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[1] It has recently been established that the Earth’s free oscillations are continuously
excited by phenomena other than earthquakes and that these oscillations constitute the
background noise in the normal mode band at quiet sites. On the basis of evidence that the
excitation source is at or just above the Earth’s surface, a normal mode theory of the
Earth’s free oscillations excited by random atmospheric loading is developed. The
displacement field is expressed in the frequency domain in general terms of the cross-
spectral density of air pressure disturbance. For spatially homogeneous and isotropic
disturbance the cross-spectral density is approximated by the power spectral density and
the coefficient of coherence with a coherence length much shorter than the wavelengths of
normal modes. With this approximation the spectrum of ground acceleration is
represented as the product of the pressure force term and the Earth response term. The
final expression of the acceleration spectrum includes the effect of the gravity attraction of
a disturbed air mass. A synthetic spectrum is calculated, using a power law decaying air
pressure spectrum consistent with observations, assuming a frequency-dependent
coherence length of air pressure fluctuation, taking into account the effect of the gravity
attraction of a disturbed air mass. This synthetic spectrum exhibits distinct peaks of
fundamental modes and complex troughs consisting of overtone modes, in quantitative
agreement with the peaks and troughs of the observed spectrum. INDEX TERMS: 7255
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1. Introduction

[2] It is now firmly established that the Earth’s free
oscillations are incessantly excited by phenomena other
than earthquakes [Nawa et al., 1998; Suda et al., 1998b;
Tanimoto et al., 1998; Kobayashi and Nishida, 1998a,
1998b; Nishida and Kobayashi, 1999]. The excited modes
are almost exclusively fundamental spheroidal modes, the
intensities of which clearly show annual variations [Nishida
et al., 2000] as well as diurnal variations [Suda et al.,
1998a]. For these background free oscillations there is little
correlation between the excitations of neighboring modes
and between the excitations of a mode on neighboring days
[Nishida and Kobayashi, 1999]. The oscillations are found
to be resonant with the acoustic free oscillations of the
atmosphere through two frequency windows [Nishida et al.,
2000]. All of these observations indicate that globally
distributed, random atmospheric pressure disturbance is

the most likely source for background free oscillations,
although other possibilities, including oceanic disturbance,
may not be ruled out.
[3] Free oscillations of the solid Earth excited by atmos-

pheric disturbance have been discussed theoretically by
Watada [1995] and Lognonné et al. [1998] in order to
explain the Rayleigh waves excited by volcanic explosions
[Kanamori and Mori, 1992; Widmer and Zürn, 1992; Zürn
and Widmer, 1996]. They viewed the media as a coupled
system consisting of the atmosphere and the solid Earth, and
the excitation source as an indigenous source of the system.
Kobayashi and Nishida [1998a, 1998b], Tanimoto [1999],
and Tanimoto and Um [1999], on the other hand, regarded
atmospheric disturbance as an external source that generates
a pressure force onto the surface of the solid Earth. The
latter approach is justified because the coupling between the
atmosphere and the solid Earth is, in general, weak [Watada,
1995; Lognonné et al., 1998] and because the excitation
source has been suggested to lie at or just above the Earth’s
surface [Nishida et al., 2000]. Kobayashi and Nishida
[1998a, 1998b] developed their theory through a dimen-
sional analysis of the energy balance expected between the
incoming solar flux, stirred atmospheric turbulence and
the excited free oscillations of the Earth. Tanimoto [1999]
and Tanimoto and Um [1999] modified the stochastic
approach of solar seismology [Goldreich and Keeley,
1977] to derive their expressions for excitation of the
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Earth’s free oscillations by atmospheric turbulence. Follow-
ing Kobayashi and Nishida [1998a, 1998b], Tanimoto
[1999], and Tanimoto and Um [1999], we also regard
atmospheric turbulence as an external source, but our
approach is more phenomenological than theirs in that we
do not use any physical model of turbulence, but instead
formulate the problem using atmospheric parameters that
can in principle be observed. Our approach follows more
strictly the normal mode theory of the Earth in deriving the
relation between ground acceleration and atmospheric pres-
sure disturbance applied to the Earth’s surface. We develop
our theory to obtain the whole spectrum rather than to
describe modal peak amplitudes so that our expression can
be compared more directly to the results of spectral analyses
of background free oscillations.

2. Theory

[4] We develop our theory following the textbook of
Dahlen and Tromp [1998] (hereinafter referred to as DT).
We consider a surface force density t(x, t) acting upon a
surface element at point x of the Earth’s surface �. The
displacement s(x, t) produced by such force density can be
written as a sum of normal modes

sðx; tÞ ¼
X
k

skðxÞ
wk

Z t

�1
Akðt0Þe�

wk ðt�t0 Þ
2Qk sinwkðt � t0Þdt0 ð1Þ

where wk is the eigenfrequency with an index k, Qk and sk
(x) are the associated quality factor and eigenfunction,
respectively, and

AkðtÞ ¼
Z
�

tðx; tÞ � skðxÞd� ð2Þ

(DT, p. 121). Our interest is the surface force density acting
vertically downward:

tðx; tÞ ¼ �r̂Pðx; tÞ ð3Þ

where x = (R, q, j) and r̂ is the unit radial vector in this
polar coordinate system. We neglect the effect of wind
shear, which would apply traction tangential to the surface.
The radial component of displacement at the surface (r = R)
of the SNREI (Spherically symmetric, non-rotaing, elastic
and isotropic Earth model) Earth (DT, p.259) is written as

srðx; tÞ ¼ sðx; tÞ � r̂

¼
X
n

X
l

U2
l ðRÞ
wl

X
m

Ylmðq;jÞ

Z t

�1
Blmðt0Þe�

wl ðt�t0 Þ
2Ql sin wlðt � t0Þdt0 ð4Þ

where Ul is the radial eigenfunction of the spheroidal mode

nSl
m with radial number n, Ylm is the real scalar spherical

harmonics of degree l and order m (DT, p. 269), and

BlmðtÞ ¼ �
Z
�

Pðx; tÞYlmðq;jÞd� ð5Þ

In equation (5), wl, Ql, and Ul should be understood as nwl,

nQl, and nUl, respectively. Assuming that the processes

involved are random and stationary, we introduce the
autocorrelation function f of radial displacement:

fðx; tÞ ¼ lim
T!1

1

T

Z T=2

�T=2

srðx; tÞsrðx; t þ tÞdt ð6Þ

and the cross-correlation function y of pressure fluctuations
at points x0 and x00:

yðx0; x00; tÞ ¼ lim
T!1

1

T

Z T=2

�T=2

Pðx0; tÞPðx00; t þ tÞdt ð7Þ

By inserting equation (4) into equation (6) and using the
definition (7), we obtain the expression for f:

fðx; tÞ ¼
X
n

X
n0

X
l

X
l0

w�1
l w�1

l0 U2
l ðRÞU2

l0 ðRÞ

X
m

X
m0

Ylmðq;jÞYl0m0 ðq;jÞ

Z 1

0

dt0
Z 1

0

dt00e�wl t
0=2Ql e

�
w
l0 t

00

2Q
l0 sinwl t

0sinwl0 t
00

Z
�

d�0
Z
�

d�00Ylmðq0;j0ÞYl0m0 ðq00;j00Þ

yðx0; x00; t0 � t00 þ tÞ ð8Þ

The Fourier transform of f is the power spectral density
(PSD) of radial displacement at x, and the Fourier transform
of y is the cross-spectral density of pressure fluctuations at
x0 and x00:

�ðx;wÞ ¼
Z 1

�1
fðx; tÞe�iwtdt ð9Þ

�ðx0; x00;wÞ ¼
Z 1

�1
yðx0; x00; tÞe�iwtdt ð10Þ

By Fourier transforming equation (8) and using the real
spherical-harmonic addition theorem (DT, p. 852), we
obtain

�ðx;wÞ ¼
X
n

X
n0

X
l

X
l0

2l þ 1

4p
2l0 þ 1

4p
U2

l ðRÞU2
l0 ðRÞ

� wl

2Ql

þ iðwl þ wÞ
� ��1

� wl

2Ql

þ ið�wl þ wÞ
� ��1

� wl0

2Ql0
þ iðwl0 � wÞ

� ��1

� wl0

2Ql0
� iðwl0 þ wÞ

� ��1

Z
�

d�0
Z
�

d�00Plðcos �0ÞPl0 ðcos �00Þ�ðx0; x00;wÞ ð11Þ

where Pl is the Legendre polynomials of degree l and

cos �0 ¼ cos q cos q0 þ sin q sin q0 cos ðj0 � jÞ

cos �00 ¼ cos q cos q00 þ sin q sin q00 cos ðj00 � jÞ

Polar angles �0 and �00 are those between x0 and x and
between x00 and x, respectively, with the common apex at
observation point x. Equation (11) is the rigorous
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expression for the PSD of radial displacement due to
pressure disturbance, the statistical property of which is
given by cross-spectral density. Unfortunately, no informa-
tion is available for the global distribution of the cross-
spectral density of atmospheric pressure disturbance in the
free oscillation band. We therefore must make several
assumptions.
[5] We express the cross-spectral density of pressure

disturbance as

�ðx0; x00;wÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂ðx0;wÞ�̂ðx00;wÞ

q
rðx0; x00;wÞ ð12Þ

where r is the coefficient of coherence and �̂(x0, w) and
�̂(x00; w) are the PSDs of pressure disturbance at x0 and x00,
respectively [Hinich and Clay, 1968; Gossard and Hooke,
1975, p. 333]. Many large-scale weather systems in the
middle latitudes migrate eastward as a propagating wave.
These ‘‘synoptic’’ weather systems have lower frequency
than the seismic free oscillations. The atmospheric PSD is
also likely to have spatial dependence, probably with larger
amplitude associated with storm tracks in the mid latitudes.
We, however, assume that the disturbance is spatially
isotropic and homogeneous, and therefore allow no
disturbance of propagating wave type. With this assump-
tion, the cross-correlation function y (x0, x00; t) is symmetric
with respect to time lag t and hence the coefficient of
coherence r (x0, x00; w) is a real function depending only on
the ratio of distance jx0�x00j to frequency-dependent
coherence length L(w):

rðx0; x00;wÞ ¼ h
jx0 � x00j
LðwÞ

� �
ð13Þ

where function h(x) has the following property:

hðxÞ �
(
1 if x  1

0 if x � 1
ð14Þ

The PSD of atmospheric disturbance becomes position-
independent:

�̂ðx0;wÞ ¼ �̂ðx00;wÞ ¼ �̂ðwÞ ð15Þ

and hence the PSD of ground displacement becomes also
position-independent:

�ðx;wÞ ¼ �ðwÞ ð16Þ

The reported coherence length of atmospheric disturbance
is, in general, less than 10 km at frequencies above 0.4 mHz
[Herron et al., 1969; McDonald et al., 1971] and is much
smaller than the wavelengths of normal modes in the 1–10
mHz band, which are on the order of 1000 km. In view of
such a small coherence length it would be reasonable to
adopt the simplest functional form for the coefficient of
coherence:

hðxÞ ¼
(
1 if x � 1

0 if x � 1
ð17Þ

The integration in equation (11) can now be performed
analytically by rotating the original coordinates to those

with the pole at x0 and then to those with the pole at x and
by using the relations for Legendre polynomials:

Z 2p

0

Plðcos a cos bþ sin a sin b cos qÞdq

¼ 2pPlðcos aÞPlðcos bÞZ 1

�1

PlðzÞPl0 ðzÞdz ¼
2

2l þ 1
�ll0

P0
lþ1ðzÞ � P0

l�1ðzÞ ¼ ð2l þ 1ÞPlðzÞ

The result of integration yields a simple expression for �:

�ðwÞ ¼ �̂ðwÞR
4

2

X
n

X
l

U4
l ðRÞ Pl�1ðcos qcÞ � Plþ1ðcos qcÞ½ �

� wl

2Ql

� �2

þðwl þ wÞ2
" #�1

wl

2Ql

� �2

þðwl � wÞ2
" #�1

ð18Þ

where qc is the arc length corresponding to the coherence
length. Since

qcðwÞ ¼ LðwÞ=R  p=l ð19Þ

then

Pl�1ðcos qcÞ � Plþ1ðcos qcÞ �
2l þ 1

2
q2cðwÞ ð20Þ

Inserting this approximation into equation (18), we obtain
our final expression for �(w) or for �(w) = w4�(w), which is
the PSD of ground acceleration:

�ðwÞ ¼ �̂ðwÞL4ðwÞ � 4pR
2

L2ðwÞ

� �
EðwÞ ð21Þ

where

EðwÞ ¼
X
n

X
l

2l þ 1

4p
U4

l ðRÞ
4

wl=w
2Ql

� �2

þ wl

w
þ 1

� 2" #�1

� wl=w
2Ql

� �2

þ wl

w
� 1

� 2" #�1

ð22Þ

The bracket term in equation (21) is the excitation term,
where �̂L4 and 4pR2/L2 represent the PSD of the ef-
fective force acting on a coherent area of L2 and the number
of mutually independent coherent areas over the whole
globe, respectively. Hence, the excitation term stands for the
total PSD of the effective force acting on the Earth’s surface.
E(w) represents the response of the Earth to the unit PSD of
such effective force. Although a vertical instrument senses
not only the acceleration of inertial motion but also
accelerations due to displacement relative to the Earth’s
gravity center and due to redistribution of mass in the Earth,
the latter two effects can be neglected in the 1–10 mHz band
[Gilbert, 1980]. Figure 1 shows response spectrum E(w) in a
frequency range from 1 to 10 mHz calculated for the Earth
model PREM [Dziewonski and Anderson, 1981]. Since we
have truncated the normal mode summation at 10 mHz, a
sharp spectral fall appears near 10 mHz, which should be
regarded as an artifact. Resonant peaks are mostly of
fundamental spheroidal modes, but the first overtone peaks
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are also significant at the lowest frequencies. On the other
hand, the shape of spectral troughs is largely controlled by
the excited overtone modes. In what follows, we regard �̂(w)
and �(w) as one-sided spectra by multiplying the original
PSD values by a factor of 2 for inclusion at negative
frequencies.

3. Comparison With Observations

[6] We compare the above theory with the background
free oscillation spectrum obtained by Nishida et al. [2000].
They analyzed 10 s sampling records of STS-1 vertical
seismometers at 17 quiet stations of the IRIS (Incorporated
Research Institutions for Seismology) network and 8 quiet
stations of the GEOSCOPE network between 1989 and
1998. For each station, Nishida et al. [2000] divided the
whole record into 1 day segments with an overlap of 3
hours, discarding all segments affected by earthquakes with
moments greater than 1018 N m and affected by nonsta-
tionary local ground or instrumental noise using the method
described by Nishida and Kobayashi [1999], with the pre-
scribed threshold powers of 1 � 10�18 m2s�3 and 3 � 10�18

m2s�3, respectively. Nishida et al. [2000] stacked the power
spectra of the remaining 1 day segments over all the stations
and over the whole period. Figure 2 shows the acceleration
power spectrum so obtained in a frequency range from 1 to
10 mHz, which is considered to be free from the effect of
earthquakes and the effect of local or instrumental nonsta-
tionary noise. The observed spectrum exhibits clearly the
fundamental spheroidal peaks at levels on the order of 0.8 �
10�18 m2s�3 in a frequency band from less than 2 mHz to
more than 8 mHz, which are explained by the theory
developed in the previous section.
[7] Since in equation (21) the theoretical acceleration

spectrum is expressed as the product of the excitation term
and response term and since the response term has been
obtained as in Figure 1, the synthetic spectrum can in
principle be calculated if the excitation source is specified.
We, however, note that the observed acceleration spectrum
includes the effect of gravitational attraction of atmospheric
disturbance, which is not taken into account in the expres-
sion of equation (21). We also note that the observed
spectrum is the one for tapered records, while the effect

of tapering is not taken into account in equation (21). The
expression including these effects is given by

�ðwÞ ¼
�
�̂ðwÞL4ðwÞ � 4pR

2

L2ðwÞ

��
�ðwÞ � EðwÞ

2p

�

þð2pGÞ2MðwÞ þ NðwÞ ð23Þ

where N(w) represents noise. The first term of equation (23)
corresponds to equation (21) but E(w) is convolved with the
PSD of the taper function �(w). This convolution is required
because if we sample many records with a finite length T
from a stationary random process with its PSD S(w) and
apply a taper function to each, then the average PSD of the
tapered records gives an unbiased estimate of S(w)
convolved with �(w) [Hinich and Clay, 1968]. Thus the
theoretical spectrum (21) can be corrected for the effect of
tapering by convolving the right-hand side of equation (21)
with the PSD of the window. Since in equation (21) the
atmosphere-related quantities �̂(w) and L(w) are fairly flat
in a narrow band at any particular frequency, as implied in
equation (25), the correction effectively replaces the
response spectrum E(w) by its convolution with the window
spectrum �(w) as in equation (23). We used the Welch
window for tapering, the PSD of which is

�ðwÞ ¼ 15

2
T

1

X 2

sin X

X
� cos X

��2
; X ¼ wT=2

 "

The second term of equation (23) represents the gravitational
effect of air mass disturbance in Bouguer plate approxima-
tion, where G is the gravitational constant and M(w) is the
PSD of air mass fluctuation in a vertical column with a unit
cross-sectional area. If the air mass fluctuation is the only
cause for pressure fluctuation, M(w) is proportional to �̂(w):

ð2pGÞ2MðwÞ ¼ c2�̂ðwÞ ð24Þ

where c = 2pG/g (= 4.3 nm s�2/hPa) and g is gravitational
acceleration. In equation (24), c may be understood as the

Figure 2. Averaged power spectrum of acceleration
seismograms in seismically quiet days [Nishida et al.,
2000] in comparison with the theoretical spectrum �( f )
(see equation (23)).

Figure 1. Earth response function E( f ) in kg�2 to the unit
PSD of effective force (= 1 N2 Hz�1) per a unit area of the
Earth’s surface (see equation (22) in the text).
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conversion factor (admittance) from atmospheric pressure
change to gravity change in Bouguer plate approximation.
Equation (24) is a good approximation in a period range
from a few hours to one year [Torge, 1989, p.382]. In the
period range of our interest, however, �̂(w) would involve
not only the pressure loading effect of air mass
redistribution but would also involve the effect of dynamic
pressure of winds hitting the Earth’s surface. This would
effectively introduce frequency dependence into the
conversion factor c in equation (24). Hence we replace
the second term of equation (23) with equation (24) where
c is understood as c(w). The third term of equation (23),
the noise term, should be smaller than the first term in a
frequency range where free oscillation peaks are clearly
visible.
[8] In equation (23) the unknown quantities are �̂(w),

L(w), M(w) (or c(w)) and N(w). Within these the behavior of
�̂(w) is relatively well known. Figure 3 shows the power
spectra of atmospheric pressure variations at several IRIS
stations (WAKE, BFO (inside the vault), BFO (outside the
vault) and PFO) and at Syowa station, Antarctica, in a
frequency range from 0.1 to 10 mHz. The spectrum of
Syowa station is based on the barographic records on the
quietest 18 days of 1994, while the spectra of the IRIS
stations are obtained from the barographic records on
relatively quiet days (roughly 100 days) in each 1-year
period between 1992 and 1998. It will be shown later that
the PSD level of barographic records for only quiet days are
consistent with the ground acceleration spectrum. Although
the PSD values differ considerably among stations, their
spectral trends change little and they all decay approxi-
mately as f �2 where f is frequency. Since this f �2 decay is a
well-established observation in atmospheric science [Gos-
sard and Hooke, 1975, p. 7], it will be fixed in the following
analysis, with the additional assumption that L and c also
follow power law decays:

�̂ð f Þ ¼ �̂0 ð f0=f Þ2

Lð f Þ ¼ L0 ð f0=f Þb

cð f Þ ¼ c0 ð f0=f Þ� ð25Þ

where f0 is the reference frequency, which is taken to be
1 mHz. The quantities with subscript 0 are those at this
reference frequency. Since conversion factor c has to take a
Bouguer correction value of 4.3 at periods of a few hours
[Torge, 1989, p. 382], c( f ) is assumed to be 4 at the
reference frequency of 1 mHz (c0 = 4 nm s�2 hPa�1). At
higher frequencies, c( f ) is expected to decrease where the
air mass effect becomes less important [Banka and Crossley,
1999]. Among other parameters, the power indices b and g

control the trend of the spectral curve, while the constants
�̂0 and L0 control the amplitude level of the spectrum. The
free oscillations amplitudes are sensitive to b but insensitive
to g. The low frequency trend of the acceleration spectrum
is sensitive to g but insensitive to b. The residual of the
observed PSD from the first two terms in the right-hand side
of equation (23) is regarded as noise and the noise level is
estimated by assuming a linear trend, N( f ) = N0 f/f0. We
determine these parameters by a trial and error method to
obtain a good match in both the spectral trend and
amplitude level between the observation and calculation.
There is little trade-off in this parameter search if the
searched values are limited to one or two digits and if the
fitting is attempted in a frequency range below �7 mHz.
Note that the observed spectral trend changes significantly
across �7 mHz and that this change cannot be accounted
for by our parameterization as in equation (25). Table 1
summarizes the result of this simple parameter search. In
this table we have also added the result for a case of
frequency-independent conversion factor (c = 4), which was
obtained by limiting our interest at frequencies above 2

Figure 3. Averaged power spectra of atmospheric pressure
at several IRIS stations and at Syowa station, Antarctica, in
comparison with the theoretical spectra �̂( f ) (see Table 1).

Table 1. Frequency Dependence of Atmospheric Quantitiesa

PSD of Pressure
�̂, Pa2 Hz�1

Correlation Length
L, km

Conversion Factor
c, nm s�2 hPa�1

4 � 103 � f
f0

� 
�2 0.6� f

f0

� 
�0.12 4 � f

f0

� 
�0.4

2 � 103 � f
f0

� 
�2 1 � f

f0

� 
�0.15 4

aHere f, frequency; f0, reference frequency (=1 mHz).

Figure 4. Synthetic acceleration power spectrum �( f )
that consists of the air mass gravity attraction term,
atmospheric excitation term and linear noise term (see
equation (23) in the text). The power spectrum of the
synthetic seismogram for seismically quiet 437 days in the
10-year period is also shown [Suda et al., 1998b].

FUKAO ET AL.: EARTH’S BACKGROUND FREE OSCILLATIONS ESE 11 - 5



mHz. A good match cannot be obtained below 2 mHz in
this case, but at higher frequencies the fit is as good as in the
first case.
[9] In equation (23) the acceleration PSD in the 1–10

mHz band consists of the gravity attraction term, the free
oscillation term and the remaining noise term which
measures the noise level in the 1–10 mHz band. Figure
4 indicates, for the frequency-dependent admittance model,
how each of these terms contributes to the resultant
acceleration PSD. The greatest contributor at frequencies
below 3 mHz is the gravity attraction of air mass and the
greatest contributor above 3 mHz is the Earth’s free
oscillations due to random atmospheric loading. At fre-
quencies above 4 mHz the linear noise term exceeds the
gravity attraction term, yet remains well below the free
oscillation term. One might suspect that this noise term
approximates the cumulative effect of free oscillations long
after large earthquakes and immediately after small earth-
quakes. We evaluate the cumulative seismic effect using

the 10-yearlong synthetic seismogram at station SUR of
the IDA (Incorporated Research Institute for Seismology)
network calculated by Suda et al. [1998b]. They took into
account all earthquakes with magnitudes greater than 4.6
occurring in the 1986–1995 period and selected 437
seismically quiet days from these 10 years to obtain the
average power spectrum for the quiet days. In Figure 4 we
reproduce the seismic spectrum so calculated, which is
well below the noise term except near the high-frequency
end, indicating that the noise term approximates disturban-
ces other than the cumulative effect of earthquakes. We
note at the same time that at frequencies below 1.5 mHz
the peak heights of the modes excited by atmospheric
surface disturbance and those by earthquakes are almost
coincident. Obviously, a more stringent criterion is required
to define seismically quiet days than the one adopted by
Suda et al. [1998b] to isolate the lowest frequency modes
of background free oscillations from those excited by
earthquakes.
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Figure 5. Averaged power spectrum of acceleration seismograms in seismically quiet days [Nishida et
al., 2000]. The spectrum is detrended in the frequency range 1.5–5.5 mHz so that it can be compared
directly to the free oscillation term of the synthetic spectrum �( f ) (the first term of equation (23)).
Substraction of the trend component makes the spectrum oscillatory around the zero level at frequencies
below 2 mHz. The synthetic spectrum excluding the overtone modes is also shown. Several fundamental
modes are indicated by their angular order numbers. The subtle undulation of the observed spectrum
especially at the trough part can only be explained by the synthetic spectrum including the overtone
modes. See color version of figure at back of this issue.
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[10] In Figure 2 we superpose the resultant synthetic
power spectrum onto the observed spectrum. The agreement
is excellent, although the linearly trending noise term cannot
account for the change in the observed spectral trend at
�7 mHz. The agreement extends not only to the overall
spectral shape but also to some detailed features. In order to
highlight the latter point, we detrend the observed spectrum
between 1.5 and 5.5 mHz. Figure 5 shows a comparison of
such a detrended spectrum with the first term of the
synthetic spectrum (23). Also added is the corresponding
synthetic spectrum that excludes the overtone modes and
takes into account only the fundamental modes. The major
peaks are all those of the fundamental modes. The peak
heights of the observed modes vary in a complex way with
frequency. For example, we observe lowering of peak
heights for the modes 0S19, 0S24, 0S27, and 0S30. Such
complex variation is reasonably well reproduced by the
synthetic spectrum. Even more remarkably, the observed
spectrum shows subtle undulation at the trough part, which
is again well simulated by the synthetic spectrum. On the
other hand, the synthetic spectrum, including only the
fundamental modes, does not show such undulation and
hence the agreement with the observed spectrum is much
worse. For example, the observed spectrum at frequencies
below 2 mHz shows relative peaks in the trough parts of the
fundamental modes, which may correspond to the first
higher modes 1S6, 1S7, and 1S8. In the 2–3 mHz frequency
range, higher mode contaminations are observed between
two adjacent peaks of fundamental modes with degrees 12–
13, 15–16, and 18–19, respectively. At frequencies above 3
mHz, the bottom parts are lifted by excitation of the higher
modes between two adjacent peaks of fundamental modes
with degrees 26–27, 31–32, 34–35, 36–37, 39–40, 42–
43, 44–45, and 47–48, respectively. Thus, Figure 5 dem-
onstrates that the troughs of the observed spectrum consist
of the overtone modes of the background free oscillations
rather than some unknown noise, and hence that the relative
excitation of overtone modes against fundamental modes is
in good agreement between the observation and calculation.
This agreement strongly supports our basic assumptions for
the excitation source. We also note that both the observed
and synthetic peak heights gradually decrease with decreas-
ing frequency below 3 mHz, in an opposite tendency to the
peak heights of the synthetic spectrum for earthquakes
(Figure 4).

4. Discussion

4.1. Atmospheric Disturbance Responsible for Free
Oscillations

[11] We have determined the PSD level of air pressure
spectrum �̂ so as to obtain a good match between the
observed and synthetic acceleration spectra � (Table 1).
The PSD level calculated for each of the two cases in Table
1 is shown in Figure 3, which is well among the observed
pressure spectra of atmospherically quiet days. It is perhaps
meaningless to discuss why the agreement is better for quiet
days where the PSD level is an order of magnitude smaller
than the PSD level at the same station on noisy days, in part
because we have grossly approximated air pressure disturb-
ance to be isotropic and homogeneous. The PSD in this
approximation may correspond to one after a spatial average

of pressure fluctuation over a coherent area, which should
be different from the PSD at each observational site.
Similarly, the coherence length in this approximation may
correspond to the one after an azimuthal average, which
should be different from the coherence length measured at
each observational site.
[12] We can calculate the coherence length of atmos-

pheric disturbance and the conversion factor of air mass
effect, using the formulae given in Table 1. The frequency-
dependent conversion factor c( f ) decreases as frequency
increases (from 4 at 1 mHz to 2 at 6 mHz), a tendency
expected if wind pressure becomes more important and
hence air mass loading becomes less significant as fre-
quency increases. The coherence length decreases slowly
as frequency increases from 0.6 (1.0) km at 1 mHz to 0.5
(0.8) km at 6 mHz for the frequency-dependent (fre-
quency-independent) admittance model. Such a tendency
has been reported through observations in a lower fre-
quency range where the coherence length decreases from
about 10 km at 0.4 mHz to about 2 km at 2 mHz [Herron
et al, 1969], showing an f �1 decay of coherent length.
This trend suggests a coherence length of 0.7 km at 6 mHz
in crude agreement with the value obtained in our analysis,
although the frequency dependence is different. We have
to be careful when directly comparing the frequency
dependence of coherence length, however, because we
assumed isotropic and homogeneous disturbance while
observed pressure fluctuations usually move with wind
[Herron et al, 1969].

4.2. Evidence for Coupling With Atmospheric Free
Oscillations

[13] In Figure 5 the observed amplitude of the mode 0S29
is significantly greater than the calculated amplitude, while
the amplitudes of the adjacent modes are all in good
agreement between the observation and calculation. Sim-
ilarly the observed amplitudes of 0S37 and its neighboring
modes are greater than not only those of the adjacent modes,
but also of the calculated amplitudes of 0S37 and its
neighboring modes. The excess amplitudes of these modes
in the background free oscillations have been found for the
first time by Nishida et al. [2000] and have been interpreted
as evidence for the acoustic coupling of free oscillations
between the solid Earth and the atmosphere [Watada, 1995;
Lognonné et al., 1998]. According to Lognonné et al.
[1998] the fundamental modes with degrees 28–29, 34–
37, and 42–44 are coupled with the trapped or partially
trapped atmospheric acoustic modes of the fundamental and
first- and second- higher mode branches in the frequency
windows of 3.68, 4.40–4.65, and 5.07 mHz, respectively.
Clearly, the excess amplitudes Nishida et al. [2000] detected
in the background free oscillations are those in the first two
predicted windows. In addition, Figure 5 indicates an excess
of the observed amplitudes of 0S44 and its neighboring
modes with respect to the calculated modes in the predicted
third window near 5.07 mHz. Thus, the observed back-
ground free oscillations (Figure 5) show the excess ampli-
tudes in all the first three frequency windows in agreement
with the coupling theory between the solid Earth and the
atmosphere. The calculated amplitudes based on our theory
indicate that these excess amplitudes are not due to the
interference of other seismic modes.
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4.3. Comparison With Other Theories

[14] If the interference with other modes is ignored, the
PSD of modal acceleration at frequency wl is approximated,
using equations (21) and (22) and taking into account that
Ql � 1, as

�ðwlÞ ¼ �̂ðwlÞL4ðwlÞ �
4pR2

L2ðwlÞ

� �
2l þ 1

4p
Ql

U2
l ðRÞ
2

� �2
" #

ð26Þ

We multiply (26) with an effective frequency width wl/Ql

[Aki and Richards, 1980, p. 376] and take the square root to
obtain the modal RMS acceleration amplitude:

Al �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂ðwlÞwl

q
L2ðwlÞ �

R

LðwlÞ

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

p ffiffiffiffiffi
Ql

p U2
l ðRÞ
2

� �
ð27Þ

This expression has the form [excitation term] � [Earth

response term]. In the excitation term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂ðwlÞwl

q
is the

RMS amplitude of atmospheric pressure variation in a
frequency band wl around the central frequency wl,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�̂ðwlÞwl

q
L2(wl) represents the RMS amplitude of the

effective force acting on the coherent area, and R/L gives a
one-dimensional measure for the number of coherent areas
over the Earth’s surface. Expression (27) may be compared
to that obtained by Kobayashi and Nishida [1998a, 1998b]:

Al � pH
wH

wl

� �
H2 � R

H

� �
� Ql

4

Ml

� �
ð28Þ

where wH = 2p/tH and tH is the characteristic time of
atmospheric convective circulation, pH the air pressure at
frequency wH and H is the pressure scale height of
atmosphere. These quantities are related to each other as
pH � ra (H/tH)

2 through air density ra. In the excitation
term the RMS amplitude of the effective force is given by
pH (wH/wl) H

2. In the response term Ml is the effective mass
involved in the lth mode oscillation. Kobayashi and Nishida
[1998a, 1998b] evaluated Ml using the approximate relation
Ml � 4p R2 rs ll, where rs is the density of the solid Earth
and ll is the modal wavelength. Using the orthonormality
relation for the radial eigenfunctions (DT, p. 279), the
effective mass may also be defined as

Ml �
R R
0
rsðU2

l þ V 2
l Þ4pr2dr

U2
l ðRÞ þ V 2

l ðRÞ
¼ 4p

U2
l ðRÞ þ V 2

l ðRÞ
ð29Þ

where Vl is the radial eigenfunction for horizontal displace-

ment of the spheroidal oscillations as defined in DT (p.268).

Equation (29) implies an approximate relation:

4

Ml

� U2
l ðRÞ
2

ð30Þ

Thus the Earth response terms in equations (27) and (28) are

almost identical except for the factors
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

p
and

ffiffiffiffi
Q

p
. The

difference of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

p
comes from the fact that equation

(28) is valid for a singlet while equation (27) has been
derived for a multiplet (the 2l + 1 oscillations associated
with a given eigenfrequency wl). Since what we observe are
multiplet peaks, the right-hand side of equation (28) has to
be multiplied by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

p
when it is compared to observa-

tions. The difference in Q arises from the fact that equations
(27) and (28) deal with the response of the Earth to
temporarily random excitation and to coherent excitation,
respectively. For stationary random disturbance, an oscillator
accumulates power in proportion to its life time cycle Q so
that the RMS amplitude is proportional to

ffiffiffiffi
Q

p
. In equation

(28), therefore, Q must be replaced with
ffiffiffiffi
Q

p
.

[15] Our expression (27) may also be compared to that
obtained by Tanimoto [1999]:

Al � kpH
wH

wl

� �
�2ðwlÞ �

R

lðwlÞ

� �

�
ffiffiffiffiffi
Ql

p UlðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

l ðRÞ þ V 2
l ðRÞ

q
2

2
4

3
5 ð31Þ

where k = 46/(2p)
5
2 � 0.46 and l(wl) = H(wH/wl)

3
2

. Note
that we rearranged Tanimoto’s expression as in equation
(31) for ease of comparison with equations (27) and (28). In
the excitation term pH (wH/wl) represents the RMS ampli-
tude of local pressure fluctuation and the RMS amplitude
of the effective force is given by kpH(wH/wl) l2(wl).
Tanimoto and Um [1999] proposed k to be frequency-
dependent such that the above value of 0.46 is the one at
the high frequency limit in a case where two adjustable
parameters take particular values. The constant k was used
by Tanimoto [1999] to explain the observed low-frequency
noise of seismograms below 3 mHz in terms of the Earth’s
free oscillations excited by atmospheric turbulence,
although his view has now been rejected [Tanimoto and
Um, 1999]. The frequency-dependent k was used by
Tanimoto and Um [1999] to explain the observed back-
ground free oscillation amplitudes in a frequency range
from 3 to 7 mHz. The response term in equation (27) and
that in equation (31) have the same Q dependence but
different eigenfunction dependence. The factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

p
is

absent in the latter.
[16] Table 2 summarizes the frequency dependence of air

pressure disturbance for the physical models of Kobayashi
and Nishida [1998a, 1998b] and of Tanimoto [1999] and for
the phenomenological model in the present study. In Table
2, air pressure disturbance is specified by the local pressure
fluctuation at an observational site, the effective force acting
on a coherent area of L2 and the excitation force contribu-
ting directly to the excitation of a modal oscillation. The
local pressure fluctuation in the present study is given on the
observational ground such that its power spectrum follows
the well-known f �2 decay (Figure 3). In the model of

Table 2. Frequency Dependence of Air Pressure Disturbancea

Local Pressure Effective Force Excitation Forceffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂ð f Þf

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂ð f Þf

q
L2( f )

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂ð f Þf

q
L2 R

Lð f Þ

PSD
RMS

Amplitude PSD
RMS

Amplitude PSD
RMS

Amplitude

KN – – f �3 f �1 f �3 f �1

T f �3 f �1 f �9 f �4 f �6 f �
5
2
b

Present study f �2 f �
1
2 f �2.6 f �0.8 f �2.3 f �0.65 c

aKN, Kobayashi and Nishida [1998a, 1998b]; T, Tanimoto [1999]
bBased on our arrangement (31) with constant k.
c In case of constant conversion factor.
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Kobayashi and Nishida [1998a, 1998b] local pressure
fluctuation is assumed to contribute little to background
free oscillations, so this term is blanked in Table 1.
Tanimoto [1999] and Tanimoto and Um [1999] referred to
the Kolmogorov convective turbulence model [Landau and
Lifshitz, 1987] to argue for f �1 decay of the RMS amplitude
of pressure fluctuation. We note that this f �1 decay is an
expression for an observer moving with the mean flow of
fluid and is different from the expression at a fixed point of
observation (see the difference between equations (33.7)
and (33.8) of Landau and Lifshitz [1987]). Observations of
pressure fluctuation are usually made at a fixed point, where
the f �2/3 decay of RMS amplitude, or equivalently the f �7/3

decay of PSD, is the appropriate expression for the Kolmo-
gorov model. In fact, the �7/3 slope of the PSD has often
been referred to as one in the Kolmogorov model of
atmospheric turbulence [e.g., Hauf et al., 1996]. Tanimoto
and Um [1999] analyzed air pressure records to obtain a
result consistent with the well known f �2 decay of PSD
[Gossard, 1960], which is equivalent to the f �1/2 decay of
RMS amplitude. This �1/2 slope of the observed RMS
amplitude is less steep than the �1 slope of the model RMS
amplitude in equation (31).
[17] In Table 2 the frequency dependence of either the

effective force or excitation force in our analysis was
obtained so as to be consistent with the observed ground
acceleration at frequencies below �7 mHz, above which the
observed acceleration spectrum shows a different trend for
reasons not clear at present. Kobayashi and Nishida [1998a,
1998b] derived frequency dependence from a dimensional
analysis of fluctuation of the atmospheric convection cell,
assuming that the cell size is comparable to the pressure
scale height and that the effect of convective eddies with
smaller sizes is insignificant. The frequency dependence of
Tanimoto [1999] and Tanimoto and Um [1999] was
obtained by summing all the contributions from various
wavelength components of turbulent eddies following the
formalism of Goldreich and Keeley [1977] and assuming a
Kolmogorov type of wavelength dependence for pressure
fluctuation. In our phenomenological approach, on the other
hand, we do not use a physical model of turbulence and
hence do not decompose the cross-correlation function (7)
into each wavelength component. Among local pressure,
effective force and excitation force (Table 2), the last
contributes most directly to a modal oscillation. The slope
of PSD of the excitation force is �3, �6 and �2.3 in the
models of Kobayashi and Nishida [1998a, 1998b], Tani-
moto [1999] and the present study, respectively. The exci-
tation force in the model of Tanimoto [1999] decays very
rapidly with increasing frequency as compared to those in
the other two models. Tanimoto and Um [1999] proposed a
frequency-dependent k in equation (31), which makes the
excitation force less strongly frequency-dependent.

5. Conclusion

[18] We have developed a normal mode theory of atmos-
pheric excitation of the Earth’s spheroidal oscillations to
derive the expression that can be directly compared to the
observed spectrum of background free oscillations. The
calculated spectrum exhibits distinct peaks of fundamental
modes and troughs complicated by overtone modes, which

well simulate the peaks and troughs of the observed
spectrum. The observed and calculated spectra are in
marked contrast to the one calculated by assuming that free
oscillations are excited only by earthquakes, not only in
terms of the amplitude level but also in terms of the spectral
behavior. These results clearly rule out the possibility of the
excitation source as being earthquakes in origin and
strongly supports the idea of atmospheric excitation of
background free oscillations proposed by Kobayashi and
Nishida [1998a, 1998b], although the possibility of oceanic
origin remains to be explored. We have also shown that the
observed modal amplitudes of 0S29, 0S37, and 0S44 are
greater than the synthetic amplitudes even if the interference
of other modes is taken into account. The observed excess
amplitudes have to be attributed to the effect of acoustic
coupling between the free oscillations of the solid Earth and
the atmosphere [Nishida et al., 2000]. In order to discuss
this phenomenon quantitatively, the excitation problem
must be solved by viewing the solid Earth and the atmos-
phere as a coupled system and by viewing the force system
as an indigenous source [Watada, 1995; Lognonné et al.,
1998]. Our expression of the background free oscillation
spectrum involves three atmospheric parameters, the air
pressure PSD, the coherence length of pressure fluctuation,
and the pressure-gravity admittance. The latter two quanti-
ties are poorly known in the 1–10 mHz band and are
determined in the present study in order to obtain a good
fit to the observed acceleration spectrum. These quantities
are expected to be determined independently from mete-
orological data in the future.
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Figure 5. Averaged power spectrum of acceleration seismograms in seismically quiet days [Nishida et
al., 2000]. The spectrum is detrended in the frequency range 1.5–5.5 mHz so that it can be compared
directly to the free oscillation term of the synthetic spectrum �( f ) (the first term of equation (23)).
Substraction of the trend component makes the spectrum oscillatory around the zero level at frequencies
below 2 mHz. The synthetic spectrum excluding the overtone modes is also shown. Several fundamental
modes are indicated by their angular order numbers. The subtle undulation of the observed spectrum
especially at the trough part can only be explained by the synthetic spectrum including the overtone
modes.
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