Capon beamforming with the RL approach,
as the Capon power spectrum is not a superposition of PSFs, hence
bias of weaker sources is to be expected.

The above results are presented with the idealisations of noise-
free data and an infinite observation window. To account for noise
and finite window effects, each source is constructed in the time
domain with an SNR of −20 dB, a snapshot length of 200 s and
the Hann window function is applied. The results are shown in
Fig. S3 and display comparable results to the idealised case with
minimal performance degradation for CLEAN-fk and RL while
CLEAN-Capon suffers from the low SNR and shows worse source
recovery than with the fk beamformer. Essentially, the deconvolu-
tion approaches are dependent on the performance of the underlying
beamformer and are robust to noise in the study of ocean induced
microseisms.

3.2 Extended sources

We simulate the performance of the deconvolution methods for the
case of extended sources, see Fig. 4(a) for the synthetic configu-

ration. The results are presented for ASAR in Figs 4(b)–(d), while
the results for WRA and NORSAR can be found in the Supporting
Information, Fig. S4. Both CLEAN variations tend to cluster energy
from extended backazimuths to a finite group of backzimuths for
ASAR. The effect of clustering varies for all three arrays in this
study and is less pronounced for WRA and NORSAR (Figs S4a,b,d
and e). The clustering is dependent on the width of the mainlobe
and the amount of recovered sources increases with a decreasing
mainlobe width (e.g. WRA and NORSAR). The RL deconvolution
shows a strong suppression of sidelobes and retains the structure
of extended sources well for ASAR although little clustering is
present as well. For NORSAR and WRA (Figs S4c and f), the RL
deconvolution is not capable of resolving the extended sources. For
NORSAR, we see strong artefacts in the centre of the slowness
plane, which could not be removed due to the extended area of the
PSF, while WRA shows a complete incompatibility for extended
sources with RL deconvolution.

In conclusion, clustering can occur for the CLEAN approaches
dependent on the PSF of the array, while the RL deconvolution
retains a relatively smooth power output for arrays with a Gaussian
PSF and shows strong performance degradation for extended (non-
Gaussian type) PSFs. CLEAN further shows stronger resolution
in the separation of closely spaced sources in the case of WRA
and NORSAR, where the arrivals from the south are successfully
resolved as waves with two distinct velocities.
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4 O B S E RV E D DATA

In the following section, we evaluate the performance of the two
algorithms on observed ambient noise data. The difference in aper-
ture of the three arrays enables observations of different frequency
bands within the microseism wavefield. The frequency bands of
interest are 0.2 ± 0.01 Hz (NORSAR), 0.6 ± 0.03 Hz (WRA) and
0.9 ± 0.045 Hz (ASAR). We evaluate 1 month of observed data for
ASAR (2010 January), WRA (2010 January) and NORSAR (2012
December).

Beamforming is performed on 1 hr data samples with conven-
tional fk and Capon algorithms. Each 1 hr time-series is divided
into smaller 50 per cent overlapping time windows (also known as
snapshots) and tapered with the Hann window function to reduce
spectral leakage. Each of these snapshots is Fourier transformed
and used to construct a cross-spectral matrix that is an average of
the 1 hr sample. The averaging over time increases the rank of the
cross-spectral matrix and the robustness of the power spectrum.
We additionally average over neighbouring frequencies with up to
5 per cent width of the projection (centre) frequency. The averaging
over frequency further stabilises the power spectrum and allows
us to evaluate a broader frequency range. It is important to keep
the width over which frequency is averaged to a small percentage
of the projection frequency as increasing the width leads to incor-
rect phase summation in the cross-spectral matrix (Menon et al.
2014; Gal et al. 2014). The main reason to apply averaging over
frequency is that it gives rise to a well-structured cross-spectral ma-
trix as phase information is extracted with the CLEAN algorithm.
All other related parameters can be found in Table 1. For CLEAN,
we chose φ = 0.05 and M = 120 for all arrays which removes the
following amount of relative power on average: ASAR = −3.5 dB,
WRA = −4 dB and NORSAR = −6 dB. These values are chosen
in order to be confident that the underlying beamformer is not de-
generated by the SNR in the residual cross-spectral matrix. For the
RL deconvolution, we choose the same parameters as in the syn-
thetic case, as they seem to produce the best results for the observed
data.

We compare the deconvolution approaches to IAS Capon (Gal
et al. 2014) which has shown strong capabilities in estimating multi-
ple wave arrivals from a variety of backazimuths. IAS Capon calcu-
lates multiple narrow-band spectra supported by diagonal loading to
increase robustness of the solution. The narrow-band power spectra
are combined to give a broad-band representation of the wavefield.
For RL deconvolution, we use 200 iterations as this seems to yield
the most reliable results in this case. The results are shown in Fig. 5.
The summary plots are a combination of 1 hr evaluations for the
whole month and are constructed by only considering local maxima
above a certain relative power threshold (ASAR −3.5 dB, WRA
−4 dB and NORSAR −6 dB), which is free of sidelobes due to
CLEAN.

For ASAR (Fig. 5, left column), all four algorithms find multiple
sources with a velocity of 3.3 km s−1 and 1–2 sources with a velocity
of 4.1 km s−1 with identical backazimuths. IAS Capon shows the
strongest contribution of artefact arrivals, which are caused by beam
sidelobes of strong sources. This is to be expected as IAS Capon was
not designed to recover weaker sources accurately (Fig. 5a, ∼11.2
sources per hour). CLEAN-PSF removes these artefacts in both
cases of fk and Capon, while Capon shows superior suppression
capabilities, consistent with the synthetic tests. The RL algorithm
shows a clean spectrum, but has the downside of recovering the least
sources. We observe that the RL deconvolution does not preserve
the power relations between sources and weaker sources are strongly

suppressed. Lowering the power threshold for ASAR below −3 dB
shows an increase in weaker arrivals, but it is accompanied by an
increase in artefacts with velocities <3 km s−1.

For WRA (Fig. 5, middle column), we find most surface waves
originate from the northern directions. IAS Capon shows signal con-
centrations along straight lines due to the array response. CLEAN-
PSF-fk shows an improvement by reducing the presence of the
array pattern although many scattered arrivals are visible. CLEAN-
PSF-Capon displays the best performance in the suppression of
the array pattern in both body and surface wave arrivals. With
the RL deconvolution, we obtain a similarly bad resolution as in
the synthetic case. The body wave arrivals do not match the re-
sults of the other three algorithms and very few sources are re-
covered overall. In the case of a reflective boundary condition,
we observe an increase in source and artefact arrivals, hence little
improvement.

NORSAR (Fig. 5, right column) shows arrivals from the Atlantic
Ocean, in accordance with previous studies, for example, Friedrich
et al. (1998). IAS Capon shows exceptional slowness vector recov-
ery, as Rayleigh waves are estimated with a very sharp velocity
profile (Fig. 5c). CLEAN-PSF-fk shows poorer performance, po-
tentially due to the low sidelobe suppression of conventional fk.
CLEAN-PSF-Capon shows a result similar to the IAS method with
the exception of a body wave region (northwest), which is a likely
artefact (we see a similar scenario for the synthetic case, where
CLEAN-PSF-Capon suppresses an artificial body wave arrival,
Fig. 3i). The RL deconvolution shows a result similar to CLEAN-
PSF-Capon in suppression of artefacts, but recovers only half of the
sources in comparison.

Overall, both CLEAN-PSF and RL deconvolution show an im-
provement in beam sidelobe reduction on ASAR and NORSAR,
while CLEAN-PSF outperforms the RL devoncolution on WRA
which has large sidelobes. CLEAN-PSF further shows a superior
performance in weak source recovery on all three arrays.

4.1 Presence of an earthquake

Earthquakes are unwanted signals in the analysis of microseisms.
Discarding earthquake perturbed data or performing a frequency
normalisation to retain phase information only (e.g. Gerstoft et al.
2008), thus reducing the earthquake signal, are the common ap-
proaches. In the case of a strong earthquake, weaker microseism
signals can remain undetected or their true slowness vector can
be concealed due to the influence of strong beam sidelobes.
We tested CLEAN-PSF and RL deconvolution on a 1 hr record
of ASAR (2010 January 2, 00:00:00–01:00:00 UTC, magnitude:
5.1 mb, origin: Tonga Islands) to determine if the algorithms can
accurately resolve weaker microseism sources in the presence of an
earthquake. At first, we remove two snapshots that contain the earth-
quake signal and evaluate the noise wavefield. In the second step,
we include the two snapshots containing the earthquake to study the
influence of the strong arrival on the underlying noise wavefield.
The results for the earthquake perturbed data set are displayed in
Fig. 6.

The noise wavefield shows similar results for the two CLEAN
variations and the RL deconvolution (Figs 6 a–c). Slight differences
are visible for body waves and the southern direction where the
CLEAN approaches indicate multiple arrivals while RL deconvolu-
tion estimates these arrivals as one source. With the included earth-
quake signal (Figs 6 d–f), both algorithms are capable of removing
the array pattern from the earthquake source and show the same
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Figure 5. Beamforming summary (histograms) plots in the same layout as Fig. 3, but for observed array data. Instead of conventional fk, the first row shows
beamforming results with IAS Capon. Circles of constant velocity are drawn at 3.3 and 4.1 km s−1.
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CLEAN-PSF fk RL deconvolutionCLEAN-PSF Capon

relative power [dB]beam power [dB]

(a) (b)

(f )(d) (e)

(c)

Figure 6. Beamforming results on a 1 hr long record of ASAR during an earthquake arrival. The top row shows the results which contain noise only. This was
achieved by removing two snapshots from the cross-spectral matrix which contain the earthquake signal. The bottom row includes the earthquake signal which
is marked with a green crosshair in the slowness plane. The algorithms are organised in columns, (a) and (d) CLEAN-PSF-fk, (b) and (e) CLEAN-PSF-Capon
and (c) and (f) Richardson–Lucy deconvolution. Circles of constant velocity are set at 3.3 and 4.1 km s−1. For the CLEAN approaches, we show the true beam
power and clip the power of the earthquake arrival to show the background arrivals within the same limits. For the RL deconvolution, the results are shown
with relative power, as RL does not accurately retain power information.

noise wavefield. For visualisation purposes, we clip the earthquake
signal and show the same power levels as in the earthquake-free
case, for an easy comparison of the noise wavefield. The results
show that earthquake induced signals, including their sidelobe con-
tributions, can be successfully removed from the power spectrum
by both algorithms, while CLEAN-PSF shows higher resolution.

5 T H R E E - C O M P O N E N T C A S E

With the increasing deployment of seismic 3C arrays, better pro-
cessing of 3C ground motion data is desirable. For 3C arrays, a
popular way of performing the direction of arrival analysis is to
rotate the horizontal north–south and east–west components into
radial and transverse directions, for example, Fäh et al. (2008),
Poggi & Fäh (2010), and Behr et al. (2013). Radial and transverse
components are then processed separately, exploiting the fact that
Rayleigh and Love waves have orthogonal particle motions. A dis-
advantage of this approach is that the cross-spectral matrix needs to
be recalculated for each direction, and phase information between
the three orthogonal directions are not recovered by this analysis.

5.1 Extension of CLEAN-PSF to 3C

We make use of an approach that evaluates all 3C simultaneously
and allows access to polarisation information. The technique was
developed by Wagner (1996) and can be used with multiple flavours
of beamformers (fk, Capon, MUSIC and EMV). We briefly sum-
marise the 3C approach followed by the extension of CLEAN for
this framework. The 3C cross-spectral matrix is given as

C3C( f ) = 1

L

L∑
l=1

X3C,l ( f )X†
3C,l ( f ) (14)

with

X3C( f ) = [Xz1, . . . , XzK , Xn1, . . . , XnK , Xe1, . . . , XeK ]T , (15)

where Xab on the right-hand side denotes the Fourier transform
of component a (vertical, north–south and east–west) and station
b. Hence, X3C( f ) is a vector of length 3K and C3C( f ) is a 3K
× 3K matrix that governs the phase information between all 3C.
The cross-spectral matrix is then projected onto the steering matrix
composed of three orthogonal steering vectors

Y3C(k) = e†(k)C3C( f )e(k) (16)
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with

e(k) = [az(k), an(k), ae(k)], (17)

where the orthogonal 3K × 3 steering matrix e(k) is of the form

e(k)

=
⎡
⎣ az1 . . . azK 0 . . . 0 0 . . . 0

0 . . . 0 an1 . . . anK 0 . . . 0
0 . . . 0 0 . . . 0 ae1 . . . aeK

⎤
⎦

T

(18)

and azi = ani = aei is the normalised steering vector from eq. (3). The
resulting 3 × 3 polarisation covariance matrix Y3C(k) is processed
analogously to the single station case (Vidale 1986; Wagner &
Owens 1996). An eigenvalue decomposition of Y3C(k) transforms
the polarisation characteristics into an orthogonal basis

Y3C(k) = u(k)λ(k)u†(k), (19)

where the eigenvalues λ denote the strength for a certain polarisation
direction that is given by the associated complex eigenvectors u(k).
Each eigenvector parametrises the amplitude and phase relations
of the 3C (z,n,e) for the given polarisation direction. The power
estimate of the 3C conventional beamformer is the sum of the
eigenvalues

P3C(k) = λ0(k) + λ1(k) + λ2(k). (20)

The total power spectrum can be written as the sum of the 3C

P3C(k) =
∑

j=z,n,e

Pj (k) =
∑

j=z,n,e

2∑
i=0

λi (k)|ui, j (k)|2

=
∑

j=z,r,t

P̃j (k) =
∑

j=z,r,t

2∑
i=0

λi (k)|ũi, j (k)|2, (21)

where tilde (e.g. P̃j (k)) denotes rotated components from north–
south, east–west to radial and transverse. For each wavenumber k,
that is, velocity, direction and frequency, the 3C beamformer yields
an estimate of the amplitude and phase information of each compo-
nent. The Capon 3C beamformer can be obtained by replacing the
3C cross-spectral matrix in eq. (16) by its inverse and inverting the
eigenvalues

P3C,Capon(k) = 1

λ0(k)
+ 1

λ1(k)
+ 1

λ2(k)
. (22)

For strong transients and the case of conventional 3C beamform-
ing, the largest eigenvalue λ0 and eigenvector u0(k) (assuming the
eigenvalues and eigenvectors are sorted, λ0 > λ1 > λ2) are used for
the power estimate (e.g. Wagner 1997). This is a useful approach
for signals whose polarisation characteristics can be described by
a single eigenvalue/eigenvector pair, hence λ0 � λ1, 2 ≈ 0. The re-
maining two eigenvalues are close to 0 and are dominated by noise.
This approach is invalid for superimposed signals which are likely
to occur in the study of ocean induced microseisms. We therefore
outline the CLEAN approach in 3C in its general form for all three
eigenvalues/eigenvectors.

The above framework allows us to implement the cleaning pro-
cedure in multiple ways. Signal removal can be performed on the
maximum of the total power output, eq. (20), on each component
(z,r,t) separately, or any other way appropriate for the user’s ap-
plication. We present the equations for CLEAN-PSF in 3C, where
cleaning is subject to the maximal energy of the spectrum P3C(k).
In analogy to Section 2.2, the first step is to identify the dominant

contribution in the power spectrum, that is, P3C,max(k̃) along with
its eigenvalues λi (k̃) and eigenvectors ui (k̃). We remove the power
in 3C

Ci+1
3C = Ci

3C − φ

2∑
j=0

λ j (k̃)g j (k̃)g†
j (k̃), (23)

where

g j (k̃) =
∑

m=z,n,e

|u j,m(k̃)|am(k̃)eiψm (k̃) (24)

is a 1-D vector of length 3K constructed from the three orthogonal
steering vectors am(k̃), see eqs (17) and (18). The vector g j (k̃) es-
sentially describes the componentwise plane wave propagation of
all 3C associated with the strongest source in the power spectrum
with the wave vector k̃. The eigenvector u0(k̃) assigns the contribu-
tions of each component, for example, for a Love wave |u0z(k̃)| will
be close to 0, hence minimal power will be removed from the verti-
cal z component. While the phase information is initially arbitrary
(Vidale 1986), it is important to retain the phase information be-
tween the components, which we account for with eiψm (k̃) for the mth
component. This will ensure that polarisation properties are taken
into account during the cleaning procedure (for instance, Rayleigh
waves with a phase difference of 90◦ between the vertical and radial
components).

Further calculations follow the same principals as CLEAN-PSF
and the clean power spectrum is

P3C,CLN(k) =
M∑
i

φPi
3C,max. (25)

Combined with the background the full spectrum is of the form

PPSF-3C(k) = e†(k)CM
PSF( f )e(k) + P3C,CLN(k). (26)

The CLEAN-PSF-3C approach can be combined with Capon
beamforming following the same logic as in the 1-D case (see
Appendix A).

In this work, we implemented CLEAN-PSF to clean each com-
ponent separately, hence we computed three cross-spectral matrices
(eq. 14) that are identical before CLEAN’s first iteration. For the
matrix C3C,i , we remove the energy associated with the local max-
ima from the ith component only. This approach will prevent the
corruption of each component’s power information. We illustrate
the introduction of bias through the following example. Let there
be three wave arrivals with equal strength (0 dB) and backazimuth,
but different velocities (3.7, 4.4 and 5.6 km s−1) and each wave is
recorded by a separate component only. An illustration of the 3C
fk beamformer output is displayed in the Supporting Information,
Fig. S5 and the estimated parameters are given in Table S1. Even
though the signals do not interfere with each other on any compo-
nent, the polarisation analysis estimates power from the sidelobe
contributions of the sources present on the other two components.
This can be seen in the source present on the z component, which
has power accurately estimated with 0 dB, while the other two com-
ponents show a power of −2.22 dB, which is a result of sidelobes.
Therefore, if a fraction of the power is removed from the z com-
ponent, the other two components lose power proportional to their
sidelobes power levels. This will bias the two other components and
will inevitably lead to an incorrect decomposition of the spectrum.
Hence, the easiest way to clean the components is to compute three
cross-spectral matrices and clean each separately to obtain three
unbiased components.
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5.2 CLEAN-PSF-3C with observed data

For the 3C case, we use the PSAR which is comprised of 13 3C sta-
tions arranged in a spiral geometry (Kennett et al. 2015), located in
northwest Australia. PSAR was deployed by Geoscience Australia
and data access is available through the IRIS Data Management cen-
tre. The location, array configuration, array response and frequency
band can be found in Fig. 1.

In the following section, we show the capabilities of CLEAN-
PSF-3C by evaluating 1 yr of PSAR data (2013). Instead of conven-
tional fk, we use the Capon beamformer in combination with the
above framework. We average over time and frequency analogous
to the vertical component case in Section 4. Since we are interested
in the ambient noise field, and the main wave phases are Rg, Lg,
P and Love waves (Nishida et al. 2008; Koper et al. 2010), we
implement the CLEAN-PSF-3C algorithm to remove power sepa-
rately from the strongest vertical, radial and transverse source per
iteration (see Appendix B). We remove signals associated with the
two smallest eigenvalues only (in the case of Capon the smallest
eigenvalues represent the signals with strongest polarisation, see
eq. 22), as the largest eigenvalue is, in general dominated by noise.
All other parameters are stated in Table 1.

The results are presented in equivalent fashion to the single-
component case as summary plots of the full year, for both 3C
Capon beamforming and the CLEAN-PSF implementation (Fig. 7).
We display local maxima up to a relative power threshold of −5 dB
for each component, which is the amount that is cleaned on average
by the CLEAN procedure. The first column shows the 3C Capon
summary of arrivals for (1) vertical, (2) radial and (3) transverse
components, respectively. A velocity histogram of the components
is shown in Fig. 7(d). The second column (e)–(h) shows the cor-
responding CLEAN power spectra which were computed with 60
iterations. Increasing the number of iterations, hence removing less
power in one step, leads to the same result.

The vertical and radial component plots (Figs 7a and b) are
dominated by arrivals with a velocity of 3.3 km s−1 from the north
to the west. For both components, these arrivals are found at identical
positions in the slowness plane, hence show typical Rg behaviour.
For arrivals from the south to the west, the positions in the slowness
plane are not identical between the two components. This suggests
an additional phase is present. A potential candidate is the Lg phase,
as the vertical component shows arrivals with an increased velocity,
in contrast to the radial component. The majority of body waves do
not have correlated vertical and radial components and are hence
likely to be artefacts. For the transverse component (Fig. 7c), we
find a multitude of sources around a velocity of 3.9–4.0 km s−1

present in the wavefield, which are likely Love waves.
Similarly, the CLEAN algorithm shows arrivals from the same

directions on all 3C. For the cleaned vertical and radial components
(Figs 7e and f), we find again identical positions in the slowness
plane. In contrast to the conventional results, the cleaned spec-
trum shows significantly better resolution and is able to distinguish
greater detail in arrivals from the main arrival directions in the
north and west. Further, the previously scattered body waves are
reduced and the remaining energy on the vertical and the radial
component correlates well in the slowness plane. For the energy
from the south to the west, little improvement is visible compared
with the conventional approach. The cleaned transverse component
shows additional sources from the northeast and southeast and re-
veals a previously undetected shear phase with a velocity around
4.6–4.7 km s−1 (Fig. 7g). Comparing the two velocity histograms,
Figs 7(d) and (h) illustrate the detection of this phase. A likely

Figure 7. Beamforming summary plots (histograms) for (a)–(c) three-
component Capon and (e)–(g) its CLEAN-PSF extention for each com-
ponent. Circles of constant velocity are displayed at 3.3, 4.0 and 4.7 km s−1.
The velocity histograms (d) and (h) were created from the arrival data in the
corresponding column and display vertical, radial and transverse in black,
white and red. For (e) and (f), we explicitly mark a region of P wave arrivals
that correlate in the slowness plane.

candidate is the Sn phase, which matches the observed velocity in
Australia (Huestis et al. 1973; Stephens & Isacks 1977).

6 D I S C U S S I O N

For the single-component case, CLEAN-PSF shows significant res-
olution improvements in identifying weaker sources. The algorithm
allows a specified amount of power to be cleaned from the spectrum
and hence removes the associated sidelobe bias. Assuming the con-
trol parameter φ is not large, the algorithm converges to a solution.
The extracted phases can be used to validate the accuracy of the so-
lution by replacing the cross-spectral density matrix with the matrix
that includes all removed phases (last term in eq. 5). This can be
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Figure 8. (a) Synthetic example of two closely spaced sources (baz = 85◦ and 95◦), which cannot be separated by the Capon beamformer. (b) Displays the
results after the CLEAN procedure. (c) Shows from which backazimuth power is removed as a function of the iteration and the green line marks the fraction
of power removed as a function of iteration.

seen as a variation of the covariance fitting algorithm (Yardibi et al.
2008).

A limiting factor of CLEAN is its dependence on the dominant
source. If the original beamformer result is biased in the dominant
source, by a closely spaced source or multiple wave phases which
generate an artificial local maximum due to sidelobe superposition,
CLEAN will remove plane wave energy associated with the incor-
rect slowness vector and lead to an incorrect solution. A possible
solution is to use a hybrid algorithm that combines CLEAN and
RL deconvolution. Later iterations of CLEAN will benefit from a
hybrid approach, as multiple peaks with the same power levels are
likely to occur. Applying the RL algorithm in this scenario will
give CLEAN a better estimate of the strongest source present in the
spectrum, and therefore, enhance the correct recovery of weaker
sources.

In contrast to CLEAN-PSF, the RL deconvolution does not de-
pend on the position of the strongest source in the slowness plane
and can in some cases correct the bias of the initial beamformer
result. It shows strong deblurring capabilities but cannot resolve as
many sources as CLEAN-PSF. A difficulty of the RL algorithm is
the non-converging behaviour, hence it is strongly dependent on the
number of iterations (Picozzi et al. 2010). It is not possible to find
the optimal solution and a compromise between resolution and bias
has to be selected by the user which limits the resolution capabilities
of this approach.

In the conventional CLEAN in astronomy, the cleaning procedure
is stopped once the maximum of the residual image reaches the level
of the background noise. For beamforming, we have investigated
two stopping criteria, apart from the trivial case in which the user
sets the iteration number M to clean a specific amount of power.
The first is to stop iteration after 1 eigenvalue of the covariance
matrix becomes negative, that is, violates the positivity constrain
embedded in the conventional beamformer. We found this approach
to give unreliable results, owing to higher iterations lowering the
SNR. This can strongly influence the performance of the underlying
beamformer and CLEAN will remove random energy until the stop
criterion is fulfilled. A more robust option is to monitor the parame-
ters of the removed energy. In an iteration versus backazimuth plot,
the removed energy tends to cluster around certain backazimuths
(Fig. S2). Once the energy starts to scatter from these backazimuths,

it is likely that the underlying beamformer is biased by noise and
CLEAN should be stopped. An illustrative figure is presented in the
Supporting Information, Fig. S6.

The RL deconvolution faces the issue of a missing stop criterion
in order to obtain the optimal solution. During our analysis, we find
that the optimal number of iterations selected from synthetic tests,
fits well with results from observed data for ASAR and NORSAR.

In the case of CLEAN, we examine the possibility of introduc-
ing errors by removing energy from the power spectrum that dif-
fers from the true source location. We study the behaviour for two
closely spaced sources which cannot be separated by the underly-
ing beamformer. Two noise-free synthetic sources are generated at
backazimuth 85◦ and 95◦ and analysed with the ASAR configuration
with CLEAN-Capon. In this case, we have set diagonal loading to
a level where the two sources are observed as a single source by the
Capon beamformer. Therefore, CLEAN will start to remove power
between the two sources. The results shown in Fig. 8 display from
which backazimuth power is removed, with each iteration. During
the first iterations, power is removed from backazimuth 90◦ until
enough power is removed to separate the two sources. The following
iterations show that the removal of energy overshoots the true back-
azimuth values to compensate for the removal between the sources.
The CLEAN approach cannot correctly separate the sources, but
succeeds in the correct estimation of the combined power.

For completeness, we estimate the amplitude and slowness er-
rors of the cleaned spectrum in the synthetic case presented in
Section 3.1. The results are displayed in a backazimuth histogram
for ASAR, WRA and NORSAR (Figs S7–S9). The estimated error
in slowness depends on the wavefield and is greater when sources
are closely spaced and cannot be separated by the beamformer and
hence is dependent on the mainlobe of the array. For the case of
ASAR, we find backazimuth errors of up to 5◦ and this decreases
for the other arrays. The amplitudes are well estimated and show
strong improvement over the conventional case (Fig. 3). For WRA
and NORSAR the error in backazimuth is (<3◦) due to the increase
in the number of stations and the smaller beam mainlobe.

The main source of error for the RL deconvolution is connected
to the control/threshold parameter σ . In astronomy, the PSFs have a
finite extent and can be easily normalised to unity volume. In array
seismology, this is not the case as PSFs are not finite and can have
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complicated shapes. This poses a problem as the volume of the PSF
and σ are essentially dependent on the grid size of the PSF. The fact
that the PSF is not finite is directly responsible that power levels of
each source are not accurately estimated. We have tried a variety of
threshold values and found robust estimates between 0.05 < σ <

0.11 for ASAR and NORSAR. Between these two values, the RL
deconvolution shows robust results when applied to synthetic data.

7 C O N C LU S I O N S

We have tested the performance of two deconvolution algorithms,
CLEAN-PSF and RL deconvolution, in the context of a single-
component array microseism (ambient noise) analysis. We used a
range of arrays with different apertures and shapes (ASAR, WRA
and NORSAR). In all three cases (synthetic, real and earthquake
perturbed data), both approaches show improvement over the con-
ventional methods in removing artefacts and identifying weaker
sources. CLEAN-PSF shows better suppression capabilities mainly
due to the fact that it can be used with the Capon beamformer.
A further advantage was shown through an earthquake example,
where CLEAN-PSF is capable of removing the earthquake imprint
and revealing the underlying ambient noise sources.

We have extended the CLEAN approach to 3C and analysed its
performance on 1 yr of 3C ambient noise data from PSAR. The
extension demonstrates improved resolution on all 3C and reveals
the previously undetected Sn phase. We therefore conclude that
CLEAN-PSF is of strong utility in the study of the ambient noise
field for the accurate identification of weaker arrivals for single- and
three-component arrays.
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Paradis, D., 2007. Source locations of secondary microseisms in western
Europe: evidence for both coastal and pelagic sources, J. geophys. Res.,
112(B11), B11301, doi:10.1029/2007JB005059.

Davy, C., Stutzmann, E., Barruol, G., Fontaine, F. & Schimmel, M., 2015.
Sources of secondary microseisms in the Indian Ocean, Geophys. J. Int.,
202(2), 1180–1189.

Dougherty, R.P. & Stoker, R.W., 1998. Sidelobe suppression for phased
array aeroacoustic measurements, in Proceedings of the 9th AIAA/CEAS
Aeroacoustics Conference, American Institute of Aeronautics and Astro-
nautics Meeting Papers, pp. 235–245.

Essen, H.-H., 2003. On the generation of secondary microseisms ob-
served in northern and central Europe, J. geophys. Res., 108(B10),
doi:10.1029/2002JB002338.

Euler, G.G., Wiens, D. & Nyblade, A.A., 2014. Evidence for bathy-
metric control on the distribution of body wave microseism sources
from temporary seismic arrays in Africa, Geophys. J. Int., 197(3),
1869–1883.

Fäh, D., Stamm, G. & Havenith, H.B., 2008. Analysis of three-component
ambient vibration array measurements, Geophys. J. Int., 172(1), 199–213.

Featherstone, W., 1997. A novel method to improve the performance of
Capon’s minimum variance estimator, Tenth International Conference
on Antennas and Propagation (Conf. Publ. No. 436), IEE Conference
Publisher, Vol 1, pp. 332–335.
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this paper:

Figure S1. (a) Illustration of zero padding of the original power
spectrum (for ASAR). In this case we extend the image plane to
3N to account for the large extent of the used PSF. (b) Zero padded
PSF of ASAR with an extent of 2N − 1 pixels and normalised to
unity volume. (c) Display of α where (b) is convolved with a mask
object Ms to generate a field where the PSF mostly contributes to.
(d) Shows w with a threshold parameter σ = 0.09.
Figure S2. Examples of different control parameters φ and their
effect on the iteration process. The rings of constant velocity are set
to 3.3 and 4.1 km/s.
Figure S3. Same as Fig. 3 but with a SNR of −20 dB and Hann
window applied for ASAR only. The rings of constant velocity are
set to 3.3 and 4.1 km/s.
Figure S4. Synthetic results for he case of extended sources. The
columns show the 3 deconvolution algorithms and rows the 2 arrays.
The rings of constant velocity are set to 3.3 and 4.1 km/s.
Figure S5. Illustrative figure for the case of 3 point sources, where
each source is recorded by a single component only. The rings of
constant velocity are set to 3.3 and 4.1 km/s.
Figure S6. Observed data results for ASAR for different iterations
numbers and their power removal history. The power of the main
peak is gradually reduced with increasing M as sidelobe contri-
butions which overestimate the source power are removed. After
iteration 600 scattering in (i) is visible which suggest that removed
power may not be accurate. The rings of constant velocity are set to
3.3 and 4.1 km/s.
Figure S7. We show a Backazimuth histogram of removed power
by the CLEAN algorithm. The synthetic configuration is identical
to the case in Fig. 3. For the control parameter we select φ = 0.1 and
CLEAN iteration is stopped once 98 per cent of the synthetic power
is removed. The red dots symbolise the true backazimuth and the
true source power in decibel. (a) Shows 10 synthetic sources with
a velocity <3.715 km/s and (b) shows the remaining 3 sources
with velocities >3.715. (c,d) Show the the same parameters but for
CLEAN-PSF-Capon. The combined power for each source derived
from the CLEAN approaches can be found in Table S2.
Figure S8. Same as Fig. S7, but for WRA. Beam power results for
each source are shown in Table S3.
Figure S9. Same as Fig. S7, but for NORSAR. Beam power results
for each source are shown in Table S3.
Table S1. Parameter of sources evaluated with the 3 component
beamformer.
Table S2. Beam power for the synthetic test with the two CLEAN
variations on ASAR. These values are derived from Fig. S7, by
summing over a small backazimuth range for each source. Source
8 and 9 could not be separated and their power is displayed as the
combined power over both backazimuth ranges. Iteration stopped
after ∼98 per cent of power was removed by CLEAN.
Table S3. Same as Table S2, but for WRA and NORSAR. The
results are generated from Fig. S8 and Fig. S9. Iteration stopped
after ∼98 per cent of power was removed by CLEAN.
(http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/
ggw150/-/DC1).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.
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A P P E N D I X A : C L E A N - P S F - C A P O N

The Capon beamformer can be formulated as the following min-
imisation

min w†C( f )w (A1)

under the constrain that the gain in the look direction k is constant

w†a(k) = 1. (A2)

The minimisation can be solved with the Lagrangian multiplier
method and yields the weight vector

w = C−1(f )a(k)

a†(k)C−1(f )a(k)
. (A3)

Inserting into eq. (2) leads to the Capon beamfromer (Capon 1969)

P(k) = 1

a†(k)C−1(f )a(k)
. (A4)

CLEAN-PSF can be implemented by removing phase informa-
tion from the cross-spectral matrix C prior to its inversion. The
algorithm can be summarised with the following steps (for a nor-
malised steering vector a(k)):

(i) Calculate cross-spectral matrix C, eq. (1).
(ii) Compute the inverse C−1.
(iii) Compute Capon beamformer, eq. (A4), and locate maximum

in slowness plane.
(iv) Remove fraction of power from cross-spectral matrix,

Ci+1
PSF = Ci − φPi

Capon,maxamaxa†
max.

(v) Place removed power into clean spectrum, eq. (6).
(vi) Iterate steps (ii)–(v).
(vii) Combine clean and background spectrum.

A P P E N D I X B : C L E A N I N G E A C H
C O M P O N E N T S E PA R AT E LY W I T H
C A P O N C L E A N - P S F - 3 C

The Capon beamformer in 3C is obtained by projecting the
three orthogonal steering vectors onto the inverse cross-spectral
matrix

Y3C,Capon = e†(k)C−1
3C ( f )e(k). (B1)

Contrary to the conventional beamformer case, the power is given
as

P3C,Capon(k) = 1

λ0(k)
+ 1

λ1(k)
+ 1

λ2(k)
, (B2)

with λ0 > λ1 > λ2. In this case, λ2 is connected to the strongest po-
larisation. To clean each component separately we use the following
steps:

(i) Calculate cross-spectral matrix C3C, eq. (14), and create two
additional duplicates.

(ii) Compute the three inverse matrices C−1
3C,i .

(iii) Calculate three polarisation covariance matrices Y3C,i (k) =
e†(k)C−1

3C,i ( f )e(k).
(iv) Compute power for the two lowest eigenvalues and each com-

ponent, i = z, r, t, P3C,i = ∑
n=1,2

1
λn,i (k) |ũn,i (k)|2 and find maximum

in each component.
(v) Remove fraction of power from 3C cross-spectral matrices,

m = z, r, t, Ci+1
3C,m = Ci

3C,m − φ
∑

j=1,2
1

λ j,m (k̃)
g j (k̃)g†

j (k̃).

(vi) Place removed power into clean spectra, P3C,CLN,m(k) =∑M
i φPi

3C,max,m .
(vii) Iterate steps (ii)–(vi).
(viii) Combine clean and background spectra.

 at IFR
E

M
E

R
 on July 2, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

https://domicile.ifremer.fr/,DanaInfo=gji.oxfordjournals.org+

