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Two nonlinear models that describe the shoaling of unidirectional surface gravity 
waves are developed. Based on variants of Boussinesq's equations, the models are 
cast as a set of coupled evolution equations for the amplitudes and phases of the 
temporal Fourier modes of the wave field. Triad interactions across the entire wind- 
wave frequency band (0.05-0.25 Hz) provide the mechanism for cross spectral 
energy transfers and modal phase modifications as the waves propagate shoreward 
through the shoaling region (10-3 m depth). 

A field experiment, designed to test the operational validity of the nonlinear 
shoaling models, provided data on wave parameters over a wide range of conditions. 
Three representative data sets illustrating different initial spectral shapes and sub- 
sequent evolutions are compared with predictions of the nonlinear shoaling models 
and linear, finite-depth theory. 

Power spectral comparisons, as well as spectra of coherence and relative phase 
between model predictions and data, indicate that the nonlinear models accurately 
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predict Fourier coefficients of the wave field through the shoaling region for all data 
sets. Differences between the predictions of the various models are related to differences 
in the models' dispersion relations. Although generally inferior to the nonlinear models, 
linear, finite-depth theory accurately predicts Fourier coefficients in regions of physical 
and frequency space where nonlinear evolution of the power spectrum is not observed, 
thus verifying the validity of the linear, finite-depth dispersion relation in limited 
portions of physical and frequency space in the shoaling region. 

1. INTRODUCTION 

As surface gravity waves approach a beach their shapes change dramatically until, in most 

cases, they break. The aim of the work reported here is to develop and test in the field a model 
that describes the transformations that occur as a spectrum of surface gravity waves propagates 
shoreward over a mildly sloping bottom. Although wave breaking and subsequent surf zone 
fluid motions are both visually spectacular and scientifically important for such processes as 
sediment transport, the present work will concentrate on the 'shoaling region', defined here 
to be the area between approximately 10 and 3 m depth, outside and specifically excluding the 
break zone. This shoaling region has a horizontal extent of approximately 300 m at the southern 
California experimental site. In order to be applicable to most field situations, any shoaling 
model must allow for a complicated wave field characterized by a broad, arbitrarily shaped 
frequency spectrum. Some areas, owing to local beach orientation with respect to the larger 
scale coastline or offshore topographic features, require a realistic shoaling model to acconm- 
modate waves incident at a relatively high angle to the bottom contours at the outer edge of 
the shoaling region. The models discussed here allow broad frequency spectra but are restricted 
to waves almost normally incident to a beach with straight, parallel contours, a simplification 
appropriate for the experimental site. 

Linear theory has often been used as the basis for shoaling wave models. Assuming that the 
nonlinear terms in the finite-depth, inviscid, irrotational equations of motion and boundary 
conditions are small, several authors (Hanson I926; Friederichs I948; Stoker 1957; for a review 
see Whitham 1979) have found exact solutions for the case where beach slope hx is given by 
hX = Mn/2N, M and N integers. For the physically interesting case of small bottom slope, 
approximate (W.K.B.) solutions have been obtained on the assumption of no reflected energy. 
These solutions locally satisfy flat-bottom equations; slow changes in wave amplitude and 

phase due to varying depth are obtained by satisfying solubility conditions at the next order 
in an expansion in bottom slope (Chu & Mei I970). The amplitude changes predicted by the 
W.K.B. solutions are of course equal to those obtained by applying conservation of lowest order 

energy flux to the lowest order equations (Rayleigh 91 I). 

Owing to the linear nature of the approximate governing equations used in the above models, 
solutions for motions with differing frequencies can be combined to satisfy arbitrary conditions 
at a given on-offshore point. Slowly varying, linear, finite-depth theory is roughly consistent 

(to the 20 % level) with observations of r.m.s. shoaling wave heights, but some spectral features 
are apparently due to nonlinear effects (Guza & Thornton I980). It seems intuitively clear 
that the processes immediately preceding wave breaking are essentially nonlinear. As there are 
well known techniques for incorporating at least weak nonlinearity into a physical problem, 
attention has naturally turned toward the nonlinear aspects of wave shoaling. 

Considerable effort has been expended in attempts to use Stokes-type perturbation expan- 
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sions on the full, finite-depth equations of motion and boundary conditions for waves propagat- 
ing over a sloping bottom (Skjelbreia & Hendrickson 1960; LeMehaute & Webb 1964; Chu 
& Mei i970). Most authors expand the dependent variables in a small parameter equivalent 
to the Ursell number aA2/h3 (where a is a typical sea-surface elevation, A a horizontal length 
scale, and h a typical depth), while Chu & Mei expand in both Ursell number and bottom 

slope. Temporally periodic solutions composed of the primary wave and its forced harmonics 
are found, locally equivalent to the classic Stokes (I847) solution for the case of a flat bottom. 

Although the double expansion of Chu & Mei is an exception, bottom slope is generally 
considered to be of a higher order than that to which the expansions are carried; W.K.B. 

'energy flux' arguments are applied as in the linear theory, and results are found in which 

varying depth leads to spatially varying amplitudes of the primary and harmonics. In order 
for the solutions to remain consistent, the forced harmonics cannot grow to be larger than, or 
even comparable with, the fundamental. Solutions are steady in the sense that the amplitudes 
of the fundamental and its harmonics would not change in the absence of the sloping bottom. 

The necessity of the Ursell number remaining small in order to justify low-order truncation 
of the series expansion is a particularly stringent restriction for long waves characteristic of 
those found in the shoaling legion. The applicability of slowly varying Stokes theory as a 
realistic model of wave shoaling is thus suspect. Fortunately, shallow water approximations to 
the equations of motion can be derived and have been found to be exceptionally tractable. 
In the limit of very long waves, the classic shallow water equations (Airy I845; Stoker I957) 
can be used. Carrier & Greenspan (1958) found an exact solution to these equations for the 

purely reflective problem of non-breaking waves on a sloping beach. However, Ursell (1953) 
had demonstrated that just as the near-linear Stokes-type perturbation solutions were valid 

only for aA2/h3 < 1, so the classic shallow water equations were valid only for aA2/h3 > 1. 
Parameters typical of wind waves in the shoaling region lead to Ursell numbers that are 0(1). 

Boussinesq (I87I) derived a set of evolution equations that contained terms accounting for 
weak dispersion due to finite depth, and weak nonlinearity due to finite amplitude. Korteweg 
& deVries (I895) followed with a single equation (the K. de V. equation) describing a similar 

system supporting unidirectional wave motion only. These two sets of equations are valid in 
thLe regime where the Ursell number is 0(1). Boussinesq and Korteweg & deVries obtained 
exact solutions of their respective equations that described waves of permanent form propaga- 
ting in water of constant depth. Considerable effort in the last two decades has been devoted 
to exploring the limits and applicability of the Boussinesq and K. de V. equations, which not 

only admit exact solutions, but also appear to model quantitatively many aspects of long wave 

propagation in laboratory tanks. Starting with Peregrine's (1967) derivation of Boussinesq's 
equations for mild bottom slope, many authors have conducted extensive experimental and 
numerical studies of the development and eventual fate of solitary and cnoidal waves propaga- 
ting over varying bottom topography (see Miles's i980 review). Stiassnie & Peregrine (1980) 
and Flick et al. (1981) partly match Stokes-type predictions to those of solitary-cnoidal wave 
theories to describe the shoaling of monochromatic waves from deep water to shallow depths 
near the break zone. James (I974) similarly matched Stokes waves to 'hyperbolic waves' 

(more tractable approximations to cnoidal waves). However, because of the rather restricted 
initial and boundary conditions required for the exact solutions of Boussinesq- or K. de V.-type 
equations, it is not clear that detailed studies of these solutions will lead to general shoaling 
models for surface gravity waves. 

1-2 
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Field observations occasionally show incoming wave energy to be concentrated in a narrow 
band of frequencies and directions. In such cases, the basically monochromatic assumptions 
about the nature of the wave field inherent in Stokes and solitary-cnoidal wave shoaling 
theories are not primafacie violated. However, wave spectra measured at the seaward edge of 
the shoaling region are often broad, or contain multiple peaks (not harmonics). Following the 

suggestion of Phillips (i 960) that energy could be transferred between deep water gravity waves 
of different frequencies and directions, Hasselmann (1962, 1963, 1966) developed a model for 
nonlinear resonant transfers in a general, continuous spectrum of deep water waves. Much 
additional work followed on this essentially statistical problem (Benney & Saffman 1966; 
Newell 1968; Willebrand I975; Longuet-Higgins 1976; Herterich & Hasselmann I980). Such 
work has demonstrated that the quartet resonance mechanism can indeed cause significant 
changes in the spectrum of the wave field over distances of several hundred kilometres or more. 

Importantly, although details of the evolution depend on the spectrum, the models themselves 
do not require a specific initial spectral shape. 

Armstrong et al. (I962) and Bretherton (1964) introduced the concept of 'near resonance' 
in weakly nonlinear systems with discrete spectra. They showed that, on moderate length or 
time scales, significant cross-spectral energy transfers and modal phase modifications could 
take place if the resonance conditions were only approximately satisfied. Mei & Unluata 

(I972) and Bryant (1973) demonstrated that Boussinesq-type equations for long waves pro- 
pagating over a flat bottom support near resonant interactions at second (quadratic) order. 
Because the near resonance in the long wave solutions occurs at lower order than does the 
exact (cubic) resonance for deep water gravity waves, significant energy transfers and phase 
modifications can take place in several hundred meters in shallow water rather than the many 
kilometres necessary in deep water. 

In ? 2 of this work two nonlinear models for the evolution of the wave field in the shoaling 
region are developed, based on sloping bottom Boussinesq-type equations. The mechanism 
for the shoaling transformation is seen to be nonlinear triad interactions across the entire wind 
wave frequency band. The models predict both cross-spectral energy transfers and nonlinear 
modal phase changes. In ?3 a field experiment is described in which detailed measurements 
of wave parameters were collected throughout the shoaling region. Measurements are com- 

pared with model predictions for a variety of wave conditions in ?4, and further discussion 
and conclusions appear in ? 5. 

2. THEORY 

In this section we derive equations for the evolution of the amplitudes and phases of inviscid, 
irrotational, wind waves propagating shoreward over slowly varying, impermeable topography. 
The rate equations are a consequence of near resonant triad interactions allowed by the 

governing, Boussinesq-type master equations. 
To justify the use of shallow water equations, periodic solutions are first found for the special 

case of linear waves over a flat bottom of arbitrary depth. The dispersion relation obtained 
indicates that for motions in the wind wave frequency band defined here as 0.05-0.25 Hz, 
wavelengths are large compared with the water depth almost everywhere in the shoaling region. 
This motivates the use of a simplified set of nonlinear equations of motion valid only for such 

long waves. Small-amplitude solutions of these equations yield a dispersion relation which is 
at most mildly dispersive. We show that such a system supports weakly nonlinear triad inter- 
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actions, resulting in slow variations of the amplitudes and the phases of lowest order solutions. 
Two-scale methods are used to solve the nonlinear, long wave equations; at lowest order, the 
linear, flat bottom dispersion relation is obtained as well as a relation between sea-surface 
elevation and velocity potential. Carrying the solution to next order yields equations for the 
on-offshore evolution of lowest order amplitudes and phases. 

(a) The equations of motion 

The equations of motion and boundary conditions for the one-dimensional, irrotational 
motion of an inviscid, incompressible fluid over an impermeable bottom are well known: 

V"~ = O, -h(x) < z < y(x, t), (la) 

= -h=S z -h(x), ( b) 

vt + (x LOx) -& = 0, z = (X, t), (lc) 

gr +t+ (0 + 1) = 0, z = (x, t), (ld) 
where V2 = 62/aX2 + 2/8z2, -h(x) is the bottom, q(x, t) is the free surface, and 0(x, z, t) is 
the velocity potential. (See figure I for a definitional sketch.) It is possible (Stokes I847) to 

z 
A 

X z=r(x,t) 

~----~- 1 X 

4(X,t) 

z- z=-h(x) 

FIGURE 1. Definitional sketch and coordinate system. 

nondimensionalize, expand, and scale the system (1) such that the nonlinear terms in the 
surface boundary conditions (1c) and (Id) differ from the other terms by the factor ao/A0, 
where ao is a typical sea-surface elevation and Ao a horizontal scale of motion. If ao/A0 and the 
bottom slope hx are small, then a solution of the lowest order equations is 

= a cos (kx - t), (2 a) 

ga cosh k(z + h) ga coshk(z+h) sin (kx- ot), (2b) o cosh (kh) 
2 = gk tanh (kh). (2 c) 

Evaluation of the dispersion relation (2c) shows that in 10 m depth (at the outer edge of the 
experimental shoaling region), even short wind waves of period 4 s have a wavelength greater 
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than twice the water depth. Ursell (I953) pointed out that for waves long compared with the 

depth, the common Stokes-type expansion and linearization leading to (2) is valid only when 

ao Al/h < 1 (where ho is a typical depth). It is clear that the requirement that the Ursell 
number, aoA2/h3, remain small will invalidate the solutions (2) in shallow water except for the 
smallest amplitude wind waves. 

This severe constraint on wave amplitudes can be relaxed if it is assumed a priori that the 

depth is small. The derivations of equations for finite-amplitude long waves were originally 
given by Boussinesq (I87I) and Korteweg & deVries (I895), and later put on firmer formal 

ground by Friederichs (I948) and Keller (I948). The formal derivations begin by non- 

dimensionalizing and scaling the horizontal and vertical coordinates in (1) differently. The 

dependent variables are then expanded in a power series in (ho/Ao)2 and (a0/h0). Boussinesq's 
equations are obtained by retaining terms up to first order in each of these parameters, thus 

modelling the effects of both weak dispersion and weak nonlinearity. These equations admit 
exact solutions corresponding to waves of permanent form, the so-called cnoidal and solitary 
waves. Generalizations of Boussinesq's and the K. de V. equations to include the effects of 

sloping bottoms were obtained by Mei & LeMehaute (I966), Peregrine (I967), Ostrovskiy & 

Pelinovskiy (I970), Grimshaw (I970), andJohnson (I973). Svendsen & Hansen (I978) discuss 
the bottom slope magnitudes for which the equations can be expected to remain valid models 
of the physical system from which they were derived. Although the solitary and cnoidal wave 
literature is extensive, to our knowledge no analytical or numerical work has been done per- 
taining to the transformation, on a sloping bottom, of temporally periodic waveforms of 

arbitrary spectral shape. 
Boussinesq's equations for waves over a mildly sloping bottom have been derived by Peregrine 

(I967) and Grimshaw (I970). In dimensional coordinates, the equations can be written 

gyx + t+0 2 + zt^=z - h2Xzt2 (3 a) 

,+ t + (hx)x + (x)=x- 0, (3 b) 

where q is depth-averaged velocity potential. As there are no explicit restrictions on the applic- 
ability of (3) as equations for wind waves in the shoaling region, a few comments are warranted. 

First, equations (3) are good approximations to (1) only for the case of long waves of moderate 

nonlinearity 0((ho/A) 2) - (aO/h) < 1. 

Even if the above conditions on the parameters of the solution are valid, the equations cannot 
be considered a valid model for all values of the independent variables; terms of formal order 

(ho/Ao)4, (a0/h0)2, etc., which were neglected in the derivation of (3) may have 0(1) effects on 
the solution over nondimensional times and distances 0((ho/A) -4, (ao/ho)-2). Additionally, the 

neglected terms can be viewed as adding errors of their order into any local solution. Exact 
solutions of the approximate equations cannot be expected to be exact solutions of the full 

equations of motion obeyed by a real system, nor are they exact solutions of the approximate 
but more complete equations (1). It is thus wholly consistent with the derivation of approxi- 
mate equations to pursue approximate solutions (which have a more obviously limited validity) 
in an attempt to model specific phenomena. This is true even when, as in the present case, 
exact solutions of the approximate equations can be obtained for a limited class of initial and 

boundary conditions. 
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(b) A consistent shoaling model 

The equations (3) can be recast as a set of approximate equations describing the spatial 
evolution of Fourier modes of the wave field. The resulting equations are valid for a wave field 
that is everywhere periodic in time in a region of extent large compared to a typical wavelength, 
but no larger than the a priori limits on the validity of (3) discussed above. In the following, 
the implicit assumption (ho/AO)2 (ao/h0) used in the derivation of (3) is made explicit upon 
re-scaling by the substitution , = pc (where p = 0(1) is the inverse of the Ursell number 
and a, /f represent the order of nonlinear and dispersive terms, respectively). Mild and slowly 
varying bottom slope is made explicit by the assumption h = h(xx); then dnh/dx7 = O(ao). 
The equations in non-dimensional form then become 

x + ~t - ?poah2.t + a(2)x = O, t + %(^h)x + x(qx)x = 0. (4a, b) 

Before embarking on the protracted algebra required for a perturbation-type solution, it is 
instructive to investigate the lowest order form of (4) obtained by setting a = 0: 

Vt+Y = 0; Vt+hx = o. (5a, b) 

This set is just the linear shallow water equations for constant depth (Stoker I 957) Periodic 
solutions of (5) of the form 

a = a cos (kx - tt + A), = Q sin (kx -rt + A), (6a, b) 

yield the relations 

Q = a/la, k = r/lh. (7a, b) 

The linear dependence of k on cr in the dispersion relation (7b) reflects the well known fact 
that linear waves in extremely shallow water are non-dispersive, with all frequencies propagating 
at a uniform phase speed that depends only on the (non-dimensional) depth. It must be em- 

phasized, however, that the governing equations (4) explicitly contain terms representing weak 

dispersion (- ?pcPh2xxxt) as well as weak nonlinearity (a(Wx2), ac(yx)x). These terms appear 
at next order, and there arises the possibility of either nonlinearly generated forced waves or 
resonant triads. 

Second order forced waves are caused by nonlinear interactions among lowest order free 
waves resulting in time and space periodicities that are incommensurate with the lowest order 

dispersion relation. Forced wave amplitudes are constrained to be always small, of O(c). 
Nonlinear forcing of lowest order free modes results if the conditions 

+? o+- 0-2 - r = , ? kl+k2-k3 = 0, (8a,b) 

are satisfied, where each (r,, kn) pair satisfies the lowest order dispersion relation. Clearly, if 
motion is unidirectional and the lowest order waves are not dispersive, (8a) and (8b) are not 

independent constraints. This is the case for the dispersion relation (7b), and thus nonlinear 
triad interactions governed by (4) must occur between all modes. The salient features of these 
resonant triad interactions are: 

(i) 0(1) energy can be slowly (on length scales large compared with wavelengths) trans- 
ferred between interacting modes; 

(ii) similarly and simultaneously, slow phase shifts (equivalent to small changes in the 

phase speeds) can occur among interacting modes. The scales on which significant nonlinear 

energy or phase changes can occur is 0(ca-), where a is the (small) measure of the size of the 

7 



M. H. FREILICH AND R. T. GUZA 

nonlinear terms (Bretherton 1964; Phillips I977). Bretherton (1964) and Armstrong et al. 

(1962) used methods similar to the two-scale technique of Krylov & Bogoliubov (see Minorsky 
1974 or Cole I968) to obtain asymptotic solutions that describe isolated resonant triads. In 
the following, similar techniques will be employed to derive approximate solutions of (4). 

We expand the dependent variables I, in a power series in a: 

+ = ~1+ -02+-..., + = ]1+a-42+2- .... (9a, b) 

The solution will be carried only as far as the first term in each expansion. Anticipating non- 
linear triad interactions, we shall allow parameters of the solutions 51, , to vary slowly with x. 

Specifically, we assume solutions of the form 

01 = z Qn(x) sin (In(x) -oat), 1, = a,(x) cos (UI (x) -ont), (10a, b) 
n n 

where (on = nAor, and Qn, an are functions of the slow space variable a = cx (similar to h = h(cx)) 
such that 

di a i 
an + 0(ai+l) dx Qn di 

The spatial phase function Vf,i(x) has both 0(1) derivatives (corresponding to the basic wave 
motion itself) and higher order derivatives (slow phase changes arising from both the sloping 
bottom and the anticipated effects of nonlinear interactions): 

d 
dx g(x) = kn () +aTn()+0 ?(2), (12a) 

d2 d k(x) = c - ) + (0a2). (12b) dx2 d 

When (10)-(12) are substituted into (4), the lowest order relations (7) are obtained. Higher- 
order solutions are more compactly pursued if (7a) and (7b) are cross-differentiated and sub- 
tracted to eliminate linear terms containing y: 

- - ltt-^ xx-1^ 20xxtt+ la )xt- 2ahgz- )xx = 0. (13) 

Substitution of (10)-(12) into (13) yields, at O(a), 

S {Q~n(3hk2-aon) + Qn kn(3hkn + 2hgkn) sin O + E {QnTn(3hk2-_r2) - ph2Q_ k3 2} COS 2 

n n 

+ 2 E z Qj Qmkm(kj + km) {lkj(Oj + Om) + Oi(kj + km)} cos (Oj + Om) 
j m 

+ Y E E Qj Qmkm(kj - km) {kj( - m) + oj(kj - km)} cos (i - Om) = Q(~2), (14) 
j m 

where 0q = (q - orqt) and Q is the linear operator 

Q = (a3/axat2- ha3/a3). 

If all waves are unidirectional, then (7b) can be used to eliminate k. The technique of Krylov 
& Bogoliubov, essentially a solubility constraint, requires that q2 does not contain time periodi- 
cities common to 5,. Since the sums in (14) are taken over all (positive) frequencies, 52 can 
thus be set identically equal to zero. Then, applying the condition (8a), assuming unidirec- 
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tionality, and making use of the fact that all frequencies are harmonics of a small frequency 
Aor, we obtain 

{2Qn,-2 + Qn(_-2 hh/h)} sin On +E Qnc-2{2Tn - phin} cos 
n n 

= - h-I S Q Qj (n-j) c-(n-j) o - sin (0+ + O(n-j)) 
j m 

-;h14 , Qj Qi n)O C ' (j-n) n sin ( - (j-n)) (15) 
j m 

E:xpanding the arguments 0y? + O(n-j)) adding and subtracting En, and equating like frequencies, 
we obtain two evolution equations for each mode: 

Qn = -l Qn + Ih-I E {Q Q(n- j) -ci c-(n sin ( I + (n-j) - n) 

+ QQ(j+n) ca(j+n) sin (I(j+n- V) - Vn)}; (16a) 

Tn = J-phi -a - - h-i z {Qj Q(nj) an-j) sin (V'j + _(n-,)- -n) 6 
8Q'sn J 

+ Qj Q(j-n) -j iO-n) sin (Y - V (jn) - n) 
+ Qj Q(ji+n) -i (+n) sin ('j+n) - V) j _ 2V')}. (16 b) 

I'he problem is thus reduced to solving the system (16) (hereafter referred to as the c.s.m. 

(consistent shoaling model)) of coupled, first order, ordinary differential equations for modal 

amplitudes and phases. 
If it is assumed that all energy in the shoaling region is propagating shoreward (thus neg- 

lecting reflection in the shoaling region), knowledge of the Fourier coefficients of sea-surface 
elevation and velocity potential at a single on-offshore location provides a sufficient boundary 
condition for the solution of the evolution equations. Boundary conditions of the form 

1i(0, t) -= Qn cos (An + t), (1 7 a) 
n 

q1(0, t) = an cos (An + -nt), (17c) n 

n - nAcr, (17c) 

can be used to set the integration constants Qn(O), 'n(0O). The solution 0 = 01+0(c2) is a 
first-order solution uniformly valid over a horizontal extent 0(cx-'). For larger horizontal 
distances, the cumulative effects of the neglected derivative terms 

dxn T dn4 [T], n > 2, 

are expected to invalidate the solution. Furthermore, terms of this formal order have been 
omitted from the basic equations (3) so that higher-order solutions are pointless unless higher- 
order versions of (3) are properly derived. 

Some physical meaning can be given each of the terms on the right sides of the c.s.m. The 
first term of (16a) has the form of 'linear shoaling', that is, the result obtained from a W.K.B. 
treatment of the linear equations (5) on a mildly sloping bottom. It is present because of the 
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assumption that bottom slope is O(ac). If bottom slope was deemed of higher order, the term 
would not appear in these equations, but would appear in a higher-order solution. 

The first term of (16b) models the effect of O(x) dispersion. The term represents an increase 
in phase speed that is dependent weakly on depth and strongly on frequency, and is precisely 
the first correction to an expansion of the linear, finite-depth dispersion relation (2c) for 
small kh. 

The remaining terms in the c.s.m. are due to nonlinear triad interactions. Since they are a 
sum over all possible interactions in which a given mode cn participate, they represent the 
net rate of change of modal amplitude and phase. Viewed heuristically, a mode can be parti- 
cipating simultaneously in some triads in which it is gaining energy and in others in which it 
is losing energy. The ordering criterion of slow modal amplitude and phase changes must be 
satisfied for both the net changes and each individual triad interaction (Holloway 1080). 
Each of the interaction terms is composed of a quadratic product of amplitudes, a coupling 
coefficient, and a trigonometric term whose argument is a function of spatial phases only. 
For the evolution of phases (16b), the terms are further divided by the amplitude of the mode 
of interest. Phases thus have 'amplitude inertia' in that modes with small amplitude will tend 
to experience larger phase shifts, because of nonlinear interactions, than will larger amplitude 
modes (all else remaining equal). Note that if the dimensionless amplitude of any mode is 

initially 0 (a) and remains small for many interaction lengths, the formal ordering scheme is 

technically violated. Such a situation occurs for initial conditions described by very narrow- 
banded power spectra. In such cases, models similar to (16) predict only small, nonlinearly 
induced changes in the amplitudes and phases of modes whose frequencies are not near har- 
monics of the spectral peak. Although inclusion of small amplitude modes in 0 (O) rate equations 
such as the c.s.m. is not formally justified, comparisons between measured data and the formally 
inconsistent predictions of the c.s.m. are seen to be remarkably good (see ?4 (b)). 

The coupling coefficients depend neither on the amplitudes nor on the phases of the inter- 

acting modes, but are functions of their frequencies, wavenumbers, and the local depth. For 
a given triad, the value of the coupling coefficient increases with decreasing depth. 

The trigonometric term modulates the amplitude and phase changes according to the rela- 
tive spatial phases of the three waves composing a given triad. At a position x = D' the relative 

phase can be written 

!PiY?(n)-Jo ax' 
? 1+?(n-j) -n) dx' + ( (j)(0)? +?() (0) - (0) 

Use of the definition (12a) and the dispersion relation results in 

' ? V?(n-j)-n = a (Tj ? T?(n_j)- T,) dx?+ !ij(O) + J'?(n-j)(O) - 3'(0). (18) 

The importance of nonlinear phase changes over large distances is manifest in the integral on 
the right of (18). Although the integrand is formally O(ax), if D' is 0O(a-l), the integral contri- 
butes an 0(1) amount to the relative phase. This affects both the magnitudes and signs of the 

amplitude and phase changes undergone by the interacting modes. Effects of the linear dis- 

persion term in (16b) are also expressed through the trigonometric modulation term. Disper- 
sion causes the phases of higher frequency modes to vary more rapidly with x than those of 
low frequency modes. The relative phase of a triad that contains high frequency modes will 
thus oscillate more rapidly than one that contains only relatively low frequency modes. 

10 
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Consequently, the value and sign of the trigonometric term will change more quickly for the 
triad containing high frequencies, and net (over a scale D' = 0(a-1)) energy transfers and 

phase modulations will be smaller. 

(c) A dispersive shoaling model 

The dimensional equations (3) can alternatively be non-dimensionalized and scaled by 

x' hox; t' = (ho/g)t; y' = aor; ' = ao(gh)i ; h' = h,h, (19) 

which yields 
At + ^e(~}). + +V - ehh xxt- ^h xxt = 0, (20a) 

t + eh 0x + h^xx, + xe()x= 0, (20 b) 

where e = ao/h0 < 1 and the bottom slope is 0(e). This set of equations, used by Mei & 

UTnluata (I972) (the non-dimensionalization and scaling was apparently used implicitly by 
Peregrine (1972) in deriving his 'linearized Boussinesq equations') has only the nonlinear 
terms explicitly small; the dispersive term h2xxxt is formally of lowest order. The equations 
for e = 0 yield the counterpart of (7), 

Q = a-/hk2, k = (o/h) (1 - lho2)-i. (21a, b) 

The wavenumber k is no longer a linear function of o-. However, if 'ho2 < 1, (21b) can be 

expanded and truncated to 

k = (o'/h) (1 + lhc2 + O(h2/4)), 

and the leading term is just shallow water dispersion. In terms of dimensional coordinates, 
the restriction 'ho2 < 1 is not very severe for the physical shoaling problem: hao2 = 0.3 

corresponds to a wave period of about 6 s in 10 m depth, 4 s in 5 m depth, and a value of 

(h/A)2 (P/ of the previous discussion) of about 0.04. Thus although the system (20) formally 
has lowest order dispersion, the dispersion is mild for the wavelengths and frequencies en- 
countered in the physical shoaling problem. In the following analysis we shall ignore the 
formal ordering problems associated with the fact that, with the present scaling, realistic 
values of o and k will be small, and we will use the full dispersion relation (21b). Similar 
selective failure to neglect high order terms is not uncommon in the literature (see, for example, 
Grimshaw I970; Bryant i973), and occasionally has led to erroneous conclusions (cf.Johnson's 
(1973) comments regarding Grimshaw i970). In ??4 and 5 we shall present experimental evi- 
dence suggesting that the major differences between a shoaling model derived from (20) and the 
c.s.m. derived from (4) are attributable to differences in linear dispersion relations. Linear, 

finite-depth theory will be seen to yield the best predictions of power and relative phase 
spectra in the regions of physical and frequency space where differences between the two non- 
linear models are most apparent. As the linear dispersion relation (21 b) is a better model of 

thle finite-depth relation (2c) than is (7b), equations (21) will in fact be seen to provide a 

slightly better model for predictions of power spectra of sea-surface elevation than the more 

formally consistent equations (4). 
Armstrong et al. (1962) and Bretherton (I964) showed that a system such as (21), with only 

mild lowest order dispersion, can be treated analytically by the methods described earlier for 

exactly resonant systems. Monotonic dispersion prohibits (in general) any triad from satisfying 
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both conditions (8) exactly. However, if the lowest order dispersion is mild, (8) can be satisfied 
with only small error by some triads. The conditions for this 'near resonance' are: 

+ O-?2 
-+ k 2-k-3 = 5k, +, k k- = k O(e). (22a,b,c) 

The formalism of (9)-(16) can easily be carried through (in the present case, 6, = 0); the 

resulting evolution equations are: 

Qnk2h 1 
Qn = 4- " + 4- Qj Q(n-j) F(kj k(n-j, j, n) sin (4j + VJ(n-j)- n) 

?^n 4 n j 

+ 
I 

: Qj Q(j-n) r(kj, - k(_n), j, n) sin (fj - (-n)- n) 

1 
+ X E Qj Q(j+n)(k(j+), - k, , n) sin ((j+n) -j - n2); (23a) 

T= - 
14Q, E Q Q(n_-)F(kj, k(,nj),j, n) sin (fj + (n-j) 

- n) 

-4Q2 o E QjQ(J_n)(kj, -k(j_n),j, 
n) sin (~-h(j_n)-- hun) 

4- 4Q 
2 

Qj Q(j+n) (kj+n), -kj, j, n) sin ( -(j+n)- - tn-); (23 b) 

where F(kl, k2, j, n) Ik,k2l(k +k2) {h(kj/oj) (k, + k2) + -}. Equations (23) will be called 
the d.s.m. (dispersive shoaling model); they can be simplified and the coupling coefficients 
made symmetric by omitting terms of 0(4k = e). The physical explanation of most terms is 
the same as for the c.s.m. However, (23b) lacks a second-order phase shift term (the first term 
on the right side of (16b)). The mild dispersiveness introduced by the term in (16b) is incor- 

porated in the d.s.m. through the full dispersion relation (21 b). The arguments of the trigono- 
metric modulation terms are now given by 

j ? -?(n-j) 
- jn= f o (kj ? k+(n_j 

- kn) dx 

Do 
+ f (Tj + T?(n_j)-Tn) dx+ ~j(O) + ?(n-j)(O) - n(0). (24) 

From (22b), (k ? k?(-,_j) -kn) = 0(c); on a flat or mildly sloping bottom where the wave- 
numbers are only slowly varying functions of x, the effect of the mismatch in the resonance 
condition is to introduce slow changes in the relative phase of the triad similar to the linear 

phase shift term in the c.s.m. The larger the mismatch, the more rapid are the relative phase 
oscillations. Since the deviation from linearity of the dispersion relation (and hence the mis- 

match) is more pronounced at high frequencies, net energy transfers and phase changes are 

expected to be small for triads containing high frequency modes. It is thus reasonable to 

suppose that a high frequency cutoff in the sums (11) is possible; as long as it is sufficiently 

high, the exact cutoff frequency is not critical (Bretherton I964). Of course, as depth decreases, 
the linear modes become more non-dispersive in character. In the limit of extremely small 

depth, all modes have vanishing mismatch, and the cutoff frequency must be extremely high 

(cf. Nayfeh I98 ). In this limit, however, both the governing equations (3) and the perturbation- 
solution techniques are inappropriate and should be replaced by the nonlinear shallow water 

equations and one of the many techniques for obtaining approximate solutions of hyperbolic 
equations (Whitham I974; Nayfeh 1981). 
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Neither the c.s.m. nor the d.s.m. have known analytic solutions. If the depth is constant 
and only a single resonant triad is considered, Armstrong et al. (1962) and Bretherton (I964) 
show that solutions exist in which modal amplitude and phase variations are described by 
Jacobi elliptic functions. These solutions are applicable to a system composed of many discrete 
modes only when e (and hence 6k = O(e)) is so small that any given mode participates in at 
most a single near resonant triad (Bretherton 1964). This is clearly not the case for shoaling 
surface gravity waves. The evolution equations must thus be integrated numerically. 

In the present study we have implemented a numerical scheme known as 'repeated extra- 

I)olation to the limit' due to Gragg (I963) and Bulirsch & Stoer (1966) (see Stoer (1972) 
for a review of extrapolation methods and improvements on the original algorithms). The 

algorithm is both efficient and highly accurate and is easily modified to accommodate large 
numbers of coupled equations. We have performed extensive testing and have verified the 

accuracy and consistency of the numerical scheme for the evolution equations given above. 
In addition, we have monitored the conservation of lowest-order energy flux for all integra- 
tions; in no case did total (spectrally integrated) lowest order energy flux vary by more than 
0.01 % in the course of any integration through the entire shoaling region. 

3. EXPERIMENT 

A field experiment to measure the wave parameters of sea-surface elevation, pressure, and 
horizontal velocity was undertaken at Torrey Pines Beach, California, during the summer and 
autumn of 1980. The primary goal of the field work was to determine the operational validity 
of the one-dimensional shoaling models developed in the previous section. However, the dearth 
of existing quantitative wave measurements in the shoaling region motivated an extension of 

purpose. The experiment was also designed to provide a comprehensive, quantitative descrip- 
tion of wave-induced fluid motions throughout the shoaling region, with the hope that the 
data would be useful for testing future shoaling theories. To this end, the on-offshore measure- 
ments were extended beyond the defined shoaling region (10 m-3 m depth), and two, two- 
dimensional arrays of instruments were established at different depths to allow measurements 
of wave frequency-directional spectra. 

This section describes the experimental site and instrumentation, experiment design and 
sensor placement, and data acquisition and reduction. 

(a) Site and instrumentation 

Torrey Pines Beach, California, has been the site of numerous nearshore field experiments 
(Pawka et al. 1976; Aubrey 1978; Gable 1979; Inman et al. 1980). Located approximately 
3 km north of Scripps Pier, it is readily accessible both by small boat and four-wheel-drive 
vehicle. The bathymetry is relatively homogeneous in the longshore direction, with contours 

aligned on a heading of approximately 353.5? true. The beach is composed of fine, quartz 
sand (mean diameter 0.17 mm) and has a nearly constant slope of 2.2 % through the shoaling 
region. Extensive studies of the wave climate at the site were reported by Pawka et al. (1976) 
and Pawka (1982). 

Twenty-eight channels of wave data were obtained from three types of instruments: 10 

pressure sensors, 5 dual-axis electromagnetic current meters, and 8 surface-piercing resistance 
wavestaffs. The pressure sensors used were of the strain gauge type, predominately Statham 
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model PA 506-33 (a limited number of Transducer, Inc. no. 5AP-69F-50 were also used). The 

pressure sensors were extremely durable and easy to install and maintain when mounted in 
the standard configuration, approximately 25 cm above the bottom. Previous experience had 
shown them to be highly linear and virtually drift-free over long periods of time and under 

varying ocean conditions. 
The linearized form of Bernoulli's equation can be used to relate pressure signals directly 

to sea-surface elevation or horizontal current speed when finite-amplitude effects are locally 
small. Pawka et al. (1976) and Guza & Thornton (1980) present comparisons between esti- 
mates of wave parameters derived from co-located pressure sensors, wavestaffs, and current 
meters throughout the shoaling region and surf zone. In most cases reported, agreement 
between pressure-derived estimates of sea-surface elevation and direct measurements was well 
within 10% in amplitude across the entire wind wave frequency band. The agreement was 

virtually independent of spectral shape, total variance, and on offshore-position, with the 

exception of the region close to the onset of breaking. In place of the linearized Bernoulli 

equation, the relations obtained from the linearized Boussinesq equations can be used with 

comparable results everywhere except at frequencies greater than 0.17 Hz in water deeper than 
9 m. (The discrepancy in these regions arises from the breakdown of the long wave assumptions 
inherent in the derivation of the Boussinesq equations.) The linear, finite-depth theory 
(Bernoulli's equation) was used in the present study to provide sea-surface elevation estimates 
from bottom pressure measurements. 

The current meters used were Marsh-McBirney no. 512 dual axis, electromagnetic current 
meters. The instruments measure two orthogonal components of velocity. In this experiment, 
the sensing elements were placed approximately 1 m above the bottom, and the longshore and 
on-offshore components of horizontal velocity were measured. Although they are rugged and 

durable, there is considerable uncertainty about the response of the instruments to a broad- 
banded wave field (Lavelle et al. I978; Cunningham et al. 1979). Uncertainty in orientation 

(about 5? in all directions) further degraded the current meter data. The performance of the 
meters was a disappointment throughout the course of the experiment. Apparent gain reduc- 
tions of up to 30 % were observed to occur over immersion periods of about one month. The 

changes became apparent only when new, dry meters were substituted for ones that had been 
under water for some time. Because of the questionable gains, it was decided to ignore all 
current meter data for the comparisons with the shoaling models presented here. Since various 

types of instruments were intermingled on the on-offshore line, the loss of all current meter 
data was not catastrophic. It did, however, seriously affect the high frequency aliasing charac- 
teristics of the directional arrays discussed below. 

The wavestaffs used were similar to those described in Flick et al. (1979) and consisted of 
twin nichrome resistance wires supported vertically by a fiberglass pole 5 m long. The staffs 
are useful for direct measurements of sea-surface elevations in mean depths shallower than 

about 6 m. As with the pressure sensors, considerable field testing has shown these instruments 

to be linear and stable, with excellent high frequency response to 10 Hz. 

(b) Experiment design and sensor placement 

Quantitative comparison of the one-dimensional shoaling models' predictions with data 

required instrumentation of an on-offshore transect through the shoaling region, approximately 
300 m in horizontal extent. Based on the results of Guza & Thornton (1980), spatial coverage 
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was maximized by placing only a single instrument at each on-offshore location; the linear, 

finite-depth relations were used to transform locally from the measured variable to the wave 
variable of interest on a frequency band-by-band basis. 

Previous data obtained on the same beach in November, 1978 (Gable I979; Guza & 
Thornton I980), as well as casual observation, indicated that the evolution of the wave field 
became pronounced in shallow water, as opposed to rather mild evolution observed near the 

deeper, seaward edge of the shoaling region. This is entirely consistent with the forms of the 
c.s.m. and d.s.m., in which modal amplitudes, coupling coefficients, and closeness to resonance 
all increase with decreasing depth. Thus, rather than sampling evenly along the on-offshore 

transect, the density of instruments was greater in shallow water, primarily at the expense of 
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FIGURE 2. Plan view of the instrument locations in the 1980 shoaling waves field experiment. 
Approximate depths are given near the right side of the figure. 

the mid-depth (8-6 m regions). As seen in the plan view figure 2, a mix of 4 pressure sensors, 
5 current meters, and 3 wavestaffs constituted the main on-offshore instrumentation. Wave- 
staffs were used in shallow water in place of pressure sensors, in part to avoid complications 
arising from previously observed discrepancies (near the break zone) between direct measure- 
rnents of sea-surface elevation and estimates inferred from pressure data; however, under most 
wave conditions, the instrumentation did not extend to the break zone. 

A pressure sensor (Pl) was placed some 240 m seaward of P6 in a depth of 14.5 m. P1 was 
mounted 4.3 m above the bottom, considerably higher in the water column than other sensors, 
in order to minimize depth attenuation of signals from high-frequency wind waves. If the 
evolution of the wave field was truly dominated by nonlinear triad interactions as hypothesized, 
the interactions were expected to be very weak over large portions of the wind wave frequency 
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band in water deeper than 10 m. At these relatively large depths, quantitative predictions of 
the Boussinesq models were expected to diverge from the actual data, in consequence of the 
breakdown of the long wave assumptions. However, the inability of the wave field to approxi- 
mately satisfy the conditions (8) in deep water was expected to hinder net nonlinear transfers 
via the triad mechanism. As discussed in ? 1, nonlinear energy exchanges should then occur on 
the much larger length scales appropriate to the quartet mechanism of Phillips (ig60). The 

primary function of the deep sensor Pi was to verify this qualitative reasoning. 
The field experiment was designed to measure wave directional spectra at two depths in 

the shoaling region. A well-surveyed, five sensor, linear array of pressure sensors (instruments 

TABLE 1. POSITIONS AND APPROXIMATE UNCERTAINTIES FOR SENSORS 

IN THE SHOALING WAVES FIELD EXPERIMENT 

(Positions are given in metres relative to a left-handed coordinate system centred on an arbitrary bench- 
mark on the beach, with the positive Y-axis aligned with true North (thus approximately longshore). 
Uncertainties are given in metres, and apply to both the X- and Y-coordinates.) 

name X/m Y/m uncertainty/m 
P1 794.6 475.6 4.0 
P2 527.5 270.0 0.5 
P3 531.6 300.9 0.5 
P4 536.4 351.5 0.5 
P5 538.1 369.2 0.5 
P6 553.4 501.5 0.5 
P7 573.4 665.2 0.5 
P8 507.0 506.2 1.5 
PlO 389.0 518.3 2.0 
PI1 478.9 509.0 1.5 
C1 567.4 500.1 1.0 
C2 425.0 514.1 2.0 
C3 337.6 523.9 1.0 
C4 301.8 529.8 0.5 
C5 227.7 516.0 2.0 
W1 359.9 520.9 0.3 
W2 296.9 439.0 0.3 
W3 307.7 516.5 0.3 
W4 308.5 527.7 0.3 
W5 310.3 557.3 0.3 
W6 313.8 575.3 0.3 
W7 320.8 629.2 0.3 
W8 287.3 528.2 0.3 

P2, P3, P5, P6, and P7, see figure 2) had been established at the Torrey Pines site in March 
1977. Design criteria and analysis techniques for this array are discussed in detail by Pawka 

(1982). The array had a total longshore extent of 396 m. The original five sensor array had 

minimum lag spacing of 33 m, corresponding to an aliasing frequency of 0.16 Hz in 10 m 

depth (Pawka I982). Addition of another sensor (P4) reduced the minimum lag to 17.8 m 

and the aliasing frequency to 0.20 Hz. This is approximately the operational high frequency 
limit imposed by depth attenuation of the pressure signal itself. Addition of P4 also allowed 

use of the four sensor subarray P2-P3-P4-P5 with optimal lag spacing 1-3-2 (Barber 1961) 
in the event that sensor locations P6 and P7 could not be supported: however, the anticipated 

problems fortunately did not materialize, and use of the shortened array was not necessary. 
A second directional array was designed to operate in a mean depth of approximately 4 m. 
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lThe heart of this instrument group was a 1-3-2 longshore array of wavestaffs, with basic lag 
10 m. The array thus had aliasing characteristics similar to those of the deep array. Provision 
was made for two additional sensors in the longshore, and model testing with realistic spectra 
led to the final longshore array design 8-1-3-2-5, with a total length of 190 m. 

All linear wave gauge arrays suffer from 180? directional ambiguity with respect to the line 

connecting the sensors. The historical justification for the use of linear longshore arrays in 
coastal regions has been the assumption, which was avoided here, of no seaward-propagating 
energy in the wind wave frequency band. In the plan view figure 2, all sensors enclosed within 
a set of dashed lines could be analysed as a single, two-dimensional directional array. Such an 

array theoretically allows unambiguous resolution between seaward- and shoreward-propagat- 
ing energy in a given frequency band. Some results from a directional analysis will be discussed 
in ?5; model testing with realistic synthetic spectra and the maximum likelihood estimator was 
used as an aid in array design. 

With the exception of a few previously established sensor sites, all sensor locations were 

initially determined with a mini-ranger locating system operated from a small boat. Positions 
were later verified by numerous mini-ranger surveys and direct, underwater measurements 
between instruments. All wavestaff locations were further refined by standard surveying from 
known benchmarks on the beach. The position and approximate uncertainty for each sensor 
is given in table 1. 

(c) Data acquisition and reduction 

The sensors were divided into two groups for data acquisition purposes. All sensors seaward 
of P I (inclusive) received their power from, and returned signals to, a tethered spar as des- 
cribed by Lowe et al. (1972). An electronics package inside the spar scanned each data channel 
at 64 Hz. On each scan, all analogue data were digitized, encoded (with a pulse code modula- 
tion scheme), multiplexed, and transmitted over a v.h.f. radio link to the Shore Processes 

Laboratory, where the telemetered data stream was recorded directly on magnetic tape. 
A similar scheme was used for data from all sensors shoreward of Pll. An underwater 

electronics package located near site W4 distributed power and performed signal conditioning 
as described above. Digitized, encoded data were returned to a beach installation via a single 
cable. The data stream was then transmitted over a separate v.h.f. link to the laboratory, where 
it was recorded on magnetic tape simultaneously with the deep station's data and additional 

timing information. In a separate, non-real-time operation, data from the raw telemetry tape 
were decoded, demultiplexed, block-averaged to a sampling rate of 2 Hz, and placed on to 

computer-compatible magnetic tape. Further preliminary processing removed rare 'glitches' 
(caused, for example, by brief telemetry signal losses) and applied a low-pass digital filter 
vwith cutoff frequency 0.9 Hz. 

The data presented and analysed in the following sections were obtained over a two week 

period in early September 1980. During this time all pressure sensors and wavestaffs were 

operational. Continuous data was obtained for between 10000 and 26000 s on 11 separate 
occasions. Tidal variations during data runs ranged between 20 and 100 cm (runs were taken 
across all stages of the tidal cycle). The average variance of sea-surface elevation in the wind 
wave band (as measured in 10 m depth) was approximately 90 cm2 in early September, grew 
to 510 cm2 as wave energy from a storm in the southern hemisphere arrived, and then de- 
creased to 175 cm2 by 16 September. Spectral shape varied considerably over the two weeks 
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of interest. An intensive bathymetric survey was conducted on 9 September, and measure- 
ments of instrument heights off the bottom indicated that the bathymetry of the shoaling region 
remained relatively constant throughout the period of interest. 

4. DATA COMPARISON 

In this section we present comparisons between data obtained in the field experiment, 
predictions of the nonlinear c.s.m. and d.s.m., and predictions of slowly varying, linear finite- 

depth theory (l.f.d.t.) as described in Chu & Mei (I970). Before making such comparisons, 
however, fundamental assumptions regarding the statistical nature of the wave field must be 
made. Specifically, the c.s.m. and d.s.m. derived in ?2 are deterministic: they assume that the 
wave field is composed of a finite number of discrete modes, each having a fixed frequency and 
definite amplitude and phase. Nonzero frequency spacing between discrete modes is crucial 
for simultaneously preserving the asymptotic validity of the expansions (9) and the two-scale 

assumptions (11) and (12). 
Uniformly valid solutions of the fully statistical problem posed by a weakly nonlinear system 

with a continuous spectrum are achieved only at the expense of considerable added complexity 
(cf. Newell I968). (Even with such treatments, it is not clear that precise comparisons between 

theory and data can be obtained, owing to the necessarily finite duration and extent of any 
data.) In the following analysis, the deterministic c.s.m. and d.s.m. are used to predict various 
statistics of the surface gravity wave field in the shoaling region. Inputs to the models, such as 
the number of modes, their frequencies, initial amplitudes, and initial phases, were obtained 
from the data in arbitrary ways discussed below. Power, coherence, and phase spectral estimates 
have been stabilized by averaging over both frequency bands and data records ('ensemble 
averaging'). These techniques are strictly applicable only when applied to time series that are 
realizations of ergodic random processes. Considerable care has been taken to insure that 
differences between the outputs of the various models, and between the models and the data, 
can be ascribed to the deterministic 'physics' contained (or lacking) in the models, rather 
than to either the time series analysis techniques used or the choice of deterministic initial 
conditions. An extensive series of numerical simulations with realistic but synthetic 'data' 
indicated that the c.s.m. and d.s.m. predictions of smoothed power spectra, as well as smoothed 

coherence and relative phase between the models and the 'data', were insensitive to the 

number of modes used to represent the wave field. (In all simulations, the number of modes 

chosen was sufficient to define significant spectral features; in this sense, although all spectra 
were necessarily discrete, they were smooth.) These simulations also showed an insensitivity 
to the details of how smoothed spectra were obtained; frequency merging and ensemble 

averaging yielded very similar results. 
Three selected field data sets have been compared with predictions of the models. The three 

sets encompass a wide range of wave energies and spectral shapes. For each data set, time series 

from the on-offshore sensors Pi, P6, P8, Pll, PiO, Wi, W4, and W8 were broken into 

consecutive records of 1024 s duration. These records were then fast Fourier transformed and, 
where appropriate, Fourier coefficients of near bottom pressure were converted to coefficients 

of sea-surface elevation (s.s.e.) by using the linear, finite-depth transformation; 240 modes 

evenly spaced in the frequency band 0.001-0.234 Hz were used to represent the wave field 

through the shoaling region. The Fourier coefficients of s.s.e. obtained from sensor P6 in 
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approximately 10 m depth provided initial modal amplitudes and phases of depth averaged 
velocity potential by using the appropriate linear transformation (7a) or (21 a). Although this 

procedure introduces small errors to the initial conditions, it can be shown that these errors 
cannot significantly affect the evolution of the wave field over distances comparable with the 
extent of the shoaling region. By using the initial conditions, the model equations were inte- 

grated numerically to produce predictions of Fourier coefficients at the six onshore sensor 
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FIGURE 3. On-offshore bathymetry and sensor locations along the main instrument transect. The dashed line 
represents the plane beach with slope 0.022 used in the model integrations. On-offshore distance (in metres) 
is relative to an arbitrary benchmark. 

locations. Although detailed measurements of bottom topography were available, the numerical 

integrations were carried out with constant bottom slope of 0.022. This assumed linear depen- 
dence of depth on on-offshore position allowed calculation of the spatial phase !F[(x) in closed 
form for both the c.s.m. and d.s.m., thus greatly simplifying the numerical integrations. As 
the coupling coefficients and dispersion relations appropriate for the nonlinear models contain 

only weak depth dependence, and as the beach of interest is in reality nearly plane, it was not 

expected that the results would differ significantly from those obtained by using real topography 
2-2 
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in the integrations. Figure 3 shows the measured on-offshore topography along the main range 
of instruments, the plane topography used in the integrations, and the sensor positions. The 
initial depth was obtained directly from the mean pressure measured at P6, and thus varies 
in accordance with the tides. 

Since the integrations yield predictions of Fourier coefficients, not simply spectral quantities, 
it is reasonable to examine the correlations between time series predicted by the models and 
those obtained from the data. In the frequency domain, such information is contained in the 
coherence and relative phase spectra (Jenkins & Watts 1968). If the smoothed cross spectrum 
between two time series p and q is Cpq(f), then the coherence ypq(f) is 

ypq(f) = [Cpq(f) CIq(f)/CppCqI, (25) 

0 < y < 1 is a measure of the correlation between the bandpassed time series p and q. The 
smoothed phase 0(f) between the time series is defined by 

Opq(f) = arctan [Im (Cpq)/Re (Cpq)]. (26) 

If phases are positive, then the series p leads q. 
Smoothed power spectra of s.s.e. were constructed for each data set and the resulting model 

integrations. Coherence and relative phase spectra between model predictions and the data 
were also analysed. Smoothing in the frequency domain was accomplished both by ensemble 
and frequency averaging. Chi-squared testing of unsmoothed spectral estimates (Haubrich 
1965) indicated that the statistics of all data sets analysed below were stationary over the time 
scale of the data. 

(a) 5 September 

The 5 September data set consists of 11 records (11264 s) obtained on a mildly rising tide. 
It is typical of the low energy (93 cm2 variance measured in 10 m depth), broad-banded (in 
frequency) wave conditions common at the site throughout the summer. Figure 4 presents 
averaged spectra of s.s.e. observed at the four locations P 1, P6, W 1, and W8. The spectrum 
is basically flat from 0.125-0.25 Hz, with two narrow, but not very energetic peaks centered 
at 0.053 and 0.077 Hz. 

The spectra measured at locations P1 (14 m depth) and P6 (10 m depth) are virtually 
identical. This is expected since linear shoaling effects are negligible and near resonant triad 

interactions are small due to large mismatch terms in this rather deep water. From approxi- 

mately 0.15-0.25 Hz, the spectra exhibit no systematic differences through the shoaling region* 
From 0.05-0.15 Hz, spectral shape does not change appreciably through the shoaling region. 
However, there is a smooth, mild increase in spectral density with decreasing depth. 

Figure 5 presents comparisons between data and model predictions of averaged spectra of 

s.s.e. at the six on-offshore locations. At each location, spectra obtained from the data, the 

c.s.m., the d.s.m., and linear, finite-depth theory have been plotted. Each spectrum has 160 

degrees of freedom, and the 90% confidence limits (Jenkins & Watts 1968) are shown. At all 
locations through the shoaling region, linear finite-depth theory (l.f.d.t.) accurately models 

the observed spectrum of s.s.e. The d.s.m. is slightly worse only at frequencies greater than 

0.18 Hz, where the model consistently underpredicts spectral density. These results are in 

contrast with the c.s.m., which overpredicts spectral density in a wide frequency band from 
0.12-0.24 Hz. 
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5 September 1980 
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FIGURE 4. Averaged power spectra of sea-surface elevation measured at 4 on-offshore locations. 

Averaged bandwidth is 0.0039 Hz. Location names and mean depths (metres) are shown. 

Additional information can be obtained by comparing coherence and phase spectra between 
the nonlinear models and l.f.d.t., and the data. Figure 6 presents smoothed coherence spectra 
through the shoaling region. For both l.f.d.t. and the nonlinear models, coherence with the 
data is greater than 0.9 throughout the low frequency region of the wind spectrum (0.05- 
0.1 Hz). At higher frequencies, the dominant feature of the coherency spectrum is a pro- 
nounced decrease in coherence with increasing frequency. Such a feature is present to some 
extent in all of the data analysed to date, and is consistent with the observed finite directional 

spread of the wave field. Model testing was carried out with a constant depth shoaling region 
and a wave field obeying l.f.d.t. Directional spectra E(f, 0) were obtained from a maximum 
likelihood estimator analysis of data from the shallow longshore array of wavestaffs W 2-W 7. 

Briefly, the cross spectrum at lag r in the on-offshore can be determined if the wave field is 

homogeneous and the directional spectrum E(f, 0) is known: 

C(f, r) = f E(f, ) eikf r cos () d (27) 
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5 September 1980 (spectra) 
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FIGURE 5. Comparison of averaged power spectra of sea-surface elevations between measured data (-), the d.s.m. (? ), the c.s.m. (---) and linear, finite-depth theory (I, 

( * ? *-). Averaged bandwidth is 0.0078 Hz. All model input conditions were derived from data measured at P6. Shown under each plot are the location name and 
offshore distance from the initial conditions. The abscissa is frequency (Hz) and the ordinate is spectral density (cm2/Hz). Spectra have the equivalent of 160 degrees offr( 
and the 90 % confidence limits are shown on the plot for P8. 
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5 September 1980 (coherences) 
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FIGURE 6. Comparison of smoothed coherence between predictions of the d.s.m. (-), the c.s.m. (... ), linear, finite-depth theory (l.f.d.t.) (---) and the data at the 6 on-o: 
locations of figure 5. Also shown (TEST, - ... -) is the coherence predicted by assuming a uniform, 5 m depth shoaling region and linear waves with the measured dire( 
spectrum obtained from the array W2-W3-W4-W5-W6-W7. Note that the ordinate is coherence (not coherence squared). 

fishore 
ctional 

L.0r 

0.8 - 

F 
N 

NN 
I. - 

.11- 

0.6- 

F 

0.4 - 

0.2 - 

u 

u 
0 0 

u 1.0 

0.8 - 

0.6- 

0.4 - 

0.2- 



5 September 1980 (phases) 
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FIGURE 7. Comparison of relative phase spectra between predictions of the shoaling models and the data. Relative phase is shown in degrees; 90 % confidence 
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NONLINEAR SHOALING WAVES 

(Cartwright I962). By using the definition (25) and calculating the integral in (27) numerically, 
test coherence spectra (labelled TEST in figure 6) can be generated. The general shape of the 
test spectra was found to be neither a strong function of the assumed depth nor of the detailed 
fine structure of the directional spectrum estimates. 

The test coherence spectrum is quite similar to the model-data coherences, even including 
the slight plateau observed at 0.15 Hz. The dramatic fall-off of the coherence spectra with 

increasing frequency and onshore distance can thus be attributed to the effects of increased 

(a) 10 m depth (b) 5 m depth 

0.10 0.20 0 0.10 0.20 

frequency, f/Hz 

FIGURE 8. Wavenumber against frequency for four linear dispersion relations at two depths. (a) 10 m; (b) 5 m. 
The d.s.m. is equation (21 b), c.s.m., is effective total linear wavenumber for the c.s.m., l.f.d.t. is equation 
(2c), and shallow is non-dispersive shallow-water theory (equation (7b)). 

directional spread in the higher frequencies and the fact that a given spatial lag represents a 

larger normalized (by wavelength) lag for higher frequency waves than for lower frequency 
ones. Additional model testing, in which the shape of the directional spectrum was not assumed 
to be a function of frequency, indicated that the second effect was dominant. 

There are no significant deviations in coherence between any of the shoaling models tested. 
The good agreement for spectral and coherence predictions between linear and nonlinear 
models and the data strongly indicates that net nonlinear effects are small through the shoaling 
region for this particular data set. The phase spectra, presented in figure 7, can thus be inter- 

preted for this data set in terms of the linear dispersion relations appropriate for the c.s.m., 
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the d.s.m. and l.f.d.t. It should be borne in mind throughout the phase discussion that confi- 
dence limits on the phase estimates are dependent on the coherence, and thus phase estimates 
at the higher frequencies in shallower reaches of the shoaling region are extremely uncertain. 
As the coherences for all models are virtually identical everywhere, confidence limits on the 

phase estimates have been included on figure 7. 
L.f.d.t. phases at locations P8 and Pll are nearly consistent with zero phase shift at all 

frequencies. (The very slight trend of increasing phase with increasing frequency is possibly 
due to a small uncertainty in sensor positions.) Both of the nonlinear models show large 
deviations from the data, especially at high frequencies. The d.s.m. shows a strong tendency 
to lead the data while the c.s.m. has a lesser tendency to lag, although both models agree 
well with the data at lower frequencies. The deviations are consistent both in sign and magni- 
tude with differences between the linear dispersion relations (2 c), (7b), and (21 b). The relation 

(21b) grossly overpredicts wavenumber for high frequency waves in relatively deep water, as 
shown in figure 8. Thus, the linear contribution to total phase ro(x) will be larger than that 

predicted by l.f.d.t., and the d.s.m. will lead the l.f.d.t. prediction. The second-order linear 

phase change term, as well as the linear dispersion relation, must be taken into account when 

considering the c.s.m. However, the magnitude of the linear phase change term is insufficient 
to offset the dispersion relation's underprediction of wavenumber at high frequencies in deep 
water (figure 8), which leads to the observed lag of the model in relation to l.f.d.t. (and hence, 
in this case, the data). 

(b) 11 September 

The second data set consists of 20480 s of data obtained on 11 Sptember over a tidal maxi- 
mum. With total variance in 10 m depth of over 500 cm2, this data set is the most energetic 
analysed for this work. As seen in figure 9, the vast majority of the energy in the wave field at 

depths greater than 10 m is concentrated in a narrow band centered about 0.065 Hz, 

representative of long period, well directed swell. In ?5 we discuss the frequency-directional 
characteristics of this data set. Significant spectral evolution occurs as the waves propagate 
shoreward, as is evident in figure 9. In shallow water, a secondary (but significant) peak is 
observed centred at 0.127 Hz, nearly the exact second harmonic of the primary peak in the 

power spectrum. As in the 5 September data set (figure 4), no significant spectral evolution 
is observed between locations P1 in 14.5 m depth and P6 in 10 m depth. 

Figure 10, similar to figure 5, compares averaged spectral predictions of the nonlinear models 
and l.f.d.t. with the data. The smooth, steady growth of the secondary peak at 0.127 Hz is model- 
led almost precisely by the nonlinear models, but not at all by l.f.d.t. As in the previous data 

(5 September), the c.s.m. overpredicts spectral density in the high frequency (over 0.15 Hz) 
regions of the spectrum, while the d.s.m. exhibits a considerably smaller underprediction at 

high frequencies. Except for frequencies near the secondary peak, l.f.d.t. accurately predicts 
spectral shape. However, l.f.d.t. overpredicts the power at the spectral peak by 20 % (compared 
with only a 5 % overprediction by the d.s.m.). This leads credence to the hypothesis that the 

secondary peak is a result of nonlinear transfers of energy from the primary low frequency peak 
to its second harmonic. 

Coherence spectra are shown in figure 11. The overall drop in coherence with increasing 
frequency and onshore distance agrees well with coherences predicted from the measured 
directional spectrum and equation (27), as was the case with the 5 September data set. The 
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nonlinear models do not differ significantly from each other, but they are substantially different 

from l.f.d.t. coherences at the secondary peak in the power spectrum. As the peak develops, 
the coherence between l.f.d.t. and the data becomes progressively lower. Conversely, the 
coherence at 0.127 Hz between the nonlinear models and the data is substantially higher on 
11 September than it was for the 5 September data set (figure 6). The drop in coherence for 
l.f.d.t. is restricted to the same frequency band as is the secondary peak in the power spectrum; 
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FIGURE 9. Measured power spectra of s.s.e. for the 11 September data set (similar to figure 4). 

Note the emergence of a secondary peak at the second harmonic of the primary. 

at most frequencies higher and lower, there is no significant difference in coherence between 
linear and nonlinear models. However, examination of frequencies near 0.20 Hz at location 
W8 reveals a mild increase in coherence of the nonlinear models that is not present in the 
linLear model. Although the deviation between nonlinear and linear model coherences is not 

significant at the 95 % confidence level, the fact that it occurs at the third harmonic of the 

primary peak in the power spectrum is indicative of nonlinear transfers of energy to the third 
harmonic via near resonant interactions between the primary and secondary peaks. 

At locations P8 and P 1, in relatively deep water where little spectral evolution is observed 
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FIGURE 10. Comparison of predicted averaged power spectra of s.s.c. for the 11 September data set (- ) (similar to figure 5). The nonlinear c.s.m. 

(---) and d.s.m. (- .. ) accurately predict the growth of the harmonic peak, while l.f.d.t. (- ... ) does not. 
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11 September 1980 (coherences) 
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FIGURE 1. Smoothed coherence spectra for the 11 September data set (similar to figure 6). Flat-bottom, directional test coherences are not shown. L.f.d.t. predictions (---) 
low coherence with the data in the frequency band corresponding to the secondary peak in the power spectrum, while the nonlinear models' predictions (c.s.m., ? I I ; 
-) have high coherence with the data in precisely this band. 
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11 September 1980 (phases) 
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and coherences between all models and the data are high, the relative phase spectra between 
all models and the data (figure 12) are virtually identical with those of the 5 September data 
set (figure 7). As in the discussion for that set, phase deviations can be attributed to linear 

dispersion differences between the models. With the exceptions of the frequency band about 
0.127 Hz for l.f.d.t. and the narrow band about 0.20 Hz for the d.s.m., relative phases between 
models and data are similar to those observed in the 5 September data set throughout the 
entire shoaling retion. 

In the frequency band about 0.127 Hz, l.f.d.t. increasingly leads the data as depth decreases. 
It must be remembered that in this band, coherence between l.f.d.t. and the data is quite low; 
thus confidence intervals for phase increase, in this case to + 350 at W8. Even so, the deviation 
is significant at all onshore locations. As no significant phase deviations between the nonlinear 
models and data are observed in this frequency band, it must be concluded that there is a 

nonlinearly induced phase change in addition to the observed power spectral transfer. The 

change is such that the phase speed of the second harmonic is greater than that of a free, linear 
wave with the same frequency. 

A second difference between this data set and 5 September is apparent near 0.20 Hz for 
the d.s.m. at the most shoreward locations W4 and W8. Rather than a smoothly increasing 
phase difference between the model and the data, as would occur with waves obeying l.f.d.t. 

dynamics, the phase difference drops nearly to zero in this band. This frequency band is the 
third harmonic of the primary, and a slightly increased coherence between the d.s.m. and the 
data was observed as well. The phase results further confirm that nonlinear interactions, 
probably between the primary and the large second harmonic, are present- in this band. 

S:ince the amplitude of the third harmonic is small, substantial phase modifications can take 

place (cf. (23b)), and thus the actual phase in the band can be coupled to the phase of the 

primary and second harmonic (which are predicted well by the nonlinear models), rather than 

by assuming the phase dictated by the linear dispersion relation. 

(c) 9 September 

The 9 September data set exhibits the most complicated evolution of any so far analysed. 
Composed of 17408 s of data obtained on a falling tide, the variance of s.s.e. at 10 m depth 
(measured to be 275 cm2) falls between the low variance of 5 September and the high variance 
oi 11 September. The power spectrum of s.s.e. is dominated by a broad peak centred at 
0.09 Hz. The high frequency spectrum in depths greater than 10 m is flat and nearly 2 orders 
of magnitude down from the peak. Figure 13 shows data spectra through the shoaling region. 
As in the other data sets, there is no spectral evolution in depths greater than 10 m. However, 
through the shoaling region, the entire high frequency portion of the spectrum is amplified 
such that, in 4 m depth, spectral densities in the frequency band 0.15-0.21 Hz are 5-10 times 

greater than in 10 m depth. 
As in the 11 September data set, the nonlinear models accurately predict spectral evolution 

throughout the shoaling region, while l.f.d.t. does not (figure 14). Although the c.s.m. appears 
to predict power spectral density more accurately than does the d.s.m. at frequencies greater 
than 0.17 Hz, the consistently large (20-40 %) overprediction of spectral density in the band 
0.09-0.17 Hz makes the c.s.m. a less accurate predictor of overall spectral shape. Of some 
interest is the fact that the evolution of the spectrum begins with the emergence of a (non- 
significant at the 90 % level) peak at 0.19 Hz, the second harmonic of the most energetic 
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portion of the broad, low frequency spectral peak. The emergence of such a structure is not 

unexpected, as the peak-peak-harmonic triad interaction is expected to dominate early spectral 
evolution due to the larger amplitudes found at the peak of the power spectrum. The importance 
of off-peak interactions is clear, however, as in the shallower portions of the shoaling region the 
entire high frequency portion of the power spectrum has increased significantly. 

9 September 1980 
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FIGURE 13. Measured power spectra of s.s.e. for the 9 September data set (similar to figure 4). The entire high 
frequency band (0.125-0.25 Hz) has greatly enhanced power in the shallow portions of the shoaling region. 

The coherence spectra shown in figure 15 are further evidence of the complex evolution of 

the wave field as it propagates through the shoaling region. Apart from the barely significant 
coherence peak at 0.19 Hz apparent in the c.s.m. and d.s.m. spectra, the basic shapes of all 
model-data coherence spectra at locations P8 and P11 are again consistent with measured 

directional spectra. At all on-offshore locations, all models have high coherence with the 

data in the energetic frequency band 0.063-0.125 Hz. However, at shallow locations from 
P 10 to W8, significant deviations between models are evident in the high frequencies. Coher- 
ence between l.f.d.t. and the data drops dramatically with decreasing depth, first in the band 

0.13-0.20 Hz, then throughout the high frequencies. At the same time, coherences between 
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9 September 1980 (spectra) 
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FIGURE 14. Comparison of predicted averaged power spectra for the 9 September data set ( -) (similar to figure 5). The nonlinear models (d.s.m., *. 

c.s.m., ----) predict the enhancement of the high frequency power, while l.f.d.t. (- ?-) does not. 

0 

t-11 0-4 

25 
PCI 

cn 

ZZ 
0 

-4 z 

.e. 
0 

25 
.25 



9 September 1980 (coherences) 
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FIGURE 15. Smoothed coherence spectra for the 9 September data set (similar to figure 6). Flat-bottom, directional test coherences are not shown. The 
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the nonlinear models and the data actually increase significantly in the high frequency region. 
Such an effect clearly does not arise from finite directional spread in a homogeneous, linear 
wave field, but must be attributed to the fact that the high frequency wave field is dominated 

by nonlinear interactions with lower frequency components. 
The nonlinearities are also evident in the phase spectra (figure 16). Phases at locations P8 

and P11 evolve similarly to those of previous data sets, in accordance with simple l.f.d.t. 

dispersion. At the shallower locations from P 10 to W8, the breakdown of linear dispersion is 
clear. The phase relation between linear theory and the data at high frequencies is neither 
consistent with zero phase lag, nor is it monotonic (although once again it must be remembered 
that the coherence between l.f.d.t. and the data is low in this region of frequency space). In 
terms of phase speeds, some frequency components appear to be travelling faster than predicted 
by l.f.d.t., and some slower! Rather than the d.s.m. leading the data in the high frequencies 
as predicted by linear dispersion arguments and observed in the basically 'linear' 5 September 
data set (figure 7), the model actually lags the data slightly. The c.s.m. phases exhibit none of 
the sharp lag predicted by linear dispersion, but are instead nearly identical with phases pre- 
dicted by the d.s.m. It thus appears that nonlinear interactions, properly modelled by both 
the c.s.m. and the d.s.m., completely dominate the high frequency portion of the wave field 
in this particular data set. 

5. DISCUSSION AND CONCLUSIONS 

The present work has developed and tested models that describe the changes undergone by 
wind generated surface waves (4-20 s periods) as a broad spectrum of such waves propagates 
shoreward over a shoaling bottom. Two one-dimensional models based on variants of the 

Boussinesq equations and incorporating the physics of multiple near resonant triads have been 

developed and implemented numerically. The models, which assume that all waves are nor- 

mally incident to the beach, have no empirically determined parameters. 
A field experiment that involved dense instrumentation of the shoaling region from 10 m 

to 3 m depth was successful in obtaining detailed measurements over a wide range of wave 

conditions. Three selected data sets spanning the range of observed wave conditions and 

spectral evolution have been analysed and compared with power spectra, coherence, and 

phase predictions of the two nonlinear shoaling models and linear, finite-depth theory. 
Overall, both nonlinear models were good predictors of the power spectrum of sea-surface 

elevation throughout the shoaling region. Linear theory was considerably less accurate except 
under broad banded, low energy conditions. Coherences between predictions of all models and 

the data was uniformly high in the low frequency (generally energetic) region of the wind 

wave band. With the exception of those regions of space (both physical and frequency) where 

significant nonlinear evolution of the power spectrum was observed, the features of all model- 

data coherence spectra were similar and adequately accounted for by the measured directional 

spread of the wave field. Where nonlinear effects were important (shallow water, mid- to high- 

frequencies), coherences between the nonlinear models and the data improved markedly, 
while the coherences between l.f.d.t. and the data became dramatically lower. In spatial 

regions where nonlinear effects were small, l.f.d.t. was an accurate predictor of phase across 

the entire wind wave spectrum. In these regions, phase deviations between the nonlinear 

models and the data can be ascribed to differences in linear dispersion relations; the long wave 
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aLssumptions inherent in the derivation of the Boussinesq-type models make them poor predic- 
tors of wavenumber for high frequency waves in relatively deep water. Where nonlinear effects 
were important in the evolution of the power spectrum, the nonlinear models were good 
predictors of phase whereas l.f.d.t. was significantly poorer, indicating that nonlinear phase 
changes (which can, for instance, generate the observed asymmetrical shape of waves near 

breaking) are as evident as the more often-documented cross-spectral energy transfers. 
The accurate predictions of the nonlinear shoaling models over a broad range of input 

wave conditions make them especially appealing. Some specific data sets (e.g. 5 September, 
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FIGURE 17. Frequency-directional spectra in the wind-wave band for the 11 September data set. The top spec- 

trum (a) is obtained from m.l.e. analysis of the two-dimensional deep array shown in figure 2, excepting 
the nonfunctional current meter. The bottom spectrum (b) results from a similar analysis of the linear 
shallow array of wavestaffs W2-W7. Placement inaccuracies resulted in staffs W2 and W7 being far enough 
shoreward and seaward (respectively) of the longshore line to allow for the resolution of on-shore against 
offshore propagating energy. Scaling is such that at any frequency, the total area under the curve is pro- 
portional to the logarithm of spectral density in that band. 

figures 4-7) are predicted well by l.f.d.t. The evolution of harmonics in some data sets (11 
September, figures 9-12) is reminiscent of Stokes-type forced theories (although the similarity 
is merely illusory, as the Ursell number in 5 m depth for this data set is over 1). In all cases 
so far observed, the more general c.s.m. and d.s.m. accurately predict the observed spectral 
evolution of the wave field through the shoaling region; in the three data sets analysed here in 
detail, the models properly predict nonlinear phase evolution as well. 

Directional effects appear to play little role in the nonlinear evolution of the data sets 
analysed here. In part this is due to the fact that Torrey Pines Beach has few open windows 
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to the deep ocean, and thus energetic low and mid-frequency waves tend to have narrow, well 

defined, nearly normally incident directional spectra. More generally, however, these waves 
refract considerably before entering the relatively shallow water of the shoaling region, and 
thus the extremely broad directional distributions typical of the open ocean are not expected. 

Figure 17 shows two, averaged, frequency-directional spectra from the 11 September data 
set. The top figure displays data obtained from the two-dimensional array in 10 m depth 
(see figure 2). Note that the energy in the low frequency peak of the power spectrum (0.066 Hz) 
is directed from approximately 15? south of true west, and has a width of only 250. It is 

likely that this swell is being generated by a distant storm in the southern hemisphere. Pawka 

(1982) discusses details of the directional spectrum for similar data sets. Of interest to the pre- 
sent study is the fact that, although the majority of the energy at frequencies greater than 
0.10 Hz is directed from the northern quadrant, approximately half of the energy at the 
harmonic frequency (0.127 Hz) is directed from the south, colinear with the low frequency 
primary. The effect is enhanced in the data from the shallow array, shown in the lower half 
of figure 17. In general, directional spreads measured at the shallow array are narrower than 
those measured at the deep array, as expected on the basis of simple linear refraction. In the 
harmonic frequency band (0.12-0.13 Hz), the vast majority of the energy comes not from the 
north but from the south, in contrast to neighbouring bands. This is expected if, as hypothesized 
in ? 4, the energy in the harmonic peak is due primarily to nonlinear transfers via peak-peak- 
harmonic triad interactions. As the resonance conditions (8b) or (22b) are vector equations, 
any peak-peak-harmonic interaction will force harmonic waves whose wavenumbers point in 
the direction of the peak waves. 

The directional spectra also provide preliminary bounds on the amount of seaward-propagat- 
ing energy in the shoaling region. Direct integration of directional spectral estimates in the 

frequency range 0.059-0.152 Hz for all 11 data sets reveals that at no time is more than 25 % 
of the total energy in any band propagating seaward in the window 45-135? at the shallow 

array, while less than 20 % of the total energy is found to propagate seaward at the deep array. 
Average values of seaward-propagating energy are 17 % for the shallow array and 14% for 
the deep array. However, model testing of the m.l.e. indicated that the data-adaptive analysis 
technique, when applied to the arrays used in this experiment, windowed incoming energy 
incorrectly into outgoing directions. The model tests suggest that there is a strong possibility 
that the true amount of seaward-propagating energy is less than 10 % of the total energy at 

frequencies in the wind wave band. Such small 'reflection' is not inconsistent with the quali- 
tative conclusions drawn by Peregrine (1967) based on the linear analysis of Kajiura (1961). 
Inclusion of seaward-propagating energy in the nonlinear models is a formidable task; however, 
predictions of the one-dimensional models clearly are not significantly affected by such small 
amounts of outgoing energy. Should a more quantitative description of seaward-propagating 
energy be desired, a special purpose analysis technique with minimal windowing error of 

incoming to outgoing energy, similar to those discussed in Davis & Regier (1977) and Pawka 

(I982), should be implemented. 
The sloping bottom was found to play only a minor role in determining the spectral evolution 

of the wave field through the shoaling region. In the course of preliminary model testing, 
examples of many spectral shapes were numerically propagated in water of constant, 5 m 

depth typical of the shoaling region. Many qualitative features of the spectral evolution, such 
as harmonic generation from initially narrow-banded spectra, or the pronounced enhancement 
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of the entire high frequency band for initially broader-banded spectra, were similar to those 

actually observed in the data from a mildly sloping beach. Bottom slope appears explicitly 
only in the lin tear shoaling terms in the enonlinear models, and implicitly in the calculation of 
total phase necessary to determine the trigonometric modulation of the nonlinear coupling. 

Differences between the linear shoaling terms, due to differences between linear ffredispersion 
relations, account for much of the deviation between power spectral predictions of the non- 
linear models and the data. This is true at all frequencies in the 5 September data set and at 
those (generally high) frequencies in other data sets where nonlinear spectral evolution is not 

apparent. Simmons (1969) and McGoldrick (I965) show that lowest order energy flux is 
conserved for a single resonant triad. The physical arguments of Simmons (I969) hold for our 

system which contains multiple resonances. The non-dispersive form of the dispersion relation 

(14b) overpredicts (in comparison to l.f.d.t.) the increase in modal energy (proportional to 
the square of the mode amplitude) with decreasing depth necessary to conserve lowest order 

energy flux over most of the wind wave band. Conversely, the dispersion relation (28 b) under- 

predicts the increase, but remains within 10 % of the value predicted by l.f.d.t. for frequencies 
less than 0.17 Hz everywhere in the shoaling region. (Care must be taken when attempting to 
isolate the effects of individual terms in the rate equations. Since the c.s.m. and d.s.m. allow 
weak nonlinear interactions across all frequencies, a misprediction in the evolution equations, 
even if confined initially to a small band of frequencies, can feed back through the nonlinear 

coupling to cause errors at other frequencies and other on-offshore locations.) 
The observed lack of power spectral evolution between 14 m depth (P1) and 10 m depth 

(P 6) strongly indicates that the process of triad near resonance modelled by the c.s.m. and the 
d.s.m. is significant only in the relatively shallow shoaling region. Although the models are not 
valid in depths much greater than 10 m due to the breakdown of the long wave assumptions 
over much of the wind wave frequency band, the trend toward increasing inability to satisfy 
the interaction conditions for triads containing high frequency waves suggests that the non- 
linear triad mechanism is unimportant in such relatively large depths. This bodes well for 
future attempts to smoothly match the present model with one more appropriate to deep water. 
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