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Abstract
In the framework of a two-scale scattering model, radar backscattering from
the rough sea surface was considered. The sea surface was modelled as
a superposition of a nonlinear, large-scale Gerstner’s wave and small-scale
resonant Bragg scattering ripples. The zero-order diffracted field was found by
a geometrical optics approach, with shadowing taken into account, and by an
‘exact’ solution of the diffraction problem obtained numerically. For vertical
and horizontal polarizations, the spatial distribution of specific scattering cross
sections along the large-scale wave was obtained. The spatially averaged
specific backscattering cross sections, as well as the mean Doppler frequency
shifts at both polarizations, obtained by the geometrical optics approach are
compared with those obtained by using the ‘exact’ solution of the large-scale
diffraction problem. The roles of shadowing and multiple wave scattering
processes are discussed, and qualitative explanations of the difference between
these two approaches are given.

1. Introduction

The phenomena of radio wave scattering by a rough sea surface has been attracting the attention
of scientists and engineers for many decades, since the 1940s when the first radars were built.
In the 1950s and 1960s the theory of long (hundreds of metres) radio wave scattering was
developed, which could explain almost all experimental results obtained by that time for this
wave band (see, e.g., references in [1, 2]). Based on the first order of the small perturbation
method (the small parameter is the ratio of the sea wave height to the radio wavelength)
this theory gave a satisfactory explanation of scattered signal power dependence on the sea
state and observed frequency Doppler shift (which does not depend on the sea state within
the framework of this theory!). For short radio waves (HF wave band) the higher orders of
the small perturbation method were invoked to interpret the shape of the Doppler spectrum
and its width, which is very sensitive to the sea state. To achieve better agreement with the
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experimental results, a more precise description of the sea surface dynamics (including some
nonlinear hydrodynamic effects) was necessary [3, 4].

Modelling the scattering of the shorter radio waves (decimetre and centimetre wavelengths)
turned out to be more complex. The essential step in the theoretical approach to solving this
problem was the introduction of a ‘two-scale’ scattering model; it was first suggested in [5]
for scalar waves and then generalized for electromagnetic waves in [6] and [7]. The essence
of this model is the assumption that scattering of short radio waves has a resonant nature, i.e.
it is caused by small ripples with a wavelength of the order of the radio wave wavelength. The
large-scale components of sea roughness only modulate this scattering process owing to the
variation of local grazing angle between the incident wave propagation direction and the local
sea slope. The principal defect of this theory is the arbitrary splitting of the sea roughness
spectrum into ‘small ripples’ and ‘large waves’ parts. Nevertheless, it could explain (at least,
qualitatively) many features of scattered radio signals, including scattered power dependence
on wind speed, Doppler spectra and frequency shift, and polarization effects [8, 9].

The two-scale model in its simplest form does not take into account the diffraction and
multiple scattering effects associated with long waves. Meanwhile, the multiple scattering
processes and shadowing (in other words, non-local interaction between the wave field and
the surface) may play a significant role for propagation at low grazing angles. One possible
approach for taking into account the non-local effects is to separate the propagation process
from the scattering one. By propagation we mean diffraction of the wave field on its way to
and from the scattering area of the rough surface. The scattering process is local and could
be described by the small perturbation method, but the wave that illuminates this scattering
patch of rough surface differs from the incident wave because it interacts with the long-wave
component of the rough surface as it propagates above it. This problem was separated into
two parts (propagation and scattering) in [10] to solve the problem of calculating a scattering
cross section from a rough surface at small grazing angles. The same idea is used in [11] to
explain the polarization anomalies in a backscattering cross section from a rough sea surface
by considering incident- and scattered-wave diffraction by the triangular shape of the sea crests
(or multiple scattering by concave sea troughs in [12]) before and after backscattering by small
ripples on the surface of the large-scale sea waves.

Later, the influence of the large-scale, steep component of sea roughness was considered in
the framework of a two-scale model not only as a local slope modulation factor but as a cause of
anomalies of zero-order (unperturbed) field strength calculated numerically and resulting from
wave diffraction by a steep isolated bump at the sea surface [13,14]. In this paper, we consider
a more realistic model of large-scale sea roughness, namely, the nonlinear surface Gerstner’s
waves. In the framework of the two-scale model, the zero-order field is calculated by two
approaches: an approximation by geometrical optics (with shadowing taken into account) and
an exact (numerical) solution of wave diffraction by Gerstner’s wave profile. In contrast to other
studies, which apply a numerical solution to the diffraction problem as a whole (see, e.g., [15]
and references to earlier works there) we used a numerical approach only to calculate the zero-
order solution for the field diffracted by the large-scale surface structure (the Gerstner’s wave).
The backscattering from the small-scale Bragg resonant ripples, which covers this large-scale
surface wave, is considered in the framework of the first-order small perturbation theory.

In section 2, we briefly introduce the main equations pertinent to the two-scale scattering
model. Section 3 addresses the issue of Gerstner’s wave hydrodynamics and gives a geometrical
description. In section 4 we present the computational results for specific scattering cross
sections and Doppler frequency spectra, obtained by a geometrical optics approach for the
zero-order field as well as by a numerical solution for an incident field diffracted by Gerstner’s
wave, are presented. We summarize, compare, and discuss these results in section 5.
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Figure 1. Geometry of scattering.

2. Two-scale model of wave scattering by an impedance rough surface

We consider the scalar monochromatic wave field U(R) (assuming a time dependence of
exp(−iω0t)) that is a solution of the Helmholtz equation

(�R + k2)U(R) = 0. (1)

Here, R is a radius vector in three-dimensional space, k = ω0/c0 = 2π/λ is the wavenumber,
λ is the wavelength and c0 is the velocity of light. Field U(R) is supposed to satisfy the
impedance boundary condition on the rough surface  (see figure 1):

∂U

∂N
+ ikηU

∣∣∣∣


= 0, (2)

where ∂/∂N denotes the normal derivative at the surface , and η is the normal surface
impedance. Equations (1) and (2) also describe the electromagnetic wave propagation and
scattering in two-dimensional space, when we consider separately the vertically polarized
transverse-magnetic (TM) waves, in which the magnetic field vector is perpendicular to the
plane of incidence, and the horizontally polarized transverse-electric (TE) waves, in which the
electric field vector is perpendicular to the plane of incidence. They are scattered by the rough
boundary  with a generally complex dielectric permittivity ε, which is assumed to be large
(|ε| � 1). For these two polarizations, impedance η has the form3:

η =
{

1/
√
ε for vertical polarization (TM wave)√

ε for horizontal polarization (TE wave).
(3)

Along with the rough surface , we consider the smooth, undulating surface S (figure 1).
We assume that the surface  can be represented as small normal deviations ζ(r) (r ∈ S)

from S, and suppose that the typical radius of curvature R of S is large compared with the
wavelength λ and the condition kR � 1 holds. Assuming that the slopes γ(r) = ∇rζ(r)

of roughness ζ(r) (r ∈ S) with respect to S are also small (γ 2 � 1), we can expand the
boundary condition (2) in powers of ζ(r) and retain only the first-order terms ∼O(ζ ) (see,
e.g., [8]).

3 For small grazing angles, the more precise equations have the form η = 1/
√
ε + 1 for the TM wave, and η = √

ε − 1
for the TE wave. Since our consideration is not restricted by small grazing angle propagation only, we use (3) for all
range of incidence angles.
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The solution of the diffraction problem can be represented in the form U = U0 +u, where
U0 is the unperturbed wave field corresponding to the diffraction by the smooth surface S, and
u is a correction to the first order of ζ(r), that is, the scattered field. The zero-order field U0

satisfies the Helmholtz equation (1) and the uniform boundary condition

∂U0

∂nS

+ ikηU0

∣∣∣∣
S

= 0, (4)

here, nS is the unit vector normal to the smoothed surface S.
Using Green’s theorem and assuming that the condition kR|√ε| � 1 holds, (see [13]

and [12] for details) we can represent the scattered field u at the arbitrary point R as the
following surface integral:

u(R) =
∫ ∫

S

ζ(r)

{
k2[1 − η2]G0(R, r)U0(r)

−∇rG0(R, r)∇rU0(r)

}
dr. (5)

Here, the surface gradient ∇r is calculated along the local plane tangent to S at point r,
and Green’s function G0(R,R′) of the boundary problem for S is introduced:

(�R + k2)G0(R,R′) = −δ(R − R′), (6)

∂G0(R, r)

∂nS

+ ikηG0(R, r)

∣∣∣∣
r⊂S

= 0. (7)

Equation (5) represents the general solution of the scattering problem to the first order
in ζ .

Hereinafter, we consider scattering of an incident plane waveUinc(R) = exp(ikR), where
k is the wavevector with the projections kx = k cosψ0, ky = 0, kz = −k sin ψ0. We use the
Cartesian coordinate system in which the {x, z} plane is chosen as the plane of incidence, and
ψ0 is the grazing angle (figure 1) relative to the plane z = 0. The total unperturbed field U0(r)

on S can be represented in the form

U0(r)|S = Uinc(r) + Uref (r) = F(r)eikr, r ∈ S, (8)

where Uref is the reflected wave and F(r) is assumed to be a slowly varying function on S

(in comparison with the phase factor eikr: |∇rF | � kF ). From the reciprocity principle, it
follows that Green’s function G0(R, r) is equal to G∗

0(r,R), which in turn can be represented
as a Fourier expansion into plane waves. Each of these waves generates field U0(r) on the
surface S, given by (8). The stationary phase method, applied to the corresponding Fourier
integral, leads to the following expression for Green’s function G0(R, r) in the far zone:

G0(R, r) = eikR

4πR
F(r)eikr. (9)

Substituting (8) and (9) into (5), we obtain [12]

u(R) = eikR

4πR

∫ ∫
S

ζ(r)[k2(1 − η2) + k2
⊥]e2ikrF 2(r) dr, (10)

where k⊥ = k cosψ is the projection of the wavevector k on the plane tangent to S at the point
r, and ψ is a local grazing angle (see figure 1). Below, we assume that the surface roughness
ζ(r) is a spatially homogeneous random function of the spatial coordinate r, and we denote
statistical averaging in chevron brackets 〈· · ·〉. Our goal is to estimate the average backscatter
power that is proportional to 〈|u(R)|2〉. It follows from (10) that calculation of 〈|u(R)|2〉 leads
to the appearance in the integrand of the autocorrelation function W(ρ) = 〈ζ(r)ζ(r + ρ)〉 in
which the spatial scale of variation l (correlation radius) is assumed to be small in comparison
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with the spatial variation scale L of F(r). On the basis of these assumptions, we obtain
from (10)

〈|u(R)|2〉 = 1

4R2

∫ ∫
S

Sζ (2k⊥)|k2(1 − η2) + k2
⊥|2|F(r)|4 dr. (11)

Here, the spatial power spectrum Sζ (q) of stochastic roughness ζ(r) is introduced:

Sζ (q) = 1

(2π)2

∫ ∫ ∞

−∞
W(ρ)eiqρ dρ. (12)

According to the definition, we obtain from (11) the following equation for the backscattering
cross section σtot from the whole illuminated surface S (the zero-order field U0 is not included):

σtot = 4π
〈|u(R)|2〉
R2|Uinc|2 =

∫ ∫
S

σ0(r) dr, (13)

where the specific scattering cross section σ0(r) is introduced:

σ0(r) = 16πk4Sζ (2k cosψ, 0)C(ψ, r). (14)

Following [13], we introduce the scattering coefficient C(ψ, r):

C(ψ, r) = 1
16 |1 − η2 + cos2 ψ |2|F(r)|4. (15)

We emphasize that the scattering coefficient C(ψ, r) depends not only on the local grazing
angle ψ but also on coordinate r because of the non-local dependence between the field U0(r)

and S.
If we assume that, at each point r of smoothed surface S, Green’s function G0(R, r) and

the unperturbed field U0(r) are the same as for the plane tangent to S (the so-called tangent
plane or Kirchhoff approximation), we obtain the well known two-scale scattering model that
was first suggested for scalar wave scattering in [5], and then generalized for electromagnetic
wave scattering in [6] and [9]. In the tangent plane approximation, the term Uref (r) in (8)
is assumed to coincide with the specular reflected wave from the plane tangent to S with the
local reflection coefficient V (ψ) = (sin ψ − η)/(sin ψ + η). In this case we have

F ⇒ F0(ψ) = 1 + V (ψ) = 2 sin ψ

sin ψ + η
, (16)

C ⇒ C0(ψ) = |1 − η2 + cos2 ψ |2
∣∣∣∣ sin ψ

sin ψ + η

∣∣∣∣
4

. (17)

For a perfectly conducting surface S, the last equation leads to the well known simple
expressions for the scattering coefficient (see, e.g., [8]):

C0(ψ) =
{

(1 + cos2 ψ)2 for vertical polarization (η = 0)
sin4 ψ for horizontal polarization (η = ∞).

(18)

Equation (14) gives the specific scattering cross section σ0(r) relating to the unit area of
surface S. The specific scattering cross section σ 0(r) relating to the unit area of the surface S

projection on the plane z = 0 is given by the same equation with the obvious substitution

C(ψ, r) ⇒ C̃(ψ, r) = C(ψ, r)/nz(r) (19)

where nz(r) is the projection of the normal vector n of surface S on the Oz axis.
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3. Gerstner’s rotational waves

3.1. Kinematic description

Here we consider the simplest model of nonlinear sea surface waves, which does not require
small wave slopes, and is an exact solution of nonlinear hydrodynamic equations for surface
gravity waves for fluid of infinite depth. This solution was obtained in 1802 by Gerstner, but
it detracts somewhat from the physical interest of the results because the fluid motion in these
waves cannot be described by introducing the velocity potential. The generation of these waves
under realistic conditions is not clear, since they are rotational. Thus, interest in these waves
has been limited. Use Gerstner’s simple analytical description of a rotational wave significantly
simplifies the study of scattering and enables results to be obtained in analytical form. On the
other hand, the geometrical structure of Gerstner’s waves is similar to the structure of Stokes’s
waves in many important respects.

The coordinates (x, z) of a liquid particle in a Gerstner’s wave depend on time τ as follows
(see, e.g., [16] p 421, and [17] p 158):

x = x0 − aeKz0 sin[K(x0 − cτ)],

z = z0 + aeKz0 cos[K(x0 − cτ)], (20)

where K = 2π// is the wavenumber of the surface wave, / is the wavelength, c = √
g/K is

the wave propagation velocity, g is the gravity acceleration, a is the wave amplitude, (x0, z0)

are two parameters identifying a particle. For z0 = 0 (which corresponds to the particles on
the water surface) we obtain from (20)

x = x0 − a sin[K(x0 − cτ)],

z = a cos[K(x0 − cτ)].
(21)

The particle velocity v in an immovable coordinate system is

vx = dx/dτ = v0 cos[K(x0 − cτ)],

vz = dz/dτ = v0 sin[K(x0 − cτ)],
(22)

where v0 = aKc = aω;ω = √
gK . In the coordinate system moving with the wave profile

with velocity c (i.e. with replacement x − ct ⇒ x) the surface equation takes the parametric
form

x = t/K − a sin t, z = a cos t, (23)

where t = K(x0 − cτ). This is a trochoid’s equation. The equations for the other trochoid
parameters are

orbital velocity vx = v0 cos t, vz = v0 sin t, (24)

surface slope γ = dz/dx = − b sin t

1 − b cos t
, (25)

where the steepness parameter b = aK is introduced. The maximum surface slope γm

corresponds to the point where cos t = b, and it is given by the equation

γm = b√
1 − b2

. (26)

Note that the trochoid’s maximum slope in (26) always exceeds that of the sinusoid (γm = b)
with the same amplitude a and wavelength /. For small values of parameter b, the trochoid
equation (23) coincides with that of the sinusoid z = a cosKx, but when b approaches unity,
the surface shape near the tops becomes more and more steep, and the position of the maximum
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Figure 2. Trochoids with different steepness parameter aK .
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slope shifts closer to the top of the wave (see figure 2). Cycloid is a limiting case of trochoid
when b = 1, γm = ∞.

In figure 3 a trochoid and sinusoid with the same amplitude a and wavenumber K

are depicted for aK = 0.5, which corresponds to the trochoid’s maximum slope angle
ψm = arctan γm = 30.2◦. The figure shows that the trochoid is sharper at the top and flatter at
the bottom than the sinusoid, and its maximum slope position is closer to the top than to the
bottom. (The maximum slope of the sinusoid is halfway between the top and the bottom.)

3.2. Shadowing

When applying the two-scale model to the wave scattering by a trochoid shape surface, we
must take into account the possible partial shadowing of the trochoid’s surface for a small
grazing angle ψ0 of the incident wave, when γ0 ≡ tan ψ0 � γm. The tangent point (the point
where the incident ray touches the trochoid) is determined by the equation

γ = − b sin t

1 − b cos t
= −γ0. (27)
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It has the following solutions:

t± = arccos
γ 2

0 ±
√
b2(1 + γ 2

0 ) − γ 2
0

b(1 + γ 2
0 )

, (28)

where only solutions t+ correspond to the actual tangent points, which separate the illuminated
part of the surface from the shadowed part (the upper points {xl, zl} and {xr, zr} for two
consecutive periods—left (−/ < x < 0) and right (0 < x < /)—are depicted in figure 4),
while the solutions t− correspond to the points {x ′

l , z
′
l}, {x ′

r , z
′
r} and so on, which are located

entirely in the shadow (figure 4).
The equation of the light–shadow boundary, for the right-side (r) trochoid’s period in

figure 4, has the following form:

zs = zr − γ0(xs − xr), (29)

where xr, zr are the upper touching point coordinates:

xr = tr/K − a sin tr

zr = a cos tr ,
(30)

and tr is one of the solutions t+, which belongs to the ‘right’ period (0 < t < 2π). The
shadowed part of trochoid to the right of point {xr, zr} (i.e. xr < x < /+xr or tr < t < 2π +tr )
is given by the inequality zs � z(t), that is

zr − γ0[t/K − a sin t − xr ] � a cos t, (31)

and, in a geometrical optics approximation, it can be excluded from the integral (13) by
multiplying the integrand (14) by a ‘shadowing’ factor

θ

[
a cos t − zr + γ0

(
t

k
− a sin t − xr

)]
, (32)

where θ is the Heaviside function

θ(t) =
{

1 for t > 0

0 for t < 0.
(33)

The shadowing factor for the ‘left’ trochoid’s period (i.e. tl < t < tr , or xl < x < xr )
is given by the same expression (32) with the substitutions (xr ⇒ xl, zr ⇒ zl), where the
coordinates (xl, zl) of left-period, upper touching point is given by (30) with the replacement
tr ⇒ tl = tr −2π that leads to the obvious equations xl = xr − /, zl = zr (see figure 4).
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4. Specific scattering cross sections and Doppler spectra

From (14) and (15), it follows that the specific scattering cross section σ0(r) dependence on sea
roughness is determined by a product of two factors: the spatial power spectrum Sζ of a small-
scale ripples and the scattering coefficient C(ψ, r), which in turn, is proportional to the fourth
power of field amplitude F(r) at a smoothed sea surface. Hereafter we ignore the dependence
on the first factor and assume for simplicity that Sζ is constant over the entire surface. We
consider only the spatial distribution (over a large-scale surface) of the scattering coefficient
C̃(ψ, r) = C(ψ, r)

√
1 + γ 2(r) (normalized by the unit area of plane z = 0; see (19)) and

its dependence on parameters of the large-scale surface, which is assumed to be a Gerstner’s
wave, that is, a trochoid.

The scattering coefficient can be considered as a function of only one coordinate x, which
we denote as σ(x): σ(x) ≡ C̃(ψ, r). Since we have only a parametric equation for the surface
shape (23), it is convenient to represent σ(x) as a function of the same parameter t :

σ(t) = σ(x)

∣∣∣∣dx

dt

∣∣∣∣ = σ [x(t)]

∣∣∣∣1

k
− a cos t

∣∣∣∣, (34)

where x(t) = t/K − a sin t , according to (23). The set of these two equations for σ(t) and
x(t) can be considered as a parametric representation of the function σ(x), that is, the spatial
distribution of a specific backscattering cross section (‘radar brightness’) over the longitudinal
coordinate x.

Equations (14) and (15) enable us to obtain the backscattered power from every point of a
given large-scale surface. Since the distribution of orbital velocity vectors v over the surface
is known, it is possible to link the specific frequency shift to a particular point of the surface
with known backscattering cross section σ(x), and to calculate the total Doppler spectrum SD

of backscattered wave. For an incident plane wave the Doppler frequency shift is equal to
�ω = 2kv, where the wavevector k was introduced in (8) and components of orbital velocity
v are given by (24). This frequency shift �ω is a function of surface coordinates, but since we
have only a parametric equation for the surface shape (23), it is convenient to represent �ω as
a function of parameter t , too:

�ω = ωm cos(ψ0 + t), (35)

where ωm = 2kv0. Hereafter we consider the reduced frequency shift f normalized by the
maximum value ωm: f (t) = �ω/ωm = cos(ψ0 + t).

The parametric representation of the Doppler spectrum SD(f ) follows from the obvious
relation

SD(f ) =
2∑

j=1

σ(tj )

∣∣∣∣df (t)

dt

∣∣∣∣
−1

tj

, (36)

where tj = tj (f ) are the solutions of the equation f = cos(ψ0 + t). Notice that in one
trochoid’s period there are two points, t1 and t2, with the same projection of orbital velocity
vector v on the wavevector k (i.e. with the same Doppler shift f ), which are related as follows:
t2 = 2(π −ψ0)− t1. Only for maximum frequency shifts f = ±1, these two points merge into
one: t = ψ0 (for f = 1) and t = π − ψ0 (for f = −1). Thus, for parametric representation
of SD we obtain

SD(t) = σ(t) + σ(2π − 2ψ0 − t)

| sin(ψ0 + t)| ,

f (t) = cos(ψ0 + t)

(37)

where parameter t corresponds to the half-period of the trochoid (−ψ0 < t < π − ψ0).
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To obtain the functionsσ(x) andSD(f ) in explicit form, we must define the only remaining
unknown function F(r), the spatial distribution of incident wave amplitude over the trochoid’s
surface.

4.1. Geometrical optics approach

In the geometrical optics (or tangent plane) approximation, function F(r) is given by (16),
and together with (15), (19), and (34), we obtain the following backscattering cross section
dependence on parameter t (omitting factor 16πk4Sζ (2k cosψ, 0) from (14)) :

σ(t) = |1 − η2 + cos2 ψ |2
∣∣∣∣ sin ψ

sin ψ + η

∣∣∣∣
4√

1 + γ 2

∣∣∣∣1

k
− a cos t

∣∣∣∣, (38)

where ψ = ψ0 +arctan γ is a local grazing angle, and γ = γ (t) is given by (25). This equation
is valid only if tan ψ0 > γm, when there is no shadowing. When tan ψ0 < γm, it is necessary to
take into account that in shadow zones F = 0 and consequently σ = 0. This can be achieved
by multiplying (38) by the ‘shadowing’ factor (32) for the interval tr < t < 2π + tr (i.e. for
xr < x < / + xr ; see figure 4). For the interval tl < t < tr , the following substitutions must
be made in expression (32): tr ⇒ tl = tr − 2π ; xr ⇒ xl = xr − / (see figure 4).

The backscattering specific cross sections σh,v(x) and Doppler frequency power spectra
Sh,v(f ), which are functionsSD(f )normalized on the total backscattered power

∫ 1
−1 SD(f ) df ,

are plotted in figure 5 for two polarizations, which are indicated by subscripts: h (horizontal)
and v (vertical). The curves were plotted for the trochoid with the following parameters (see
figure 3): a = 0.1 m, / = 1.25 m, b = 0.5 and grazing angles ψ0 = 5◦, 10◦, 28◦ and 40◦. The
complex dielectric permittivity of sea water was chosen as ε = 60+30i (the mean value for SHF
radio wave X-band). Because of the geometrical optics approximation, the spatial distribution
of the backscattering cross sections σh,v(x) and normalized frequency power spectra Sh,v(f )

do not depend on the linear scales a and / separately, but remain the same for all trochoids
with fixed steepness parameter b = 2πa// and arbitrary amplitudes and periods. We chose
0.5 for the value of parameter b, because it corresponds to the maximum slope γm = 0.58, or
ψm = 30.2◦, which is close to the limiting slope (�30◦) of Stokes’s wave. The thin solid curves
in the upper panels in figures 5(a), (b) correspond to the trochoid’s profile with parameters
a = 0.1 m and / = 1.25 m (linear scales there are in meters) and θ(x) is the shadowing
function depicted as a thin dashed line.

For all grazing angles, σv(x) exceeds σh(x), and their difference increases with decreasing
the grazing angle ψ0. The spatial variation of these curves (thick solid curves for v—
polarization, and thick dashed ones for h—polarization) is caused by the variation of the
local grazing angle ψ along the surface (see figure 1). For a steep grazing angle ψ0 of
40◦, there is no shadowing of the surface: θ(x) = 1 for all x. The maximum of σh(x)

and one of the minima of σv(x) correspond to the point of the surface profile z(x) where
the local grazing angle ψ is maximal. This point is closer to the trochoid’s crest than to
its trough (in contrast with the sinusoid, for which this point is always halfway between
the crest and the trough). The second minimum of σv(x) corresponds to the point of the
trochoid’s where the local grazing angle ψ is a minimum, if it is less than the Brewster angle
ψB � arcsin(1/

√
ε).

At ψ0 = 28◦, only slightly less than the trochoid’s maximum slope ψm of 30.2◦, the
surface shadows appear at 0.07 � x � 0.27 m for the right-hand trochoid’s period and
at −1.18 � x � −0.98 for the left-hand one. The linear size of shadowed surface part
increases with decreasing grazing angle ψ0, and for ψ0 = 5◦, the illuminated part of surface
where θ(x) = 1, it is equal to only �0.2 m (see the right upper panel in figure 5(b)).
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Figure 5. Geometrical optics results for the spatial distribution of specific backscattering cross
sections (upper panels) and Doppler frequency spectra (lower panels) for two grazing angles:
(a) ψ0 = 40◦ and 28◦, and (b) ψ0 = 10◦ and 5◦. Vertical polarization—solid thick curves;
horizontal polarization—dashed thick curves; the trochoid’s profile (a = 0.1 m, / = 1.25 m,
aK = 0.5)—thin solid curve and the thin dashed curve is the shadowing function.

The shadowing eliminates the negative frequencies in the Doppler spectra, which originate
from the radio waves scattered by the troughs, and for the extreme grazing angle ψ0 of 5◦,
when only trochoid’s crests are illuminated (see the right panel in figure 5(b)) the spectra
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Figure 6. Spatially averaged specific backscattering cross sections for trochoids with different
steepness parameters b and maximum slopes ψm. The upper set of curves corresponds to vertical
polarization; the lower, to horizontal polarization.

become much narrower than those for the completely illuminated surface. It is worthwhile
pointing out that the Doppler spectra for h- and v-polarized waves have the opposite skewness:
toward positive frequencies for the h-polarized radar signal, and toward negative frequencies
for the v-polarized one.

In figure 6 the mean specific backscattering cross sections σ , averaged over the space
coordinate x:

σ = 1

/

∫ /

0
σ(x) dx, (39)

are represented for a set of trochoids with different steepness parameters b or corresponding
angles of maximum slopes ψm. The upper set of curves corresponds to the vertical polarization
σv , and the lower one corresponds to the horizontal polarization σh. Remember that σ(x) and
σ represent only the diffuse part of backscattered signal due to the scattering by small ripples.
For steep grazing angles ψ0 � ψm, specular reflections in backward direction appear, which
give the dominant contribution to the total backscattered power; however, their contribution is
not represented in figure 6.

From figure 6 it follows that σh is more sensitive to the Gerstner’s wave steepness b than
σv , and this difference becomes smaller as the surface wave becomes steeper.

The dependence of the mean Doppler frequency shift,

f =
∫ 1

−1
f S(f ) df, (40)

on grazing angle ψ0 is depicted in figure 7 for the same set of surface steepness parameters b

as in figure 6. The upper curves in this plot correspond to horizontal polarization and the lower
to vertical polarization. Excluding the extreme grazing angles, the mean Doppler frequency
shift for horizontal polarization is positive. (The radar supposedly illuminates the surface in
the ‘upwind’ direction, i.e. opposite that of the surface wave propagation.) The mean Doppler
frequency shift for horizontal polarization exceeds that for vertical polarization, which is mostly
negative for non-grazing incidence (ψ0 � 20◦). This difference increases with increasing
steepness of the surface wave. The explanation is that the local grazing angles ψ for rear faces
and troughs of the surface wave, which scatter radio waves with a negative Doppler frequency,
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Figure 7. Mean Doppler frequency shifts (normalized on the maximum value) for trochoids
with different steepness parameters b and maximum slopes ψm. The upper curves correspond to
horizontal polarization; the lower, to the vertical polarization.

are smaller than the grazing angles for front faces, which cause a positive Doppler shift.
Since the specific backscattering cross section for horizontal polarization decreases rapidly as
∼ψ4 at low grazing angles, these negative Doppler frequencies are significantly suppressed,
which leads to the positive mean value of the Doppler frequency. For small grazing angles
ψ0 < ψm, the Doppler frequency shifts for two polarizations are almost the same, because,
in this case, only surface wave crests are illuminated, and their movement causes the same
Doppler frequency shift for both polarizations.

4.2. Diffraction by a trochoid

Taking into account the multiple scattering and diffraction of a zero-order fieldU0 by the smooth
trochoid (without Bragg-resonant scattering ripples) leads to a change in the wave amplitude
F(r) from its geometrical optics value. The scattering coefficient C(ψ, r) (see (15)) and the
specific scattering cross section σ0(r) given by (14) are modified correspondingly. Since we
are assuming that the wave amplitude F(r) still varies much slower than the phase factor eikr,
and that the Doppler frequency shift �ω from every surface element is equal to 2kv, as before,
we neglect the very fast oscillation of the field amplitude F(r), as well as the deviation of
the wave propagation direction right near the surface from the direction of wavevector k for
an incident wave (and −k for a backscattered wave). It is worth emphasizing that in what
follows we consider the backscattering from the same rough surface (smooth trochoid covered
by small-scale random ripples), but now the zero-order field amplitude F(r) is obtained not
in geometrical optics approximation, but using a rigorous numerical solution of the diffraction
problem, which takes into account multiple scattering as well as diffraction effects caused by a
trochoid. Scattering by small-scale ripples is calculated by the first order of small perturbation
theory as before.

The numerical method for solving the appropriate diffraction problem is described in
detail in [14]. The outline of the approximate version of the method is also given in [13].
The diffraction code used is based on the numerical solution of the integral equation for the
total surface field in a two-dimensional case. It uses an impedance boundary condition. The
numerical solution is facilitated by representation of the field at the surface as a product of
the fast-oscillating phase factor corresponding to the incident wave, and another factor, which
appears to be slow varying on a wavelength-scale.
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Figure 8. ‘Exact’ diffraction results for spatial distribution of specific backscattering cross
sections (upper panels) and Doppler frequency spectra (lower panels) for four grazing angles:
(a) ψ0 = 40◦ and 20◦, and (b) ψ0 = 10◦ and 5◦. Vertical polarization—solid thick curves;
horizontal polarization—dashed thick curves; the trochoid’s profile (a = 0.1 m, / = 1.25 m,
aK = 0.5)—thin solid curve.

Figures 8(a), (b) depicts a set of plots for backscattering specific cross sections σh,v(x)

and the Doppler frequency power spectra Sh,v(f ) for the same set of trochoid parameters as
in figures 5(a), (b) (a = 0.1 m, / = 1.25 m, b = 0.5, ψm = 30.2◦, ε = 60 + 30i), grazing
angles: ψ0 of 5◦, 10◦, 20◦, 40◦, and an incident radio wavelength λ = 0.02 m. The thin solid
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curves in the upper panels in figures 8(a), (b) correspond to the trochoid’s profile (linear scales
are in meters). The very strong oscillations of the specific backscattering cross sections σh,v(x)

appear at a steep grazing angle, ψ0 = 40◦, owing to the interference of multiple scattered fields
at the trochoid’s surface. The validity of such an interpretation follows from the fact that for
very steep incident angles, ψ0 > 60◦, when the probability of multiple scattering tends to zero,
since ψm < 30◦, these oscillations disappear. We do not show these plots because they are
very similar to the plots of the geometrical optics results.

At a lower grazing angle, ψ0 = 20◦, the period of these oscillations increases because the
propagation of interfering waves along the surface becomes more grazing than for the case
of ψ0 = 40◦, supporting the concept that these oscillations are caused by the interference of
multiple scattered waves.

The geometrical shadow with very small cross section values σh,v(x) is clearly seen in
plots for ψ0 = 5◦, 10◦, 20◦. For a moderate grazing angle, ψ0 = 20◦, the field oscillations
just above the shadow boundary are caused partially by the wave diffraction by the trochoid’s
edge (not only by the interference of multiple scattered waves). Unlike the geometrical optics
results represented in the upper panels of figure 5(b), the boundary between the shadowed
and illuminated (by the incident wave) parts of the surface is not too sharp, and, for the
extreme grazing angles (ψ0 = 5◦, 10◦) there are no field oscillations in the illuminated area.
This fact agrees with the conclusions made in [18] that the effect of multiple reflections on a
scattered field becomes negligible at very small grazing angles. The oscillations due to the
wave diffraction by the trochoid’s crest are also absent at ψ0 = 5◦, 10◦, because the vertical
size of illuminated part of the surface (∼/ tan ψ0) is less than that of the first Fresnel zone
(∼√

λ//) at a distance from the crest equal to the trochoid’s period /.
The spatial oscillations of the specific backscattering cross sections shown in the upper

panels in figure 8(a), cause the corresponding oscillations of the Doppler frequency spectra
shown in the lower panels in figure 8(a). The opposite sign of the averaged Doppler spectra
skewness can be seen, but not so clear as in geometrical optics results (lower panels in
figure 5(a)). For horizontal polarization the positive Doppler frequencies predominate, and for
vertical polarization the negative ones. For small grazing angles ψ0 = 5◦, 10◦, the Doppler
frequency spectra (lower panels in figure 8(b)) become narrower and shift to the positive
Doppler frequencies for both polarizations. In this case, only a very small part of the surface
in the vicinity of the trochoid’s crests (with an almost constant orbital velocity) takes part in
the scattering.

Despite the very different appearance of the geometrical optics and diffraction results for
scattering cross sections and Doppler frequency spectra represented in figures 5(a), (b) and
figures 8(a), (b), the mean values of the specific scattering cross sections σ and the mean
Doppler frequency shift f , introduced by (39) and (40) correspondingly, are unexpectedly
close. In figure 9 the solid curves correspond to the σ obtained in the geometrical optics
approach, and results of the diffraction approach are presented by data points. For very steep
grazing angles, results of the two approaches agree very well. For moderate grazing angles,
the specific scattering cross sections σ obtained by taking into account the diffraction and
multiple scattering effects exceed the geometrical optics ones. This difference is greater for
the horizontal polarization because the Fresnel reflection coefficient for horizontal polarization
is always larger than that for vertical polarization. Therefore the multiple scattering plays
a more essential role for horizontal polarization, giving the remarkable rise to the total
scattering cross section. This fact agrees with the result of qualitative consideration of
role of double scattering processes in backscatter from sea surface [19, 20], as well as with
the analytical and numerical results for radio wave multiple scattering from concave rough
surface [12].
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Figure 9. Comparison of geometric optics results for averaged specific backscattering cross sections
(solid curves) with their ‘exact’ values (multiple scattering and diffraction effects have been taking
into account): triangles for vertical polarization and squares for horizontal polarization.
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Figure 10. The intensity (dashed curve) and radar backscatter (solid curve) spatial distribution
near the geometric optics light–shadow boundary.

At low grazing angles when the multiple scattering processes do not play an essential role,
these two approaches give similar results again. At last, at extremely low grazing angles (in
figure 9 the minimal grazing angleψ0 is equal to 2◦), the geometrical optics result for σ exceeds
significantly the value given by the diffraction approach. This difference can be explained by
considering the wave field intensity distribution (figure 10) in the vicinity of the light–shadow
boundary in the left-hand face of the trochoid’s crest (the incident wave propagates from the left
to the right as it shown in figure 1). The geometrical optics boundary position is located at zero
elevation; the negative elevations correspond to shadow (where the zero-order field amplitude
F(r) is zero) and the positive elevations are illuminated by the incident wave with an amplitude
F(r) = 1. Diffraction of the incident wave by the next trochoid’s crest to the left (which we
may consider here as a vertical half-plane for simplicity) results in the broadening of the light–
shadow boundary, and, which is more important, is its shift from zero to the higher heights
(positive values of ‘vertical displacement’ along the abscissa axis in figure 10) for a distance
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Figure 11. Comparison of geometric optics results for mean Doppler frequency shifts (solid curves)
with their ‘exact’ values (marks), taking into account multiple scattering and diffraction effects.

that is equal to about one Fresnel zone (∼√
λ/ � 16 cm). Meanwhile, the total vertical size

of the illuminated part of the trochoid’s left-hand face is equal only to ∼/ψ0 � 4 cm for
ψ0 = 2◦. From these very rough estimates, it follows that in the illuminated part of the surface
(above the geometrical optics shadow boundary and below the trochoid’s crest) the intensity
F 2(r) of the incident wave (dashed curve in figure 10) is significantly less than unity, and
therefore the backscattering cross section, which is proportional to F 4(r) (see (14), (15)) can
be several times less than the geometrical optics value. In figure 9 this difference between
geometrical optics and diffraction results at ψ0 = 2◦ is equal to �4 dB for vertical polarization
and �6 dB for horizontal polarization.

In figure 11 the mean Doppler frequency shift f , introduced in (39), is depicted with the
same notations used in figure 9. The diffraction and multiple scattering processes result in
less the difference in f between vertical and horizontal polarization (triangles and squares in
figure 11) than that obtained with the geometrical optics approach (solid lines in figure 11).
Only for the very steep grazing angles, do the results of the two approaches coincide. For
the very low grazing angles, ψ0 � 10◦, the difference between the mean Doppler frequency
shifts f for vertical and horizontal polarization is very small, but for the diffraction approach
both of these shifts are about half as large as the shifts the geometrical optics approach. This
effect is the result of the illuminated area spreading due to the incident wave diffraction by the
next left trochoid’s crest. In addition to backscattering from a very small part of the trochoid’s
face (above the geometrical optics shadow boundary and below the trochoid’s crest, which has
an almost constant orbital velocity) there is backscattering from a much larger surface area,
with a wider range of orbital velocities. The result is the broadening of the Doppler frequency
spectra S(f ) and a decrease in the mean frequency shift f for both polarizations.

5. Conclusions

We employed the two-scale model for solving a problem of SHF-EHF radio wave scattering
by a large-scale (in comparison with radio wavelength) nonlinear Gerstner’s water-surface
wave (i.e. trochoid) covered by resonant-Bragg-scattering small ripples. The expressions for
backscattering cross sections and Doppler spectra can be expressed in terms of a zero-order
field that incorporates diffraction effects due to the long-wave component of the surface.
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Two approaches were used for finding the zero-order field: the geometrical optics (tangent-
plane or Kirchhoff approximation) method and an ‘exact’ (numerical) solution of diffraction
by trochoid. We assumed that the density of Bragg scatterers does not vary along the Gerstner’s
wave profile, and that the effects of phase velocity of ripples could be neglected.

We determined that even in geometrical optics approach, the modulation of Bragg
backscattering cross sections by trochoid’s slopes leads to the essentially nonuniform spatial
distribution of specific backscattering cross sections along the trochoid’s surface. Horizontal
polarization is more sensitive to this slope-caused modulation than vertical polarization,
especially at low grazing angles. The difference between space-averaged backscattering
cross sections with horizontal and vertical polarizations (HH/VV ratio) at low grazing angles
decreases rapidly with surface slope increases: from �30 dB for a gentle trochoid with a
maximum slope ψm � 3◦ to �7 dB for a steep trochoid with maximum slope ψm � 50◦.

The difference between spatial distribution along the trochoid’s profile of the cross sections
for vertical and horizontal polarizations leads to skewness of the Doppler frequency spectra with
opposite signs: for horizontal polarization the positive Doppler frequency shifts predominate
(for waves moving towards the radar) and for vertical polarization, the shift is negative. At
very low grazing angles, the Doppler frequency spectra become narrower, concentrating near
the maximum positive frequency, and difference of the mean Doppler frequency shifts between
two polarizations vanishes. However, at moderate grazing angles and steep waves, it can attain
�80% of the maximum Doppler frequency, which corresponds to the maximal orbital velocity
of liquid particles in Gerstner’s wave.

The ‘exact’ solution of the radio-wave diffraction problem for zero-order field (smooth
trochoid without ripples) produces the results that are significantly different from those of
the geometrical optics approach. Very strong oscillations appear in the specific cross-section
spatial distribution as well as in the Doppler frequency spectra. These oscillations are caused
by interference of multiple scattered waves and diffraction by the trochoid’s crests. These
oscillations disappear only at very low and very steep grazing angles, and the diffraction by
the trochoid’s crests results in smaller backscattering cross sections than the geometrical optics
results. This effect can be interpreted by the specific pattern of the field (shifting up the effective
shadow-light boundary relative to its geometrical optics position) diffracted by the half-plane
screen, which models the trochoid’s crest. Despite tremendous differences in the details of
the results obtained by the geometrical optics and diffraction approaches, the mean values of
the backscattered-field parameters considered (mean backscattering cross section σ as well as
mean Doppler frequency shift f ) do not differ so dramatically, and remaining the differences
can be explained by a simple, semi-qualitative consideration.
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