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Extensive numerical simulations of fetch-limited growth of wind-driven waves are
analysed within two approaches: a ‘traditional’ wind-speed scaling first proposed by
Kitaigorodskii (Bull. Acad. Sci. USSR, Geophys. Ser., Engl. Transl., vol. N1, 1962,
p. 105) in the early 1960s and an alternative weakly turbulent scaling developed
recently by Badulin et al. (J. Fluid Mech. 591, 2007, 339–378). The latter one uses
spectral fluxes of wave energy, momentum and action as physical scales of the
problem and allows for advanced qualitative and quantitative analysis of wind-wave
growth and features of air–sea interaction. In contrast, the traditional approach is
shown to be descriptive rather than proactive. Numerical simulations are conducted
on the basis of the Hasselmann kinetic equation for deep-water waves in a wide range
of wind speeds from 5 to 30 m s−1 and for the ideal case of fetch-limited growth:
permanent wind blowing perpendicularly to a straight coastline. Two different wave
input functions, Sin , and two methods for calculating the nonlinear transfer term Snl

(Gaussian quadrature method, or GQM, a quasi-exact method based on the use of
Gaussian quadratures, and the discrete interaction approximation, or DIA) are used in
the simulations. Comparison of the corresponding results firstly shows the relevance
of the analysis of wind-wave growth in terms of the proposed weakly turbulent
scaling, and secondly, allows us to highlight some critical points in the modelling
of wind-generated waves. Three stages of wind-wave development corresponding to
qualitatively different balance of the source terms, Sin, Sdiss and Snl , are identified:
initial growth, growing sea and fully developed sea. Validity of the asymptotic weakly
turbulent approach for the stage of growing wind sea is determined by the dominance
of nonlinear transfers, which results in a rigid link between spectral fluxes and wave
energy. This stage of self-similar growth is investigated in detail and presented as a
consequence of three sub-stages of qualitatively different coupling of air flow and
growing wind waves. The key self-similarity parameter of the asymptotic theory is
estimated to be αss = 0.68 ± 0.1.

† Email address for correspondence: elodie.gagnaire-renou@edf.fr



On weakly turbulent scaling of wind sea 179

Further prospects of wind-wave modelling in the context of the presented weakly
turbulent scaling are discussed.

Key words: surface gravity waves, waves/free-surface flows, wind-wave interactions

1. Introduction
The Hasselmann kinetic equation is the basic theoretical model for statistical

description of surface gravity waves. First derived by Hasselmann (1962) for modelling
the evolution of weakly nonlinear free waves (with no wind input nor dissipation),
it was further generalized to the case of wind waves and became the core of all the
modern spectral forecasting models of wind-driven seas (e.g. WAMDI Group 1988).
The extension of the original Hasselmann equation is written as follows in the absence
of ambient current:

∂Nk

∂t
+ ∇kωk∇rNk = Sin [Nk] + Sdiss [Nk] + Snl [Nk], (1.1)

where N(k) is the two-dimensional wave action spectral density, defined as
N(k) = F (k)/ω(k), and F (k) is the two-dimensional variance spectral density. The
variable k is the wavenumber vector, related to the intrinsic frequency ω through the
linear dispersion relationship for gravity water waves,

ω2(k) = g|k| tanh(|k|d), (1.2)

with d being the water depth. Terms on the right-hand side of (1.1) describe wave
input by wind forcing Sin , wave dissipation Sdiss dealing with a number of physical
mechanisms and nonlinear transfer due to resonant four-wave interactions, Snl . In
this study, deep-water conditions are considered (|k|d � 1), so that (1.2) reduces to
ω2 = g|k|.

Vector quantity M(k) = kN(k), known as the wave momentum spectral density, can
be introduced straightforwardly. The three physical quantities, N(k), F (k) and M(k),
are equally important for the statistical description of waves being associated with
conservation laws of the kinetic equation in the absence of wave input and dissipation
(i.e. Sin ≡ 0, Sdiss ≡ 0 in (1.1)). Strictly speaking, functions N(k), F (k), M(k) for weakly
nonlinear waves are related to their ‘linear’ counterparts by a quadratic transformation
(see Krasitskii 1994, Zakharov 1999 and Badulin et al. 2005) and equivalence of the
‘linear’ and ‘weakly nonlinear’ functions can be accepted as an approximation, which
is valid only for deep-water waves.

In this paper, we follow a conventional statistical approach for wind waves
(Zakharov 1999), passing over a number of questions related to the validity of
the kinetic equation (1.1), the role of non-resonant interactions (e.g. Annenkov &
Shrira 2006), the effect of long- and short-wave interactions (see Phillips 1981), etc.
All these questions remain very important for studying particular mechanisms of
wind-wave growth. The goal of the paper is rather to present a general vision, which
considers wind-wave growth as a result of three main physical processes: nonlinear
transfer, wave generation and wave dissipation. We show that some general features
of wind-wave growth do exist and can be revealed independently of ‘details’ of
wind-wave interaction mechanisms.

An attempt to generalize the problem of wind-wave growth has been made by
Kitaigorodskii (1962) (see also Kitaigorodskii 1983); the same year the kinetic



180 E. Gagnaire-Renou, M. Benoit and S. I. Badulin

equation was established by Hasselmann. Friction velocity of turbulent wind,
u∗ =

√
τs/ρa (τs is the surface shear stress and ρa the air density), was proposed

as a key physical scale of growing wind waves. This scaling together with scaling
by wind speed Uh at a reference height h above the mean sea level have been
widely used in wind-wave studies for almost 50 years. They are often referred to
as ‘Kitaigorodskii scalings’ or ‘Kitaigorodskii similarity approaches’. Although these
scalings can be convenient as wind speed is a key measurable characteristic of
wind-wave interaction, they ignore the complexity of wind effects on waves such as
gustiness, air-flow stratification, etc., and thus imply heavy idealization of the problem.

It should be noted that Kitaigorodskii (1962), in his similarity approach, does not
rely only on the wind-speed scaling. In his detailed physical scheme (see figure 5
in Kitaigorodskii 1962), the wave energy dissipation rate, εmax , was considered as a
scale of mechanisms similar to Kolmogorov’s cascading in hydrodynamic turbulence.
Nowadays, this naive ‘too direct’ analogy with Kolmogorov’s turbulence can be seen
as a precursor of later advances of the weak turbulence theory for water waves (see
Zakharov 1966, Zakharov & Filonenko 1966 and Zakharov, Falkovich & Lvov 1992).

In this paper, we aim at extending our understanding of wind-wave growth
by introducing a weakly turbulent scaling, based on spectral fluxes providing the
nonlinear cascading. Recent studies by Badulin et al. (2005, 2007) have confirmed
the leading role of nonlinear transfer and, as a result, pronounced features of self-
similarity of growing wind seas. They proposed an asymptotic model which provides
families of self-similar solutions and explicit asymptotic relationships that link integral
wave energy E =

∫
ω(k)N(k) dk, wave action N =

∫
N(k) dk and wave momentum

M =
∫

kN(k) dk with the corresponding spectral fluxes. These are what Badulin et al.
(2007) called ‘weakly turbulent laws of wind-wave growth’.

The advantage of the asymptotic approach by Badulin et al. (2007) is that the
nonlinear transfer term (collision integral Snl ) is known ‘from first principles’ and
does not contain any free parameters. This is in contrast to our current knowledge
of the terms Sin, Sdiss , which relies heavily upon empirical dependences. Ocean-field
experiments give no direct way to discriminate between wave generation or dissipation
and to experimentally quantify the nonlinear transfer term Snl which co-exists with
Sin, Sdiss (Plant 1982). To resolve this problem, heuristic or semi-empirical models
for Sin, Sdiss are widely used (e.g. the whitecapping mechanism by Hasselmann 1974)
as workpieces for further parametrizing the observed wave input and dissipation.
Experimental studies of Sin, Sdiss have often been carried out for a quite narrow
range of physical conditions (low winds, narrow range of wave scales, etc.) and the
physical relevance of these heuristic models is generally not clear. The more recent
parametrizations of Sin and Sdiss are more physically based and use more parameters of
the wave field (e.g. wave steepness or breaking threshold parametrization in Donelan
et al. 2006, Young & Babanin 2006 and Filipot, Ardhuin & Babanin 2010). They
may potentially be applied to a wider range of sea states. At the same time, they still
remain empirically rather than theoretically based and cannot guarantee success of
wind-wave modelling in general case.

Thus, the traditional wind-speed scaling of wind-wave growth raises questions,
firstly because of the uncertainty of our knowledge of Sin, Sdiss . Secondly, it reflects
essential features of wind-wave coupling where wind speed is, evidently, important
but it is just one of a number of physical parameters describing the coupling.

The goal of this paper is to show advantages of the weakly turbulent scaling
as a proactive tool for developing wind-wave models. An extensive simulation of
fetch-limited growth in the spirit of test beds for wind-wave forecasting models (e.g.
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SWAMP Group 1985 and Komen et al. 1994) has been carried out and its results
are analysed both within the traditional wind-speed scaling and the weakly turbulent
approach. This analysis firstly allows us to identify essential physical properties of
wind-wave growth and, secondly, to advance the understanding of everyday problems
in wind-wave modelling: choice of models for Sin, Sdiss , adequacy of approximate
methods for calculating Snl . Mature seas are also discussed as a limiting case of
growing seas.

In § 2, we present the set-up of our numerical experiments. Conditions and
parameters of the simulations are reported. The chosen functions for Sin and Sdiss

are basically described, as well as the numerical methods for computing Snl . Section 3
introduces conventional wind-speed scaling and an alternative one using results of the
theory of weak turbulence (Zakharov et al. 1992). An asymptotic weakly turbulent
model, the so-called split-balance model (Badulin et al. 2007), provides families of
non-stationary and non-homogeneous self-similar solutions with rigid links of spectral
fluxes to spectral magnitudes quite similarly to the classic stationary Kolmogorov–
Zakharov solutions (Zakharov 1966; Zakharov & Filonenko 1966; Zakharov &
Zaslavsky 1982a). Three reference cases of the self-similar wave growth are of special
interest: they correspond to constant fluxes of wave momentum, energy or wave action.
These cases were derived long ago (Toba 1972; Hasselmann et al. 1976; Zakharov
& Zaslavsky 1983b) from very different theoretical and experimental premises. The
presented weakly turbulent approach allows us to associate these reference cases with
qualitatively different stages of wave growth. In § 4, results of numerical simulations
are described both in terms of wind-speed scaling and in terms of spectral flux weakly
turbulent scaling. Different stages of wave development from initial growth to the
fully developed (mature) sea are delimited qualitatively and quantitatively. The stage
of growing wind sea described by the asymptotic weakly turbulent theory is detailed
as a consequence of qualitatively different sub-stages of air–sea coupling based on the
reference cases (Toba 1972; Hasselmann et al. 1976; Zakharov & Zaslavsky 1983b)
mentioned above. Section 5 closes the paper with discussions and conclusions.

2. Numerical model of fetch-limited growth
In this section, we describe the set-up of our numerical studies of fetch-limited

growth. Generally, we follow similar works on wind-wave modelling (Komen,
Hasselmann & Hasselmann 1984; Komen et al. 1994), drawing attention to possible
coupling and, as our results show, the most realistic composition of nonlinear transfer,
wave input and dissipation terms. Using different approaches (i.e. models or methods)
for the wave input function Sin and for the nonlinear transfer term Snl , we are
trying to understand how our approximations and empirical parametrizations can
affect the resulting evolution of wave spectrum. The conceptual difficulty of such
a study essentially lies in the nonlinear physics of sea state evolution: benefits
and disadvantages of these approaches cannot be assessed for each of the terms
independently. Interdependence of wave input, dissipation and nonlinear transfer
requires a certain coordination of the approaches to ensure basic features of wind-
wave physics.

2.1. Conditions and parameters of simulation

The idea of the numerical set-up is to reproduce wave-spectrum evolution under
some standard conditions. We let wind blow offshore normally to a straight coast
(θu = 0). The 10 m wind speeds U10 range from 5 to 30 m s−1. (We considered four
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standard values: U10 = 5, 10, 20, 30 m s−1.) The wave field is assumed homogeneous
in the longshore direction.

The Hasselmann equation (1.1) is solved both in space and time to
guarantee physically relevant stationary solutions developing in the offshore
direction. The simulation parameters were selected so as to maintain the same
dimensionless parameters (non-dimensional fetch χ = xg/U 2

10, non-dimensional
frequency f̃ = f U10/g and non-dimensional time τ = gt/U10) in each simulation.

The spatial grid comprises 121 nodes, which are in geometric progression with
increasing 	x from the shore line (	xn+1/	xn = 1.068; 	x1 = 6.25 m for U10 = 5m s−1,
while 	x1 = 225 m for U10 = 30 m s−1). The maximal fetch xmax , corresponding to non-
dimensional fetch χmax = 105 in each simulation, was chosen to be sufficiently long
to reach a mature sea state. The very existence of this state is a specific issue (see
Komen et al. 1984) that we discuss below.

The discrete frequency-direction grid is composed of 51 frequencies with geometric
progression (fn+1/fn =1.071) and 36 directions with a constant spacing of 10◦ (θm+1 −
θm = 10◦). For wind speeds U10 = 5, 10, 20, 30 m s−1, the corresponding lowest and
highest frequencies are f1 = 0.16, 0.08, 0.04, 0.027 Hz and f51 = 5, 2.5, 1.25, 0.83 Hz,
respectively. These resolutions are adequate for the problem discussed, as has been
shown by Komatsu & Masuda (1996). Additional tests have been carried out within
our approach with finer frequency and directional resolutions (from 51 to 128
frequencies and up to 72 directions, respectively). Results are only marginally affected
by the finer resolutions, while CPU time increases dramatically.

The initial wave spectrum (at t = 0) is set to be plain zero (see (A 6) of Appendix A).
Time integration of the source terms is performed with a semi-implicit scheme
(WAMDI Group 1988) with a constant time step. (	t = 5, 10, 20, 30 s for the
corresponding wind speeds, U10 = 5, 10, 20, 30 m s−1.) Results are given at non-
dimensional time τf = gtf /U10 ≈ 6.36 × 104 (corresponding to 9, 18, 36 and 54 h
of physical time, respectively) as corresponding to quasi-stationary state and, thus, to
fetch-limited growth.

In these simulations, we used the wave growth limiter corresponding to the modified
WAM-Cycle 4 expression of Hersbach & Janssen (1999):

|	F |max = 3.0 × 10−7 g max(u∗, gf
∗
PM/f ) f −4f51	t, (2.1)

where f ∗
PM = 5.6 × 10−3 is the non-dimensional Pierson–Moskowitz frequency. Benoit

(2006) analysed the influence of different wave growth limiters on spectrum
development, and recommended the use of (2.1) when such a limiter is necessary
(for instance, when using a large static time step).

In the wave model, the high-frequency range of the spectrum (above a given
frequency fd) is introduced in a standard way as power-like extrapolation F (f, θ) ∝
f −m, with m = 4. The diagnostic frequency fd is set as follows:

fd = min[f51; max(4fPM, 2.5f̄ )], (2.2)

where the mean frequency f̄ is given by

f̄ = m0

(∫ +∞

0

∫ π

−π

f −1F (f, θ)df dθ

)−1

, (2.3)

with

m0 =

∫ +∞

0

∫ π

−π

F (f, θ)df dθ = E. (2.4)
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Such a diagnostic high-frequency tail is usually used in simulations of spectral
evolution to compensate the lack of physics of Sin and Sdiss in the high-frequency part
of the spectrum or to reduce the computational time. The inclusion of a high-frequency
diagnostic tail and the particular choice of exponent m and frequency fd affect the
whole evolution of the spectrum (e.g. Banner & Young 1994 and Gagnaire-Renou,
Benoit & Forget 2010). In particular, the high-frequency diagnostic tail influences the
wave input and dissipation terms when parametrizations for Sin and Sdiss depend on
wave spectrum. Thus, special care should be taken to discriminate between the wave
input and dissipation terms themselves and artefacts due to choice of the diagnostic
tail. Note that we follow standard set-up for the modelling of wind-wave spectrum
when introducing a diagnostic tail (e.g. WAMDI Group 1988).

2.2. Two formulations of the wind input term

A large number of parametrizations have been proposed for modelling the wind
input term Sin (e.g. Stewart 1974; Snyder et al. 1981; Plant 1982; Hsiao & Shemdin
1983; Donelan & Pierson Jr 1987; Janssen 1989; Janssen 1991). In fact, all these
parametrizations can be written as a quasi-linear form:

S
(F )
in = ωβ(u∗/Cph, θ, u1, . . .)F (f, θ). (2.5)

The key argument of the non-dimensional increment β is the ratio of wave phase
velocity Cph to friction velocity u∗ (or a reference wind speed U10): Cph/u∗, the
so-called wave age of a particular wave component. Wave harmonic generation is
assumed to occur if ratio Cph/u∗ is below a certain threshold, quite similarly to
the effect of Cherenkov radiation well known in many domains of modern physics
(i.e. light–particle interaction, wave generation by bodies at supersonic speeds, etc.).
Only waves propagating slower than this threshold (say, slower than wind speed at
height U10) can be generated or amplified, and waves propagating faster than this
threshold, the so-called old waves, are not affected, or even damped by the wind.
Other arguments ui are introduced in β to describe the variety of additional physical
effects in wind-wave coupling.

Note that Sin was defined in (1.1) in terms of wave action N(k). In (2.5), wave input
is introduced in terms of the variance spectrum F (f, θ). For convenience, superscript
for Sin (and other source–sink terms) is omitted in the following.

In our study, we consider two input terms Sin , which are usually implemented as
options in the most recent third-generation (3G) models (e.g. WAM, WAMDI Group
1988, Komen et al. 1994; Wavewatch-III, Tolman 1991, 2002; SWAN, Booij et al.
1999; TOMAWAC, Benoit et al. 1996): the model by Snyder et al. (1981), used in
WAM-Cycle 3, and the model by Janssen (1989, 1991), as implemented in WAM-Cycle
4. The corresponding expressions are given in Appendix A.

An important point of our study is that the total wave input (integral in wave
scales) is a key quantity of wind-wave growth. We show below that the wind-wave
growth is determined by this basic quantity of air–sea interaction rather than by
particular dependence of wave input on wave frequency. Even at first glance, the
wave input parametrizations we use can give a quite different integral wave input
(see figure 11 in Appendix A). As a consequence, different wave growths due to these
input functions are to be expected because of this simple (but not trivial) fact.

2.3. Wave dissipation: whitecapping by Hasselmann (1974)

Wave dissipation has long been and may still be regarded as the most poorly
understood term in the kinetic equation (1.1). The quasi-linear parametrization of
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the whitecapping mechanism by Hasselmann (1974) is still implemented in most of
the wind-wave forecasting models. However, recent observations (see e.g. Ardhuin,
Chapron & Collard 2009) have led to new developments, and massive efforts are being
undertaken to extend our knowledge of this physical mechanism. The threshold and
cumulative behaviours of the dissipation have been discussed by, e.g., Banner, Babanin
& Young (2000) and Young & Babanin (2006). Saturation-based parametrizations
are addressed in recent works of, e.g., Alves & Banner (2003), Van der Westhuysen,
Zijlema & Battjes (2007) and Ardhuin et al. (2008), to be used in operational models
of wave forecasting while essentially nonlinear parametrizations of the term Sdiss

(e.g. Phillips 1985 and Donelan & Pierson Jr 1987) are treated predominantly in the
context of research models. Current work by Filipot et al. (2010) intend to unify deep-
and shallow-water wave breaking.

Some problems of the original whitecapping parametrization were demonstrated by
Komen et al. (1984) for the balance of fully developed wind-driven sea. Nowadays,
spectral wind-wave models use this parametrization in the following form:

Sdiss (f, θ) = −Cdiss

gp
ω̄2p+1m

p/2
0

[
δ
(ω

ω̄

)2

+ (1 − δ)
(ω

ω̄

)4
]

F (f, θ), (2.6)

where ω̄ is defined by ω̄ = 2πf̄ (see (2.3)). Cdiss =4.5 and δ = 0.5 are default values in
the WAM-Cycle 4 model (Günther, Hasselmann & Janssen 1992; Komen et al. 1994).
The exponent p = 4 is usually used in (2.6). Zakharov et al. (2007) and Korotkevich
et al. (2008) have recently found that the whitecapping dissipation is overestimated
in the WAM-Cycle 3 and WAM-Cycle 4 models. They propose the dissipation term
(2.6) with Cdiss = 0.11, δ =0 and p = 12. The key message of such revision is a high
exponent p that models threshold-like dependence of dissipation on wave steepness,
ε = ω̄

√
m0/g.

In our study, we follow WAM-Cycle 4 formula for Sdiss (2.6) with standard
parameters given above. Effects of the parameters as well as alternative formulations
for the dissipation term are subjects of further studies.

2.4. Modelling the nonlinear transfer term Snl

The Hasselmann equation (1.1) presupposes that the nonlinear transfer term Snl

plays a leading role in the evolution of the wave spectrum. This leading role of the
nonlinear transfer for wind-driven seas was demonstrated both theoretically (Young
& Van Vledder 1993; Badulin et al. 2005; Badulin et al. 2008b) and experimentally
(Pettersson 2004; Young 2006). This is in conceptual contradiction with models
that consider wave generation and dissipation as main constituents of the wind-sea
balance, and assume that input and dissipation terms solely determine the shape of
the wave spectrum and its evolution in space and time (e.g. Phillips 1985; Hara &
Belcher 2002).

The motivation to simplify the nonlinear transfer term Snl , or even remove it,
comes from the difficulties associated with a precise calculation of this term, which is
expressed as a sixfold integral on wavenumber vector components:

Snl [Nk] =

∫
k1

∫
k2

∫
k3

G(k, k1, k2, k3) {N2N3(N + N1) − NN1(N2 + N3)}

× δ(k + k1 − k2 − k3)δ(ω + ω1 − ω2 − ω3)dk1dk2dk3. (2.7)

Functions Nk are generally strongly localized in wave vector space. The kernel
G(k, k1, k2, k3) (see e.g. Badulin et al. 2005, for a collection of possible representations)
grows rapidly with wave vector (as |k|6) and δ-functions contour the subspace of
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resonant quadruplets

k + k1 = k2 + k3,

ω + ω1 = ω2 + ω3.

}
(2.8)

A number of algorithms for exact evaluation of collision integral Snl has been
proposed starting with the Webb (1978) method, referred to as WRT (Tracy & Resio
1982), which was further developed in a number of works; see Resio & Perrie (1991),
Pushkarev, Resio & Zakharov (2003) and van Vledder (2006). The EXACT-NL code
by Hasselmann & Hasselmann (1981, 1985) was the first that was applied for burning
questions of wind-sea physics (Komen et al. 1984). Methods by Masuda (1986),
Komatsu & Masuda (1996) and then by Hashimoto, Tsuruya & Nakagawa (1998),
Polnikov (1990) and, finally, by Lavrenov (2001) can be considered as versions of
the Hasselmann method with particular transformations of variables and different
methods for processing singularities in the integrands.

Simplified methods are usually used in 3G wave models. Among them, the discrete
interaction approximation (DIA) method (Hasselmann et al. 1985) has been the most
frequently employed since the WAM model was proposed (WAMDI Group 1988).
The multiple DIA (MDIA; e.g. Tolman 2004) is an extension of the original DIA, and
considers various quadruplet configurations. These methods can give very reasonable
results in simple situations, but they result in significant qualitative and quantitative
differences (e.g. in the situation of abrupt changes of wind direction: Young et al.
1987) when compared with exact methods, which makes their use questionable in the
general case.

Benoit (2005) reviewed and compared several possible improvements or alternative
techniques to obtain higher accuracy in the evaluation of (2.7) while keeping acceptable
CPU time. He found that the integration technique proposed by Lavrenov (2001),
called the Gaussian quadrature method (GQM), can give adequate results regarding
both precision and CPU time. The GQM is based on the use of Gaussian quadratures
adapted to the singularities that appear in the course of the manipulation of the kinetic
integral (2.7). Like all the exact methods mentioned above, it can be simplified using
a coarser resolution and/or a reduced integration range. Various resolutions of GQM
and their effect on spectral shapes have been investigated in detail by Benoit &
Gagnaire-Renou (2007). Indications about CPU times can be found in Appendix B.

As an illustration, figure 1 shows Snl terms given by DIA and MDIA as proposed by
Tolman (2004) and by GQM with three different resolutions, for a given JONSWAP-
like spectrum. ‘Fine’ GQM resolution with 26, 16 and 12 points (denoted (26,16,12) in
short) for the first, second and third components of integration (after suppressing the
Dirac functions in 2.7) is considered as ‘true’ nonlinear transfer term and is given by a
solid line in both panels of figure 1. ‘Medium’ (14,8,8) and ‘rough’ (11,6,6) resolutions
show some deviations from the ‘true’ curve of the fine resolution, especially in the
high-frequency range. Differences between fine and medium resolutions are small,
and almost invisible near the spectral peak, which confirms the good convergence of
the method when increasing its resolution. On the basis of these results, we accept
GQM with medium resolution as a regular one for the present study. Fine resolution
has been used in some cases only to control the accuracy of simulations.

The pronounced difference between the DIA and the reference GQM-fine curves
does not require detailed comments. One can note several positive lobes of the DIA
curve and a very deep negative lobe shifted towards higher frequencies relative to the
reference curve (see Benoit 2005 and Cavaleri et al. 2007 for further comparisons). The
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Figure 1. Nonlinear transfer term Snl computed with (a) DIA, MDIA and GQM (fine
resolution), and (b) GQM (rough, medium and fine resolutions).

MDIA curve gives significantly improved results as compared to the original DIA. At
first glance, it may even look more attractive than the GQM-rough curve near the Snl

peak. It should be noted that the comparison is made for a particular spectral function
(JONSWAP spectrum with a standard set of parameters) and angular averaged Snl

terms. The deficiencies of the DIA and MDIA approaches become more pronounced
when looking at arbitrary spectral forms and angular distributions. This problem has
been detailed by, e.g., Benoit (2005) and Gagnaire-Renou et al. (in press). DIA (and
MDIA too) can give large deviations for both the Snl term and the resulting spectrum
compared to ‘true’ distributions.

The problem related to spectral shapes obtained with approximate methods of
calculation of Snl is twofold. First, spectral shapes can differ significantly from ‘true’
ones, which is, evidently, not a good thing if we need accurate information on the
spectral or angular structure of the spectrum. The second point seems more critical:
distortion of spectral shape affects wave input and dissipation terms that depend on
wave spectrum and, hence, corrupts the modelling of essential physics of wind-wave
interaction.

There is an important basic property that reconciles both approaches for Snl . The
collision integral Snl for deep-water waves obeys the homogeneity property,

Snl [νN(υk)] = ν3υ19/2Snl [N(k)], (2.9)

for arbitrary positive coefficients υ and ν. This basic property should be satisfied
both for exact methods (Badulin et al. 2005) and for their substitutes like DIA
or MDIA irrespective of possible corruption of the resulting spectral shapes. The
common property of all the approaches for the collision integral Snl (see (2.9)) raises
new non-trivial questions when trying to answer the issue which approach is more
adequate to research or operational needs. As we shall see below, DIA remains quite
good in reflecting essential features of wind-wave growth when looking at integrated
parameters (e.g. total wave energy, characteristic frequencies of wave spectrum).

3. Physical scaling of wind-wave growth
Having different models of wind input Sin and different approaches for nonlinear

transfer term Snl , we are trying to construct a physically transparent coupling scheme
of these constituents of wind-wave evolution in a wide range of physical conditions. It
calls for an introduction of physical scaling where results for the different conditions
could be presented in a comparable form. Here we consider two approaches for such
scaling: the traditional wind-speed scaling, associated with the work of Kitaigorodskii
(1962), and the so-called weakly turbulent scaling (Badulin et al. 2007), closely related
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to the phenomenon of cascading due to resonant wave–wave interactions in a random
field of weakly nonlinear waves (Zakharov et al. 1992).

3.1. Traditional wind-speed scaling

Conventional scaling of wind-wave data often relies on wind speed as a key
physical scale (Kitaigorodskii 1962). This scaling introduces non-dimensional fetch,
χ = xg/U 2

10, and duration, τ = tg/U10, as scales of wind forcing and non-dimensional
frequency, ω̃ = ωU10/g, and energy, Ẽ = Eg2/U 4

10, as intrinsic characteristics of wave
field. (We follow here the ‘oceanographic definition’ of wave energy, E = m0 = 〈η2〉;
see (2.4).) Unless otherwise specified, we use 10 m as a reference height for wind speed.

Power-law dependences of non-dimensional total energy Ẽ and peak frequency ω̃p

on non-dimensional fetch χ ,

Ẽ = E0χ
pχ , ω̃p = ω0χ

−qχ , (3.1a)

or non-dimensional duration τ ,

Ẽ = E0τ
pτ , ω̃p = ω0τ

−qτ , (3.1b)

play an important role in generalization of experimental results.
A good reason for parametrizing wave growth by formulas (3.1) with four free

parameters (non-dimensional coefficients ω0, E0, and exponents pχ (τ ), qχ (τ )) could be
the universality of these parameters. This is, however, not the case: the scatter of the
parameters is too broad (see, for discussion, the introduction of Badulin et al. 2007).
This also justified the following summary by Donelan et al. (1992):

‘Perhaps it is time to abandon the idea that a universal power law for non-
dimensional fetch-limited growth rate is anything more than an idealization.’

Wind-speed scaling relies upon ‘an ideal set-up’ of wind-wave growth and explains all
outliers by additional physical factors that are absent from this reference ideal case.
This approach does not allow for definite indication and quantification of physical
mechanisms for these outliers. At the same time, the traditional scaling remains a
valuable tool for wind-wave study in so far as it operates with the wind speed, which
is an observable parameter.

As stated in § 1, Kitaigorodskii (1962) tried to go beyond the formal dimensional
analysis. He considered a mechanism of cascading of wave energy in the spirit of
the Kolmogorov model of hydrodynamic turbulence. First, the magnitude of the
wave spectrum was related to the energy flux in a general form (see (22), (23) in
Kitaigorodskii 1962), then the energy flux was parametrized in terms of wind speed
((4) in Kitaigorodskii 1962). Within the same physical analogy, the well-known law
ω−4 for a spectral range of ‘small-scale isotropic turbulence’ has been proposed (range
V of figure 5 in Kitaigorodskii 1962). This consideration anticipated subsequent basic
results of the theory of weak turbulence (Zakharov et al. 1992).

3.2. The split-balance model and weakly turbulent scaling

The mathematically and physically consistent theory proposed a few years later by
Zakharov & Filonenko (1966) and Zakharov (1966) extended the understanding of
the wave cascading. It has been found that the wave-spectrum evolution is governed
by two types of cascades: the direct one that transfers energy to shorter waves and,
then to a dissipation range (Zakharov & Filonenko 1966), and the inverse cascade that
provides spectral transfer in the opposite direction (Zakharov & Zaslavsky 1982b).
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The latter process is considered to be responsible for the well-known phenomenon of
downshift of wind-wave spectrum.

Recent studies (Badulin et al. 2005, 2007) have shown the leading role of the inverse
cascade mechanism and proposed an asymptotic model for the growing wind sea:
the so-called split-balance model. This model ‘splits’ effects of nonlinear transfer and
external forcing into two equations. In terms of wave action spectral density N(k), it
is written as follows:

dNk/dt = Snl [Nk], (3.2a)

〈dNk/dt〉 = 〈Sin + Sdiss〉. (3.2b)

Here angle brackets 〈 · 〉 mean integration over the whole wavenumber space,
k =(kx, ky).

The asymptotic model (3.2) provides families of self-similar solutions for special
cases of duration- and fetch-limited growth. These solutions obey the weakly turbulent
laws of wind-wave growth (Badulin et al. 2007) that links spectral magnitudes with
total wave input (spectral flux) 〈Sin + Sdiss〉. In terms of total energy, one gets (Badulin
et al. 2007)

Eω4
p

g2
= αss

(
ω3

p

g2
〈Sin + Sdiss〉

)1/3

= αss

(
ω3

p

g2

dE

dt

)1/3

. (3.3)

Here αss is a parameter of self-similarity that depends slightly on exponents of spatial
or temporal growth pχ, pτ in (3.1) (Badulin et al. 2007):

α(f )
ss ∼ p−1/3

χ , α(d)
ss ∼ p−1/3

τ . (3.4)

Below we omit superscripts (d) and (f ) for duration- and fetch-limited cases. Note
that the exponents 1/3 in (3.3) and (3.4) come from the cubic nonlinearity of the
Hasselmann equation (1.1): wave energy is proportional to energy flux to the power
one-third, in contrast to Kitaigorodskii’s analogy with the Kolmogorov turbulence,
where energy is a linear function of energy flux (see (30) in Kitaigorodskii 1962).

The model (3.2) and the weakly turbulent law (3.3) operate with integral net input
〈Sin + Sdiss〉. Thus, the model postulates independence of wave evolution from details
of wind-wave coupling. This robustness of the model (3.2) and quantitative link (3.3)
makes the corresponding weakly turbulent scaling a really powerful tool of wind-wave
studies.

Self-similarity relationship (3.3) can also be introduced in different forms for wave
momentum M ,

Mω3
p

g2
= α(M)

ss

(
ω2

p

g2

dM

dt

)1/3

, (3.5)

or wave action N ,

Nω5
p

g2
= α(N)

ss

(
ω4

p

g2

dN

dt

)1/3

, (3.6)

where the self-similarity parameters α(M)
ss , α(N)

ss are counterparts of αss in (3.3). Thus,
one can use the weakly turbulent scaling for different physical values, which extends
our understanding of wave dynamics and wind-wave coupling itself.

We should stress once more a conceptual difference between weakly turbulent
scaling and traditional wind-speed scaling. The latter links wind characteristics directly
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with wave parameters. Additionally, it relies (somewhat implicitly) upon an idea
of universality of wind speed as a characteristic of air flow that governs wave
evolution. In fact, discrepancies of experimental results themselves in the form of
dependences (3.1) with four free parameters (ω0, E0, pχ (τ ), qχ (τ )) contradict this idea
of universality. On the contrary, the weakly turbulent scaling separates the air-flow
dynamics from inherent wave dynamics assuming the dominating role of nonlinear
transfers. This hypothesis makes the total wave forcing a key physical parameter
and gives a quantitative link between total wave forcing and integral parameters of
wave spectrum. Parameters ω0, E0, pχ (τ ), qχ (τ ) in (3.1) cease to be free but obey two
relationships resulting from the split-balance model (see (2.10), (2.21), (2.38), (2.41)
in Badulin et al. 2007). These self-similarity relationships have been used by Badulin
et al. (2007, 2008a) for validating the asymptotic split-balance model (3.2) and for
numerical estimates of self-similarity parameter αss for the case of duration-limited
growth.

For the fetch-limited growth, the law (3.3) in the form

Eω4
p

g2
= αss

(
ω2

p

2g

∂E

∂x

)1/3

(3.7)

has been checked by Badulin et al. (2007) for a collection of experimental power-
law parametrizations of wind-wave growth covering a wide range of energy growth
exponents,

0.7 < pχ < 1.1. (3.8)

After thorough selection of the cleanest experiments (the best fit to the idealization
of the fetch-limited growth), the self-similarity parameter αss has been estimated as
(Badulin et al. 2007)

αss = 0.55 ± 0.25. (3.9)

Analysing results of the present simulations, we are trying to use advantages of
weakly turbulent scaling in the sense of laws (3.3), (3.5), (3.6) and give a numerical
justification of (3.7) for the fetch-limited wave growth.

3.3. Reference cases of wind-wave growth

Weakly turbulent laws of wind-wave growth of the form (3.3), (3.5), (3.6) make it
possible to fix reference cases corresponding to different regimes of wave dynamics at
different stages of wave growth. These cases correspond to constant fluxes of energy,
wave momentum or wave action, and give simple single-parameter dependences of
energy on peak frequency. The theoretical and experimental aspects will be presented
in detail in a separate paper. Here we discuss these reference cases in brief as a
background for analysis of our simulation results. All these cases have been known
for a long time but their relevance to weak turbulence theory had not yet been
considered.

3.3.1. The Toba 3/2 law as a regime of constant energy flux to waves

The relevance of Toba’s empirical 3/2 law as a basic regime of wave growth was
shown by Badulin et al. (2007). Take Toba’s law for significant wave height Hs and
period Ts (Toba 1972),

Hs = B(gu∗)
1/2T 3/2

s . (3.10)
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Conversion to total energy E = H 2
s /16 and peak frequency ωp ≈ 2π/Ts gives

Eω4
p

g2
=

(
π9B6u3

∗
8g

ω3
p

g2

)1/3

. (3.11)

Comparing (3.11) and (3.3), we see that Toba’s law corresponds to constant in time
total flux of energy dE/dt . This flux, or total net input, can be easily estimated by
(note the misprint in (5.1) of Badulin et al. 2007)

dE

dt
=

π9B6u3
∗

8α3
ssg

= 0.16
ρa

ρw

u3
∗

α3
ssg

, (3.12)

when B = 0.062 (Toba 1972). The estimate of wave energy looks reasonable. In terms
of explicit dependence on fetch, this case gives exponents pχ = 3/4, qχ = 1/4 in (3.1).
The growth is lower than a linear one because of the downshift effect: longer waves
at longer fetches travel faster.

3.3.2. The Hasselmann et al. (1976) 5/3 law of constant momentum flux to waves

Hasselmann et al. (1976) considered a special case that gives a single-parameter
5/3 law linking significant wave height and peak period. In terms of non-dimensional
energy, we can write

Ẽ = C0

(
ω̃p

2π

)−10/3

, C0 = 5.1 × 10−6. (3.13)

The term ‘law’ seems to be quite relevant: this case corresponds to constant flux of
momentum to waves, i.e. dM/dt = constant in (3.5). It is interesting to recall attempts
by Toba (1978) to identify this case with his own law when experimental data are
close to both 3/2 (see (3.10)) and 5/3 (see (3.13)) dependences. From the ‘weakly
turbulent viewpoint’, the difference between these two laws is fundamental: Toba’s
3/2 law applies for constant energy flux while the 5/3 law is valid for constant flux of
wave momentum. From (3.3), one immediately has the following estimate of energy
growth rate:

dE

dt
= 7.7 × 10−3 ρa

ρw

Cpu2
∗

α3
ssg

. (3.14)

Here we used dependence of reference wind speed U10 and friction velocity u∗ in the
simplest form,

U10 = 28u∗. (3.15)

For a growing wind sea, the spectral peak phase speed Cp is growing and, hence,
the energy production is growing as well. In terms of explicit dependence on fetch, it
gives a linear growth of energy (pχ =1). The frequency downshift (qχ = 3/10) is faster
than in the previous Toba case.

3.3.3. The Zakharov & Zaslavsky (1983b) 4/3 law of constant action flux to waves

The last reference case of wave growth has been found by Zakharov & Zaslavsky
(1983b, see also thesis by Zaslavsky, 1984 for details). In a series of papers, Zakharov
& Zaslavsky (1982a ,b, 1983a ,b) first applied the weakly turbulent theory for analysing
wind-driven seas where wave growth has been associated with inverse cascading of
wave action. They started with the classic stationary solution describing constant
flux of wave action from infinitely small to infinitely large wave scales (Zakharov &
Zaslavsky 1982a). Extending this mechanism to the non-stationary case, they proposed



On weakly turbulent scaling of wind sea 191

an explanation of experimental data available in the early 1980s. The theory gave
exponents of energy growth and frequency downshift in (3.1) while experimental
data were used to find the corresponding pre-exponents. The energy-to-frequency
relationship was found from JONSWAP data (Hasselmann, Dunkel & Ewing 1980),

Ẽ = 1.5 × 10−3ω̃−8/3
p , (3.16)

for theoretical exponents,

pχ = 4/7, qχ = 3/14. (3.17)

As in previous cases and with (3.15), one has for energy input

dE

dt
= 1.6

ρa

ρw

C−1
p u4

∗

α3
ssg

. (3.18)

The energy input (3.18) (for a constant friction velocity u∗) decreases with time as the
peak frequency ωp .

3.4. Wave growth as a consequence of different regimes of wind-wave coupling

The three reference cases presented above allow us to construct a physically consistent
scheme of wave growth as a series of regimes of wind-wave coupling.

Relatively young waves obey the 5/3 law by Hasselmann et al. (1976). This growth
is controlled by permanent wind stress as long as wave momentum flux is constant.
The energy growth rate of these waves increases with time.

The famous 3/2 law by Toba (1972) corresponds to constant wave energy flux while
wave momentum flux decays. In other words, the contribution of wind stress to wave
production decays at this stage of wave growth. Toba himself treats this law within
his heuristic theory as a sort of ‘saturation’ of wave growth (Toba 1997). Within our
approach, it is seen as a regime of maximal wave energy production. Older waves
evolve in accordance with the 4/3 law by Zakharov & Zaslavsky (1983b), i.e. wave
energy flux decays. Thus, following Toba, one can treat the 5/3 regime as ‘under-
saturated’ when energy input is growing with the wave growth, while the 4/3 case,
logically, can be called ‘over-saturated’ when energy input is decaying.

We conclude this section by presenting two tables. Table 1 presents the three
reference cases (the 5/3, 3/2 and 4/3 laws), the corresponding exponents and estimates
of wave energy inputs. Table 2 gives exponents T , pχ, qχ as well as pre-exponents B̃

for three ‘cleanest’ wave growth dependences, as selected by Badulin et al. (2007) (see
their tables 2 and 3). When experimental exponents pχ, qχ do not precisely obey the
relationship predicted by the weakly turbulent theory, we also give a theoretical value
of exponent Tth =5pχ/(2pχ + 1) (see (2.38) of Badulin et al. 2007), considering the
exponent of wave energy growth with fetch as ‘more reliable’ than the exponent of
frequency downshift qχ . All the experimental dependences are well between the Toba
(1972) 3/2 and the Hasselmann et al. (1976) 5/3 laws. Within the weakly turbulent
approach presented above, it means energy flux growing slowly with fetch. Estimates
of the corresponding rates of wave energy input can be derived from wave growth
law (3.3) in the same way as for reference cases of table 1.

The theoretical cases of table 1 and experimental dependences of table 2 are used
below for analysis of numerical results on wind-wave growth. Within this analysis,
firstly, we discuss the evolution of key parameters of wave spectrum: total energy and
peak frequency. Secondly, theoretical estimates of net wave forcing can be compared
to Sin and Sdiss given by models of wind input and dissipation. Thus, one can try
to discriminate between features of inherent wave physics and physics of wind-wave
coupling.
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Case T = pχ/(2qχ ) B̃ pχ qχ ρw/ρa × dE/dt

dM/dt = constant 5/3 2.33 × 10−3 1 3/10 0.0077
Cpu2

∗
α3

ss g

(Hasselmann et al. 1976)

dE/dt = constant (Toba 1972) 3/2 2.13 × 10−3 3/4 1/4 0.16 u3
∗

α3
ss g

dN/dt = constant 4/3 1.5 × 10−3 4/7 3/14 1.6
C−1

p u4
∗

α3
ss g

(Zakharov & Zaslavsky 1983b)

Table 1. Summary of reference regimes of wind-wave growth. Exponents pχ, qχ are given for

explicit dependences on fetch (3.1). B̃ and T are parameters in energy-to-frequency relationship
Ẽ = B̃ω̃−2T

p . The last column is parametrization of net wave forcing dE/dt in accordance with
weakly turbulent relationship (3.3).

Case T =
pχ

2qχ
B̃ pχ qχ Tth =

5pχ

2pχ +1

Babanin & Soloviev (1998a) 1.62 2.91 × 10−3 0.89 0.275 1.60
Kahma & Calkoen (1992) unstable 1.68 3.99 × 10−3 0.94 0.28 1.63
Kahma & Calkoen (1992) stable 1.58 2.43 × 10−3 0.76 0.24 1.51

Table 2. Summary of experimental cases of wind-wave growth. Exponents pχ, qχ are given

for explicit dependences on fetch (3.1). B̃ and T are parameters in the corresponding
energy-to-frequency relationship Ẽ = B̃ω̃−2T

p . The last column is the theoretical estimate of
exponent T in the energy-to-frequency relationship (Badulin et al. 2007) for the given value
of pχ .

4. Scaling of fetch-limited wind-wave growth
In this section, we discuss results of fetch-limited numerical simulations within

different physical approaches. First, we use the traditional wind-speed scaling, and
then we try to extend our analysis by applying a weakly turbulent approach.

4.1. Wind-speed scaling of fetch-limited growth

4.1.1. Explicit dependences of energy and frequency on fetch

The simulation results can be presented straightforwardly in terms of conventional
non-dimensional variables (Kitaigorodskii 1962, 1983): non-dimensional energy
Ẽ = Eg2/U 4

10 and spectral peak frequency ω̃p = U10/Cp (inverse wave age) as functions
of non-dimensional fetch χ = xg/U 2

10. In figures 2 and 3, results for each value of
wind speed are presented in separate panels for two different wind input functions Sin

and two different methods for calculating Snl . Straight lines show the experimental
‘cleanest’ dependences of table 2. One can see a strong dispersion in both numerical
and experimental dependences. While experimental curves are fixed in all panels,
their numerical counterparts drift with wind speed within almost one order of
magnitude for non-dimensional energy (figure 2) and by several tens of percentage
points for non-dimensional frequency (figure 3). In all the panels of figures 2 and
3, we see, first of all, differences dealing with wave input functions. The non-
dimensional energy Ẽ obtained by Janssen (1989, 1991) reaches magnitudes twice
as high as that obtained with the input of Snyder et al. (1981). The corresponding
difference for ω̃p can reach 20 %. The effect of method of calculation of nonlinear
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Figure 2. Non-dimensional energy Ẽ = Eg2/U 4
10 as a function of non-dimensional fetch

χ = xg/U 2
10, for different wind speeds U10 = 5, 10, 20, 30 m s−1, parametrizations of wave input

term Sin by Snyder et al. (1981) and Janssen (1989, 1991), DIA and GQM for calculating
Snl (shown in legends). ‘The cleanest’ experimental dependences of table 2 are given for
comparison.
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Figure 3. Inverse wave age ω̃p = ωpU10/g as a function of non-dimensional fetch χ = xg/U 2
10,

for different wind speeds, U10 = 5, 10, 20, 30 m s−1, parametrizations of wave input term Sin by
Snyder et al. (1981) and Janssen (1989, 1991), DIA and GQM for calculating Snl (see legends).
‘The cleanest’ experimental dependences of table 2 are given for comparison.
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transfer term Snl is incomparably weaker but is still visible for relatively young
waves.

Effect of wind speed on growth curves is also clearly seen in figures 2 and 3: for
low winds (U10 = 5 m s−1), waves grow faster when using input by Snyder et al. (1981),
while for high winds (U10 = 20–30 m s−1), the input by Janssen (1989, 1991) leads to
stronger growth. As compared with dependences of table 2, both input functions
can give lower (at low winds, U10 = 5, 10 m s−1) or faster (at strong winds, U10 = 20,

30 m s−1) initial evolution.
Within this conventional scaling, only two qualitatively different stages of wave

development can be identified: growing wind sea and mature sea. When whitecapping
dissipation grows with fetch faster than wave input, energy and peak frequency can
cease to evolve. In fact, the very existence of mature sea where all the terms on
the right-hand side of (1.1) are fully balanced is an open question that is far from
being resolved (Komen et al. 1984). Further, in this paper, we refer to the mature sea
state only in terms of total energy and spectral peak frequency. A separation line
between growing and mature sea can be drawn in an arbitrary way in quite a wide
range of non-dimensional fetches (20 000–40 000 in our simulations). Moreover, the
state of ‘mature’ sea does not appear to be universal in terms of non-dimensional
wave energy and frequency. This contradicts the classic Pierson & Moskowitz (1964)
parametrization of wave spectrum where universal values of wave age and wave
steepness are postulated.

Thus, the analysis of wave evolution within the traditional wind-speed scaling leads
to trivial conclusions like the following one: the energy is higher when total input
is higher. It allows us to qualitatively (not quantitatively) explain different energies
of growing waves and different magnitudes of the mature seas at long fetches. At
the same time, a remarkable correlation should be noted between energy and peak
frequency curves: higher magnitudes of the mature sea amplitudes correspond to
lower spectral peak frequencies (cf. figures 2 and 3).

Friction velocity u∗ is usually regarded as a more physically based scale in
comparison with wind speed at a reference height, say, U10. Our analysis shows
that the friction velocity scaling essentially reduces dispersion of curves for different
wind speeds with the same input function. However, dispersion between the curves
obtained with different wind input functions is still very pronounced, sometimes even
more pronounced than with scaling by U10. Skipping details of this comparison, we
can conclude here that friction velocity (as well as other speed scales) does not appear
as a universal scale of wave evolution (in terms of non-dimensional energy Ẽ and
frequency ω̃p).

4.1.2. The single-parameter dependences

The single-parameter representation of energy Ẽ versus peak frequency ω̃p has been
discussed in our overview of reference cases in § 3.3. An advantage of this approach is
an absence of explicit dependence on fetch, and, hence, probably, a less pronounced
dependence on features of wave forcing.

In figure 4, dependences of non-dimensional energy on non-dimensional peak
frequency are given similarly to figures 2 and 3 for different wind speeds,
parametrizations of wave forcing terms and methods of calculation for Snl . Dispersion
of all the results looks unessential. Moreover, the mature sea state (upper left
simulation points) and growing seas are difficult to distinguish in these plots because
of fast convergence of total energy and peak frequency to limiting values.
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Figure 4. Non-dimensional energy Ẽ versus non-dimensional peak frequency ω̃p . Black lines,
‘the cleanest’ experimental dependences; grey lines, Toba’s 3/2 law for the reference case
dE/dt = constant, the Hasselmann et al. (1976) 5/3 law for ωpdE/dt = constant and the

Zakharov & Zaslavsky (1983b) 4/3 law for the case ω−1
p dE/dt = constant; symbols, numerical

simulations.

All the dependences listed in tables 1 and 2 give very close fit (at first glance) to
the results of simulations. These minor mismatches, in fact, are of key importance
from the weakly turbulent viewpoint: small deviation in energy being converted into
energy flux becomes significant when dE/dt ∼ E3 (see (3.3)). Thus, the mismatches,
being uninformative in terms of single-parametric dependences, indicate a significant
difference in net wave input (total wave forcing 〈Sin + Sdiss〉), a key parameter of
weakly turbulent scaling. With careful inspection, one can notice that the slopes of
the simulation curves are close to Hasselmann et al. (1976) law for relatively young
waves, and later they appear closer to the curve of Toba (1972) and finally to the
Zakharov & Zaslavsky (1983b) plot at the end of the growing wind sea stage.

4.2. Flux scaling of fetch-limited growth

The weakly turbulent scaling is based on total wave inputs (fluxes) of basic quantities:
wave energy, wave momentum, wave action. In this paper, we use energy flux only.
For self-similar solutions, the energy flux can be converted easily to fluxes of wave
momentum or wave action and, thus, results can be related easily to reference cases
considered in the previous section.

4.2.1. Total wave input as physical scale

The role of total wave input as a key physical scale cannot be adequately understood
separately from the split-balance model presented in § 3.2 and the resulting energy-to-
flux relationship (3.3). Nevertheless, we start with trivial analysis of dimensional net
wave input in order to show effects of wave input parametrization on wave evolution.
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Figure 5 shows net wave input 〈Sin + Sdiss〉 for high winds and the resulting
wave heights and periods as functions of dimensional fetch for different wave
input parametrizations and the DIA method for nonlinear transfer terms. With Sin

parametrization by Janssen (1989, 1991), the total wave forcing 〈Sin + Sdiss〉 appears
to be two to three times higher than the one by Snyder et al. (1981) for the same
wind speed U10 = 30 m s−1. The Janssen (1989, 1991) function at U10 = 26 m s−1 is
shown as one that is close to the Snyder et al. (1981) input at U10 = 30 m s−1. Figure 5
reflects a trivial fact: when the net input is higher, the wave amplitudes are higher.
Additionally, reference net wave inputs (wave energy fluxes) of table 1 are plotted for
comparison. They appear almost one order of magnitude below functions obtained in
simulations. This significant difference can be related to high wind speeds that have
been rarely observed in the experiments on which the reference cases are based (Toba,
Hasselmann et al., JONSWAP data). Strictly speaking, high winds are not covered
either by the Snyder experimental parametrization used in our simulations, which was
also justified for weak winds. At the same time, there is a qualitative correspondence
of reference cases and results of simulations: wave input grows at short fetches (the
5/3 law of Hasselmann et al. 1976), reaches a stationary state for intermediate fetches
(the 3/2 regime of Toba 1972) and then decays as predicted by Zakharov & Zaslavsky
(1983b). Note that for the reference cases, we used net wave input parametrizations
of table 1 with αss (pχ = 1) = 0.62 (Hasselmann et al. 1976), αss (pχ = 3/4) = 0.68
(Toba 1972) and αss (pχ = 4/7) = 0.74 (Zakharov & Zaslavsky 1983b). The
corresponding estimates are based on results of simulations and are detailed
below.

Two important points should be stressed. Firstly, rather good quantitative
correspondence of Hm0, Tp can be reached by simple tuning of total wave input:
curves for wind speeds U10 = 26 m s−1 with input by Janssen and U10 = 30 m s−1 with
one by Snyder et al. (1981) are quite close when total quantities of wave input
are close to each other (see figure 5a at 500 <x < 3000 km). Secondly, waves very
quickly ‘forget’ their previous history: the coincidence of trajectories in figure 5(b, c)
occurs with rather short delay after coincidence of the curves for total wave
input.

Figure 6 shows dependences of net energy input, wave height and period on
fetch for low wind, U10 = 10 m s−1, different input functions Sin and methods for Snl .
The difference between net wave inputs is not so pronounced as in previous case.
Additionally, the inputs’ magnitudes appear to be closer to reference cases of table 1
(two to three times versus almost one order for U10 = 30 m s−1). Close wave inputs at
large fetches lead, evidently, to close curves for Hm0, Tp .

The effect of the method for computing Snl on total wave input is illustrated
by figure 6. For short and long fetches (less than 2 km and more than 100 km,
respectively), DIA enhances total wave input (up to 50 % for Janssen’s formulation).
At short fetches, it leads to a visible effect on wave height Hm0 and Tp . The mechanism
of influence of the method for calculating Snl on wave input and, thus, on the
resulting wave growth is illustrated by figure 7. Wave input and dissipation functions
depend on spectral distributions since they are quasi-linear in spectral densities. These
distributions can differ significantly for the DIA and GQM approaches as is seen in
figure 7(a). The effect is not easy to assess in so far as nonlinear transfer and external
forcing appear to be closely linked. Figure 7 shows the effect of spectral shape on
wave input and dissipation for instantaneous spectra at dimensional fetch x = 2400
km and U10 = 30 m s−1, i.e. for the mature sea state where the total energy and peak
frequency for GQM and DIA are identical. Input functions of Snyder et al. (1981)
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Figure 5. (a) Net wave forcing 〈Sin + Sdiss〉 as a function of the dimensional fetch x and
reference cases of table 1; (b) wave height; and (c) wave period. Snyder’s input term Sin

at wind speed U10 = 30 m s−1 is compared with Janssen’s input term at U10 = 26m s−1 and
U10 = 30 m s−1. Results for DIA for the Snl term are shown.
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Figure 6. (a) Net wave forcing 〈Sin + Sdiss〉 as a function of the dimensional fetch x
and reference cases of table 1; (b) wave height; (c) wave period at wind speed U10 =
10m s−1 for Snyder and Janssen parametrizations of Sin . Results for DIA and GQM are
shown.

and Janssen (1989, 1991) and dissipation of Komen et al. (1984) are applied to these
two spectra. The effect of the spectral shape on the Sin and Sdiss functions is quite
easily seen (figure 7b).
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Figure 7. (a) One-dimensional spectra F (f ) (m2 Hz−1) as functions of frequency f (Hz) at a
large fetch (2400 km) calculated with GQM and DIA, Snyder’s source term and wind speed
U10 = 30 m s−1; (b) Sin functions of Snyder et al. (1981) and Janssen (1989, 1991) and Sdiss

function of Komen et al. (1984) applied for these two spectra.

The black vertical line in figure 7 shows the frequency above which the diagnostic
tail is imposed in the simulation. To the right of this line, the obtained Sin and
Sdiss functions have no influence on the evolution of the spectrum and must not be
considered in the calculation of the total wave forcing. Nevertheless, it is interesting
to note the strong dissipation in the high-frequency range obtained with the Komen
et al. (1984) Sdiss function when imposing a f −4 high-frequency tail (see Banner &
Young 1994 and Gagnaire-Renou et al. 2010 for a discussion of the influence of the
constrained tail).

Despite these ‘shape-to-input’ effects, we see that differences between DIA and
GQM growth curves are still very small in figures 2 and 3. This implies that shape-
to-input effects are likely in counterbalance with direct effects of the method for
calculating Snl .

4.2.2. Method of energy-flux diagrams and self-similarity of wave growth

In this section, we present a method of analysis of wind-wave growth proposed
by Badulin et al. (2007) and called energy-flux diagrams. The idea of the method is
quite simple: the wave evolution is represented by one-parametric dependence of a
non-dimensional energy on a non-dimensional characteristic of energy flux.

In a sense, this representation is similar to energy-frequency dependences within
the traditional wind-speed scaling considered in § 4.1.2, in so far as in both cases we
formally follow a dimensional analysis of a physical problem. At the same time, our
energy-flux analysis is conceptually different from traditional wind-speed scaling as it
is based on an asymptotic physical model (3.2). Accepting this model, we also accept
the corresponding scaling. This is in contrast to wind-speed scaling which, currently,
cannot be associated with a model of wind-wave coupling in a wide range of physical
conditions.

Following Badulin et al. (2005, 2007), which showed validity of the asymptotic
split-balance model in a wide range of physical conditions, let us introduce two
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non-dimensional parameters for further analysis. Wave steepness squared,

ε2 =
Eω4

p

g2
, (4.1)

replaces non-dimensional energy Ẽ of traditional scaling. Note that ε depends only
on instantaneous wave characteristics and does not explicitly depend on external
forcing (say, on wind speed). The second non-dimensional parameter is dictated
by total wave input as a key parameter of external forcing in the split-balance
model (3.2):

ψ =
ω3

pdE/dt

g2
. (4.2)

For the fetch-limited case, this value has been written as follows (Badulin et al. 2007):

ψ =
ω2

p∂E/∂x

2g
. (4.3)

Presenting simulation results of the full kinetic equation (1.1) in terms of these
two non-dimensional parameters, ε2 and ψ , we presuppose validity of our asymptotic
model in a certain physical range and our ability to physically interpret the deviations
from the model beyond this range. The split-balance model relies upon instantaneous
integral parameters of wave spectrum and wave input. The full kinetic equation (1.1)
is much richer and potentially describes more ‘details’ of wind-wave coupling. One of
the goals of the following analysis is to fix the presence of these details and, in some
cases, to identify their physical nature.

The energy-flux diagram corresponding to our numerical simulations of fetch-
limited growth is presented in figure 8. All cases (different wind speeds, models of Sin ,
methods for Snl ) are intentionally plotted in this figure. One can see an asymptotic
stage of weakly turbulent wave development fairly well as a linear dependence of
wave steepness squared, ε2, on non-dimensional total wave input ψ in power 1/3. This
is in perfect agreement with the asymptotic relationship (3.7). The three experimental
dependences of table 2 are given for comparison. Deviations from the asymptotic
regime are seen as different stages of wind-sea evolution. These different stages (initial
wave growth, growing wind sea and mature wind sea) are described consecutively
below.

The self-similarity parameter αss controls the ratio of instantaneous wave steepness
squared, ε2, to non-dimensional net wave input parameter, ψ1/3. Results of our
numerical study show that straight line ε2 =αssψ

1/3 with αss =0.68 (light blue curve in
figure 8) is tangent to a bundle of curves and consequently αss = 0.68 can be taken as a
representative estimate of the self-similarity parameter. In fact, parameter αss depends
on wave growth rate pχ (see (3.4)). Trying to determine a confidence interval for αss ,
we fix the Toba case as reference one, representative for many of the observations:
αss (pχ = 3/4) = 0.68. Then a value of αss for the two other reference cases of table 1
can be easily deduced from approximate proportionality, αss ∼ p−1/3

χ (see (3.4)):
αss (pχ = 1) = 0.62 (Hasselmann et al. 1976) and αss (pχ = 4/7) = 0.74 (Zakharov &
Zaslavsky 1983b). Estimates of αss for reference cases of Hasselmann et al. (1976) and
Zakharov & Zaslavsky (1983b) differ from the Toba value by less than 10 %. The two
bounds of the self-similar development stage can, thus, be defined as αss = 0.68 ± 0.1,
which gives less than 15 % error, consistent with estimates of reference cases. The
estimate αss =0.68 ± 0.1 is represented in figure 9 where lines αss = 0.58, αss = 0.68
and αss = 0.78 are plotted for a better visualization.
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Figure 8. Energy-flux dependences in fetch-limited simulations (ε2 = Eω4
p/g2 versus ψ1/3 =

(ω2
p/(2g) × ∂E/∂x)1/3). Curves for the four wind speeds, U10 = 5, 10, 20, 30 m s−1, the two

parametrizations of the wave input Sin (Snyder and Janssen), and DIA and GQM for the
Snl computation are superimposed. Comparison with the experimental results of Kahma &
Calkoen (1992) and Babanin & Soloviev (1998b) is carried out. The light blue curve represents
the estimate αss = 0.68.

Figure 9(a) presents ratio αss for all the numerical runs as a function of wave
steepness ε. Figure 9(b) uses a ‘mixed’ representation: the self-similarity parameter
αss of the weakly turbulent approach is plotted as a function of traditional inverse
wave age parameter. Higher dispersion of the results in the mixed representation of
figure 9 does not look surprising in view of the above discussion.

4.3. Stages of wind-wave growth

The presence of the self-similar stage of wave growth in energy-flux diagrams gives
an idea to qualitatively delimit different stages of wave development.

4.3.1. Initial wave growth

Note that wave parameters in figures 8 and 9 start to evolve from right and bottom
parts of panels: from maximal non-dimensional wave input, relatively low initial
steepness or from maximal inverse wave age. The first points on the right part of
figure 8 correspond to non-dimensional fetch χ = 2.5. The wave steepness grows up
to a maximum and then starts to decrease for rather short non-dimensional fetch,
χ ≈ 10–15. We see strong dispersion of trajectories for different wave input functions,
methods for Snl and wind speeds, and no manifestations of self-similar behaviour at
this stage. It is useful to specify this stage as the non-self-similar stage of initial wave
growth and to define χ∗ to be the non-dimensional fetch of the end of this stage. Note
the relatively low dispersion of χ∗ for different wind speeds, which makes sense for
such a demarcation of the initially growing wind-sea stage in terms of conventional
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Figure 9. Self-similarity parameter αss as a function of (a) wave steepness
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inverse wave age ω̃p = U10/Cp , obtained with wind speeds U10 = 5, 10, 20, 30 m s−1, the two
parametrizations of the wave input Sin (Snyder and Janssen) and DIA and GQM for the Snl

computation. The horizontal lines αss = 0.58, αss = 0.68 and αss = 0.78 are drawn for a better
visualization of the estimated coefficient αss = 0.68 ± 0.1.
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wind-speed scaling. In terms of dimensional fetches, this stage is longer for higher
winds, which seems counter-intuitive at first glance. With our split-balance model, this
‘detail’ of the full kinetic equation is easy to explain. The self-similar evolution requires
nonlinearity to be stronger than wind forcing. At high winds (stronger forcing), it
occurs for ‘more strongly nonlinear’ waves with higher steepness and requires longer
fetches for the dominance of nonlinearity to be reached.

4.3.2. Self-similar growing wind sea

The maximum of wave steepness is considered as a starting point of the second
stage of wave evolution: the growing wind sea stage. This stage is related to the
asymptotic split-balance model and the resulting self-similarity features of wind-wave
growth.

At the beginning of the stage, the non-self-similar background of the wave spectrum
can significantly contaminate inherent features of the self-similar evolution of the wave
spectrum. It can explain a slight decrease in the self-similarity parameter αss with fetch
(or wave age). Self-similarity of growing wind sea is manifested by rapid collapsing
of trajectories to an asymptotic curve irrespective of particular wave input function
and wind speed. At the same time, the dependence on method for Snl is seen clearly:
GQM and DIA form two separate bundles of trajectories. These bundles later on
merge together. The trajectories for GQM and DIA become remarkably close but the
presence of the two bundles is still visible in figure 9(a). The similarity of GQM and
DIA results for the growing wind sea is explained quite naturally by homogeneity
property (2.9) of the collision integral Snl . Minor deviations are dealing, evidently,
with the effect of different shaping of wave spectrum when using GQM or DIA.

The self-similarity parameter αss again starts to grow slowly when the two bundles
in figure 8 collapse to a single one (see figure 9). The latter behaviour appears to
be in perfect agreement with the proposed scheme of wave development through a
sequence of reference cases of spatial growth (table 1): increase of αss from pχ =1
by Hasselmann et al. (1976) to pχ =3/4 by Toba (1972) and further to Zakharov
& Zaslavsky (1983b) regime (pχ = 4/7). Thus, one can specify sub-stages of wave
evolution within the stage of growing wind sea.

These sub-stages are seen very well in figure 10 with a ‘mixed’ representation of
wave steepness (weakly turbulent scale) versus inverse wave age (conventional wind-
wave scaling). The three reference curves (reference cases of table 1) show different
slopes and fairly good correspondence of these slopes to our simulation results. The
gentle slope of the Hasselmann et al. (1976) regime is seen as the first sub-stage
of growing wind sea (inverse wave age ω̃p =ωpU10/g higher than 2.5–3). The Toba
(1972) second sub-stage covers a relatively narrow range of inverse wave age 1.5–2.5.
The further steepening of trajectories can be treated as a quite short sub-stage by
Zakharov & Zaslavsky (1983b) just before reaching mature sea, where inverse wave
age ω̃p tends to be constant.

Thus, universality of wind-wave growth in the sense of weakly turbulent theory is
demonstrated fairly well at this self-similar stage of wave development. Simulation
results show that weakly turbulent scaling is a good and proactive tool for analysis
of the physics of growing wind sea.

4.3.3. Mature wind sea

The existence of a limiting wind sea state at infinitely long fetches is an open
question (see, for discussion, Komen et al. 1984). Here we refer to mature sea as
a state of saturation of total energy and spectral peak frequency that is observed
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Reference regimes give tangents 1/3 for Hasselmann, 1/2 for Toba, 2/3 for Zakharov &
Zaslavsky.

easily in figures 2 and 3, leaving the question of the existence of the saturated
spectral distribution for future studies. In energy-flux plots (figure 8), the mature sea
state is identified quite naturally as a pronounced deviation of trajectories above the
asymptotic straight line. Wave steepness (ordinate axis) is tending to a limiting value,
while net wave input (abscissa) is vanishing. This stage can also be observed easily
in figure 9 when inverse wave age and wave steepness asymptotically tend to their
limits.

The limiting value of steepness ε =
√

Eω4
p/g2 depends on the parametrization of

wind input and on the wind speed. This is in contrast to the classic case of the
Pierson–Moskowitz spectrum (Pierson & Moskowitz 1964) for which steepness has a
universal value:

ε2
PM =

EPMω4
PM

g2
=

α

5
≈ 0.0016. (4.4)

Here α = 0.0081 is the Phillips constant in the Pierson–Moskowitz spectrum.
Nevertheless, our results give values ε2 = 0.0018–0.0024, which are a bit higher but
still close to the Pierson–Moskowitz value, especially for low winds, i.e. wind speeds
of 5 and 10 m s−1 (ε < 0.002). Higher winds give ‘more severe’ mature sea with higher
steepness ε. Note that dependence of the limiting steepness of mature sea on the
method for calculating Snl is very weak.

Quite similarly to the case of initially growing waves, the evolution of mature sea
is not self-similar but features of the ‘non-self-similarity’ are perfectly different. All
the constituents on the right-hand side of (1.1) appear to be equally important, in
contrast to the young sea case where wave input Sin is very likely dominating. For
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mature sea, the terms Sin, Sdiss , Snl are close in magnitudes. More importantly, terms
of input and dissipation reach their extremes in different wave spectral ranges (see
e.g. Komen et al. 1984, for details). Hence, nonlinear transfer continues to play a
key role redistributing wave energy within the wave spectrum. Thus, the problem of
mature sea remains an inherently nonlinear problem in contrast to initial growth case
which can be referred to as a quasi-linear one.

We should stress that the inverse wave age of mature sea obtained for high winds
(20 and 30 m s−1) (figure 9b) is close to the Pierson–Moskowitz value, (ωpU10)/g ≈
0.82. In our opinion, qualitative correspondence of our simulation results with the
Pierson–Moskowitz model is of much greater importance than this simple quantitative
coincidence: the spectral peak component in mature sea rides faster than wind.
It implies that nonlinear transfer is still playing a key role in the mature stage,
transferring energy to waves running faster than wind.

5. Discussion and conclusions
In § 1, we announced an ambitious goal for this study, namely ‘to present a

general vision’ of wave growth, based on our understanding of wind-wave balance.
The clue to understanding is the hypothesis of dominating nonlinear transfer. Some
arguments for its validity have been given by Badulin et al. (2005, 2007) and recently
by Zakharov (2009). To use this hypothesis ‘in full’, we have exploited the split-
balance model by Badulin et al. (2007) and proposed a new approach for wind-wave
scaling. We applied the weakly turbulent scaling to a classic problem of wind-wave
modelling: fetch-limited growth. Results of simulations gave a basis for discussion
of the advantages of the new approach as compared with the traditional scaling
suggested by Kitaigorodskii (1962) almost half a century ago.

The proposed weakly turbulent scaling appears to be a powerful tool for physical
analysis of the problem. It greatly extends our comprehension of basic features of
wind-wave growth. A simple tool of analysis was applied, i.e. the method of energy-
flux diagrams that allows us to delimit three stages: (i) the non-self-similar stage
of initially growing sea, (ii) the self-similar stage of growing wind sea and (iii) the
non-self-similar stage of mature wind waves. Integral characteristics: total energy E,
peak frequency ωp and total wave input dE/dt appear to be quite adequate for this
delimitation.

Additionally, the energy-flux analysis allows us to discover finer effects of the
methods for modelling wave evolution, say, the rather surprising quality of DIA for
the self-similar stage of wave growth. In terms of the weakly turbulent approach, it can
be explained easily: both DIA and quasi-exact GQM respect the same homogeneity
property (2.9) and, hence, manifest quite close self-similar behaviour. The minor
differences in energy-flux trajectories can be partly due to feedback effects of spectral
shapes on total wave input (see § 4.2.1 and figure 7). Evidently, dependence of total
wave input on a particular method of wave modelling is not a good thing. The need to
control this important physical quantity is our main recommendation for improving
the modelling of wind-wave growth.

The self-similar stage of wind-wave growth, in its turn, can be divided into sub-
stages in accordance with reference cases introduced in §§ 3.3 and 3.4. These cases
correspond to constant fluxes of wave momentum, energy and action to waves. It
leads us to a consistent scheme of wind-wave interaction where these different regimes
of wave growth can be associated with different physical mechanisms of wind-wave
coupling.
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The first sub-stage of relatively young waves is governed mostly by momentum flux
of turbulent wind; the corresponding flux of energy is growing with wave phase speed
(the 5/3 law by Hasselmann et al. 1976). The wave momentum flux can be associated
quite naturally with momentum flux due to turbulent wind (wind stress). The next
sub-stage is associated with the well-known 3/2 law of Toba (1972) when the energy
flux to waves becomes constant. The wave momentum decays with wave growth,
which means decay of turbulent wind stress coming to waves. The last reference
case of Zakharov & Zaslavsky (1983b) gives decay in both wave momentum and
wave energy fluxes while wave action flux remains constant. Dependence of total
wave input on both external forcing (wind speed) and stage of wave development
described by, say, non-dimensional wave age parameter u∗/Cp is quite often taken
into account in parametrizations of wave input (see e.g. Resio, Long & Vincent 2004).
Our reference cases propose a theoretical background for such parametrizations and
determine the link of a particular dependence with a physical mechanism of wave
production (due to wind stress, energy flux, etc.).

The extensive numerical study presented in this paper gave us estimates of the key
parameter αss of our asymptotic theory and its dependence on the rate of wave growth
pχ . The estimate αss (pχ =3/4) = 0.68 for the Toba sub-stage of growing sea (or more
general approximate dependence αss (pχ ) ≈ 0.62p−1/3

χ ) appears to be consistent with:
(i) previous numerical results on duration-limited growth (Badulin et al. 2008a);
(ii) wind sea experiments (Badulin et al. 2007);
(iii) wind-wave tank experiments (Badulin & Caulliez 2009).

Further delimitation of sub-stages of self-similar wave growth can be made
quantitatively, and not only qualitatively. Figure 10 gives such estimates of wave
development stages in terms of ‘mixed’ presentation: steepness (from weakly turbulent
scaling) and inverse wave age (from conventional wind-speed scaling). The sub-stage
curves (the 5/3, 3/2, 4/3 laws) give remarkable references, first of all, for slopes of
simulation curves and, to a lesser extent, for magnitudes. Simulation results show a
better consistency with the reference cases for low winds. This looks reasonable as
experimental dependences generally correspond to low-to-moderate wind conditions
(less than 10 m s−1).

We stress once more that our simulations followed conventional approaches for
wind-wave modelling. Thus, key results can be reproduced quite easily, at least with
the well-known DIA for Snl . More expensive ‘exact’ methods for evaluating nonlinear
transfer are now available in a number of research groups (e.g. Hasselmann &
Hasselmann 1981, 1985; Resio & Perrie 1991; Komatsu & Masuda 1996; Polnikov
1997; Hashimoto et al. 1998; Lavrenov 2001, 2003; Pushkarev et al. 2003; van Vledder
2006) and, in principle, reproduction of our results is feasible in its full.

We see many good opportunities to develop wind-wave studies in the setting of the
weakly turbulent approach. Two questions are of primary importance, in our opinion.
First, spectral and angular distributions of wave spectrum at different stages of wave
development should be studied in more detail. Spectral distributions manifest self-
similarity properties only partially (see the discussion of the ‘magic circle’ problem in
Badulin et al. 2005, § 6.1.2). This should be taken into account for correct assessment
of their feedback on total wave input. The study of this effect is a very delicate
theoretical and numerical problem.

The second question deals with alternative models of wave input (see e.g. Donelan
et al. 2006; Tsagareli et al. 2010) or dissipation (e.g. Young & Babanin 2006; van der
Westhuysen et al. 2007; Ardhuin et al. 2008; Filipot et al. 2010). The introduction
of these models will very likely not change key results of self-similar stage of wave
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growth. If so, it would be an additional stimulus to further develop the ‘general vision’
of wave growth presented in this paper.
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Army Corps of Engineers Contract W912HZ-10-P-0176. This support is gratefully
acknowledged.

Appendix A. Wave input parametrizations by Snyder et al. (1981) and Janssen
(1989, 1991)

In this appendix, the main characteristics of the models used for Sin in the present
study are recalled briefly. These models share the same form given by (2.5), leading
to an exponential growth. For the Snyder et al. (1981) input term, the growth rate
β(f, θ) in (2.5) is determined by the ratio u∗/Cph only:

β(f, θ) = max

[
0; 0.25

ρa

ρw

(
28

u∗

Cph

cos(θ − θw) − 1

)]
, (A 1)

where ρa , ρw are the air and water densities, and θw is the local direction of the wind.
The friction velocity is related to the wind speed by the drag coefficient

CD =

(
u∗

U10

)2

, (A 2)

which is assumed to be a linear function of wind speed in our study (WAMDI Group
1988):

CD =

{
6.5 × 10−5U10 + 8 × 10−4, if U10 � 7.5 m s−1,

1.2875 × 10−3, if U10 < 7.5 m s−1.
(A 3)

As is seen from (A 1) and (A 2), the threshold speed is close to wind speed U10

(U10 = 28u∗ for U10 < 7.5 m s−1).
Note that the Snyder expression is based on field measurements of weakly forced

waves in a narrow range of observed inverse wave ages (1 < U10/Cph < 3). Thus,
the use of this input term (as well as other empirical parametrizations) is ‘based on
extrapolation’ (Snyder et al. 1981, figure 26) that can lead, in some cases, to corruption
of physics.

The model of wave input by Janssen (1989, 1991) uses more parameters of
atmospheric boundary layer. In addition to dependence on ratio u∗/Cph, it introduces
dependence on sea roughness parameters. The wave growth rate β(f, θ) in (2.5) reads

β(f, θ) = Γ
ρa

ρw

{[
u∗

Cph

+ zα

]
max [cos(θ − θw); 0]

}2

, (A 4a)

where

Γ =
Γm

κ2
µ ln4 µ. (A 4b)

Here Γm = 1.2 is fixed by Janssen (1991), κ =0.41 is the von Kármán constant for no-
slip turbulent boundary layer, zα = 0.011 is constant as in WAM-Cycle 4. Parameter
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µ is determined by

µ = min

[
gz0

C2
ph

exp

(
κ

[u∗/Cph + zα] cos(θ − θw)

)
; 1

]
, (A 4c)

where

z0 =
z̃0√

1 − τw/τs

(A 4d )

depends on the ratio of wind stress,

τs = ρau
2
∗, (A 4e)

and wave-induced stress

τw =

∣∣∣∣
∫ ∫

ρwωSin(f, θ)(cos θ, sin θ) df dθ

∣∣∣∣ . (A 4f )

Here

z̃0 = αu2
∗/g, (A 4g)

with the Charnock constant default value α = 0.01. Friction velocity u∗, roughness
parameter z0 and τs are derived from fixed wind velocity U10 in our simulations,

U10 =
u∗

κ
ln

(
10 + z0 + z̃0

z0

)
≈ u∗

κ
ln

(
10

z0

)
, (A 4h)

using the iterative method of Newton–Raphson for the equation set (A 4).
Note that the Janssen (1989, 1991) parametrization introduces an additional wind-

speed scale uz0
and the corresponding non-dimensional argument u1 = uz0

/Cph into
general expression (2.5),

u1 =
uz0

Cph

=

√
gz0

Cph

=

√
α

(1 − τw/τs)
1/4

u∗

Cph

, (A 5)

where uz0
is the friction velocity modified by the feedback effect of wave-induced

stress τw (see (A 4f)) on air flow and, generally, is small in comparison with u∗.
Finally, we mention that the exponential growth term (2.5) for Sin has been

supplemented by a linear growth term Slin. This term has been added to the source
function so that the waves start to grow from a flat sea surface, and its contribution
is noticeable only in the very early stage of wave development. We used the model of
Cavaleri & Malanotte-Rizzoli (1981), as implemented by Tolman (1992),

Slin = 1.5 × 10−3g−2 {u∗ max [0, cos(θ − θw)]}4
exp

[
−

(
f

fPM

)−4
]
, (A 6)

where fPM is the Pierson–Moskowitz frequency,

fPM =
1

2π

g

28u∗
. (A 7)

A sample comparison of non-dimensional growth rates Sin(f )/(f F (f )) by Snyder
et al. (1981) and by Janssen (1989, 1991) as functions of non-dimensional frequency is
shown in figure 11 for wind speed U10 = 10 m s−1, at fetch x = 10 km and time t = 18 h.
The Snyder parametrization for β is a simple linear dependence on frequency, i.e. on
the only non-dimensional ratio of wind-speed scale u∗ to wave phase speed Cph. This
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Figure 11. Non-dimensional growth rate Sin (f )/(f F (f )) as a function of the inverse wave age
ωU10/g for parametrizations of the input term Sin by Snyder et al. (1981) and Janssen (1989,
1991). This figure is obtained from a fetch-limited situation, with wind speed U10 = 10 m s−1,
at fetch x = 10 km and time t = 18 h. The DIA method is used in this example to compute Snl .

linear dependence looks quite logical for experimental results obtained in relatively
narrow range of wave and wind parameters (see Snyder et al. 1981, for details).

The most striking feature of the comparison in figure 11 is that the growth rate
β(f ) by Janssen (1989, 1991) is substantially higher than the one by Snyder et al.
(1981). This results in considerable difference in integral wave input, and, hence, in
resulting wave parameters (total wave energy and characteristic wave frequencies).

Appendix B. Calculation of the Snl term: comparison of CPU times
Calculation of nonlinear transfer term Snl is a very time-consuming part of the

simulation of wind-wave growth. The fastest (and less accurate) DIA method takes
about 25–30 % of the total simulation time when simulating the Hasselmann equation
(1.1) with wind input, dissipation and advection.

It is widely accepted that the use of exact methods dramatically increases the time
required to compute the Snl term. For the EXACT-NL of Hasselmann & Hasselmann
(1981, 1985) and the method of Webb (1978), for instance, the CPU time of Snl

calculation is about 1000 times larger than the DIA CPU time. Recent improvements
of the WRT method by Pushkarev et al. (2003) and Van Vledder (van Vledder 2006;
Bottema & van Vledder 2008) decreased this factor down to a value of 300, which
still restricts the use of such methods to specific applications or academic cases.

However, for the simulation of the Hasselmann equation on fetch-limited situations
including wind input, dissipation and propagation, the CPU time for GQM with rough
resolution (GQM-rough) is only about 25 times larger than the DIA simulation
time. This shows that GQM is a valuable candidate for implementation in 3G
wave models and could soon be used for practical applications. Calculations with
medium resolution require about three times more CPU time than the GQM-rough
simulations. Calculations with fine resolution, considered as exact ones, need about
20 times more CPU time than the GQM-rough ones.
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