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w = speed of motion of a face of volume element in numerical divided into two parts: (1) The work done on the pure oscillation flow;
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x = distance along channel; rent motion. , '
y = fluid depth above channel invert; Oscillating Boundary Layer.—One of the first attempts to describe the
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¥y = weight of fluid per unit volume; done by Kajiura (10). He adopted the eddy-viscosity concept in a three-
8t = time interval; layer model: In the small inner layer the eddy viscosity, €, was taken as
dx = space increment; a constant. In an overlap layer, € was assumed to vary linearly with the
m = variable of integration; distance from the bed and, finally, € was kept constant from a certain
p = fluid density; distance away from the bed (the outer layer). By use of the equation of
X = stability parameter in Vasiliev method; and motion, Kajiura obtained a rather laborious analytical-numerical solu-
o = Escoffier stage variable. tion. Recently, Brevik (4) has simplified the analysis by Kajiura by avoid-
: ing the inner layer, where e was kept constant. Hereby, it was possible
F[ Subscripts to reduce the calculations of Kajiura. The amount of work inherent in
5 i = time interval index; the analytical calculations is, however, still considerable.
al k = space increment index; and . Kajiura and Brevik tested their analytical results against the experi-
N = maximum value of space increment index. mental work done by Jonsson (7) [see also Jonsson and Carlsen (8)] and
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obtained reasonable agreement. However, three shortcomings in Ka-
jlura’s and Brevik’s theory must be mentioned: (1) They did not take
into account that the eddy viscosity is a function of time, as well as of
the distance from the wall; (2) the thickness of the wave boundary layer
was also taken as a time-independent quantity; and, finally, (3) the vari-
ation in bed shear stress was assumed to be sinusoidal.

Some of these shortcomings were removed in a later model by Jonsson
and Carlsen (8) who considered the problem from a different point of
view:

By using the momentum equation (integrated over depth) and the as-
sumption that the velocity distribution in the boundary layer is loga-
rithmic, a reasonable estimate for the friction factor was obtained in the
case of a rough wall. However, because the momentum equation was
integrated over a wave period it was not possible to describe the detailed
variation in bed shear stress and the phase between maximum bed shear
stress and maximum outer velocity. Further, the variation in boundary
layer thickness with time was partly neglected so that a constant from
the integration had to be determined from experiments.

Finally, the work by Bakker (1) must be mentioned. Bakker introduced
a mixing length hypothesis like that of Prandt] and assumed that the
mixing length was proportional with the distance from the bed. Com-
bined with the equation of motion, the mixing-length theory involves
the solution of a second order nonlinear partial differential equation of

the type

in which p = the friction velocity (equal to the square root of shear); y
= the distance from the bed; ¢t = the time; and k = 0.4 (von Kdrman’s
constant). The numerical work is rather complicated and the physical
assumptions introduced by Bakker cannot be shown to be superior to
other assumptions because the mixing length assumption may be ques-
tionable in unsteady flow.

Combined Wave-Current Motion.—Most of the work done on the
combined wave-current motion follows the same line as that for the pure
wave motion. Lundgren (13) utilized the measurements of the eddy vis-
cosity in the pure wave boundary layer from Ref. 7 to establish a theory
for the combined motion by use of the eddy-viscosity concept. Here, the
eddy viscosity was taken as the mean eddy viscosity during one wave
period. The shortcoming of Lundgren’s model is that it is a time aver-
aged model which does not describe the variations with time of the
boundary layer. A simplified model of Lundgren’s theory was later de-
veloped by Fredsee (5). :

Grant and Madsen (6) developed a more detailed model of the flow
than that by Lundgren: By also adopting the eddy viscosity concept they
described the combined motion in the boundary layer from the equation
of motion. The calculations of Madsen and Grant are rather laborious
and the model has the same three shortcomings as that of Kajiura and
Brevik concerning the pure oscillating wave boundary layer: The eddy
viscosity is not taken to be a function of time, the boundary layer thick-
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ness is taken as a constant, and all variations with time are assumed to
be sinusoidal.

The model by Grant and Madsen, however, pointed out one impor-
tant feature: The influence of the wave on the steady current above the
wave boundary layer is an apparent increase in the roughness experi-
enced by the current. This could, in fact, also be concluded from Ref.
13.

Some of the shortcomings in the work by Grant and Madsen are avoided
in the paper by Bakker and Doorn (2). Their paper is an extension of
the work by Bakker (1), still applying the mixing length hypothesis, so
they end up with an equation like Eq. 1. In order to solve Eq. 1, bound-
ary conditions are needed. These, however, are not known in advance,
80 an iterative procedure must be applied, which makes the solution of
the problem tedious. The improvement introduced through the work by
Bakker and Doorn is the inclusion of the time variation in the eddy vis-
cosity by not applying this concept directly in the calculations. However,
as in the case of a pure oscillating boundary layer, the assumption of a
mixing length hypothesis in a strongly unsteady flow may be questionable.

The work by Bakker and Doorn is restricted to the two-dimensional
case (in which the direction of wave propagation and mean current is
parallel), while Grant and Madsen’s model covers the three-dimensional
situation.

Scope oF PRESENT WORK

The main problem arising in the combined motion of waves and a
current is that a thin turbulent wave boundary layer develops at the sea
bed due to the oscillatory wave movement. On the other hand, the flow
formed by the more steady current is turbulent over the entire water
depth and does not have the same boundary layer character as that orig-
inating from the waves. Thus we have two different types of turbulence,
one originating from the wave motion and another, originating from the
mean current. The interaction of the two kinds of turbulence is highly
nonlinear.

For reasons of simplicity, the present theory is developed in two steps:
First we consider the pure oscillating wave boundary layer and, sec-
ondly, the combined wave-current motion is considered.

The theoretical development follows the line of Jonsson and Carlsen
by applying the equation of momentum in the boundary layer and as-
suming the velocity profile to be logarithmic. In case of no mean current
motion, the main idea is to study the development of the boundary layer
when the water from total rest is exposed to a periodic motion outside
the boundary layer. Hereby, the effect of eddies formed by the previous
movement is disregarded.

This is a physically reasonable assumption if the time scale for the
change in outer velocity (equal to the wave-period) is much larger than
the time scale for the decay of eddies formed in the wave boundary
layer. This will normally be the case in nature because the wave bound-
ary layer is very thin, so the side of the eddies is rather small. It must
be pointed out, however, that the theory breaks down at a very fast

1105




P e T

frequency, in which case the memory effects in the turbulence formed
in the wave boundary layer are of importance.

DEVELOPMENT OF WAVE BOUNDARY LAYER
WitHouT ANY Mean CURRENT

Outside the wave boundary layer, ’the velocity is assumed t L
riodic motion with the velocity Y B med to be a pe

................................................ @)
in which v;,, = maximum velocity occurring outside the boundary layer
from the wave motion (calculated from potential theory); and @ = an-
gular frequency (= 2m/T, T = wave period).

Rough Wall.—In the case of a rough wall, the velocity profile in the
boundary layer is assumed to be given by

Vg = Uy SiN (wt)

Uy
I g sl A e B s T Y )
30

in which k = the bed roughness; k = the von Kdrm4n constant (= 0.40);

U = friction velocity; and y = the distance from the bed. In this case,
the momentum equations reads

- 3+k/30
——= = - —_ -
? ﬁ U= Wdy. ... 4)

/30

in which 7, = bed shear stress; p = fluid density; 8’ =
layer thickness; and ¢ = time. B e

It is convenient to introduce the upper limit in the integral to & +
k/30 rather than 5 (as is normally done), because § = 0 for tgr= 0.

The boundary condition at the top of the boundary layer is y = § +
k/30:U = U, or, by the use of Eq. 3 ok A ;

b= (e -1 '
0 (e U T . (5)
N Uy
inwhich z = _L-I; KiEaimmon, oo SopdEm s o, A eaithes e aris (O (6)
Now, the integral on the right-hand side of Eq. 4 can be carried out to
dl, 14U k
_u2=_8__9+_.__f__ Z(y _
f 8% RiedEs80 [E6(8 = T) 1 [0575 Ta IS re o * A3 L 01 she (7

by using Egs. 3, 5, and 6. This relation can be converted into a differ-
ential equation in z, utilizing

EE z duO

which is obtained from Eq. 6.
Hereby, Eq. 7 can be written as (eliminating d U;/dt)
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dz sin (wt) z(e*—z—-1) 1 dl,
dw) efz-1)+1 e*z—1)+1Ud(wt)

inwhich B =

in which a = the free stream particle amplitude. Normally, B is a very
large quantity. Eq. 9 must be solved numerically. Because of the bound-
ary condition 8 = 0 for t = 0, the boundary condition to z is z = 0 for
t = 0 as seen from Eq. 5. Thus, at small values of t, Eq. 9 can be written
as dz/d(ot) = 2B(wt/z%) — z/wt which has the solution

z=3§B@W”=H .......................................... (11)

In the numerical solution of Eq. 9, the time, t, has been replaced by
t*, defined in Eq. 11, in order to account for the singularity at t = 0.

In Fig. 1(a), the solution of Eq. 9 is shown for two different values of
B (or a/k, cf. Eq. 10). From the knowledge of z it is easy to calculate the
ratio Uy/Uy, (from Eqgs. 2 and 6) as depicted in Fig. 1(b). The maximum
value of this value defines the friction factor f, by the relation

fo _ Upmar
VC TR LR LT PR LR TP PR EEEERERPPPMPSRRLE (12)

in which f,, = a function of a/k as plotted in Fig. 2. The theoretical pre-
diction fits well with experiments (11) for values of a/k larger than about
30. This is nearly the same value, below which it becomes questionable
whether the velocity profile in the boundary layer is logarithmic (Ref. 8,
pp. 57-58).

Like Uy, the boundary layer thickness varies with time as sketched in
Fig. 1(c). Jonsson (9) defines the boundary layer thickenss 8, equal to
that occurring at wt = w/2. The variation in 8,/a with a/k is given in
Table 1. The present theoretical value of ; is very near equal to twice
the value suggested by Jonsson and Carlsen (see Fig. 12). This is prob-
ably due to their definition of 8,, which they define as the minimum
distance between the wall and the level where the velocity becomes equal
to U, . As pointed out by Jonsson (9), 28, should in fact be a more
consistent measure.

Uy

|
¥
@
b
13

2

0.1

wt

FIG. 1.—(a) Variation In z; (b) Variation In U,/ll,,, ; (c) Varlatlon in 5/2: With Time,
—:afk = 10; ===-: a/k = 100
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FIG. 2.—Varlatlon in Friction Factor fo with a/k In Case of Rough Bed

In Table 1, the phase, ¢, between maximum bed shear stress and max-
imum velocity is also given.

Smooth Wall.—If the bed is hydraulically smooth, the velocity profile
in a steady current is given by

u 1 U 1 9.8
—=57+-In (—fg) =-In <J> ........................... (13)
U; K v K v

in which v = the kinematic viscosity. This expression is valid outside
the viscous sublayer, where the profile is linear. The thickness of the
viscous sublayer, 8, is given by 8, = 11.7(v/U;) in which the velocity
profile is given by

The simplest way to avoid the problem with two different velocity
profiles in two different regions is to replace Eq. 13 by

u 1 9.8U :
—=—1n<——f—y+1> ......................................... (15)
U « v

This profile is in the following assumed to be valid in the total region
0=y = 3. As seen from Fig. 3, Eq. 15 is nearly identical with the correct

TABLE 1.—Varlation in Boundary Layer Thickness and Phase In Case of Rough
Wall

a/k 8,/a ¢, in degrees
(1) (2) @)
10° 0.182 27
10 0.074 21
10? 0.039 15
10° 0.025 11
10* 0.017 9

eq 15
5 — — egs 13 and 14

FIG. 3.—Correct Velocity Profile (Broken Line) in Flow Over Smooth Bed Com-
pared with Approximated (Full Line)

profile except for a small deviation in the viscous sublayer. Eq. 15 is
inserted in the momentum equation, which in the present case is

8
9
~Ui= -f M= Wdy (16)
0

Hereby, the following differential equation in z, defined in Eq. 6, is
obtained

dz _ 9.8x°3 us

— St g e 17
dt v z¥e* - 1) (17)
At small values of ¢, Eq. 17 can be written as

dz 9.8«° w22

— U e 18
dt v R (18)

which has the solution

Vo

Here, R is the “amplitude Reynold’s number” (Ref. 9, p. 114) defined
by

2
R — ulma - ulm
v YW

As in the rough bed case, z increases infinitely fast with time at t = 0,
so t must be replaced by ¢§, Eq. 19, in the numerical solution of Eq. 17.
The solution of z is quite similar to those presented in the rough bed
case in Fig. 1, the parameter now being R instead of a/k. In Fig. 4, the
variation in f,,, defined in Eq. 12, with the Reynold’s number is shown
and compared with Kamphuis’ experimental results, which fit well with
theﬂ 2formul.ex fo = 0.065R™°? [Jonsson (9), p. 128, suggested f, = 0.09
R™.
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FIG. 4.—Varlation in Friction Factor with Reynold’s Number in Case of Smooth
Bed

For values of R smaller than about 5 X 10"°, we have transition be-
tween laminar and smooth turbulent transition (Ref. 9, p. 117).

In Table 2, the variation of phases ¢ and boundary layer thickness 8, ,
defined as in the rough bed case, is given as a function of R.

ComBiNED WAVE CURRENT MoOTION

Kinematic Description.—In the present section, the ideas developed
for the pure wave boundary layer is extended to cover the general mo-
tion of combined wave-current motion in the case of a rough bed, which
is the most common in nature. Now, the instantaneous velocity profile
U consists of two parts: a steady component, U, , due to the mean cur-
rent and an unsteady component, U,, due to the wave motion.

The unsteady component is described in the same way as in the pre-
vious section: outside a small boundary layer at the bottom, still called
the wave boundary layer, the velocity from the unsteady flow is cal-
culated by potential theory, so in case of a sinusoidal wave the velocity
is just outside the boundary layer given by Eq. 2. Inside the boundary
layer, the unsteady part of the velocity is assumed to be logarithmic and
given by Eq. 3. .

The steady component, U;, is described as follows: outside the wave

TABLE 2.—Variation in Boundary Layer Thickness and Phase In Case of Smooth
Wall

R d,/a ¢, in degrees
(1) (2) 3)
10* 0.0322 13
10° 0.0232 10
10° 0.017e 8
107 0.143 6.3
108 0.114 5.5
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boundary layer the turbulence is due to the mean current only. Here,
the usual logarithmic velocity distribution

U o1
a—=—1n—y— ................................................ 22)
e K [k
<%>

is adopted. k, stands for an apparent bed roughness which is different
from the grain roughness as the wave boundary layer acts as a larger
roughness element. Uy in Eq. 22 stands for the current friction velocity
to be determined later.

Inside the wave boundary layer, the mean current velocity profile is
assumed to be given by

Ul 1 v

—=-ln— ..............

0 Kn<k) ................................. 23)
30

The boundary condition at the top of the wave boundary layer (y =
d + k/30) is that the vectorial sum of the potential flow velocity (Eq. 2)
and the mean current profile (Eq. 23) is equal to the instantaneous ve-
locity at y = & + k/30 given by Eq. 3. If the angle between mean current

direction and direction of wave propagation is called v, this condition
becomes

K\ P k g
o+ — .
Y [ e, [
- _k_ = —K— In T + Uy cos vy
30 30
HUosin Yoo (24)

cf. Fig. 5, where Us stands for the mean current velocity at the distance,
9, above the bed (given by Eq. 23).

If, as in Eq. 6, we introduce a quantity, z by
K UO

in which U} in the present case is given by

N Ufocosy+ \/ U}, cos? y 1

T W -y + W o, (26)
we obtain from Eq. 24 the same relationship as in Eq. 5
8= LY G T

30 T (27)

Finally, the angle ¢ between the instantaneous flow direction in the

boundary layer and the mean current direction (Fig. 5) is needed for use
later on: from Fig. 5 it is seen that
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T Mean flow direction
A

d |YUpcosy

Ugsiny

FIG. 5.—Definition Sketch of v and ¢

Upkcosy + Uyplnz
cos d = — i i

.................................... 28
Uslnz 28)
. : ur .
Finally, sin® = I 33 U (29)
f

is obtained from Eq. 28 by use of Egs. 26 and 27.

Dynamic Description.—The momentum equation applied on the
boundary layer in the direction perpendicular to the mean current di-
rection (the x-direction, see Fig. 5) is given by

B3+k/30
f p Ei (Usin® — Upsiny)dy = ~msin®..................... (30)
k

/30

in which the first term on the left-hand side under the integral sign stands
for the acceleration in the z-direction, the next term is the pressure gra-
dient from the wave outside the wave boundary layer. The right-hand
side of Eq. 30 represents the bed shear stress component in the x-direction.

The principle in the study of the wave boundary layer development
is the same as in the previous study of the pure wave boundary layer:
the development of the boundary layer for 0 = wt = 7 is first studied.
At t = 0, the flow picture is identical with the resulting mean current
velocity profile, U, being zero, and the effect of eddies formed by the
previous movement being disregarded. At wt = m, we return to the orig-
inal flow situation (U, = 0) and a new wave boundary layer, similar to
the former one, will develop during the next half wave period.

The development is calculated from Eq. 30, in which Eq. 29 is inserted.
After integration of Eq. 30, we get

k dl, k auy

- (ot o 1) 0 e D [ty — =1

U, Uy + e (e*-1) prabry [e*(z—1) + 1] AR RCRPRTRERES /¥ (31)

Uf is defined in Eq. 25, from which we obtain (like Eq. 8)
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S—1

duy Urdu, uydz 32)
FTRRETAPT el R LT CE LR LECECELECELELERECCREEIELEERERE
Insérting Eq. 32 into Eq. 31, we get after some rearrangements
dz_z(+z-¢)1dUy 30k Vk2US + 22U} + 2zl Ug cos y -
dt e*z—1)+1U, dt k

ef(z—-1)+1

Like Eq. 9, Eq. 33 is singular at ¢t = 0, which by Taylor expansion can
be written as

dz 1«2 ulm)z (wt)z] U, ot } z
— = VAN o 3 b i | o i, 34
den P {[z 2 (ufo 2 | Ue2 Y S
N 60 Uy '
in which B; = 0 U0 0000800000050 E BB asa RN Bacana: (35)

Eq. 35 must be solved numerically for larger values of wt.
The variation in z depends on the two parameters B; and U,/ Uy .
However, B; can be written as (cf. Eq. 35)

a
_ ulm ufD _ %
B: = 60k ' U = 60k -% ..................................... 37)

in which a = the free stream particle amplitude. Thus, alternatively z
depends on the two quantities a/k and U,,,/ Uy .

In Fig. 6, an example of the variation in U; and the boundary layer
thickness 8 is shown for specific values of a/k and U,,,/ Uy, for the special
case where the direction of wave propagation is the same as the mean
current direction. (In Fig. 6 ¢, is the phase between the maximum shear
stress and maximum velocity; and ¢_ is the phase between minimum
shear stress and minimum velocity.)

Having obtained the variation in U; with time, the momentum equa-
tion applied in the mean flow direction (Fig. 5) gives the mean bed shear
7 in this direction. The momentum equation in this direction is

8+k/30
f pd—t(Ucos‘b = Uscosy)dy=—-mcosP+7................ (38)
A :

/30

in which 7 stands for the current shear stress outside the wave boundary
layer, which is directed in the x-direction. Integration of Eq. 38 with
respect to time over one wave period yields

T T
?=pLIfc=J Tbcosd>dt=J pUPCOS@dt.oovvveiiiiiiniinn., (39)
0

0
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because the left-hand side of Eq. 38 becomes zero when it is integrated
over a wave period (no acceleration of the mean flow velocity).

The apparent roughness, k, , is determined by matching the inner and
the outer mean current profile in the mean thickness of the boundary
layer, 8, , which from Egs. 22-23 gives

ko (308, Y
I <T)

in which 3, is in the present taken as the mean value of 3(wt = w/2) and
3wt = 3w/2) (Fig. 6).

THEORETICAL RESULTS

In Fig. 7 the variations in k,/k as the function of U,/ Uy, are depicted
for different values of a/k.

Fig. 7(a) shows the variation for y = 0°, while Fig. 7(b) shows the sim-
ilar variation for y = 90°. It is interesting to note that the curves cross
each other, which means that the apparent roughness at strong current
(small values of U,,,/ Uy ) is largest at small values of a/k (that means fast
oscillations), while the reverse is the case at weak current. In Fig. 8, a
comparison is made between the apparent bed roughness for two and
three dimensional flow for the same value of 4 /k.

It turns out that the apparent roughness is always the largest for two
dimensional flow.

In Fig. 9, the variation in 8,,/k with U,/ Uy is shown for both 2-D (y
= (°) and 3-D (y = 90°) flow: The variations turn out to be nearly iden-
tical, the three dimensional boundary layer being slightly larger than the
two dimensional except in the two limits (weak and strong current).
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FIG. 7.—Varlation in k./k with U,,/Uy for Different Values of a/k: (8) v = 0%
(b) y = 90°

Finally, Fig. 10 shows the variation in U/Uyo with U,/ Uy for y = 0°
and 90°. From these diagrams, Figs. 7, 9, and 10, it is easy to describe
the flow as explained in the following.

AppLICATION OF DiAGRAMS AND COMPARISON WITH EXPERIMENTS

If the boundary layer thickness 8, is small compared with the water
depth, Eq. 2 yields

V 1 D
-ﬁ::;(- In 'k: = (41)
30

in which V = the mean current velocity.

The diagrams depicted in Figs. 7, 9, and 10 are now applied in the
following way:

Let us assume that V, D, U,,, 4, and k are known quantities. By
choosing an initial value of U], . » ki can be found from Fig. 7. If the se-
lected value of Uy is not equal to that obtained from Eq. 41, a new value
of Uy, must be chosen until agreement occurs,

If the inner solution is also of interest, Uy, is now easily found from
Fig. 10. Only very few experiments are available to verify the theory,
and all are carried out in the special case where y = (°, Brevik (3) and
Kemp and Simons (12) have measured the velocity profile in the case of
a hydraulic smooth bed, while Bakker and Doorn (2) have measured the
velocity profile in the case of a hydraulic rough bed.

In Fig. 11, the present theoretical findings are compared with Bakker
and Doorn’s (2) measurements. The dotted lines indicate the inner and
outer solutions. However, because the solution of the wave boundary
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FIG. 9.—Varlation In Wave Boundary
Layer Thickness, 5/k, with U,,./U.

layer is not totally symmetrical around the mean values, the correct mean
profile is in fact not a logarithmic function, but instead the fully drawn
line which is obtained by taking the average value of U over a wave
period.

VARIATION IN FRICTION FACTOR

From the graphs depicted in Figs. 7, 9, and 10, it is, furthermore, pos-
sible to determine the friction factor for the flow. The friction factor for
the mean current motion is defined by

NUAY
ﬁ—2<v> ................................................... (42)

in which V/Uj is found by Eq. 41. Thus, besides the data already given
in Figs. 7, 9, and 10, it is necessary to know the dimensionless water
depth, D/k. The variation in f, is shown in Fig. 12 for y = 0° and y =
90° for a specific value of D/k and a/k: for strong current, f. approaches
f.o, which is the friction factor in pure current, obtained from Colebrook-
White’s formula. For weak current, f, increases to a higher value, which
in the limit is given by

\/é 11 (E_1> 43
fc_)Kn Wiy SRR RN SR SRRt 43)

in which 3, = the pure wave boundary layer thickness. From Fig. 12 it
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oL N R —— 1 is seen that the friction factor is largest for 2-D flow.

Besides the friction factor for the mean current flow, the maximum
bed shear stress during a wave period is also of interest (for sediment
transport). In Fig. 13, the variation in U ax/ U, in which Ufmax = the
maximum friction velocity during a wave cycle, is depicted as a function

| of U,/ Uy, for different values of a/k. From this diagram, together with

1 Fig. 10, it is easy to find the maximum bed shear stress.

| By defining a friction factor by
-2 |

10 “ N Umax :
L o ' fra = <—f——> .............................................. (44)

4 ] uﬂ,max
-7 f ] ! . . .
-// o § 4 in which U .., = the maximum flow velocity at the top of the boundary
layer (the vectorial sum of wave velocity and mean current velocity); fr.

fe, fmax

T T 1T

Olllllll

feo

—— y=90° (3'D ﬂo\N) 2 |
—— Y=0° (2-D flow) |

3L Lo [N ) [ | 1‘ I U],,'./U:c factor fw deplded in Flg‘ 2.
O

5 10 5 10° 5
" ConcLusion
— Friction Factor, £., and Maximum Friction ac- .
tF'oG. = \l,t?lﬂall“o/n L;n (?:/e: lql‘g:e rg/k = 10%) ’ ' A model for the wave boundary layer in combined wave current has
L e ’ been developed which takes its starting point on a reasonable guess of

T T T TrTT 7 T llll‘l‘ T

|
ymax/Ute g: 1p' 10?2 103 plication of the momentum equation in the direction perpendicular to
o o /p A0

- ’/ ] i of a first order ordinary differential equation. In the case of no mean

- v=¢F i { current, the theoretical findings agree well with the measured friction

sk ] factor in the rough bed case as well as in the smooth bed case. In the

- i i case of a nonvanishing mean current, the calculations are carried out

L ] only for a rough bed, where the calculated mean current profile agrees
X ] reasonably well with the measurements by Bakker and Doorn.
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Two-DIMENSIONAL FLOOD RouTting
ON STEEP SLOPES®

By Robert A. Laura," A. M. ASCE and John D. Wang,* M. ASCE

ABsTRACT: Program ROUTWEIR represents a two-dimensional flood routin

model designed to analyze two-dimensional flow caused by rainfall and runoff
flooding events. Input to the program consists of known geometry, topogra-
phy, initial conditions, and boundary conditions. The geometry and bathyme-
try of the flood plain are represented by a grid of interconnecting triangular
elements. Initial water levels are prescribed to correspond to the normal water
elevations in the river channel, Boundary conditions are Pprescribed by a dis-
charge hydrograph at the upstream boundary of the river basin, and by the
water surface elevations at the ocean boundary. The interior water elevations

and graphical form. ROUTWEIR has been successfully calibrated against re-
corded i i i

used in that basin in a federal flood insurance study. A versatile computer pro-
gram, ROUTWEIR can be applied to many-flood routing problems. It is par-
ticularly suited for wide river gasins with large bottom slopes and for normally
dry areas subject to extensive flooding.

INTRODUCTION

The two-dimensional flood routing model, Program ROUTWEIR, was
designed to analyze flow caused by rainfall and runoff flooding events
in complex river basins where one-dimensional programs, such as HEC-
2 (8), do not apply. This computer model was developed under a Federal
Emergency Management Agency (FEMA) contract for use in a flood in-
surance study (5), which investigated the existence and severity of flood
hazards in the Culebrinas River Basin in Puerto Rico.

The impetus to develop this particular model arose from the rather
special conditions encountered in Puerto Rican river basins. These ba-
sins are characterized by steep longitudinal gradients in topography and
by severe storms that cause extensive flooding of the river banks and
adjacent land. As a flood wave propagates through this system, nu-
merous fransitions from supercritical to subcritical flow and vice versa
may take place at different times and locations. Also, the transverse flow
over river banks and onto dry land greatly affects maximum flood
elevations.

Existing models such as HEC-2 (8) and WSP-2 (6) have brought the

*Presented at the Sept. 2-5, 1982, ASCE Joint Florida/South Florida Annual
Meeting, “Engineering for the 21st Century,” held in Orlando, Fla.

'Sr. Engr., Post, Buckley, Schuh & Jernigan, Inc., Miami, Fla.

*Assoc. Prof., Div. of Ocean Engrg., Rosenstiel School of Marine and Atmo-
spheric Sci., Univ. of Miami, Miami, Fla.
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view and possible publication on April 29, 1983. This paper is part of the Journal

of Hydraulic Engineering, Vol. 110, No. 8, August, 1984. ®ASCE, ISSN (0733-
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