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[1] The estimation of nonlinear wave‐wave interactions is one of the central problems in
the development of operational and research models for ocean wave prediction. In this
paper, we present results obtained with a numerical model based on a quasi‐exact
computation of the nonlinear wave‐wave interactions called the Gaussian quadrature
method (GQM) that gives both precise and computationally efficient calculations of the
four‐wave interactions. Two situations are presented: a purely nonlinear evolution of the
spectrum and a duration‐limited case. Properties of the directional wave spectrum obtained
using GQM and the Discrete Interaction Approximation Method (DIM) are compared.
Different expressions for the wind input and dissipation terms are considered. Our results
are consistent with theoretical predictions. In particular, they reproduce the self‐similar
evolution of the spectrum. The bimodality of the directional distribution of the spectrum at
frequencies lower and greater than the peak frequency is shown to be a strong feature
of the sea states, which is consistent with high‐resolution field measurements. Results
show that nonlinear interactions constitute the key mechanism responsible for bimodality,
but forcing terms also have a quantitative effect on the directional distribution of the
spectrum. The influence of wind and dissipation parameterizations on the high‐frequency
shape of the spectrum is also highlighted. The imposition of a parametric high‐frequency
tail has a significant effect not only on the high‐frequency shape of the spectrum but also
on the energy level and peak period and on the global directional distribution.

Citation: Gagnaire‐Renou, E., M. Benoit, and P. Forget (2010), Ocean wave spectrum properties as derived from quasi‐exact
computations of nonlinear wave‐wave interactions, J. Geophys. Res., 115, C12058, doi:10.1029/2009JC005665.

1. Introduction

[2] Existing operational models for ocean wave modeling
(either hindcasting or forecasting) are based on a transport
equation for the wave action density. Since the pioneering
model of Gelci et al. [1957], the understanding and mod-
eling of surface wave dynamics has been constantly
improving. The first models relied on parameterizations of
the shape of the spectrum and/or of the physical processes
[Komen et al., 1994; Young, 1999; Cavaleri et al., 2007;
Holthuijsen, 2007]. About 20 years ago the first third‐gen-
eration (3G) model, called WAM, was proposed by the
WAMDI Group [1988]. Other 3G models have been
developed in recent years, for example, WAVEWATCH
[Tolman, 1991, 2002], Simulating WAves Nearshore

[SWAN; Booij et al., 1999], and TOMAWAC [Benoit et al.,
1996].
[3] These 3G discrete spectral models compute the evo-

lution of the wave action density N, defined as N(k) = F(k)/
s, where F(k) is the directional (two‐dimensional) variance
spectrum of ocean waves, expressed here as a function of
the wave number vector k = (kx, ky), and s is the intrinsic
wave frequency. This evolution can be described by the
action balance equation, called the kinetic equation (KE),
written for the general case of waves propagating in a
medium with an ambiant current U as [e.g., Phillips, 1977;
Andrews and McIntyre, 1978; Komen et al., 1994]

@N

@t
þ @ _xNð Þ

@x
þ @ _yNð Þ

@y
þ @ _kxN

� �
@kx

þ @ _kyN
� �
@ky

¼ Q kx; ky; x; y; t
� �

;

ð1Þ

with _x = ∂w/∂kx, _y = ∂w/∂ky, _kx = −∂w/∂x, _ky = −∂w/∂y, and
w = s + k · U.
[4] The term Q on the right‐hand side of equation (1)

gathers the various source, sink, and transfer terms re-
presenting physical processes such as wind‐wave interac-
tions, wave‐wave interactions, and dissipation of energy due
to breaking, bottom friction, etc. In the present work, we
assume that there is no ambient current and we limit our-
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selves to deepwater conditions and spatially homoge-
neous cases; that is, we only consider the evolution in
time. Equation (1) can then be simplified in the following
way:

@N

@t
¼ Qin þ Qwc þ Qnl4; ð2Þ

where Qin represents the energy input from the wind, Qwc

the dissipation by whitecapping, and Qnl4 the nonlinear
four‐wave interactions. Several models have been pro-
posed during the past decades for Qin and Qwc [see, e.g.,
Cavaleri et al., 2007]. Because the physics of wind‐wave
interactions and dissipation is quite complex and still only
partially understood, the formulations used in existing 3G
models involve some level of parameterization of the pro-
cesses based on measurements and/or theoretical considera-
tions. For the Qnl4 term a theoretical model has existed since
the works by Hasselmann [1962] and Zakharov [1968] (see
section 2). Existence of third‐order nonlinear wave‐wave
interactions was confirmed experimentally by McGoldrick
et al. [1966]. Recent efforts to validate and compare the
theories of Hasselmann [1962] and Zakharov [1968] were
undertaken by Tanaka [2001] and Korotkevich et al. [2008].
Many studies have already shown the importance of the Qnl4

term for proper modeling of the spectrum evolution, [e.g.,
Young and Van Vledder, 1993]. However, the complexity of
Qnl4 makes its numerical computation time consuming, even
using recent computers [Cavaleri et al., 2007; Janssen,
2004]. In the mid‐1980s, Hasselmann et al. [1985] devel-
oped an approximate computational method that was fast
enough to be implemented in 3G operational models: Dis-
crete Interaction Approximation (DIA). Improvements of
DIA or alternative techniques were developed thereafter,
mainly the multiple DIA method [Van Vledder et al., 2000;
Tolman, 2004] or more exact techniques such as EXACT‐
NL [Hasselmann and Hasselmann, 1981], the Webb‐Resio‐
Tracy (WRT) method [Webb, 1978; Resio and Perrie, 1991],
the Reduced Interaction Approximation Method (RIAM)
[Masuda, 1980], and the Gaussian Quadrature Method
(GQM) [Lavrenov, 2001]. Comparison between some of
these methods can be found in the works of Benoit [2005]
and Cavaleri et al. [2007]. A very recent approach, the
two‐scale approximation [Resio and Perrie, 2008], could
also be promising, but further investigations are needed.
[5] This paper focuses on the effects of nonlinear wave‐

wave interactions on the structure of the wave spectrum. Our
primary concern is to study the effect of a precise computation
of the nonlinear term Qnl4 on the wave spectrum estimation.
To that end we used a numerical algorithm adapted from the
GQM proposed by Lavrenov [2001]. We addressed first the
so‐called conservative case, considering only the nonlinear
transfer term in equation (2) (Qin = Qwc = 0), and then we
addressed the simultaneous effects of the three physical
processes of equation (2) by using existing models forQin and
Qwc. The temporal evolution of the spectrum and the structure
of the directional distribution were analyzed.
[6] For the study of the dynamics of the wave spectrum

evolution, we followed an approach similar to that of
Badulin et al. [2005], who considered both the conservative
case and the effects of wind input and dissipation. For a
homogeneous and deep ocean, they showed that the con-

servative KE leads to self‐similar solutions for the frequency
spectrum [e.g., Badulin et al., 2005; Pushkarev et al., 2003].
These solutions are consistent with the theory of weak tur-
bulence, leading to spectra of Kolmogorov type [Zakharov
and Filonenko, 1966; Zakharov and Zaslavsky, 1982]. The
shape and evolution of the directional spectrum was also
simulated by Lavrenov [2003]. The wind input and dissi-
pation were taken into account, for example, by Banner and
Young [1994]. The nonstationary and nonhomogeneous
equation was recently simulated by Ardhuin et al. [2007]
using the WRT method. The finite depth case was investi-
gated by Polnikov [1997] and Resio et al. [2001].
[7] We are particularly interested in the bimodality of the

angular distribution of the wave spectrum (two peaks of the
angular distribution at a given frequency) that is now known
to occur at frequencies higher than the peak frequency and
also in the low‐frequency part of the spectrum. Indeed, until
recently, the directional distribution of ocean waves had
most often been considered unimodal. For instance,
Mitsuyasu et al. [1975], Hasselmann et al. [1980], Donelan
et al. [1985], Elfouhaily et al. [1997], and Kudryavtsev et al.
[1999] provided unimodal parameterizations of the direc-
tional distribution. Remote‐sensing measurements carried
out with airborne radars or lidars, aerial stereo‐photography
techniques, HF radars, etc., evidenced bimodality in the
directional spectrum of surface gravity waves (see Hwang et
al., 2000b, for a review). Bimodal directional distributions
were also measured by directional buoys or arrays of wave
gauges [Young, 1994; Young et al., 1995; Ewans, 1998;
Wang and Hwang, 2001; Long and Resio, 2007]. These data
all show the bimodal structure of the angular distribution at
frequencies higher than the spectral peak. These observa-
tions suggest that bimodality could be a fundamental feature
of the wind‐wave spectrum for very different water depth
and wind conditions, which supports the idea that the non-
linear wave‐wave interactions play an important role in the
mechanism that creates and maintains bimodality [Banner
and Young, 1994]. It should be noticed that bimodality
associated with another mechanism (Phillips resonance
mechanism of wind‐wave generation) was observed using
HF radars by Trizna et al. [1980].
[8] The organization of the paper is as follows. Section 2

introduces the basic equations and numerical methods for
computing Qnl4. Section 3 presents the simulation results of
the conservative KE. (The model equation and initial con-
ditions are given in section 3.1, the concept of self‐similarity
is discussed in section 3.2, and the evolution of represen-
tative sea state parameters, frequency spectrum, and direc-
tional distribution are analyzed in sections 3.3, 3.4, and 3.5
and 3.6, respectively). Section 4 describes the effects of
wind input and dissipation by whitecapping. Section 5 gives
our conclusions and perspectives for this work.

2. Equations and Numerical Methods

2.1. Nonlinear Four‐Wave Interactions Qnl4

[9] Third‐generation spectral models aim at representing
each physical process in a source term as reliably as pos-
sible. This is rather difficult, either because the physics is
poorly understood, which is the case for the dissipation by
whitecapping, or because the computational method is too
time‐consuming, which is the case for the nonlinear four‐

GAGNAIRE‐RENOU ET AL.: WAVE SPECTRA AND NONLINEAR INTERACTIONS C12058C12058

2 of 24



wave interactions. Several models and parameterizations
have been implemented for wind input and whitecapping
dissipation. Regarding the term Qnl4, a theoretical model has
been available since the works of Hasselmann [1962] and
Zakharov [1968], who independently formulated its
expression as a Boltzmann‐type integral:

Qnl4 k1ð Þ ¼
Z
k2

Z
k3

Z
k4

G k1; k2; k3; k4ð Þ N3N4 N1 þ N2ð Þf

�N1N2 N3 þ N4ð Þg � � k1 þ k2 � k3 � k4ð Þ
� � �1 þ �2 � �3 � �4ð Þdk2dk3dk4: ð3Þ

[10] In the preceding expression, Nj stands for N(kj) and sj
is the frequency corresponding to the wave number kj
through the dispersion relationship (s2 = gk). G(k1, k2, k3,
k4) is the coupling coefficient, whose expression may be
found in the work of Webb [1978], for instance. As indi-
cated by the two Dirac d functions, the interactions occur
between quadruplets of spectral components that fulfill the
two resonance conditions:

k1 þ k2 ¼ k3 þ k4;
�1 þ �2 ¼ �3 þ �4:

�
ð4Þ

[11] The computation of this complicated nonlinear six-
fold integral is a tricky problem. The exact evaluation of
equation (3) requires specific algorithms together with a
large computational time, so in operational wave models this
nonlinear term is most often evaluated by approximate and
simplified methods. The most commonly used technique is
DIA [Hasselmann et al., 1985], which only considers a
particular arrangement of wave components. In spite of its
wide use, DIA suffers from a number of limitations [Van
Vledder et al., 2000]. Benoit [2005] compared several
methods to evaluate the nonlinear interactions in deepwater
conditions and highlighted significant differences between
them. Only quasi‐exact methods, such as those proposed by
Webb [1978] or Lavrenov [2001], allow an accurate evalu-
ation of this term.
[12] Therefore, our concern is to work on a method that

can be suitable for use in operational models but that has a
higher precision than DIA. In this perspective, we developed
an efficient numerical algorithm to compute the Boltzmann
integral, the GQM, on the basis of the work of Lavrenov
[2001].

2.2. GQM Method

[13] The GQM is based on the use of Gaussian quad-
ratures for the various numerical integrations in equation
(3). The six‐dimensional integral can be reduced to a
three‐dimensional integral over s2, �2, and s3 when sup-
pressing the two Dirac resonance conditions. Indeed, the
term d(k1 + k2 − k3 − k4) involves k4 = k1 + k2 − k3, which
permits elimination of two dimensions of integration. We
chose to work with the spectrum F(s, �). The change of
variable from k to (s, �) thus leads to an integral over s2, �2,
s3, and �3. Then integration over �3 eliminates the second
Dirac. Rewriting the equation in terms of the variance

spectrum F (instead of the action density N), we obtain the
following expression:

@F1

@t
¼

Zþ1

�2¼0

Z2�

�2¼0

Z�a=2

�3¼0

2
�4
aG

�2�3�4

� F3F4 F1�
4
2 þ F2�

4
1

� �� F1F2 F3�
4
4 þ F4�

4
3

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~B0 "a;w3ð Þ~B1 "a;w3ð Þ~B2 "a;w3ð Þ

q d�2d�2d�3;

ð5Þ

where sa = s1 + s2 = s3 + s4, "a = 2gka/sa
2 with ka = k1 +

k2 = k3 + k4, w3 = s3/sa, and ~B0, ~B1, and ~B2 are three
nondimensional functions.
[14] The integration over �3 introduces singularities

because the denominator of equation (5) can be equal to
zero. The specificity of the GQM, which makes it an optimal
algorithm of integration, is the use of quadratures adapted to
these singularities. Integration over s3 is divided into two
intervals and computed with Gauss‐Legendre and Gauss‐
Chebyshev quadratures. Integration over �2 uses Gauss‐
Chebyshev quadrature and the last integration (over s2) is
performed with a simple trapezoidal method.
[15] The GQM can be used with a reduced number of

integration points in the quadrature formulas, plus some
filtering to discard configurations that have negligible or
minor contributions to the overall integral. Thus, the com-
puting time can be reduced, while the method still produces
results with high accuracy.
[16] To study the properties and the robustness of our

algorithm, we performed simulations with different resolu-
tions of the method, i.e., different numbers of points for the
numerical integration. Three resolutions were tested by
Benoit and Gagnaire‐Renou [2007], a “fine” resolution
(26 points for the integration on s2, 16 points for the inte-
gration on �2, and 12 points for the integration on s3), a
“medium” resolution (14, 8, and 8), and a “rough” resolution
(11, 6, and 6). To illustrate the performance of the GQM, we
present in Figure 1 the (angular integrated) nonlinear transfer
terms Qnl4 as obtained with various methods. The nonlinear
terms are computed for a directional wave spectrum
corresponding to case 3 in the work of Hasselmann et al.
[1973], which combines a Joint North Sea Wave Project
(JONSWAP) frequency spectrum E( f ) with Phillips con-
stant a = 0.01, peak frequency fp = 0.3 Hz, peak enhance-
ment factor g = 3.3, s = 0.07 if f ≤ fp and s = 0.09 if f > fp, and
a frequency‐independent angular spreading function D(� ) =
Dcos4(� ) over [−p/2, p/2]. It can been seen from Figure 1
that the Qnl4 term computed with the fine‐resolution GQM
is very close to the term computed by the EXACT‐NL code
by Hasselmann and Hasselmann [1981], although this latter
term exhibits some spurious oscillations. Results obtained
with the rough‐resolution GQM are a bit more irregular than
those obtained with the fine‐resolution GQM but are in very
good overall agreement. In comparison, it is seen that the
Qnl4 term computed with the DIA method is clearly different,
both in magnitude and in the shape of the lobes of the non-
linear transfer term. The fine and medium resolutions give
almost identical results (not shown in Figure 1 because
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the curves are very close). Comparison of results thus con-
firmed the good convergence of the method when increasing
its resolution.
[17] The choice of the optimum setting for practical

applications requires that the computing time be taken into
account. For simulation of the conservative KE, the medium
resolution requires 3–4 times more CPU time than the rough
resolution, and the fine calculation requires 25 times more
CPU time than the rough one. In comparison with DIA, the
rough resolution is 80 to 100 times slower. This can be
compared with the CPU times of the EXACT‐NL code
(approximately 1000 times DIA) and the WRT method
(approximately 300 times DIA). Therefore, the method
appears suitable for implementation in 3G models. In the
remainder of this paper, simulations are handled using
the GQM with medium resolution. Results obtained using
the GQM (medium) and the DIA methods are compared
throughout the paper.

2.3. Numerical Aspects

[18] It should first be recalled that numerical settings (e.g.,
spectral resolution and range, time step, diagnostic tail, and
growth limiter) cannot be dissociated from the para-
meterizations of the physical processes themselves [e.g.,
Tolman, 1992]. Here the time integration of the source terms
in equation (2) is performed using a semi‐implicit scheme
with a dynamic time step. This time step is calculated at

each iteration so that the relative variation of the variance
spectrum as the result of the input, dissipation, and transfer
terms during a time step remains below a threshold "
(generally 5–10%). No wave growth limiter is used in these
simulations.
[19] For some calculations (set III‐it in section 4), a

diagnostic tail (or constrained tail) is applied to the spectrum
above fd = min[fmax; max(4fPM, 2.5fmean)], where fmax is the
last discrete frequency, fPM is the Pierson‐Moskovitz fre-
quency, and fmean is the mean frequency. It means that the
high‐frequency range of the spectrum is constrained to
decrease as f −m with m a fixed parameter, called the “tail
factor,” set to m = 4 in our simulations.
[20] In the following, the high‐frequency shape of the

spectrum is often called the HF tail. The implications of
imposing a f −4 HF tail is discussed later in the paper.
[21] No diagnostic tail is applied for the simulations of

sections 3 and 4 (sets I, II, and III‐ft). However, above the
last discrete frequency fmax, the spectrum is assumed to have
an f −4 shape.

3. Results for the Conservative Equation
(No Wind Input or Dissipation)

3.1. Model Equation and Initial Conditions

[22] We first address the particular case of the evolution of
ocean waves when there is no energy input from the wind or

Figure 1. Angular integrated nonlinear transfer terms Qnl4( f ) computed with various methods: EXACT‐
NL, DIA, GQM‐fine, and GQM‐rough for the spectrum of case 3 of [Hasselmann and Hasselmann,
1981]. The frequency spectrum E( f ) is superimposed.
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dissipation. In this case, equation (2), written in terms of the
variance spectrum F, reduces to

@F

@t
¼ Qnl4: ð6Þ

[23] We performed several runs to investigate the effect of
the initial energy and wave steepness, and of the initial
shape of the spectrum, on the evolution of F. This latter
effect is written as F(f, �) = E( f )D(f, �), with � the wave
direction, F the frequency (one‐dimensional) variance
spectrum, and D the directional spreading function satisfy-
ing

R
� D(f, �) = 1.

[24] The wave (total) energy is Etot = rg
R
f E( f )df, with g

the gravitational acceleration and r the seawater density.
The spectral significant wave height is defined as Hm0 =
4

ffiffiffiffiffiffi
m0

p
, with m0 the zero‐order moment of E( f ). The spec-

tral peak frequency, fp, is another important parameter.
The wave steepness is defined here as " = kpHm0/2, with
kp = (2pfp)

2/g.
[25] The initial peak frequency fp0 was always fixed to

1 Hz. Eight cases were considered, corresponding to four
initial shapes of F (labeled C1 through C4), combined
with two values of initial Hm0 (labeled a and b): 0.05 and
0.10 m (the corresponding steepnesses are 0.10 and 0.20,
respectively).
[26] The parameters defining the initial spectra are given

in Table 1. The different shapes for E( f ) and D(�) are
illustrated in Figure 2. Cases C1 and C2 were chosen to
examine how the model responds when a nonrealistic
spectrum is imposed at the beginning of the run.
[27] The discrete grid is composed of 128 frequencies,

with geometric spacing (fi + 1/fi = 1.024) from fp0/5 (0.2 Hz)
to 4fp0 (4 Hz) and 72 directions with a constant spacing
of 5°. The simulations were run during 128 h of physical
time.
[28] Simulations were computed using the GQM. To com-

pare with the DIA method, we repeated the same simula-
tions by simply replacing GQM by DIA in equation (6),
parameters and computing options being identical for both
methods.

3.2. Concept of Self‐Similarity

[29] The self‐similar solutions of the conservative homo-
geneous KE [equation (6)], called “purely nonlinear” KE,

can be written as [Pushkarev et al., 2003; Badulin et al.,
2005]

N k; tð Þ ¼ at�U� �ð Þ; � ¼ bkt�; ð7Þ
where Ub is a shape function and a, a, b, and b are con-
stants. Values of a and b are 4/11 and 2/11, respectively.

Figure 2. Initial conditions: (a) three different frequency
spectra (step, Gaussian, and JONSWAP) combined with
(b) three different distributions D(�) (half plane, and broad
and narrow cardioids).

Table 1. Description of the Initial Spectra: Cases C1–C4

Initial Case Description of spectra F( f, �) = E( f )D(�) a (Hm0 = 0.05 m) b (Hm0 = 0.10 m)

C1 E( f ): step, D(�): half plane A = 3.91 × 10−4 A = 1.56 × 10−3

E( f ) = A (0.8 ≤ f ≤ 1.2 Hz), E( f ) = 0 (otherwise)
D(�) = 1/p (90° ≤ � ≤ 270°), D(�) = 0 (otherwise)

C2 E( f ): Gaussian, D(�): half plane A = 6.23 × 10−4 A = 2.49 × 10−3

E( f ) = A exp[− f�fpð Þ2
2�2 , fp = 1 Hz, s = 0.1

C3 E( f ): JONSWAP, D(�): broad cardioid A = 8.62 × 10−3 A = 3.45 × 10−2

E( f ) = Ag2(2p)−4 f −5 exp � 5
4

f
fp

� ��4
� 	

g
exp � f�fpð Þ2

2�2 f 2p

h i

fp = 1 Hz, s = 0.07 if f ≤ fp, s = 0.09 if f > fp, g = 3.0
D(�) = 0.51 cos6



1
2(� − �0

�
, �0 = 180°

C4 E( f ): JONSWAP, D(�): narrow cardioid A = 8.62 × 10−3 A = 3.45 × 10−2

D(�) = 1.27 cos40


1
2(� − �0)

�
, �0 = 180°
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[30] The variance spectrum is written as

F �; �; tð Þ ¼ a
0
t��4U� y; �ð Þ; y ¼ b

0
�2t�; ð8Þ

where a′ and b′ are constants.
[31] Spectra that are the solution of equation (6) have a

strong tendency toward self‐similar behavior. This means
that the shape function Ub becomes time‐independent after a
short simulation time.
[32] One can deduce from these solutions that the total

energy Etot decreases as t−1/11 [Pushkarev et al., 2003;
Badulin et al., 2005], which leads to Hm0 / t−1/22. The self‐
similar solutions also describe the downshift of the spectral
peak frequency fp, varying as t−1/11. These results are as-
sessed in the following.

3.3. Evolution of Representative Sea State Parameters

[33] Figure 3 shows the time evolution of Hm0/Hm0,init =
Hm0/Hm0 (t = 0) using the GQM algorithm. This evolution
is compared with t−1/22 and with the Hm0/Hm0,init curve
obtained with the DIA method for C3.b.
[34] The value of Hm0 is monotonically decreasing, which

means that the energy is not conserved. There is a loss of
energy with time because the integration of the KE is per-
formed over a limited frequency domain (0.2–4 Hz) and the
nonlinear wave interactions carry part of the energy out of
this range. After a certain time, Hm0 evolves like t−1/22. As
energy is proportional to Hm0

2 , we verify the behavior of Etot

in t−1/11 (described by, e.g., Badulin et al. [2005]). This
confirms the known theoretical result that the wave energy
is only formally conserved [Pushkarev and Zakharov, 2000;
Pushkarev et al., 2003].

[35] We note that Hm0 begins to behave like t−1/22 more
rapidly for C3 and C4 than for C1 and C2. Indeed, with the
initial step‐like or Gaussian spectra (C1 and C2), Hm0 is
conserved over the modeled frequency range until the HF
part of the spectrum reaches the upper frequency fmax; then
energy starts leaking toward higher frequencies. As pointed
out by Young and Van Vledder [1993] and Young [1999],
even if the nonlinear interactions can involve components of
the whole wave number space, they are much more effective
for neighboring than for distant components. Thus, losses of
energy at high frequencies are small when the high‐fre-
quency energy level is low, as in cases C1 and C2 where a
small amount of energy is sent outside the discretization
domain at the beginning of the simulation. The initial
JONSWAP‐type spectra (C3 and C4) start leaking toward
higher frequencies from the beginning of the simulation
because of their initial f−5 high‐frequency shape. Further-
more, Hm0 evolution for the step‐like and Gaussian cases
(C1 and C2) is very similar, which shows that, apart from
the effect of the HF shape, the initial shape of E( f ) has a
small influence. The initial angular distribution D(�) does
not affect the evolution of Hm0 as seen on C3 and C4 curves
that are very similar.
[36] The time evolution of Hm0/Hm0,init depends on the

initial value of Hm0 or the corresponding initial steepness ":
it is faster when "init is larger. This is caused by more intense
nonlinear energy transfers as the steepness of the sea state
increases. In case a ("init = 0.10), Hm0 is reduced by 15–20%
at the end of the simulation. In case b ("init = 0.20), the
decrease is larger, about 25–30%.
[37] The DIA curve shows a smaller decrease than the

GQM curve for the same case (C3.b), which may be related

Figure 3. Time evolution of Hm0/Hm0,init: GQM, eight test cases; DIA, case C3.b. Comparison to the law
in t−1/22 [Badulin et al., 2005].
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to the slower formation of the HF tail when using DIA (see
section 3.4).
[38] Another important parameter to look at is the peak

period Tp (Figure 4). Results obtained with the same initial
steepness are quite close to each other, suggesting that the

influence of the initial shape of the directional spectrum is
weak. By contrast, the influence of the initial steepness is
more significant: Tp varies more rapidly for a larger "init and
increases to a much higher value. This reflects that the
spectrum migrates faster toward low frequencies. Further-

Figure 4. Time evolution of the peak period of the wave spectrum Tp: GQM method, eight test cases;
DIA, case C3.b. Comparison to the law in t1/11 [Badulin et al., 2005].

Figure 5. Time evolution of the wave spectrum mean angular width s. GQM method, eight test cases;
DIA, case C3.b.
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more, it can be noticed that, after a certain time, Tp tends to
vary in t1/11. This reproduces the downshift of the spectral
peak according to the self‐similarity theory [Pushkarev et
al., 2003; Badulin et al., 2005]. Comparisons with DIA
results show small differences.
[39] Finally, we examine the mean angular width defined

by

� ¼
R
f � fð ÞE fð ÞdfR

f E fð Þdf ;

with s( f ) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� m1ð Þp

and m1 =
R 2�
0 D(f, �)cos(� − �0)d�,

where �0( f ) is the mean direction of the wave field
(Figure 5). s converges to a value in the range 40–50°
depending on the initial conditions. The time evolution of
s for cases C1 and C2 (same initial angular half plane
distribution) is identical. The two other cases (cardioids)
evolve in a quite different way. The initial value of s for
C4 [cos40(�/2) initial angular distribution] is smaller than the
other ones. Thus, s monotonically increases during the sim-
ulation. For cases C1–C3, s starts increasing at the beginning
of the simulation and then decreases. Differences between
cases Ci.a and Ci.b can be noticed: the mean angular width
appears to be changing much more quickly in case b (higher
initial steepness). DIA simulations give a much higher s,
increasing with time.

3.4. Evolution of the Frequency Spectrum

[40] Results using GQM (Figures 6 and 7) and DIA
(Figures 8 and 9) algorithms for evaluating Qnl4 are con-
secutively presented. Figure 6 reports the temporal evolu-
tion of E( f ) for case C1.b. A short‐term scale of 0 to
15 min (Figure 6a) and a long‐term scale of 30 min to
128 h (Figure 6b) are considered. The beginning of the
simulation is a period of intense wave‐wave energy transfers.
During this phase, the spectrum, which presents a shape very
different from the quasi‐equilibrium final shape, evolves
very rapidly. A main peak appears after about 15 min and

then migrates toward lower frequencies. The high‐frequency
(often referred to as HF) part of the spectrum takes a typical
shape in f−m with m ≈ 4.1 after a short time period (t ≥
15 min).
[41] The spectra of the eight cases considered (not shown)

evolve similarly with time. The shape of E( f ) reached at the
end of the simulations slightly depends on the initial shape.
The time evolution of E( f ) is faster for larger (cases Ci.b)
than for smaller "init (cases Ci.a).
[42] To verify the self‐similar evolution of the spectrum

(section 3.2), Figure 7 shows the shape function Ub for a
wave direction corresponding to the main direction of
propagation (�0 = 180°) superimposed at seven times,
spanning the interval 2–128 h (case C3.b). The variations of
Ub during this interval are very small (less than a few per-
cent), which confirms a self‐similar evolution. Cases C1.b,

Figure 6. Evolution of the frequency spectrum E( f ) (from 0 to 128 h), using the GQM, for the initial
case C1.b: (a) short‐term evolution (from 0 to 15 min) and (b) long‐term evolution (from 30 min to
128 h).

Figure 7. Variation of the shape function Ub(y, � = 180°)
with y [equation (8)], as computed using the GQM between
t = 2 h and t = 128 h. Initial spectrum is case C3.b.
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C2.b, and C4.b also lead to self‐similarity after a few hours
(not shown).
[43] On the whole, the self‐similarity depends little on the

initial spectrum. The time necessary to reach self‐similarity
depends on the initial steepness. Indeed, in the cases Ci.a,
the spectrum needs more time (about 16–32 h) to reach its
typical self‐similar shape.
[44] These results show that the dynamical evolution of

the spectrum is described in an almost perfect way by the
self‐similarity equations (7) and (8). Moreover, they confirm
the ability of our algorithm to reproduce the expected the-
oretical evolution.
[45] The DIA spectra obtained in the same conditions

(Figure 8) are quite different from the GQM spectra, espe-
cially at the beginning of the simulation (t < 5 min), for
frequencies greater than the peak frequency. Instead of an
f −4 tail, the DIA method produces a succession of peaks in
the HF range. However, after some time (about 5 min), we
also observe with DIA the formation of the f −4 HF tail. At
the end of the simulation, the DIA spectrum has a larger
bandwidth than the GQM spectrum, and its peak value is
lower. The self‐similarity of DIA frequency spectrum is
shown in Figure 9 (case C3.b). As for the GQM simulations,
the self‐similarity of E( f ) is observed after a few hours
(depending on the initial case). This is not surprising
because the collision integral Qnl4 [equation (3)] obeys
homogeneity properties [Badulin et al., 2005] for both
methods of calculation of the nonlinear interactions. Self‐
similar solutions can thus be derived in both cases.

3.5. Angular Spreading of Wave Energy

[46] Here we aim at analyzing the detailed angular distri-
bution of energy. To that end, we computed the normalized
directional spreading function under the form ~D( f /fp, �) =
D( f /fp, �)/Dmax( f /fp), where Dmax( f /fp) is the maximum
value of D( f /fp, �) over � at each frequency f /fp.
[47] The function ~D( f /fp, �) is represented for GQM in

Figure 10a at t = 128 h for case C2.b. This representation
allows us to get a better idea of the structure of the directional

distribution, although the normalized values at each fre-
quency can give some false impressions. In particular, we
should remember that at high frequencies the absolute values
of the spectrum are low and that the HF bimodality is
somewhat amplified by this normalization. The GQM clearly
exhibits the bimodal structure of the angular distribution for
frequencies above and below the peak frequency. The side
lobes are symmetrically placed around the mean direction
�0 = 180°. The directional distribution is unimodal and very
narrow near the peak frequency. For f /fp ≥ 4, the directional
spectrum becomes unimodal again but is much more iso-
tropic. This structure is caused by nonlinear interactions
that redistribute energy to large angles from the mean wave
direction and contribute to the broadening of the spectrum
[Young and Van Vledder, 1993]. Figure 11 illustrates these
redistributions of energy rather well. It shows that Qnl4

sends energy in oblique directions, not only at frequencies

Figure 8. Time evolution of the frequency spectrum, using the DIA method for the initial case C1.b: (a)
short‐term evolution (from 0 to 15 min) and (b) long‐term evolution (from 30 min to 128 h).

Figure 9. Variation of the shape function Ub(y, � = 180°)
with y [equation (8)], as computed using DIA between t =
2 h and t = 128 h. Initial spectrum is case C3.b.
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above the peak but also at low frequencies (Figure 11b),
and induces the relatively narrow distribution of the spec-
trum around the peak. The unimodality of the directional
distribution for frequencies above 4fp could be explained by
the weakness of the Qnl4 term at these frequencies at the
end of the simulation, which is too small to redistribute
energy to oblique directions.
[48] The variation of the angle between the two (sym-

metric) lobes, 2�l (where �l is the angle between each lobe
and the main direction), with f /fp is shown in Figure 12. For
frequencies greater than fp, 2�l increases to a maximum
varying in the range 110–140°. This maximum is reached

for frequencies between 2fp and 3fp. Then 2�l decreases and
the directional spectrum becomes unimodal for frequencies
between 3.8 and 6fp.
[49] Figure 10b represents ~D(f /fp, �) obtained using DIA,

again at t = 128 h for case C2.b. The results are dramatically
different. The directional distribution is very irregular.
Nevertheless, we can note that the two distributions are
unimodal and narrow near the peak frequency and seem to
be bimodal below fp.
[50] Figure 13 compares sections of D(f, �) at different

frequencies for GQM and DIA simulations (initial case C3.
b). The shape of the directional distribution obtained using

Figure 10. Normalized directional spreading function ~D(f/fp, �) at t = 128 h, case C2.b: (a) GQM and
(b) DIA method.

Figure 11. Nonlinear transfer term Qnl4 calculated by the GQM at t = 0.01 s (first time step) for case C3.
b: (a) Qnl4(f, �) in polar coordinates and (b) Qnl4(f /fp, �)/|Qnl4,max(f /fp)| in Cartesian coordinates.
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GQM is rather similar for the eight cases (not shown),
although some differences were noted. In particular, the HF
bimodality is more pronounced in case C4, especially in
case C4.a, than in the other ones. DIA gives a much more
widespread directional distribution at f > fp and no clear
bimodality. The low‐frequency (sometimes referred to as

LF) bimodality is more pronounced when using an exact
method for Qnl4, as already described by Hisaki [2007].

4. Influence of Wind Input and Dissipation

4.1. Model Equation and Initial Conditions

[51] In this section, we examine the influence of wind
input and dissipation, in addition to wave‐wave nonlinear
transfers, on the evolution of the wind‐wave spectrum. This
is typical of a duration‐limited wave growth case [e.g.,
Young, 1999]. This case was chosen as a first step in our
work for faster simulation times (the “point model” version
of our code). Extension to 1‐D situations (e.g., fetch‐limited
cases) is now under consideration and will be reported in a
separate paper. A constant wind of 10 m s−1 is considered.
We test three combinations (sets I, II, and III) of the wind
input (Qin) and dissipation (Qwc) terms (see Table 2). Set I
corresponds to WAM cycle 3 with the wind parameteriza-
tion of Snyder et al. [1981] and the whitecapping dissipation
of Hasselmann [1974] as formulated by Komen et al.
[1984]. Set II consists of the expression of Yan [1987] for
Qin with the parameter values of Van der Westhuysen et al.
[2007], combined with the whitecapping model of Van der
Westhuysen et al. [2007] and Van der Westhuysen [2008].
Set III corresponds to WAM cycle 4 with the Janssen [1989,
1991] wind input model and the Qwc model of Komen et al.
[1984] with the coefficient values proposed in WAM cycle 4
[Günther et al., 1992]. Set III is run with two options: no

Figure 12. Angle between the lobes of the wave direc-
tional distribution, 2�l, versus f /fp at t = 128 h for the eight
simulated cases using GQM.

Figure 13. Sections of the directional spreading function D(f, �) at t = 128 h, at six frequencies (f = 0.7fp,
f = fp, f = 1.5fp, f = 2fp, f = 3fp, and f = 5fp) for case C3.b: GQM (solid lines) and DIA method (dashed
lines).
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parametric tail [free tail (ft)] or f −4 HF tail imposed over the
frequency range [fd, fmax] [imposed tail (it)] as implemented
in WAM cycle 4. It should be noted that, among the para-
meterizations used here, sets I and III‐it are the only ones
that were tested in a wide range of sea states.
[52] We chose to use some traditional parameterizations

(sets I and III) and a more recent one for the dissipation (set
II). This is, of course, a restricted choice but it allows some
interesting differences in the evolution of the spectrum to be
highlighted. Moreover, we may note that some questions
have been raised about the validity of set II at large scales
[Ardhuin and Boyer, 2006]. For completeness, the reader
should refer, for instance, to the recent work of Babanin et
al. [2007a, 2007b] and Ardhuin et al. [2008, 2009]. The
parameterizations of Tolman and Chalikov [1996] or Bidlot
et al. [2005] could also be interesting candidates.
[53] As previously, all the simulations were run using the

GQM and DIA method for comparison. The parameters of
the source and sink terms were not retuned when the method
for calculating the Qnl4 term was changed. For instance, the
model of Van der Westhuysen et al. [2007] for Qwc was
computed with the coefficients Cds = 5.0 10−5 and Br =
1.75 10−3, calibrated for DIA simulations.
[54] Simulations were run from the initial cases Ci.a

described in section 3. Because the evolution of the spec-
trum is strongly influenced by the amount of energy brought
by the wind, we estimated that it was not useful to test two
different values of Hm0,init.
[55] In the simulations the discrete frequency‐direction

grid is composed of 128 frequencies, with geometric spac-
ing (fi+1/fi = 1.031) from fp0/25 (0.04 Hz) to 2fp0 (2 Hz) and
72 directions with a constant spacing of 5°. The simulations
were run during 96 h of physical time.

4.2. Evolution of Representative Sea State Parameters

[56] Time evolutions of Hm0, Tp, and s are plotted in
Figure 14 for set II. The values of Hm0 and Tp are increasing
and become quasi‐steady after 48 h of simulation when
using GQM, and close to the end of the simulation for DIA.
At first sight, there is almost no difference between the
curves obtained from the four initial cases Ci.a. Plots in a
logarithmic scale show few differences at the initial stage
(first few minutes) for Hm0 and Tp. These differences are
more pronounced for s, owing to differences in the initial
value of s. However, after about 10 min, the simulations
converge to the same value. Figure 14 enables a comparison
of DIA and GQM. We recall that the parameters in Qin and
Qwc are the same for both simulations and that they were
calibrated for DIA simulations. This results in differences
between Hm0 and Tp growth curves. DIA curves are higher
for both Hm0 and Tp, but recalibration of some coefficients
could lead to similar results when using GQM. Neverthe-

less, we emphasize that, under unsteady and turning wind
conditions, differences can be much more important [e.g.,
Benoit, 2006]. Unsteady cases are more sensitive to the
choice of the method for Qnl4, and DIA was shown to react
more slowly to changing conditions. Besides this, DIA gives
a larger directional spreading, which is a classical problem
of the DIA method.
[57] Figure 15 shows the differences arising from the use

of the four sets. Because initial conditions have almost no
influence, we choose to consider only C3.a results. At first,
significant trends can be noticed: results obtained with set III
without parametric tail give much higher Hm0 and Tp values.
They stabilize more slowly and do not really reach the
quasi‐steady state before the end of the simulation. We
analyze precisely the reasons for this very important growth
in section 4.3. The three other curves (sets I, II, and III‐it)
are closer to each other, but still have some differences. The
growth curves for Hm0 and Tp obtained using DIA are
slightly higher than those obtained using GQM. Differences
are very small when using sets I and III ‐ ft. Although the
objective of this work is not to calibrate or validate the
parameterizations, it should be noticed that the final values
of Hm0 and Tp for sets I, II, and III‐it are quite under-
estimated compared to the fully developed Pierson‐Mos-
kowitz asymptotic limits as reanalyzed by Alves et al.
[2003], showing some deficiencies of the presently used
source terms or a need to calibrate them.
[58] For the mean directional width s, DIA once again

gives a larger directional spreading for whichever parame-
terization is used to model the source terms. Set I gives a
much larger directional spreading than the other sets
whenever DIA or GQM is used for Qnl4. This is related to
the directional structure and magnitude of the sum Qin +
Qwc. For instance, the Qin model has a cos� directional
dependence for sets I and II and a narrower distribution in
cos2 � for set III; therefore, Qin plays a role in the spreading
of the angular spectrum, but the relative magnitude and
structure of Qin and Qwc are also determinant. The influence
of Qin and Qwc on the directional structure of the spectrum is
analyzed in section 4.4.

4.3. Evolution of the Frequency Spectrum

[59] Figure 16 reports the evolution of the frequency
spectrum E( f ) (initial condition C1.a) using sets I–III. For
all sets, the evolution of E( f ) shows similar trends. It
evolves rapidly during the first few minutes. The spectral
peak appears after about 5 min, then it begins to migrate
toward low frequencies, gaining energy from wind input.
Then the increase slows down and E( f ) stabilizes. It is
noted that the three other initial conditions produce the same
spectra after a few minutes (figures not reported here).

Table 2. Description of the Sets (I, II, III) and Options (free tail or imposed tail)

Set Qin Qwc Tail Option

I (WAM Cycle 3) Snyder et al. [1981] Komen et al. [1984] free tail
II Yan [1987] Van der Westhuysen et al. [2007];

Van der Westhuysen [2008]
free tail

III‐ft Janssen [1989, 1991] Komen et al. [1984]; Günther et al. [1992] free tail
III‐it (WAM Cycle 4) Janssen [1989, 1991] Komen et al. [1984]; Günther et al. [1992] imposed f −4 tail
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[60] The final shape (at t = 96 h) is a little different from
the purely nonlinear shape obtained in section 3. It is less
peaked and the HF f −4 tail is not observed in every case. For
example, the f −4 HF tail can be only observed over a very
limited range for set III‐ft (without a constrained tail). At
higher frequencies, E( f ) decreases much more steeply than
observed spectra [Banner et al., 1989; Young and Babanin,
2006; Long and Resio, 2007] because of dissipation. Dif-
ferences between DIA and GQM spectra are observed for all
the source terms used. At the beginning of the simulation,
DIA produces a succession of peaks around the initial step
instead of the smooth and regular shape obtained with
GQM. The final shape of the DIA spectrum is more spread
in frequency.
[61] One can notice that the evolution of the spectra is

influenced by the parameterizations chosen for the source

and sink terms. Set III‐ft gives spectra that have a much
higher maximum value and a smaller peak frequency.
Moreover, the evolution of the spectrum is not totally sta-
bilized at the end of the simulation. Similar observations
were made in section 4.2 for Hm0 and Tp.
4.3.1. HF Tail: Influence of the Models and of the
Constrained Tail
[62] In every studied case, the spectrum is assumed to

have an f −4 shape above the last discrete frequency. As
observed by Banner and Young [1994] and verified in our
calculations, this only influences the last upper frequencies.
[63] In contrast, applying a constrained tail over [fd; fmax]

can influence the results over the entire frequency domain.
In the simulations, at the end of the run (t = 96 h), the
diagnostic tail is imposed from fd = 3.3fp when using GQM,
and from fd = 3fp with DIA.

Figure 14. Time evolution of the wave height Hm0, the peak period Tp, and the mean angular width s for
the four initial cases. Set II, GQM and DIA method: (left column) linear scale, (right column) logarithmic
scale.
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[64] For sets I, II, and III‐ft, no diagnostic tail is imposed
over the frequency domain. Results obtained using sets I and
II show a similar evolution, with a HF tail close to f −4: f −3.97

and f−3.85 for set I with GQM and DIA, respectively, and
f −4.18 for set II with both DIA and GQM. Note that Van der
Westhuysen et al. [2007] found an f −4.1 decay with forcing
terms corresponding to set II when modeling a fetch‐limited
case. Results from set III‐ft show a much steeper HF tail with
a slope increasing sharply with frequency and decaying
much faster than the Banner et al. [1989] f −5 equivalent in
terms of k spectrum. Such a behavior is not supported by
theoretical analyses or by observations. This much steeper
tail is caused by the strong dissipation at high frequencies of

the implementation in WAM cycle 4 of the Komen et al.
[1984] model.
[65] Set III‐it (imposed f −4 tail) gives results that are in

better agreement with theory and observations than set III‐ft.
Adding such a parametric tail is not very physical, it just
compensates the deficiencies of the parameterizations of set
III (WAM4).
[66] The influence of an imposed HF tail on the computed

spectrum was examined by Banner and Young [1994], who
showed, as we also found, the importance of an accurate
modeling of the HF part of the spectrum and the significant
influence of a constrained tail on the development of the
entire spectrum. However, according to Komen et al. [1984]
and the WAMDI Group [1988], the precise form of the
diagnostic tail has no influence on the results.
[67] We also made some tests using set I and a constrained

tail f −4 to see what happens when the modeled tail is very
close to the imposed one. As expected, GQM simulations
with or without f −4 give nearly the same results.
[68] The main reason why the high‐frequency range of the

spectrum can significantly affect all its evolution, while such
low levels of energy are involved, is related to the influence
of the HF part of the spectrum on the terms Qin and Qwc.
When the energy is increased at high frequencies, the dis-
sipation of Komen et al. [1984] is increased and the wind
input of Janssen [1991] is reduced, which leads to a slow-
down in the growth of the spectrum. Figure 17 shows the
impact of imposing an f −4 HF tail on the calculated source
and transfer terms: it results in an increase of the dissapation over
the whole frequency domain and in a decrease of the wind input at the
spectral peak. This is attributed to the presence of integrated
parameters (like m0 and the mean frequency) in the Qwc

formula and to a pronounced feedback via the friction
velocity u* and the wave‐induced stress in Janssen’s,
[1991] Qin formula. Thus, the sum Qin + Qwc is strongly
reduced around the spectral peak frequency. At the same
time, the Qnl4 term is not significantly affected near fp. The
sum of the three terms is plotted in the range 0.04–0.5 Hz
for more visibility. Observations of the positive and negative
peaks show that the total source term was reduced by the
imposition of the f −4 tail. This therefore explains the arti-
ficial increase of wind‐wave energy in the absence of a
diagnostic tail (III‐ft).
[69] Banner and Young [1994] proposed an alternative

explanation. According to these authors, a smaller level of
energy at high frequencies results in an increase of the Qnl4

term and thus leads to a larger growth of the spectrum. This
explanation was not retained here. As seen in Figure 17, the
imposition of a HF f −4 tail has a small impact on the global
nonlinear energy transfers. The effects on Qnl4 at high fre-
quencies are important, as seen in the curve representing the
relative nonlinear transfer term Qnl4/E( f ) (Figure 17e), but
the impact on the overall evolution of the spectrum is not
significant as compared with the pronounced effect of Qin

and Qwc.
4.3.2. Analysis of Source Terms Balance in the High‐
Frequency Range
[70] The slope of the HF tail can be explained by the

balance of the source terms. It was shown in section 3 that,
without any forcing term, the HF tail is close to f −4.1. The
quadruplet interactions tend to maintain a shape close to f −4

at high frequencies, as shown by Zakharov and Filonenko

Figure 15. Time evolution of the wave height Hm0, the
peak period Tp, and the mean angular width s for initial
case C3.a, GQM and DIA methods. Comparison of sets
I, II, III‐ft, and III‐it.
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Figure 16. Evolution of the frequency spectrum E( f ) (from 0 to 96 h) for the initial case C1.a: GQM
with sets (a) I, (c) II, (e) III‐ft, and (g) III‐it, and DIA method with sets (b) I, (d) II, (f) III‐ft, and (h) III‐it.
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[1966], Toba [1973], Kahma [1981], Kitaigorodskii [1983],
Phillips [1985], and Resio et al. [2001]. To obtain the same
slope when input and dissipation are also present, it is
necessary that the dissipation and source terms scale simi-
larly with frequency in the HF range [Resio et al., 2004].
[71] We point out that there is quite a strong experimental

support of the f −4 HF tail for the frequency spectrum in
deepwater conditions. The extensive analyses carried out by
Young and Babanin [2006] on Lake George data revealed
that the mean value of the exponent n of f−n in the frequency
range 5fp < f < 10fp lies close to 4 (3.9 actually). Considering
the range of values of fp of this data set, Young and Babanin
[2006] noted that the spectral components in this frequency
range were always in deepwater conditions.
[72] However, some observations in real sea conditions

indicate that an f −4 high‐frequency shape applies up to few
times fp and then decays is somewhat faster with frequency.
For instance, spectra presented by Long and Resio [2007]
for particular conditions with short fetches and proximity

of coastlines in Currituck Sound revealed a decay closer to
f −5 when f is greater than two or three times fp.
[73] In the HF range, the wind input terms vary as f 2 E( f ),

f 3 E( f ), and f 3 E( f ) for sets I, II, and III, respectively. Yan
[1987] parameterization (set II) is a combination of the
Janssen [1991] (set III) and Snyder et al. [1981] (set I) terms
and scales like Janssen’s one in the HF range. The dissipation
terms for sets I, II, and III vary as f 2 E( f ), f 11 E( f )3, and
f 4 E( f ), respectively. When considering the combined effect
of Qin and Qwc, one can notice the following:
[74] 1. For set I, Qin and Qwc scale similarly at high fre-

quencies [as f 2 E( f )]. When E( f ) / f −4 in the HF range,
they behave like f−2.
[75] 2. For set II, when E( f ) / f −4 in the HF range, Qin

and Qwc also scale similarly at high frequencies and both
tend to f −1.
[76] 3. For set III, in contrast, Qin and Qwc scale differ-

ently. If we again assume that E( f ) / f −4 in the HF range,
Qin / f −1 and Qwc / 1. This raises questions about the
validity of the dissipation term: the f −4 or even f −5 shape of

Figure 17. Influence of the HF tail on the evolution of the spectrum. (a) The frequency spectrum E( f )
simulated with set III‐ft and GQM at t = 6 h is considered (dotted line). An f −4 tail is applied to this
spectrum (solid line). (b) Qin [Janssen, 1989, 1991] and Qwc [Komen et al., 1984; Günther et al.,
1992] are calculated from both spectra. (c) Qin + Qwc. (d) Qnl4 (GQM). (e) Relative nonlinear transfer
term Qnl4/E( f ). (f) Total source term Qin + Qwc + Qnl4.
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the spectrum could not be maintained with this source bal-
ance and with such a strong high‐frequency dissipation. This
is the reason why we observe with set III‐ft a very steep HF
tail. This in turn could also justify the motivation of using an
imposed parametric tail: it can help in improving the pre-
diction of parameters such as Hm0 and Tp and eventually of
the frequency spectrum. However, it also modifies the whole
directional structure of the spectrum (see section 4.4).

4.4. Angular Spreading of Wave Energy

[77] Figure 18 reports the normalized directional spread-
ing function ~D(f /fp, �) at t = 96 h obtained from the initial
spectrum C2.a (but results are almost the same for the four
cases) using the different source terms.
[78] GQM simulations give here again a bimodal structure

of the directional spectra at frequencies lower and higher
than fp. The low‐frequency structure of the spectrum is very
close to the one observed in section 3. Nonlinear interac-
tions are responsible for the two directional lobes. However,
the structure also depends on the parameterizations of the
source terms.
[79] As in section 3, the directional distribution has a very

marked bimodal structure at f < fp, slim down around the
peak frequency, and is bimodal above fp. A transition to
unimodality above 5fp is observed for sets I and II. Set I gives
a more spread directional distribution than sets II and III for
frequencies above fp. In all cases, the directional distribution
obtained when forcing terms are present is narrower at fre-
quencies above the peak than the one of section 3. This
shows the influence of the source and sink terms on the wave
directional distribution. In section 3, the calculated mean
directional width s was around 40–50°. When adding wind

input and dissipation, s is reduced to 26–33° for the GQM
runs (see also Figure 15).
[80] It is not straightforward to analyze the combined ef-

fects of Qin, Qwc, and Qnl4 on the directional distribution of
the spectrum. The Qnl4 term plays a major role in deter-
mining the directional spreading of the spectrum [Young and
Van Vledder, 1993], redistributing energy in directions
oblique to the wind, as shown in section 3.5. But whatever
the parameterization of the terms Qin and Qwc, the spec-
trum always evolves to an equilibrium shape [Banner and
Young, 1994]. This means that Qnl4 always acts to balance
the sum Qin + Qwc [Young and Van Vledder, 1993] and
shows the importance of the sum Qin + Qwc, as confirmed
by our simulations.
[81] The angular distribution of Qin is determined by the

product of cos� (or cos2 �) and F(f, �), whereas that of Qwc

is only determined by F(f, �) for the parameterizations
chosen here. Therefore, Qin decreases faster than Qwc with �.
From some angle value, the sum Qin + Qwc thus becomes
negative. Because Qnl4 acts to compensate the sum Qin +
Qwc when the directional stability is achieved, it is clear that
this angle influences the directional spreading of the spec-
trum. A narrower directional distribution of the input term or
a stronger dissipation then influences the directional
spreading function. For example, the Qin model of set III has
a narrow cos2 � distribution. Thus, the sum Qin + Qwc starts
being negative at angles smaller than for a cos� distribution
(sets I and II). This could explain why the directional
spreading is smaller with the parameterizations of set III.
But the relative magnitudes of Qin and Qwc also have an
influence. Keeping the same input term, a stronger dissi-
pation (as for WAM 4, set III) leads to a smaller directional

Figure 18. Normalized directional spreading function ~D(f /fp, �) at t = 96 h for the initial case C2.a:
GQM with source terms (a) I, (b) II, (c) III‐ft, and (d) III‐it; DIA method with source terms (e) I, (f)
II, (g) III‐ft, and (h) III‐it.
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spreading. Set I has the smallest dissipation and gives the
more widespread distribution.
[82] A slight bimodality at fp becomes visible after 9 h of

simulation for set II and 12 h for set I, whereas the dis-
tributions obtained with set III are unimodal from 0.95fp to
1.4fp (see also Figure 21). Bimodality at the peak was also
recently obtained from simulations by Korotkevich et al.
[2008], who used a modified version of the WRT method
[Webb, 1978; Resio and Perrie, 1991] for calculation of the
nonlinear interactions and three different models for the Qwc

term. Their Figures 27 and 28 show spectra with a strong
bimodality at the spectral peak.
[83] For sets III‐ft and III‐it, results show directional

distributions that are not unimodal at f ≥ 5fp. When the
parametric tail is not imposed (set III‐ft), the HF bimodality
is more pronounced than for sets I and II. The angle between
the lobes, 2 �l, increases to a maximum around 100° at f ≈
4fp. Then 2�l decreases to a value around 60° and remains
constant.
[84] Differences in the structure of ~D for f ≥ 5fp (unim-

odality or bimodality) are related to the source terms bal-
ance. The unimodality of the directional distribution at these
high frequencies is associated with low values of Qnl4. For
set III‐ft, the input and dissipation terms do not scale sim-
ilarly with frequency at high frequencies (see section 4.3.2).
Thus, the Qnl4 term has to compensate for the difference
between Qin and Qwc, and it does not take low values in
comparison with F(f, �), as seen in Figure 17e: the relative
term Qnl4/E( f ) is much more important at high frequencies
when the HF tail is steeper. This explains the process that
maintains bimodality at higher frequencies in case III‐ft. For
sets I and II, the proper balance of the source and sink terms
at high frequencies leads to smaller values of Qnl4 in com-
parison with F(f, �). As in section 3, we thus observe a
transition to unimodality for f ≥ 5–6fp. This simulation result
needs to be validated against sufficiently accurate mea-
surements and analyses at these high frequencies.

[85] Regarding the results of set III‐it, for frequencies
above fd (here fd ≈ 3.3fp), the directional distribution is
forced to be equal to the one obtained at f = fd. Thus, the
directional distribution cannot be consistent with observa-
tions, at least at frequencies f > fd. Furthermore, the
bimodality above fp is less pronounced. Thus, we see that
the HF tail has an influence, not only on the energy level
and spectral peak (section 4.2) and on the high‐frequency
shape (section 4.3) but also on the overall directional
distribution.
[86] Figures 18e–18h show the same simulations carried

out using DIA. The directional distributions are narrow near
the spectral peak. The spectra obtained with sets I, II, and
III‐ft show some broadening at f > fp, and a very slight
bimodality can even be noticed. As for GQM simulations,
set I produces a more spread spectrum. The distribution
obtained using set III‐it does not show any HF bimodality.
In all cases, at low frequencies, some bimodality exists but
the results are quite noisy compared to GQM results.
Comparison of these results with the DIA distribution
obtained in section 3 shows several differences. The DIA
distribution without any forcing term is much more spread
and noisy for frequencies above fp. The directional dis-
tributions of sections 3 and 4 are quite similar at low
frequencies.
[87] Similar simulations of the homogeneous KE were

recently performed by Hisaki [2007] using the WAM cycle
3 parameterizations of Qin and Qwc and two methods to
calculate Qnl4: DIA and an other exact method called RIAM
[Komatsu and Masuda, 1996]. Directional distributions are
also bimodal below fp. The distribution calculated with the
exact method shows high‐frequency bimodality.

4.5. Comparison with Measured Wave Directional
Distributions

4.5.1. Comparison with the Expressions of Mitsuyasu
et al. [1975] and Hasselmann et al. [1980]
[88] The structure of D(f, �) obtained from GQM simu-

lations at the final simulation time (t = 96 h) is compared
to the widely used parametric expressions of the form cos2s

[(� − �0)/2] (cardioid model), where s is a parameter that was
determined by the pioneering works of Mitsuyasu et al.
[1975] and Hasselmann et al. [1980]. These parameteriza-
tions were proposed on the basis of temporal measurements
recorded by directional buoys. Results show that most of the
energy is propagating in the wind direction, that it decays
with increasing angle to the wind direction, and that the
directional spreading is narrowest near the spectral peak and
broadens toward both higher and lower frequencies. Note
that the models of Mitsuyasu et al. [1975] and Hasselmann
et al. [1980] were designed in the f /fp intervals 0.3–3 and
0.3–4, respectively. If one assumes that D can be fitted to
the given parametrical unimodal expression A cos2s[(� −
�0)/2], we can calculate the corresponding parameter s
using the method of Longuet‐Higgins et al. [1963]. In our
case, �0 = 180°. The parameter s is given in Figure 19 for the
directional distributions obtained with sets I, II, and III. The
curves of Mitsuyasu et al. [1975] and Hasselmann et al.
[1980] are superimposed (the value U10/Cp = 1.03 is taken,
corresponding to set II). Results show the narrowing of the
directional distribution near the spectral peak (s is a maxi-
mum around 1 to 1.3f /fp, depending on the source terms) and

Figure 19. Parameter s of the cardioid model for the direc-
tional distribution as a function of f /fp at t = 96 h. GQM, sets
I, II, III‐ft, and III‐it, for initial case C2.a. Comparison with
expressions of Mitsuyasu et al. [1975] and Hasselmann
et al. [1980].
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the increase of the directional spreading toward low and
high frequencies. For frequencies greater than 1 − 1.3fp,
s decreases quite slowly and then stabilizes for sets II and III,
while the results of Mitsuyasu et al. [1975] or Hasselmann
et al. [1980] do not suggest such a tendency toward stabi-
lization. Note that the s value of set III‐it (with constrained
tail) is constant after f = fd. The parameter s obtained with set
I does not stop decreasing, but with a smaller slope than the
curves of Mitsuyasu et al. [1975] and Hasselmann et al.
[1980]. We conclude that the cos2s[(� − �0)/2] relationship
allows some major features of the directional distribution to
be represented but gives a very incomplete representation of
~D (Figure 20b).
4.5.2. Comparison with Bimodal Distributions:
Measurements and Parameterizations
[89] Bimodal directional distributions had been observed

since the 1990s from buoy or wave gauge data, but large
uncertainties remained. Since the 2000s, thanks to new
means of measurements [e.g., Hwang et al., 2000a, 2000b],
the accuracy of the data was increased and new evidence
showed that the structure of the directional spectrum can be
bimodal. Bimodal parametric relationships were suggested
by Ewans [1998] and Hwang et al. [2000b]. Ewans [1998]
proposed a double Gaussian parameterization, and Hwang et
al. [2000b] presented a Fourier decomposition of their
measured directional distribution. These parametric re-
lationships both show the bimodality of the directional
spectrum at frequencies above fp and are unimodal below fp.
The LF bimodality was observed by Wang and Hwang
[2001] and by Hwang et al. [2000b], who proposed para-
meterizations of the lobe angle that are bimodal at low
frequencies. Ewans [1998] also noticed bimodal distribu-
tions at f < fp.
[90] Figure 20c shows the results from the work of Ewans

[1998]. There is an interesting agreement with our results at
high frequencies but some differences can be observed. The
angle between the lobes is zero below f = 2.4fp and then
grows without stabilizing, while �l obtained using GQM
starts growing around 0.95 to 1.4fp, depending on the
models employed, and then stabilizes or again becomes

equal to zero. We emphasize that the parameterization of
Ewans [1998] was designed on the basis of heave‐pitch‐roll
buoy measurements, delivering a limited number of inde-
pendent parameters to estimate the angular distribution at
each frequency and whose precision might be questionable
for high frequencies.
[91] Our results are also quite close to the Fourier

decomposition of Hwang et al. [2000b] (Figure 20d) for 1.8
≤ fp ≤ 3.3. The value of �l given by Hwang et al. [2000b] is
zero up to f = 1.8fp.
[92] The lobe ratio, noted rlobe, is defined as the ratio of

the maximum value of D(f, �) to its value at the dominant
wave direction (�0 = 180°). Figure 21 compares our mod-
eling results for �l and rlobe with the experimental results of
Ewans [1998] and Hwang et al. [2000a, 2000b]. We restrict
our comparisons to 0.6 ≤ f /fp ≤ 3.3. The measurements of
Hwang et al. [2000a, 2000b] correspond to a spatially
homogeneous and quasi‐steady wave field with a mean
wind speed of 9.5 m s−1 and an inverse wave age U10/Cp ≈
0.98. The inverse wave age for sets I, II, and III‐it at t = 96
h (U10/Cp ≈ 1.1, 1.03, and 1.06, respectively) is slightly
larger than the one given by measurements. For set III‐ft,
U10/Cp is much smaller (≈0.77).
[93] All the models, simulations, and measurements give

lobe angles that agree well above f /fp = 2 except for set III‐
it, which gives a slightly lower angle. The transition to
bimodality at f > fp depends on the models used for Qin and
Qwc, which is consistent with the simulation results of Alves
and Banner [2003]. Results from set III‐ft are the closest to
the data of Hwang et al. [2000a, 2000b]. Sets I and II show
a slight bimodality around the peak, which is not in agree-
ment with the results of Hwang et al. [2000b] or Ewans
[1998]. For f ≤ fp, the measured �l is two to three times
smaller than our calculated angles, but in both cases the
existence of the LF bimodality is clear. The Fourier
decomposition of Hwang et al. [2000b] and the parameter-
ization of Ewans [1998] are also very close to our results
above 1.8fp and 1.9fp, respectively, but are unimodal below.
[94] Our results underestimate rlobe at f > fp compared to

the measurements of Hwang et al. [2000a, 2000b], which

Figure 20. Normalized directional spreading function ~D(f /fp, �) at t = 96 h: (a) GQM, source terms II,
for initial case C2.a. (b) Acos2s[(� − �0)/2)]. (c) Ewans’ [1998] model. (d) fast Fourier transform with nine
terms Hwang et al. [2000b].
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means that the high‐frequency bimodality is more pro-
nounced than it appears in our simulations. Ewans [1998]
gave a lobe ratio smaller than ours up to 2.3–2.8fp, but it
then increases rapidly. Set III‐ft gives higher rlobe values
than the other sets, which is related to the balance of the
source and sink terms and the strong high‐frequency dissi-
pation (see section 4.4). Set III‐it gives the smallest rlobe
values. At f < fp, our simulations give a higher rlobe, but
measurements also show bimodality.
[95] The lobe ratio is also calculated from GQM simula-

tions of section 3 (purely nonlinear case) for comparison.
The value of rlobe is again globally smaller than observations
at f > fp (figure not reported here). It increases to a maximum
value of 1.33 at f = 2.2fp (quite close to observations) and

then decreases. This suggests the influence of wind input
and dissipation on the rlobe magnitude at f > fp.
[96] Alves and Banner [2003] compared simulations using

several parameterizations of Qin and Qwc to the data of
Hwang et al. [2000b] for a constant inverse wave age U10/
Cp = 0.98. They found a lobe angle close to that of Hwang et
al. [2000b] at f > 2fp and a generally smaller lobe ratio. Their
results point out the influence of Qin and Qwc on rlobe values.
[97] We observed that higher values of rlobe were obtained

at earlier times, suggesting a dependence on wave age
(Figure 22). Our analysis indicates that the highest lobe
ratios are most of the time observed when the nonlinear
transfers are a maximum and the redistribution of energy to
oblique angles is the largest. Curves representing sets II, III‐
ft, and III‐it have a bell shape. The value of rlobe increases

Figure 21. (a) Angle between the lobes and the main direction −�l, �l; (b) lobe ratio rlobe versus f /fp at
t = 96 h, for the initial case C2.a, GQM, source terms I, II, III‐ft, and III‐it. Comparison with data of
Hwang et al. [2000a, 2000b] (measurements with an airborne scanning lidar system, Fourier decom-
position with nine components Dk,FFT9, and polynomial fitting not degraded; see Figure 10 and Table 2
of their paper) and the Ewans [1998] parameterization.
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with the inverse wave age up to a maximum value and then
decreases. The set III curve increases with U10/Cp. Mea-
surements by Hwang et al. [2000b] at f = 2.5fp are given
with an error bar and seem closer to results of set III‐ft. Our
results also indicate a small dependence of the lobe angle on
U10/Cp, in agreement with the observations of Ewans [1998]
and Long and Resio [2007]. This analysis might deserve
additional studies or investigations.

4.6. Discussion About the Low‐Frequency Bimodality

[98] Our simulations showed that a fundamental feature of
the spectrum is the low‐frequency bimodality, which is
present whenever using GQM or DIA, with or without
forcing terms. Young et al. [1995] also observed LF
bimodality on their simulated spectra, but they argued that a
“strong bimodal spreading for f /fp < 1” was “in contrast to
the measured results which are broad and unimodal in this
region” and discussed possible causes of this feature. This
raises the question whether the LF bimodality comes from
the numerical models or is a real feature of ocean waves.
According to Young et al. [1995], there is always a small
atmospheric input at frequencies below fp, which is enough
to dominate the nonlinear term and make the directional
distribution unimodal. They stated that, because there is no
atmospheric input in the models at frequencies below the
peak, the directional distribution is only controlled by
nonlinear terms and becomes bimodal.
[99] In our simulations, there is a small but positive input

at frequencies lower than the peak. The initial spectrum is
nonzero over the whole frequency domain. Therefore, the
atmospheric input is equal to zero only if the growth rate b
(defined as b(f, �) = Qin(f, �)/[sF(f, �)]) is equal to zero.
[100] For each of the parameterizations used here, there is

a cutoff frequency below which Qin = 0. This cutoff fre-
quency is smaller than the peak frequency for all the sets
when GQM is used, even at the end of the simulation where
the peak frequency is small. For the model of Snyder et al.
[1981] (set I), the cutoff frequency is f ≈ 0.15 Hz in our
simulations, which corresponds approximately to U10/C = 1,
where C is the wave phase velocity. Below this limit, there

is not input from the wind because waves move faster than
the wind. The Qin model of Yan [1987] with the coefficients
given by Van der Westhuysen et al. [2007] can take negative
values for waves going faster than wind. In set II, we chose
to cut the value of b to b = 0 to avoid negative growth. The
cutoff frequency is then again close to 0.15 Hz. The Janssen
[1991] input term (set III) also has a cutoff frequency, which
depends on several parameters, and takes values between
0.095 and 0.11 Hz in the two options (1 and 2) considered
here. Thus, in our simulations, the small input does not
modify the structure of the LF directional distribution,
which is still controlled by the nonlinear term. It seems that
a small low‐frequency input does not stop the nonlinear
term from creating bimodal lobes.
[101] It is very difficult to obtain precise measurements of

directional spectra at frequencies with low levels of energy.
This is the case at low frequencies, where observations are
showing the broadening of the spectrum. The interpretation
of such a broadening in term of spectral isotropization is
questionable. Furthermore, some high‐resolution field
measurement campaigns, such as the one of Hwang et al.
[2000a, 2000b], and the buoy data of Wang and Hwang
[2001] clearly show LF bimodality. Inspection of Figure 7
from the work of Wang and Hwang [2001], in particular
Figures 7d, 7e, 7i, and 7j, which correspond to energetic sea
states (Hm0 between 3 and 5.2 m), reveal directional spectra
with a LF bimodality consistent with our simulations, at
least qualitatively. Observations by Ewans [1998] also re-
ported bimodality at frequencies lower than fp, although he
suggested that it could eventually come from a swell com-
ponent in some of the spectra.
[102] All this information makes us think that the low‐

frequency bimodality is a real feature of natural sea states
and is not associated with a limitation of the numerical
models.

5. Conclusions and Perspectives

[103] In this study, we investigated the properties of the
directional wave spectrum as derived using a quasi‐exact

Figure 22. Lobe ratio rlobe versus inverse wave age U10/Cp for f = 2.5fp: initial case C2.a, GQM, and
source terms I, II, III‐ft, and III‐it.
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computation (GQM method [Lavrenov, 2001]) of nonlinear
wave‐wave interactions. Two methods for computing the
Qnl4 term and different expressions for Qin and Qwc were
considered. Purely nonlinear and duration‐limited cases
were both simulated. This enabled us to point out the
importance of nonlinear wave‐wave interactions and of the
accuracy of their computing. The influence of the input and
dissipation terms on the results was discussed.
[104] The purely nonlinear case gives us the opportunity

to check some theoretical results on the evolution of the
significant wave height Hm0 and the peak period Tp and on
the self‐similarity of the spectrum [e.g., Badulin et al.,
2005]. The GQM algorithm reproduces the theoretical
evolutions quite well. The influence of the initial directional
spectrum is studied in detail. In the purely nonlinear case,
the choice of the initial wave spectrum has a moderate
influence on the evolution and final values of Hm0, Tp, and
the mean angular width s. However, the shape of the
spectrum no longer depends on the initial condition after
some minutes. When wind input and dissipation are
included in the wave model, the effect of the initial spectrum
is very small and almost no difference is seen after a few
minutes of simulation.
[105] Analysis of the directional distribution shows that

bimodality is a robust feature of the wave spectrum, except
near the spectral peak and at frequencies greater than ≈4–
5fp, where unimodality may apply. The angle between the
two symmetric lobes varies with frequency. Whichever
parameterization is used for the wind input and the dissi-
pation terms, the global structure of the spectrum is close to
the one observed without any source or sink term up to 4fp.
This demonstrates that nonlinear interactions constitute the
key mechanism responsible for bimodality. However, we
established that the parameterizations of Qin and Qwc have a
quantitative effect on the directional distribution of the
spectrum. They can enhance or reduce the magnitude of the
bimodal lobes, and they play a role in maintaining bimod-
ality at frequencies greater than 5fp. The transition to
bimodality at frequencies higher than fp also depends on the
parameterizations of Qin and Qwc. Our GQM simulation
results are globally consistent with the measurements of
Hwang et al. [2000a, 2000b], even if we found a smaller
lobe ratio at frequencies f > fp and a more pronounced low‐
frequency bimodality.
[106] The DIA method, when compared to GQM, gives

acceptable results concerning the evaluation of Hm0 and Tp,
but it does not give a good prediction of the directional
distribution of the spectrum, particularly at frequencies
above fp.
[107] The influence of the parameterizations of Qin and

Qwc on the high‐frequency shape of E( f ) is highlighted.
When Qin and Qwc scale similarly at high frequencies, we
obtain a fairly good prediction of the HF tail of the spec-
trum. When the dissipation is too strong at high frequencies,
the frequency spectrum has a very steep HF tail that is not in
agreement with theoretical and experimental results. The
inclusion of a constrained tail is then required to obtain
coherent results. The effects of imposing a parametric tail
are significant, not only for the high‐frequency part of the
spectrum but also for the energy level and peak period and
for the global directional distribution. The influence of the
HF tail on the whole spectrum is explained by the pro-

nounced effects on the input and dissipation terms near the
spectral peak frequency and is essentially caused by the
presence of integrated in the Qwc formula.
[108] Investigations are in progress for the simulation of

the heterogeneous KE (i.e., including propagation in space
of the directional spectrum) with an accurate evaluation of
nonlinear four‐wave interactions. More “realistic” cases
(fetch‐limited growth, slanting fetch, combination of swell
and wind‐sea) are already being simulated using the GQM.
Despite a need to further optimize the CPU time (about 80–
100 times the CPU time of DIA), results obtained using the
GQM method are really encouraging and we plan to
implement the method in operational sea wave models, such
as TOMAWAC [Benoit et al., 1996]. Extension of the GQM
to finite depth is not straightforward but should be worked
out, as it has been done for other exact methods [e.g.,
Hashimoto et al., 1998; Van Vledder, 2006].

[109] Acknowledgments. We acknowledge Paul Hwang for provid-
ing us with 2‐D spectrum data measured by an airborne scanning lidar
system and for his helpful advice.
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